]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Analysis/ScalarEvolution.cpp
Merge ^/vendor/libc++/dist up to its last change, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Analysis / ScalarEvolution.cpp
1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/CallSite.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/Pass.h"
116 #include "llvm/Support/Casting.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/KnownBits.h"
122 #include "llvm/Support/SaveAndRestore.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <climits>
127 #include <cstddef>
128 #include <cstdint>
129 #include <cstdlib>
130 #include <map>
131 #include <memory>
132 #include <tuple>
133 #include <utility>
134 #include <vector>
135
136 using namespace llvm;
137
138 #define DEBUG_TYPE "scalar-evolution"
139
140 STATISTIC(NumArrayLenItCounts,
141           "Number of trip counts computed with array length");
142 STATISTIC(NumTripCountsComputed,
143           "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145           "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147           "Number of loops with trip counts computed by force");
148
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151                         cl::ZeroOrMore,
152                         cl::desc("Maximum number of iterations SCEV will "
153                                  "symbolically execute a constant "
154                                  "derived loop"),
155                         cl::init(100));
156
157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
158 static cl::opt<bool> VerifySCEV(
159     "verify-scev", cl::Hidden,
160     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
161 static cl::opt<bool> VerifySCEVStrict(
162     "verify-scev-strict", cl::Hidden,
163     cl::desc("Enable stricter verification with -verify-scev is passed"));
164 static cl::opt<bool>
165     VerifySCEVMap("verify-scev-maps", cl::Hidden,
166                   cl::desc("Verify no dangling value in ScalarEvolution's "
167                            "ExprValueMap (slow)"));
168
169 static cl::opt<bool> VerifyIR(
170     "scev-verify-ir", cl::Hidden,
171     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
172     cl::init(false));
173
174 static cl::opt<unsigned> MulOpsInlineThreshold(
175     "scev-mulops-inline-threshold", cl::Hidden,
176     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
177     cl::init(32));
178
179 static cl::opt<unsigned> AddOpsInlineThreshold(
180     "scev-addops-inline-threshold", cl::Hidden,
181     cl::desc("Threshold for inlining addition operands into a SCEV"),
182     cl::init(500));
183
184 static cl::opt<unsigned> MaxSCEVCompareDepth(
185     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
186     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
187     cl::init(32));
188
189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
190     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
191     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
192     cl::init(2));
193
194 static cl::opt<unsigned> MaxValueCompareDepth(
195     "scalar-evolution-max-value-compare-depth", cl::Hidden,
196     cl::desc("Maximum depth of recursive value complexity comparisons"),
197     cl::init(2));
198
199 static cl::opt<unsigned>
200     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
201                   cl::desc("Maximum depth of recursive arithmetics"),
202                   cl::init(32));
203
204 static cl::opt<unsigned> MaxConstantEvolvingDepth(
205     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
206     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
207
208 static cl::opt<unsigned>
209     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
210                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
211                  cl::init(8));
212
213 static cl::opt<unsigned>
214     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
215                   cl::desc("Max coefficients in AddRec during evolving"),
216                   cl::init(8));
217
218 static cl::opt<unsigned>
219     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
220                   cl::desc("Size of the expression which is considered huge"),
221                   cl::init(4096));
222
223 //===----------------------------------------------------------------------===//
224 //                           SCEV class definitions
225 //===----------------------------------------------------------------------===//
226
227 //===----------------------------------------------------------------------===//
228 // Implementation of the SCEV class.
229 //
230
231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
232 LLVM_DUMP_METHOD void SCEV::dump() const {
233   print(dbgs());
234   dbgs() << '\n';
235 }
236 #endif
237
238 void SCEV::print(raw_ostream &OS) const {
239   switch (static_cast<SCEVTypes>(getSCEVType())) {
240   case scConstant:
241     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
242     return;
243   case scTruncate: {
244     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
245     const SCEV *Op = Trunc->getOperand();
246     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
247        << *Trunc->getType() << ")";
248     return;
249   }
250   case scZeroExtend: {
251     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
252     const SCEV *Op = ZExt->getOperand();
253     OS << "(zext " << *Op->getType() << " " << *Op << " to "
254        << *ZExt->getType() << ")";
255     return;
256   }
257   case scSignExtend: {
258     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
259     const SCEV *Op = SExt->getOperand();
260     OS << "(sext " << *Op->getType() << " " << *Op << " to "
261        << *SExt->getType() << ")";
262     return;
263   }
264   case scAddRecExpr: {
265     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
266     OS << "{" << *AR->getOperand(0);
267     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
268       OS << ",+," << *AR->getOperand(i);
269     OS << "}<";
270     if (AR->hasNoUnsignedWrap())
271       OS << "nuw><";
272     if (AR->hasNoSignedWrap())
273       OS << "nsw><";
274     if (AR->hasNoSelfWrap() &&
275         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
276       OS << "nw><";
277     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
278     OS << ">";
279     return;
280   }
281   case scAddExpr:
282   case scMulExpr:
283   case scUMaxExpr:
284   case scSMaxExpr:
285   case scUMinExpr:
286   case scSMinExpr: {
287     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
288     const char *OpStr = nullptr;
289     switch (NAry->getSCEVType()) {
290     case scAddExpr: OpStr = " + "; break;
291     case scMulExpr: OpStr = " * "; break;
292     case scUMaxExpr: OpStr = " umax "; break;
293     case scSMaxExpr: OpStr = " smax "; break;
294     case scUMinExpr:
295       OpStr = " umin ";
296       break;
297     case scSMinExpr:
298       OpStr = " smin ";
299       break;
300     }
301     OS << "(";
302     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
303          I != E; ++I) {
304       OS << **I;
305       if (std::next(I) != E)
306         OS << OpStr;
307     }
308     OS << ")";
309     switch (NAry->getSCEVType()) {
310     case scAddExpr:
311     case scMulExpr:
312       if (NAry->hasNoUnsignedWrap())
313         OS << "<nuw>";
314       if (NAry->hasNoSignedWrap())
315         OS << "<nsw>";
316     }
317     return;
318   }
319   case scUDivExpr: {
320     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
321     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
322     return;
323   }
324   case scUnknown: {
325     const SCEVUnknown *U = cast<SCEVUnknown>(this);
326     Type *AllocTy;
327     if (U->isSizeOf(AllocTy)) {
328       OS << "sizeof(" << *AllocTy << ")";
329       return;
330     }
331     if (U->isAlignOf(AllocTy)) {
332       OS << "alignof(" << *AllocTy << ")";
333       return;
334     }
335
336     Type *CTy;
337     Constant *FieldNo;
338     if (U->isOffsetOf(CTy, FieldNo)) {
339       OS << "offsetof(" << *CTy << ", ";
340       FieldNo->printAsOperand(OS, false);
341       OS << ")";
342       return;
343     }
344
345     // Otherwise just print it normally.
346     U->getValue()->printAsOperand(OS, false);
347     return;
348   }
349   case scCouldNotCompute:
350     OS << "***COULDNOTCOMPUTE***";
351     return;
352   }
353   llvm_unreachable("Unknown SCEV kind!");
354 }
355
356 Type *SCEV::getType() const {
357   switch (static_cast<SCEVTypes>(getSCEVType())) {
358   case scConstant:
359     return cast<SCEVConstant>(this)->getType();
360   case scTruncate:
361   case scZeroExtend:
362   case scSignExtend:
363     return cast<SCEVCastExpr>(this)->getType();
364   case scAddRecExpr:
365   case scMulExpr:
366   case scUMaxExpr:
367   case scSMaxExpr:
368   case scUMinExpr:
369   case scSMinExpr:
370     return cast<SCEVNAryExpr>(this)->getType();
371   case scAddExpr:
372     return cast<SCEVAddExpr>(this)->getType();
373   case scUDivExpr:
374     return cast<SCEVUDivExpr>(this)->getType();
375   case scUnknown:
376     return cast<SCEVUnknown>(this)->getType();
377   case scCouldNotCompute:
378     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
379   }
380   llvm_unreachable("Unknown SCEV kind!");
381 }
382
383 bool SCEV::isZero() const {
384   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
385     return SC->getValue()->isZero();
386   return false;
387 }
388
389 bool SCEV::isOne() const {
390   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
391     return SC->getValue()->isOne();
392   return false;
393 }
394
395 bool SCEV::isAllOnesValue() const {
396   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
397     return SC->getValue()->isMinusOne();
398   return false;
399 }
400
401 bool SCEV::isNonConstantNegative() const {
402   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
403   if (!Mul) return false;
404
405   // If there is a constant factor, it will be first.
406   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
407   if (!SC) return false;
408
409   // Return true if the value is negative, this matches things like (-42 * V).
410   return SC->getAPInt().isNegative();
411 }
412
413 SCEVCouldNotCompute::SCEVCouldNotCompute() :
414   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
415
416 bool SCEVCouldNotCompute::classof(const SCEV *S) {
417   return S->getSCEVType() == scCouldNotCompute;
418 }
419
420 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
421   FoldingSetNodeID ID;
422   ID.AddInteger(scConstant);
423   ID.AddPointer(V);
424   void *IP = nullptr;
425   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
426   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
427   UniqueSCEVs.InsertNode(S, IP);
428   return S;
429 }
430
431 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
432   return getConstant(ConstantInt::get(getContext(), Val));
433 }
434
435 const SCEV *
436 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
437   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
438   return getConstant(ConstantInt::get(ITy, V, isSigned));
439 }
440
441 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
442                            unsigned SCEVTy, const SCEV *op, Type *ty)
443   : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
444
445 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
446                                    const SCEV *op, Type *ty)
447   : SCEVCastExpr(ID, scTruncate, op, ty) {
448   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
449          "Cannot truncate non-integer value!");
450 }
451
452 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
453                                        const SCEV *op, Type *ty)
454   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
455   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
456          "Cannot zero extend non-integer value!");
457 }
458
459 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
460                                        const SCEV *op, Type *ty)
461   : SCEVCastExpr(ID, scSignExtend, op, ty) {
462   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
463          "Cannot sign extend non-integer value!");
464 }
465
466 void SCEVUnknown::deleted() {
467   // Clear this SCEVUnknown from various maps.
468   SE->forgetMemoizedResults(this);
469
470   // Remove this SCEVUnknown from the uniquing map.
471   SE->UniqueSCEVs.RemoveNode(this);
472
473   // Release the value.
474   setValPtr(nullptr);
475 }
476
477 void SCEVUnknown::allUsesReplacedWith(Value *New) {
478   // Remove this SCEVUnknown from the uniquing map.
479   SE->UniqueSCEVs.RemoveNode(this);
480
481   // Update this SCEVUnknown to point to the new value. This is needed
482   // because there may still be outstanding SCEVs which still point to
483   // this SCEVUnknown.
484   setValPtr(New);
485 }
486
487 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
488   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
489     if (VCE->getOpcode() == Instruction::PtrToInt)
490       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
491         if (CE->getOpcode() == Instruction::GetElementPtr &&
492             CE->getOperand(0)->isNullValue() &&
493             CE->getNumOperands() == 2)
494           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
495             if (CI->isOne()) {
496               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
497                                  ->getElementType();
498               return true;
499             }
500
501   return false;
502 }
503
504 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
505   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
506     if (VCE->getOpcode() == Instruction::PtrToInt)
507       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
508         if (CE->getOpcode() == Instruction::GetElementPtr &&
509             CE->getOperand(0)->isNullValue()) {
510           Type *Ty =
511             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
512           if (StructType *STy = dyn_cast<StructType>(Ty))
513             if (!STy->isPacked() &&
514                 CE->getNumOperands() == 3 &&
515                 CE->getOperand(1)->isNullValue()) {
516               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
517                 if (CI->isOne() &&
518                     STy->getNumElements() == 2 &&
519                     STy->getElementType(0)->isIntegerTy(1)) {
520                   AllocTy = STy->getElementType(1);
521                   return true;
522                 }
523             }
524         }
525
526   return false;
527 }
528
529 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
530   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
531     if (VCE->getOpcode() == Instruction::PtrToInt)
532       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
533         if (CE->getOpcode() == Instruction::GetElementPtr &&
534             CE->getNumOperands() == 3 &&
535             CE->getOperand(0)->isNullValue() &&
536             CE->getOperand(1)->isNullValue()) {
537           Type *Ty =
538             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
539           // Ignore vector types here so that ScalarEvolutionExpander doesn't
540           // emit getelementptrs that index into vectors.
541           if (Ty->isStructTy() || Ty->isArrayTy()) {
542             CTy = Ty;
543             FieldNo = CE->getOperand(2);
544             return true;
545           }
546         }
547
548   return false;
549 }
550
551 //===----------------------------------------------------------------------===//
552 //                               SCEV Utilities
553 //===----------------------------------------------------------------------===//
554
555 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
556 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
557 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
558 /// have been previously deemed to be "equally complex" by this routine.  It is
559 /// intended to avoid exponential time complexity in cases like:
560 ///
561 ///   %a = f(%x, %y)
562 ///   %b = f(%a, %a)
563 ///   %c = f(%b, %b)
564 ///
565 ///   %d = f(%x, %y)
566 ///   %e = f(%d, %d)
567 ///   %f = f(%e, %e)
568 ///
569 ///   CompareValueComplexity(%f, %c)
570 ///
571 /// Since we do not continue running this routine on expression trees once we
572 /// have seen unequal values, there is no need to track them in the cache.
573 static int
574 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
575                        const LoopInfo *const LI, Value *LV, Value *RV,
576                        unsigned Depth) {
577   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
578     return 0;
579
580   // Order pointer values after integer values. This helps SCEVExpander form
581   // GEPs.
582   bool LIsPointer = LV->getType()->isPointerTy(),
583        RIsPointer = RV->getType()->isPointerTy();
584   if (LIsPointer != RIsPointer)
585     return (int)LIsPointer - (int)RIsPointer;
586
587   // Compare getValueID values.
588   unsigned LID = LV->getValueID(), RID = RV->getValueID();
589   if (LID != RID)
590     return (int)LID - (int)RID;
591
592   // Sort arguments by their position.
593   if (const auto *LA = dyn_cast<Argument>(LV)) {
594     const auto *RA = cast<Argument>(RV);
595     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
596     return (int)LArgNo - (int)RArgNo;
597   }
598
599   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
600     const auto *RGV = cast<GlobalValue>(RV);
601
602     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
603       auto LT = GV->getLinkage();
604       return !(GlobalValue::isPrivateLinkage(LT) ||
605                GlobalValue::isInternalLinkage(LT));
606     };
607
608     // Use the names to distinguish the two values, but only if the
609     // names are semantically important.
610     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
611       return LGV->getName().compare(RGV->getName());
612   }
613
614   // For instructions, compare their loop depth, and their operand count.  This
615   // is pretty loose.
616   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
617     const auto *RInst = cast<Instruction>(RV);
618
619     // Compare loop depths.
620     const BasicBlock *LParent = LInst->getParent(),
621                      *RParent = RInst->getParent();
622     if (LParent != RParent) {
623       unsigned LDepth = LI->getLoopDepth(LParent),
624                RDepth = LI->getLoopDepth(RParent);
625       if (LDepth != RDepth)
626         return (int)LDepth - (int)RDepth;
627     }
628
629     // Compare the number of operands.
630     unsigned LNumOps = LInst->getNumOperands(),
631              RNumOps = RInst->getNumOperands();
632     if (LNumOps != RNumOps)
633       return (int)LNumOps - (int)RNumOps;
634
635     for (unsigned Idx : seq(0u, LNumOps)) {
636       int Result =
637           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
638                                  RInst->getOperand(Idx), Depth + 1);
639       if (Result != 0)
640         return Result;
641     }
642   }
643
644   EqCacheValue.unionSets(LV, RV);
645   return 0;
646 }
647
648 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
649 // than RHS, respectively. A three-way result allows recursive comparisons to be
650 // more efficient.
651 static int CompareSCEVComplexity(
652     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
653     EquivalenceClasses<const Value *> &EqCacheValue,
654     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
655     DominatorTree &DT, unsigned Depth = 0) {
656   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
657   if (LHS == RHS)
658     return 0;
659
660   // Primarily, sort the SCEVs by their getSCEVType().
661   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
662   if (LType != RType)
663     return (int)LType - (int)RType;
664
665   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
666     return 0;
667   // Aside from the getSCEVType() ordering, the particular ordering
668   // isn't very important except that it's beneficial to be consistent,
669   // so that (a + b) and (b + a) don't end up as different expressions.
670   switch (static_cast<SCEVTypes>(LType)) {
671   case scUnknown: {
672     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
673     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
674
675     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
676                                    RU->getValue(), Depth + 1);
677     if (X == 0)
678       EqCacheSCEV.unionSets(LHS, RHS);
679     return X;
680   }
681
682   case scConstant: {
683     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
684     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
685
686     // Compare constant values.
687     const APInt &LA = LC->getAPInt();
688     const APInt &RA = RC->getAPInt();
689     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
690     if (LBitWidth != RBitWidth)
691       return (int)LBitWidth - (int)RBitWidth;
692     return LA.ult(RA) ? -1 : 1;
693   }
694
695   case scAddRecExpr: {
696     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
697     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
698
699     // There is always a dominance between two recs that are used by one SCEV,
700     // so we can safely sort recs by loop header dominance. We require such
701     // order in getAddExpr.
702     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
703     if (LLoop != RLoop) {
704       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
705       assert(LHead != RHead && "Two loops share the same header?");
706       if (DT.dominates(LHead, RHead))
707         return 1;
708       else
709         assert(DT.dominates(RHead, LHead) &&
710                "No dominance between recurrences used by one SCEV?");
711       return -1;
712     }
713
714     // Addrec complexity grows with operand count.
715     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
716     if (LNumOps != RNumOps)
717       return (int)LNumOps - (int)RNumOps;
718
719     // Lexicographically compare.
720     for (unsigned i = 0; i != LNumOps; ++i) {
721       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
722                                     LA->getOperand(i), RA->getOperand(i), DT,
723                                     Depth + 1);
724       if (X != 0)
725         return X;
726     }
727     EqCacheSCEV.unionSets(LHS, RHS);
728     return 0;
729   }
730
731   case scAddExpr:
732   case scMulExpr:
733   case scSMaxExpr:
734   case scUMaxExpr:
735   case scSMinExpr:
736   case scUMinExpr: {
737     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
738     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
739
740     // Lexicographically compare n-ary expressions.
741     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
742     if (LNumOps != RNumOps)
743       return (int)LNumOps - (int)RNumOps;
744
745     for (unsigned i = 0; i != LNumOps; ++i) {
746       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
747                                     LC->getOperand(i), RC->getOperand(i), DT,
748                                     Depth + 1);
749       if (X != 0)
750         return X;
751     }
752     EqCacheSCEV.unionSets(LHS, RHS);
753     return 0;
754   }
755
756   case scUDivExpr: {
757     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
758     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
759
760     // Lexicographically compare udiv expressions.
761     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
762                                   RC->getLHS(), DT, Depth + 1);
763     if (X != 0)
764       return X;
765     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
766                               RC->getRHS(), DT, Depth + 1);
767     if (X == 0)
768       EqCacheSCEV.unionSets(LHS, RHS);
769     return X;
770   }
771
772   case scTruncate:
773   case scZeroExtend:
774   case scSignExtend: {
775     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
776     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
777
778     // Compare cast expressions by operand.
779     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
780                                   LC->getOperand(), RC->getOperand(), DT,
781                                   Depth + 1);
782     if (X == 0)
783       EqCacheSCEV.unionSets(LHS, RHS);
784     return X;
785   }
786
787   case scCouldNotCompute:
788     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
789   }
790   llvm_unreachable("Unknown SCEV kind!");
791 }
792
793 /// Given a list of SCEV objects, order them by their complexity, and group
794 /// objects of the same complexity together by value.  When this routine is
795 /// finished, we know that any duplicates in the vector are consecutive and that
796 /// complexity is monotonically increasing.
797 ///
798 /// Note that we go take special precautions to ensure that we get deterministic
799 /// results from this routine.  In other words, we don't want the results of
800 /// this to depend on where the addresses of various SCEV objects happened to
801 /// land in memory.
802 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
803                               LoopInfo *LI, DominatorTree &DT) {
804   if (Ops.size() < 2) return;  // Noop
805
806   EquivalenceClasses<const SCEV *> EqCacheSCEV;
807   EquivalenceClasses<const Value *> EqCacheValue;
808   if (Ops.size() == 2) {
809     // This is the common case, which also happens to be trivially simple.
810     // Special case it.
811     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
812     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
813       std::swap(LHS, RHS);
814     return;
815   }
816
817   // Do the rough sort by complexity.
818   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
819     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
820            0;
821   });
822
823   // Now that we are sorted by complexity, group elements of the same
824   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
825   // be extremely short in practice.  Note that we take this approach because we
826   // do not want to depend on the addresses of the objects we are grouping.
827   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
828     const SCEV *S = Ops[i];
829     unsigned Complexity = S->getSCEVType();
830
831     // If there are any objects of the same complexity and same value as this
832     // one, group them.
833     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
834       if (Ops[j] == S) { // Found a duplicate.
835         // Move it to immediately after i'th element.
836         std::swap(Ops[i+1], Ops[j]);
837         ++i;   // no need to rescan it.
838         if (i == e-2) return;  // Done!
839       }
840     }
841   }
842 }
843
844 // Returns the size of the SCEV S.
845 static inline int sizeOfSCEV(const SCEV *S) {
846   struct FindSCEVSize {
847     int Size = 0;
848
849     FindSCEVSize() = default;
850
851     bool follow(const SCEV *S) {
852       ++Size;
853       // Keep looking at all operands of S.
854       return true;
855     }
856
857     bool isDone() const {
858       return false;
859     }
860   };
861
862   FindSCEVSize F;
863   SCEVTraversal<FindSCEVSize> ST(F);
864   ST.visitAll(S);
865   return F.Size;
866 }
867
868 /// Returns true if the subtree of \p S contains at least HugeExprThreshold
869 /// nodes.
870 static bool isHugeExpression(const SCEV *S) {
871   return S->getExpressionSize() >= HugeExprThreshold;
872 }
873
874 /// Returns true of \p Ops contains a huge SCEV (see definition above).
875 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
876   return any_of(Ops, isHugeExpression);
877 }
878
879 namespace {
880
881 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
882 public:
883   // Computes the Quotient and Remainder of the division of Numerator by
884   // Denominator.
885   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
886                      const SCEV *Denominator, const SCEV **Quotient,
887                      const SCEV **Remainder) {
888     assert(Numerator && Denominator && "Uninitialized SCEV");
889
890     SCEVDivision D(SE, Numerator, Denominator);
891
892     // Check for the trivial case here to avoid having to check for it in the
893     // rest of the code.
894     if (Numerator == Denominator) {
895       *Quotient = D.One;
896       *Remainder = D.Zero;
897       return;
898     }
899
900     if (Numerator->isZero()) {
901       *Quotient = D.Zero;
902       *Remainder = D.Zero;
903       return;
904     }
905
906     // A simple case when N/1. The quotient is N.
907     if (Denominator->isOne()) {
908       *Quotient = Numerator;
909       *Remainder = D.Zero;
910       return;
911     }
912
913     // Split the Denominator when it is a product.
914     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
915       const SCEV *Q, *R;
916       *Quotient = Numerator;
917       for (const SCEV *Op : T->operands()) {
918         divide(SE, *Quotient, Op, &Q, &R);
919         *Quotient = Q;
920
921         // Bail out when the Numerator is not divisible by one of the terms of
922         // the Denominator.
923         if (!R->isZero()) {
924           *Quotient = D.Zero;
925           *Remainder = Numerator;
926           return;
927         }
928       }
929       *Remainder = D.Zero;
930       return;
931     }
932
933     D.visit(Numerator);
934     *Quotient = D.Quotient;
935     *Remainder = D.Remainder;
936   }
937
938   // Except in the trivial case described above, we do not know how to divide
939   // Expr by Denominator for the following functions with empty implementation.
940   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
941   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
942   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
943   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
944   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
945   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
946   void visitSMinExpr(const SCEVSMinExpr *Numerator) {}
947   void visitUMinExpr(const SCEVUMinExpr *Numerator) {}
948   void visitUnknown(const SCEVUnknown *Numerator) {}
949   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
950
951   void visitConstant(const SCEVConstant *Numerator) {
952     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
953       APInt NumeratorVal = Numerator->getAPInt();
954       APInt DenominatorVal = D->getAPInt();
955       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
956       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
957
958       if (NumeratorBW > DenominatorBW)
959         DenominatorVal = DenominatorVal.sext(NumeratorBW);
960       else if (NumeratorBW < DenominatorBW)
961         NumeratorVal = NumeratorVal.sext(DenominatorBW);
962
963       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
964       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
965       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
966       Quotient = SE.getConstant(QuotientVal);
967       Remainder = SE.getConstant(RemainderVal);
968       return;
969     }
970   }
971
972   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
973     const SCEV *StartQ, *StartR, *StepQ, *StepR;
974     if (!Numerator->isAffine())
975       return cannotDivide(Numerator);
976     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
977     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
978     // Bail out if the types do not match.
979     Type *Ty = Denominator->getType();
980     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
981         Ty != StepQ->getType() || Ty != StepR->getType())
982       return cannotDivide(Numerator);
983     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
984                                 Numerator->getNoWrapFlags());
985     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
986                                  Numerator->getNoWrapFlags());
987   }
988
989   void visitAddExpr(const SCEVAddExpr *Numerator) {
990     SmallVector<const SCEV *, 2> Qs, Rs;
991     Type *Ty = Denominator->getType();
992
993     for (const SCEV *Op : Numerator->operands()) {
994       const SCEV *Q, *R;
995       divide(SE, Op, Denominator, &Q, &R);
996
997       // Bail out if types do not match.
998       if (Ty != Q->getType() || Ty != R->getType())
999         return cannotDivide(Numerator);
1000
1001       Qs.push_back(Q);
1002       Rs.push_back(R);
1003     }
1004
1005     if (Qs.size() == 1) {
1006       Quotient = Qs[0];
1007       Remainder = Rs[0];
1008       return;
1009     }
1010
1011     Quotient = SE.getAddExpr(Qs);
1012     Remainder = SE.getAddExpr(Rs);
1013   }
1014
1015   void visitMulExpr(const SCEVMulExpr *Numerator) {
1016     SmallVector<const SCEV *, 2> Qs;
1017     Type *Ty = Denominator->getType();
1018
1019     bool FoundDenominatorTerm = false;
1020     for (const SCEV *Op : Numerator->operands()) {
1021       // Bail out if types do not match.
1022       if (Ty != Op->getType())
1023         return cannotDivide(Numerator);
1024
1025       if (FoundDenominatorTerm) {
1026         Qs.push_back(Op);
1027         continue;
1028       }
1029
1030       // Check whether Denominator divides one of the product operands.
1031       const SCEV *Q, *R;
1032       divide(SE, Op, Denominator, &Q, &R);
1033       if (!R->isZero()) {
1034         Qs.push_back(Op);
1035         continue;
1036       }
1037
1038       // Bail out if types do not match.
1039       if (Ty != Q->getType())
1040         return cannotDivide(Numerator);
1041
1042       FoundDenominatorTerm = true;
1043       Qs.push_back(Q);
1044     }
1045
1046     if (FoundDenominatorTerm) {
1047       Remainder = Zero;
1048       if (Qs.size() == 1)
1049         Quotient = Qs[0];
1050       else
1051         Quotient = SE.getMulExpr(Qs);
1052       return;
1053     }
1054
1055     if (!isa<SCEVUnknown>(Denominator))
1056       return cannotDivide(Numerator);
1057
1058     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1059     ValueToValueMap RewriteMap;
1060     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1061         cast<SCEVConstant>(Zero)->getValue();
1062     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1063
1064     if (Remainder->isZero()) {
1065       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1066       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1067           cast<SCEVConstant>(One)->getValue();
1068       Quotient =
1069           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1070       return;
1071     }
1072
1073     // Quotient is (Numerator - Remainder) divided by Denominator.
1074     const SCEV *Q, *R;
1075     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1076     // This SCEV does not seem to simplify: fail the division here.
1077     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1078       return cannotDivide(Numerator);
1079     divide(SE, Diff, Denominator, &Q, &R);
1080     if (R != Zero)
1081       return cannotDivide(Numerator);
1082     Quotient = Q;
1083   }
1084
1085 private:
1086   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1087                const SCEV *Denominator)
1088       : SE(S), Denominator(Denominator) {
1089     Zero = SE.getZero(Denominator->getType());
1090     One = SE.getOne(Denominator->getType());
1091
1092     // We generally do not know how to divide Expr by Denominator. We
1093     // initialize the division to a "cannot divide" state to simplify the rest
1094     // of the code.
1095     cannotDivide(Numerator);
1096   }
1097
1098   // Convenience function for giving up on the division. We set the quotient to
1099   // be equal to zero and the remainder to be equal to the numerator.
1100   void cannotDivide(const SCEV *Numerator) {
1101     Quotient = Zero;
1102     Remainder = Numerator;
1103   }
1104
1105   ScalarEvolution &SE;
1106   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1107 };
1108
1109 } // end anonymous namespace
1110
1111 //===----------------------------------------------------------------------===//
1112 //                      Simple SCEV method implementations
1113 //===----------------------------------------------------------------------===//
1114
1115 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1116 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1117                                        ScalarEvolution &SE,
1118                                        Type *ResultTy) {
1119   // Handle the simplest case efficiently.
1120   if (K == 1)
1121     return SE.getTruncateOrZeroExtend(It, ResultTy);
1122
1123   // We are using the following formula for BC(It, K):
1124   //
1125   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1126   //
1127   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1128   // overflow.  Hence, we must assure that the result of our computation is
1129   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1130   // safe in modular arithmetic.
1131   //
1132   // However, this code doesn't use exactly that formula; the formula it uses
1133   // is something like the following, where T is the number of factors of 2 in
1134   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1135   // exponentiation:
1136   //
1137   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1138   //
1139   // This formula is trivially equivalent to the previous formula.  However,
1140   // this formula can be implemented much more efficiently.  The trick is that
1141   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1142   // arithmetic.  To do exact division in modular arithmetic, all we have
1143   // to do is multiply by the inverse.  Therefore, this step can be done at
1144   // width W.
1145   //
1146   // The next issue is how to safely do the division by 2^T.  The way this
1147   // is done is by doing the multiplication step at a width of at least W + T
1148   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1149   // when we perform the division by 2^T (which is equivalent to a right shift
1150   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1151   // truncated out after the division by 2^T.
1152   //
1153   // In comparison to just directly using the first formula, this technique
1154   // is much more efficient; using the first formula requires W * K bits,
1155   // but this formula less than W + K bits. Also, the first formula requires
1156   // a division step, whereas this formula only requires multiplies and shifts.
1157   //
1158   // It doesn't matter whether the subtraction step is done in the calculation
1159   // width or the input iteration count's width; if the subtraction overflows,
1160   // the result must be zero anyway.  We prefer here to do it in the width of
1161   // the induction variable because it helps a lot for certain cases; CodeGen
1162   // isn't smart enough to ignore the overflow, which leads to much less
1163   // efficient code if the width of the subtraction is wider than the native
1164   // register width.
1165   //
1166   // (It's possible to not widen at all by pulling out factors of 2 before
1167   // the multiplication; for example, K=2 can be calculated as
1168   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1169   // extra arithmetic, so it's not an obvious win, and it gets
1170   // much more complicated for K > 3.)
1171
1172   // Protection from insane SCEVs; this bound is conservative,
1173   // but it probably doesn't matter.
1174   if (K > 1000)
1175     return SE.getCouldNotCompute();
1176
1177   unsigned W = SE.getTypeSizeInBits(ResultTy);
1178
1179   // Calculate K! / 2^T and T; we divide out the factors of two before
1180   // multiplying for calculating K! / 2^T to avoid overflow.
1181   // Other overflow doesn't matter because we only care about the bottom
1182   // W bits of the result.
1183   APInt OddFactorial(W, 1);
1184   unsigned T = 1;
1185   for (unsigned i = 3; i <= K; ++i) {
1186     APInt Mult(W, i);
1187     unsigned TwoFactors = Mult.countTrailingZeros();
1188     T += TwoFactors;
1189     Mult.lshrInPlace(TwoFactors);
1190     OddFactorial *= Mult;
1191   }
1192
1193   // We need at least W + T bits for the multiplication step
1194   unsigned CalculationBits = W + T;
1195
1196   // Calculate 2^T, at width T+W.
1197   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1198
1199   // Calculate the multiplicative inverse of K! / 2^T;
1200   // this multiplication factor will perform the exact division by
1201   // K! / 2^T.
1202   APInt Mod = APInt::getSignedMinValue(W+1);
1203   APInt MultiplyFactor = OddFactorial.zext(W+1);
1204   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1205   MultiplyFactor = MultiplyFactor.trunc(W);
1206
1207   // Calculate the product, at width T+W
1208   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1209                                                       CalculationBits);
1210   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1211   for (unsigned i = 1; i != K; ++i) {
1212     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1213     Dividend = SE.getMulExpr(Dividend,
1214                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1215   }
1216
1217   // Divide by 2^T
1218   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1219
1220   // Truncate the result, and divide by K! / 2^T.
1221
1222   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1223                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1224 }
1225
1226 /// Return the value of this chain of recurrences at the specified iteration
1227 /// number.  We can evaluate this recurrence by multiplying each element in the
1228 /// chain by the binomial coefficient corresponding to it.  In other words, we
1229 /// can evaluate {A,+,B,+,C,+,D} as:
1230 ///
1231 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1232 ///
1233 /// where BC(It, k) stands for binomial coefficient.
1234 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1235                                                 ScalarEvolution &SE) const {
1236   const SCEV *Result = getStart();
1237   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1238     // The computation is correct in the face of overflow provided that the
1239     // multiplication is performed _after_ the evaluation of the binomial
1240     // coefficient.
1241     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1242     if (isa<SCEVCouldNotCompute>(Coeff))
1243       return Coeff;
1244
1245     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1246   }
1247   return Result;
1248 }
1249
1250 //===----------------------------------------------------------------------===//
1251 //                    SCEV Expression folder implementations
1252 //===----------------------------------------------------------------------===//
1253
1254 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1255                                              unsigned Depth) {
1256   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1257          "This is not a truncating conversion!");
1258   assert(isSCEVable(Ty) &&
1259          "This is not a conversion to a SCEVable type!");
1260   Ty = getEffectiveSCEVType(Ty);
1261
1262   FoldingSetNodeID ID;
1263   ID.AddInteger(scTruncate);
1264   ID.AddPointer(Op);
1265   ID.AddPointer(Ty);
1266   void *IP = nullptr;
1267   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1268
1269   // Fold if the operand is constant.
1270   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1271     return getConstant(
1272       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1273
1274   // trunc(trunc(x)) --> trunc(x)
1275   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1276     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1277
1278   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1279   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1280     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1281
1282   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1283   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1284     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1285
1286   if (Depth > MaxCastDepth) {
1287     SCEV *S =
1288         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1289     UniqueSCEVs.InsertNode(S, IP);
1290     addToLoopUseLists(S);
1291     return S;
1292   }
1293
1294   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1295   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1296   // if after transforming we have at most one truncate, not counting truncates
1297   // that replace other casts.
1298   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1299     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1300     SmallVector<const SCEV *, 4> Operands;
1301     unsigned numTruncs = 0;
1302     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1303          ++i) {
1304       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1305       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1306         numTruncs++;
1307       Operands.push_back(S);
1308     }
1309     if (numTruncs < 2) {
1310       if (isa<SCEVAddExpr>(Op))
1311         return getAddExpr(Operands);
1312       else if (isa<SCEVMulExpr>(Op))
1313         return getMulExpr(Operands);
1314       else
1315         llvm_unreachable("Unexpected SCEV type for Op.");
1316     }
1317     // Although we checked in the beginning that ID is not in the cache, it is
1318     // possible that during recursion and different modification ID was inserted
1319     // into the cache. So if we find it, just return it.
1320     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1321       return S;
1322   }
1323
1324   // If the input value is a chrec scev, truncate the chrec's operands.
1325   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1326     SmallVector<const SCEV *, 4> Operands;
1327     for (const SCEV *Op : AddRec->operands())
1328       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1329     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1330   }
1331
1332   // The cast wasn't folded; create an explicit cast node. We can reuse
1333   // the existing insert position since if we get here, we won't have
1334   // made any changes which would invalidate it.
1335   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1336                                                  Op, Ty);
1337   UniqueSCEVs.InsertNode(S, IP);
1338   addToLoopUseLists(S);
1339   return S;
1340 }
1341
1342 // Get the limit of a recurrence such that incrementing by Step cannot cause
1343 // signed overflow as long as the value of the recurrence within the
1344 // loop does not exceed this limit before incrementing.
1345 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1346                                                  ICmpInst::Predicate *Pred,
1347                                                  ScalarEvolution *SE) {
1348   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1349   if (SE->isKnownPositive(Step)) {
1350     *Pred = ICmpInst::ICMP_SLT;
1351     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1352                            SE->getSignedRangeMax(Step));
1353   }
1354   if (SE->isKnownNegative(Step)) {
1355     *Pred = ICmpInst::ICMP_SGT;
1356     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1357                            SE->getSignedRangeMin(Step));
1358   }
1359   return nullptr;
1360 }
1361
1362 // Get the limit of a recurrence such that incrementing by Step cannot cause
1363 // unsigned overflow as long as the value of the recurrence within the loop does
1364 // not exceed this limit before incrementing.
1365 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1366                                                    ICmpInst::Predicate *Pred,
1367                                                    ScalarEvolution *SE) {
1368   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1369   *Pred = ICmpInst::ICMP_ULT;
1370
1371   return SE->getConstant(APInt::getMinValue(BitWidth) -
1372                          SE->getUnsignedRangeMax(Step));
1373 }
1374
1375 namespace {
1376
1377 struct ExtendOpTraitsBase {
1378   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1379                                                           unsigned);
1380 };
1381
1382 // Used to make code generic over signed and unsigned overflow.
1383 template <typename ExtendOp> struct ExtendOpTraits {
1384   // Members present:
1385   //
1386   // static const SCEV::NoWrapFlags WrapType;
1387   //
1388   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1389   //
1390   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1391   //                                           ICmpInst::Predicate *Pred,
1392   //                                           ScalarEvolution *SE);
1393 };
1394
1395 template <>
1396 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1397   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1398
1399   static const GetExtendExprTy GetExtendExpr;
1400
1401   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1402                                              ICmpInst::Predicate *Pred,
1403                                              ScalarEvolution *SE) {
1404     return getSignedOverflowLimitForStep(Step, Pred, SE);
1405   }
1406 };
1407
1408 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1409     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1410
1411 template <>
1412 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1413   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1414
1415   static const GetExtendExprTy GetExtendExpr;
1416
1417   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1418                                              ICmpInst::Predicate *Pred,
1419                                              ScalarEvolution *SE) {
1420     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1421   }
1422 };
1423
1424 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1425     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1426
1427 } // end anonymous namespace
1428
1429 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1430 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1431 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1432 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1433 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1434 // expression "Step + sext/zext(PreIncAR)" is congruent with
1435 // "sext/zext(PostIncAR)"
1436 template <typename ExtendOpTy>
1437 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1438                                         ScalarEvolution *SE, unsigned Depth) {
1439   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1440   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1441
1442   const Loop *L = AR->getLoop();
1443   const SCEV *Start = AR->getStart();
1444   const SCEV *Step = AR->getStepRecurrence(*SE);
1445
1446   // Check for a simple looking step prior to loop entry.
1447   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1448   if (!SA)
1449     return nullptr;
1450
1451   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1452   // subtraction is expensive. For this purpose, perform a quick and dirty
1453   // difference, by checking for Step in the operand list.
1454   SmallVector<const SCEV *, 4> DiffOps;
1455   for (const SCEV *Op : SA->operands())
1456     if (Op != Step)
1457       DiffOps.push_back(Op);
1458
1459   if (DiffOps.size() == SA->getNumOperands())
1460     return nullptr;
1461
1462   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1463   // `Step`:
1464
1465   // 1. NSW/NUW flags on the step increment.
1466   auto PreStartFlags =
1467     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1468   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1469   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1470       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1471
1472   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1473   // "S+X does not sign/unsign-overflow".
1474   //
1475
1476   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1477   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1478       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1479     return PreStart;
1480
1481   // 2. Direct overflow check on the step operation's expression.
1482   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1483   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1484   const SCEV *OperandExtendedStart =
1485       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1486                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1487   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1488     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1489       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1490       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1491       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1492       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1493     }
1494     return PreStart;
1495   }
1496
1497   // 3. Loop precondition.
1498   ICmpInst::Predicate Pred;
1499   const SCEV *OverflowLimit =
1500       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1501
1502   if (OverflowLimit &&
1503       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1504     return PreStart;
1505
1506   return nullptr;
1507 }
1508
1509 // Get the normalized zero or sign extended expression for this AddRec's Start.
1510 template <typename ExtendOpTy>
1511 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1512                                         ScalarEvolution *SE,
1513                                         unsigned Depth) {
1514   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1515
1516   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1517   if (!PreStart)
1518     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1519
1520   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1521                                              Depth),
1522                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1523 }
1524
1525 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1526 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1527 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1528 //
1529 // Formally:
1530 //
1531 //     {S,+,X} == {S-T,+,X} + T
1532 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1533 //
1534 // If ({S-T,+,X} + T) does not overflow  ... (1)
1535 //
1536 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1537 //
1538 // If {S-T,+,X} does not overflow  ... (2)
1539 //
1540 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1541 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1542 //
1543 // If (S-T)+T does not overflow  ... (3)
1544 //
1545 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1546 //      == {Ext(S),+,Ext(X)} == LHS
1547 //
1548 // Thus, if (1), (2) and (3) are true for some T, then
1549 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1550 //
1551 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1552 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1553 // to check for (1) and (2).
1554 //
1555 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1556 // is `Delta` (defined below).
1557 template <typename ExtendOpTy>
1558 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1559                                                 const SCEV *Step,
1560                                                 const Loop *L) {
1561   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1562
1563   // We restrict `Start` to a constant to prevent SCEV from spending too much
1564   // time here.  It is correct (but more expensive) to continue with a
1565   // non-constant `Start` and do a general SCEV subtraction to compute
1566   // `PreStart` below.
1567   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1568   if (!StartC)
1569     return false;
1570
1571   APInt StartAI = StartC->getAPInt();
1572
1573   for (unsigned Delta : {-2, -1, 1, 2}) {
1574     const SCEV *PreStart = getConstant(StartAI - Delta);
1575
1576     FoldingSetNodeID ID;
1577     ID.AddInteger(scAddRecExpr);
1578     ID.AddPointer(PreStart);
1579     ID.AddPointer(Step);
1580     ID.AddPointer(L);
1581     void *IP = nullptr;
1582     const auto *PreAR =
1583       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1584
1585     // Give up if we don't already have the add recurrence we need because
1586     // actually constructing an add recurrence is relatively expensive.
1587     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1588       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1589       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1590       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1591           DeltaS, &Pred, this);
1592       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1593         return true;
1594     }
1595   }
1596
1597   return false;
1598 }
1599
1600 // Finds an integer D for an expression (C + x + y + ...) such that the top
1601 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1602 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1603 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1604 // the (C + x + y + ...) expression is \p WholeAddExpr.
1605 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1606                                             const SCEVConstant *ConstantTerm,
1607                                             const SCEVAddExpr *WholeAddExpr) {
1608   const APInt C = ConstantTerm->getAPInt();
1609   const unsigned BitWidth = C.getBitWidth();
1610   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1611   uint32_t TZ = BitWidth;
1612   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1613     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1614   if (TZ) {
1615     // Set D to be as many least significant bits of C as possible while still
1616     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1617     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1618   }
1619   return APInt(BitWidth, 0);
1620 }
1621
1622 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1623 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1624 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1625 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1626 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1627                                             const APInt &ConstantStart,
1628                                             const SCEV *Step) {
1629   const unsigned BitWidth = ConstantStart.getBitWidth();
1630   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1631   if (TZ)
1632     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1633                          : ConstantStart;
1634   return APInt(BitWidth, 0);
1635 }
1636
1637 const SCEV *
1638 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1639   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1640          "This is not an extending conversion!");
1641   assert(isSCEVable(Ty) &&
1642          "This is not a conversion to a SCEVable type!");
1643   Ty = getEffectiveSCEVType(Ty);
1644
1645   // Fold if the operand is constant.
1646   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1647     return getConstant(
1648       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1649
1650   // zext(zext(x)) --> zext(x)
1651   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1652     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1653
1654   // Before doing any expensive analysis, check to see if we've already
1655   // computed a SCEV for this Op and Ty.
1656   FoldingSetNodeID ID;
1657   ID.AddInteger(scZeroExtend);
1658   ID.AddPointer(Op);
1659   ID.AddPointer(Ty);
1660   void *IP = nullptr;
1661   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1662   if (Depth > MaxCastDepth) {
1663     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1664                                                      Op, Ty);
1665     UniqueSCEVs.InsertNode(S, IP);
1666     addToLoopUseLists(S);
1667     return S;
1668   }
1669
1670   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1671   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1672     // It's possible the bits taken off by the truncate were all zero bits. If
1673     // so, we should be able to simplify this further.
1674     const SCEV *X = ST->getOperand();
1675     ConstantRange CR = getUnsignedRange(X);
1676     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1677     unsigned NewBits = getTypeSizeInBits(Ty);
1678     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1679             CR.zextOrTrunc(NewBits)))
1680       return getTruncateOrZeroExtend(X, Ty, Depth);
1681   }
1682
1683   // If the input value is a chrec scev, and we can prove that the value
1684   // did not overflow the old, smaller, value, we can zero extend all of the
1685   // operands (often constants).  This allows analysis of something like
1686   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1687   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1688     if (AR->isAffine()) {
1689       const SCEV *Start = AR->getStart();
1690       const SCEV *Step = AR->getStepRecurrence(*this);
1691       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1692       const Loop *L = AR->getLoop();
1693
1694       if (!AR->hasNoUnsignedWrap()) {
1695         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1696         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1697       }
1698
1699       // If we have special knowledge that this addrec won't overflow,
1700       // we don't need to do any further analysis.
1701       if (AR->hasNoUnsignedWrap())
1702         return getAddRecExpr(
1703             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1704             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1705
1706       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1707       // Note that this serves two purposes: It filters out loops that are
1708       // simply not analyzable, and it covers the case where this code is
1709       // being called from within backedge-taken count analysis, such that
1710       // attempting to ask for the backedge-taken count would likely result
1711       // in infinite recursion. In the later case, the analysis code will
1712       // cope with a conservative value, and it will take care to purge
1713       // that value once it has finished.
1714       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1715       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1716         // Manually compute the final value for AR, checking for
1717         // overflow.
1718
1719         // Check whether the backedge-taken count can be losslessly casted to
1720         // the addrec's type. The count is always unsigned.
1721         const SCEV *CastedMaxBECount =
1722             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1723         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1724             CastedMaxBECount, MaxBECount->getType(), Depth);
1725         if (MaxBECount == RecastedMaxBECount) {
1726           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1727           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1728           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1729                                         SCEV::FlagAnyWrap, Depth + 1);
1730           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1731                                                           SCEV::FlagAnyWrap,
1732                                                           Depth + 1),
1733                                                WideTy, Depth + 1);
1734           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1735           const SCEV *WideMaxBECount =
1736             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1737           const SCEV *OperandExtendedAdd =
1738             getAddExpr(WideStart,
1739                        getMulExpr(WideMaxBECount,
1740                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1741                                   SCEV::FlagAnyWrap, Depth + 1),
1742                        SCEV::FlagAnyWrap, Depth + 1);
1743           if (ZAdd == OperandExtendedAdd) {
1744             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1745             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1746             // Return the expression with the addrec on the outside.
1747             return getAddRecExpr(
1748                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1749                                                          Depth + 1),
1750                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1751                 AR->getNoWrapFlags());
1752           }
1753           // Similar to above, only this time treat the step value as signed.
1754           // This covers loops that count down.
1755           OperandExtendedAdd =
1756             getAddExpr(WideStart,
1757                        getMulExpr(WideMaxBECount,
1758                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1759                                   SCEV::FlagAnyWrap, Depth + 1),
1760                        SCEV::FlagAnyWrap, Depth + 1);
1761           if (ZAdd == OperandExtendedAdd) {
1762             // Cache knowledge of AR NW, which is propagated to this AddRec.
1763             // Negative step causes unsigned wrap, but it still can't self-wrap.
1764             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1765             // Return the expression with the addrec on the outside.
1766             return getAddRecExpr(
1767                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1768                                                          Depth + 1),
1769                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1770                 AR->getNoWrapFlags());
1771           }
1772         }
1773       }
1774
1775       // Normally, in the cases we can prove no-overflow via a
1776       // backedge guarding condition, we can also compute a backedge
1777       // taken count for the loop.  The exceptions are assumptions and
1778       // guards present in the loop -- SCEV is not great at exploiting
1779       // these to compute max backedge taken counts, but can still use
1780       // these to prove lack of overflow.  Use this fact to avoid
1781       // doing extra work that may not pay off.
1782       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1783           !AC.assumptions().empty()) {
1784         // If the backedge is guarded by a comparison with the pre-inc
1785         // value the addrec is safe. Also, if the entry is guarded by
1786         // a comparison with the start value and the backedge is
1787         // guarded by a comparison with the post-inc value, the addrec
1788         // is safe.
1789         if (isKnownPositive(Step)) {
1790           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1791                                       getUnsignedRangeMax(Step));
1792           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1793               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1794             // Cache knowledge of AR NUW, which is propagated to this
1795             // AddRec.
1796             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1797             // Return the expression with the addrec on the outside.
1798             return getAddRecExpr(
1799                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1800                                                          Depth + 1),
1801                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1802                 AR->getNoWrapFlags());
1803           }
1804         } else if (isKnownNegative(Step)) {
1805           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1806                                       getSignedRangeMin(Step));
1807           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1808               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1809             // Cache knowledge of AR NW, which is propagated to this
1810             // AddRec.  Negative step causes unsigned wrap, but it
1811             // still can't self-wrap.
1812             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1813             // Return the expression with the addrec on the outside.
1814             return getAddRecExpr(
1815                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1816                                                          Depth + 1),
1817                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1818                 AR->getNoWrapFlags());
1819           }
1820         }
1821       }
1822
1823       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1824       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1825       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1826       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1827         const APInt &C = SC->getAPInt();
1828         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1829         if (D != 0) {
1830           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1831           const SCEV *SResidual =
1832               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1833           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1834           return getAddExpr(SZExtD, SZExtR,
1835                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1836                             Depth + 1);
1837         }
1838       }
1839
1840       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1841         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1842         return getAddRecExpr(
1843             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1844             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1845       }
1846     }
1847
1848   // zext(A % B) --> zext(A) % zext(B)
1849   {
1850     const SCEV *LHS;
1851     const SCEV *RHS;
1852     if (matchURem(Op, LHS, RHS))
1853       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1854                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1855   }
1856
1857   // zext(A / B) --> zext(A) / zext(B).
1858   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1859     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1860                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1861
1862   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1863     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1864     if (SA->hasNoUnsignedWrap()) {
1865       // If the addition does not unsign overflow then we can, by definition,
1866       // commute the zero extension with the addition operation.
1867       SmallVector<const SCEV *, 4> Ops;
1868       for (const auto *Op : SA->operands())
1869         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1870       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1871     }
1872
1873     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1874     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1875     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1876     //
1877     // Often address arithmetics contain expressions like
1878     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1879     // This transformation is useful while proving that such expressions are
1880     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1881     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1882       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1883       if (D != 0) {
1884         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1885         const SCEV *SResidual =
1886             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1887         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1888         return getAddExpr(SZExtD, SZExtR,
1889                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1890                           Depth + 1);
1891       }
1892     }
1893   }
1894
1895   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1896     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1897     if (SM->hasNoUnsignedWrap()) {
1898       // If the multiply does not unsign overflow then we can, by definition,
1899       // commute the zero extension with the multiply operation.
1900       SmallVector<const SCEV *, 4> Ops;
1901       for (const auto *Op : SM->operands())
1902         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1903       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1904     }
1905
1906     // zext(2^K * (trunc X to iN)) to iM ->
1907     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1908     //
1909     // Proof:
1910     //
1911     //     zext(2^K * (trunc X to iN)) to iM
1912     //   = zext((trunc X to iN) << K) to iM
1913     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1914     //     (because shl removes the top K bits)
1915     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1916     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1917     //
1918     if (SM->getNumOperands() == 2)
1919       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1920         if (MulLHS->getAPInt().isPowerOf2())
1921           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1922             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1923                                MulLHS->getAPInt().logBase2();
1924             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1925             return getMulExpr(
1926                 getZeroExtendExpr(MulLHS, Ty),
1927                 getZeroExtendExpr(
1928                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1929                 SCEV::FlagNUW, Depth + 1);
1930           }
1931   }
1932
1933   // The cast wasn't folded; create an explicit cast node.
1934   // Recompute the insert position, as it may have been invalidated.
1935   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1936   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1937                                                    Op, Ty);
1938   UniqueSCEVs.InsertNode(S, IP);
1939   addToLoopUseLists(S);
1940   return S;
1941 }
1942
1943 const SCEV *
1944 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1945   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1946          "This is not an extending conversion!");
1947   assert(isSCEVable(Ty) &&
1948          "This is not a conversion to a SCEVable type!");
1949   Ty = getEffectiveSCEVType(Ty);
1950
1951   // Fold if the operand is constant.
1952   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1953     return getConstant(
1954       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1955
1956   // sext(sext(x)) --> sext(x)
1957   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1958     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1959
1960   // sext(zext(x)) --> zext(x)
1961   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1962     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1963
1964   // Before doing any expensive analysis, check to see if we've already
1965   // computed a SCEV for this Op and Ty.
1966   FoldingSetNodeID ID;
1967   ID.AddInteger(scSignExtend);
1968   ID.AddPointer(Op);
1969   ID.AddPointer(Ty);
1970   void *IP = nullptr;
1971   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1972   // Limit recursion depth.
1973   if (Depth > MaxCastDepth) {
1974     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1975                                                      Op, Ty);
1976     UniqueSCEVs.InsertNode(S, IP);
1977     addToLoopUseLists(S);
1978     return S;
1979   }
1980
1981   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1982   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1983     // It's possible the bits taken off by the truncate were all sign bits. If
1984     // so, we should be able to simplify this further.
1985     const SCEV *X = ST->getOperand();
1986     ConstantRange CR = getSignedRange(X);
1987     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1988     unsigned NewBits = getTypeSizeInBits(Ty);
1989     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1990             CR.sextOrTrunc(NewBits)))
1991       return getTruncateOrSignExtend(X, Ty, Depth);
1992   }
1993
1994   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1995     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1996     if (SA->hasNoSignedWrap()) {
1997       // If the addition does not sign overflow then we can, by definition,
1998       // commute the sign extension with the addition operation.
1999       SmallVector<const SCEV *, 4> Ops;
2000       for (const auto *Op : SA->operands())
2001         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
2002       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
2003     }
2004
2005     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
2006     // if D + (C - D + x + y + ...) could be proven to not signed wrap
2007     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
2008     //
2009     // For instance, this will bring two seemingly different expressions:
2010     //     1 + sext(5 + 20 * %x + 24 * %y)  and
2011     //         sext(6 + 20 * %x + 24 * %y)
2012     // to the same form:
2013     //     2 + sext(4 + 20 * %x + 24 * %y)
2014     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
2015       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
2016       if (D != 0) {
2017         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2018         const SCEV *SResidual =
2019             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
2020         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2021         return getAddExpr(SSExtD, SSExtR,
2022                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2023                           Depth + 1);
2024       }
2025     }
2026   }
2027   // If the input value is a chrec scev, and we can prove that the value
2028   // did not overflow the old, smaller, value, we can sign extend all of the
2029   // operands (often constants).  This allows analysis of something like
2030   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
2031   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2032     if (AR->isAffine()) {
2033       const SCEV *Start = AR->getStart();
2034       const SCEV *Step = AR->getStepRecurrence(*this);
2035       unsigned BitWidth = getTypeSizeInBits(AR->getType());
2036       const Loop *L = AR->getLoop();
2037
2038       if (!AR->hasNoSignedWrap()) {
2039         auto NewFlags = proveNoWrapViaConstantRanges(AR);
2040         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2041       }
2042
2043       // If we have special knowledge that this addrec won't overflow,
2044       // we don't need to do any further analysis.
2045       if (AR->hasNoSignedWrap())
2046         return getAddRecExpr(
2047             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2048             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2049
2050       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2051       // Note that this serves two purposes: It filters out loops that are
2052       // simply not analyzable, and it covers the case where this code is
2053       // being called from within backedge-taken count analysis, such that
2054       // attempting to ask for the backedge-taken count would likely result
2055       // in infinite recursion. In the later case, the analysis code will
2056       // cope with a conservative value, and it will take care to purge
2057       // that value once it has finished.
2058       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2059       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2060         // Manually compute the final value for AR, checking for
2061         // overflow.
2062
2063         // Check whether the backedge-taken count can be losslessly casted to
2064         // the addrec's type. The count is always unsigned.
2065         const SCEV *CastedMaxBECount =
2066             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2067         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2068             CastedMaxBECount, MaxBECount->getType(), Depth);
2069         if (MaxBECount == RecastedMaxBECount) {
2070           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2071           // Check whether Start+Step*MaxBECount has no signed overflow.
2072           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2073                                         SCEV::FlagAnyWrap, Depth + 1);
2074           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2075                                                           SCEV::FlagAnyWrap,
2076                                                           Depth + 1),
2077                                                WideTy, Depth + 1);
2078           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2079           const SCEV *WideMaxBECount =
2080             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2081           const SCEV *OperandExtendedAdd =
2082             getAddExpr(WideStart,
2083                        getMulExpr(WideMaxBECount,
2084                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2085                                   SCEV::FlagAnyWrap, Depth + 1),
2086                        SCEV::FlagAnyWrap, Depth + 1);
2087           if (SAdd == OperandExtendedAdd) {
2088             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2089             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2090             // Return the expression with the addrec on the outside.
2091             return getAddRecExpr(
2092                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2093                                                          Depth + 1),
2094                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2095                 AR->getNoWrapFlags());
2096           }
2097           // Similar to above, only this time treat the step value as unsigned.
2098           // This covers loops that count up with an unsigned step.
2099           OperandExtendedAdd =
2100             getAddExpr(WideStart,
2101                        getMulExpr(WideMaxBECount,
2102                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2103                                   SCEV::FlagAnyWrap, Depth + 1),
2104                        SCEV::FlagAnyWrap, Depth + 1);
2105           if (SAdd == OperandExtendedAdd) {
2106             // If AR wraps around then
2107             //
2108             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2109             // => SAdd != OperandExtendedAdd
2110             //
2111             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2112             // (SAdd == OperandExtendedAdd => AR is NW)
2113
2114             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2115
2116             // Return the expression with the addrec on the outside.
2117             return getAddRecExpr(
2118                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2119                                                          Depth + 1),
2120                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2121                 AR->getNoWrapFlags());
2122           }
2123         }
2124       }
2125
2126       // Normally, in the cases we can prove no-overflow via a
2127       // backedge guarding condition, we can also compute a backedge
2128       // taken count for the loop.  The exceptions are assumptions and
2129       // guards present in the loop -- SCEV is not great at exploiting
2130       // these to compute max backedge taken counts, but can still use
2131       // these to prove lack of overflow.  Use this fact to avoid
2132       // doing extra work that may not pay off.
2133
2134       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2135           !AC.assumptions().empty()) {
2136         // If the backedge is guarded by a comparison with the pre-inc
2137         // value the addrec is safe. Also, if the entry is guarded by
2138         // a comparison with the start value and the backedge is
2139         // guarded by a comparison with the post-inc value, the addrec
2140         // is safe.
2141         ICmpInst::Predicate Pred;
2142         const SCEV *OverflowLimit =
2143             getSignedOverflowLimitForStep(Step, &Pred, this);
2144         if (OverflowLimit &&
2145             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2146              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2147           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2148           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2149           return getAddRecExpr(
2150               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2151               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2152         }
2153       }
2154
2155       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2156       // if D + (C - D + Step * n) could be proven to not signed wrap
2157       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2158       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2159         const APInt &C = SC->getAPInt();
2160         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2161         if (D != 0) {
2162           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2163           const SCEV *SResidual =
2164               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2165           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2166           return getAddExpr(SSExtD, SSExtR,
2167                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2168                             Depth + 1);
2169         }
2170       }
2171
2172       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2173         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2174         return getAddRecExpr(
2175             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2176             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2177       }
2178     }
2179
2180   // If the input value is provably positive and we could not simplify
2181   // away the sext build a zext instead.
2182   if (isKnownNonNegative(Op))
2183     return getZeroExtendExpr(Op, Ty, Depth + 1);
2184
2185   // The cast wasn't folded; create an explicit cast node.
2186   // Recompute the insert position, as it may have been invalidated.
2187   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2188   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2189                                                    Op, Ty);
2190   UniqueSCEVs.InsertNode(S, IP);
2191   addToLoopUseLists(S);
2192   return S;
2193 }
2194
2195 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2196 /// unspecified bits out to the given type.
2197 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2198                                               Type *Ty) {
2199   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2200          "This is not an extending conversion!");
2201   assert(isSCEVable(Ty) &&
2202          "This is not a conversion to a SCEVable type!");
2203   Ty = getEffectiveSCEVType(Ty);
2204
2205   // Sign-extend negative constants.
2206   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2207     if (SC->getAPInt().isNegative())
2208       return getSignExtendExpr(Op, Ty);
2209
2210   // Peel off a truncate cast.
2211   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2212     const SCEV *NewOp = T->getOperand();
2213     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2214       return getAnyExtendExpr(NewOp, Ty);
2215     return getTruncateOrNoop(NewOp, Ty);
2216   }
2217
2218   // Next try a zext cast. If the cast is folded, use it.
2219   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2220   if (!isa<SCEVZeroExtendExpr>(ZExt))
2221     return ZExt;
2222
2223   // Next try a sext cast. If the cast is folded, use it.
2224   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2225   if (!isa<SCEVSignExtendExpr>(SExt))
2226     return SExt;
2227
2228   // Force the cast to be folded into the operands of an addrec.
2229   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2230     SmallVector<const SCEV *, 4> Ops;
2231     for (const SCEV *Op : AR->operands())
2232       Ops.push_back(getAnyExtendExpr(Op, Ty));
2233     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2234   }
2235
2236   // If the expression is obviously signed, use the sext cast value.
2237   if (isa<SCEVSMaxExpr>(Op))
2238     return SExt;
2239
2240   // Absent any other information, use the zext cast value.
2241   return ZExt;
2242 }
2243
2244 /// Process the given Ops list, which is a list of operands to be added under
2245 /// the given scale, update the given map. This is a helper function for
2246 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2247 /// that would form an add expression like this:
2248 ///
2249 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2250 ///
2251 /// where A and B are constants, update the map with these values:
2252 ///
2253 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2254 ///
2255 /// and add 13 + A*B*29 to AccumulatedConstant.
2256 /// This will allow getAddRecExpr to produce this:
2257 ///
2258 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2259 ///
2260 /// This form often exposes folding opportunities that are hidden in
2261 /// the original operand list.
2262 ///
2263 /// Return true iff it appears that any interesting folding opportunities
2264 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2265 /// the common case where no interesting opportunities are present, and
2266 /// is also used as a check to avoid infinite recursion.
2267 static bool
2268 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2269                              SmallVectorImpl<const SCEV *> &NewOps,
2270                              APInt &AccumulatedConstant,
2271                              const SCEV *const *Ops, size_t NumOperands,
2272                              const APInt &Scale,
2273                              ScalarEvolution &SE) {
2274   bool Interesting = false;
2275
2276   // Iterate over the add operands. They are sorted, with constants first.
2277   unsigned i = 0;
2278   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2279     ++i;
2280     // Pull a buried constant out to the outside.
2281     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2282       Interesting = true;
2283     AccumulatedConstant += Scale * C->getAPInt();
2284   }
2285
2286   // Next comes everything else. We're especially interested in multiplies
2287   // here, but they're in the middle, so just visit the rest with one loop.
2288   for (; i != NumOperands; ++i) {
2289     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2290     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2291       APInt NewScale =
2292           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2293       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2294         // A multiplication of a constant with another add; recurse.
2295         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2296         Interesting |=
2297           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2298                                        Add->op_begin(), Add->getNumOperands(),
2299                                        NewScale, SE);
2300       } else {
2301         // A multiplication of a constant with some other value. Update
2302         // the map.
2303         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2304         const SCEV *Key = SE.getMulExpr(MulOps);
2305         auto Pair = M.insert({Key, NewScale});
2306         if (Pair.second) {
2307           NewOps.push_back(Pair.first->first);
2308         } else {
2309           Pair.first->second += NewScale;
2310           // The map already had an entry for this value, which may indicate
2311           // a folding opportunity.
2312           Interesting = true;
2313         }
2314       }
2315     } else {
2316       // An ordinary operand. Update the map.
2317       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2318           M.insert({Ops[i], Scale});
2319       if (Pair.second) {
2320         NewOps.push_back(Pair.first->first);
2321       } else {
2322         Pair.first->second += Scale;
2323         // The map already had an entry for this value, which may indicate
2324         // a folding opportunity.
2325         Interesting = true;
2326       }
2327     }
2328   }
2329
2330   return Interesting;
2331 }
2332
2333 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2334 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2335 // can't-overflow flags for the operation if possible.
2336 static SCEV::NoWrapFlags
2337 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2338                       const ArrayRef<const SCEV *> Ops,
2339                       SCEV::NoWrapFlags Flags) {
2340   using namespace std::placeholders;
2341
2342   using OBO = OverflowingBinaryOperator;
2343
2344   bool CanAnalyze =
2345       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2346   (void)CanAnalyze;
2347   assert(CanAnalyze && "don't call from other places!");
2348
2349   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2350   SCEV::NoWrapFlags SignOrUnsignWrap =
2351       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2352
2353   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2354   auto IsKnownNonNegative = [&](const SCEV *S) {
2355     return SE->isKnownNonNegative(S);
2356   };
2357
2358   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2359     Flags =
2360         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2361
2362   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2363
2364   if (SignOrUnsignWrap != SignOrUnsignMask &&
2365       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2366       isa<SCEVConstant>(Ops[0])) {
2367
2368     auto Opcode = [&] {
2369       switch (Type) {
2370       case scAddExpr:
2371         return Instruction::Add;
2372       case scMulExpr:
2373         return Instruction::Mul;
2374       default:
2375         llvm_unreachable("Unexpected SCEV op.");
2376       }
2377     }();
2378
2379     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2380
2381     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2382     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2383       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2384           Opcode, C, OBO::NoSignedWrap);
2385       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2386         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2387     }
2388
2389     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2390     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2391       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2392           Opcode, C, OBO::NoUnsignedWrap);
2393       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2394         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2395     }
2396   }
2397
2398   return Flags;
2399 }
2400
2401 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2402   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2403 }
2404
2405 /// Get a canonical add expression, or something simpler if possible.
2406 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2407                                         SCEV::NoWrapFlags Flags,
2408                                         unsigned Depth) {
2409   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2410          "only nuw or nsw allowed");
2411   assert(!Ops.empty() && "Cannot get empty add!");
2412   if (Ops.size() == 1) return Ops[0];
2413 #ifndef NDEBUG
2414   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2415   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2416     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2417            "SCEVAddExpr operand types don't match!");
2418 #endif
2419
2420   // Sort by complexity, this groups all similar expression types together.
2421   GroupByComplexity(Ops, &LI, DT);
2422
2423   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2424
2425   // If there are any constants, fold them together.
2426   unsigned Idx = 0;
2427   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2428     ++Idx;
2429     assert(Idx < Ops.size());
2430     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2431       // We found two constants, fold them together!
2432       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2433       if (Ops.size() == 2) return Ops[0];
2434       Ops.erase(Ops.begin()+1);  // Erase the folded element
2435       LHSC = cast<SCEVConstant>(Ops[0]);
2436     }
2437
2438     // If we are left with a constant zero being added, strip it off.
2439     if (LHSC->getValue()->isZero()) {
2440       Ops.erase(Ops.begin());
2441       --Idx;
2442     }
2443
2444     if (Ops.size() == 1) return Ops[0];
2445   }
2446
2447   // Limit recursion calls depth.
2448   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2449     return getOrCreateAddExpr(Ops, Flags);
2450
2451   // Okay, check to see if the same value occurs in the operand list more than
2452   // once.  If so, merge them together into an multiply expression.  Since we
2453   // sorted the list, these values are required to be adjacent.
2454   Type *Ty = Ops[0]->getType();
2455   bool FoundMatch = false;
2456   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2457     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2458       // Scan ahead to count how many equal operands there are.
2459       unsigned Count = 2;
2460       while (i+Count != e && Ops[i+Count] == Ops[i])
2461         ++Count;
2462       // Merge the values into a multiply.
2463       const SCEV *Scale = getConstant(Ty, Count);
2464       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2465       if (Ops.size() == Count)
2466         return Mul;
2467       Ops[i] = Mul;
2468       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2469       --i; e -= Count - 1;
2470       FoundMatch = true;
2471     }
2472   if (FoundMatch)
2473     return getAddExpr(Ops, Flags, Depth + 1);
2474
2475   // Check for truncates. If all the operands are truncated from the same
2476   // type, see if factoring out the truncate would permit the result to be
2477   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2478   // if the contents of the resulting outer trunc fold to something simple.
2479   auto FindTruncSrcType = [&]() -> Type * {
2480     // We're ultimately looking to fold an addrec of truncs and muls of only
2481     // constants and truncs, so if we find any other types of SCEV
2482     // as operands of the addrec then we bail and return nullptr here.
2483     // Otherwise, we return the type of the operand of a trunc that we find.
2484     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2485       return T->getOperand()->getType();
2486     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2487       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2488       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2489         return T->getOperand()->getType();
2490     }
2491     return nullptr;
2492   };
2493   if (auto *SrcType = FindTruncSrcType()) {
2494     SmallVector<const SCEV *, 8> LargeOps;
2495     bool Ok = true;
2496     // Check all the operands to see if they can be represented in the
2497     // source type of the truncate.
2498     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2499       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2500         if (T->getOperand()->getType() != SrcType) {
2501           Ok = false;
2502           break;
2503         }
2504         LargeOps.push_back(T->getOperand());
2505       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2506         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2507       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2508         SmallVector<const SCEV *, 8> LargeMulOps;
2509         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2510           if (const SCEVTruncateExpr *T =
2511                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2512             if (T->getOperand()->getType() != SrcType) {
2513               Ok = false;
2514               break;
2515             }
2516             LargeMulOps.push_back(T->getOperand());
2517           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2518             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2519           } else {
2520             Ok = false;
2521             break;
2522           }
2523         }
2524         if (Ok)
2525           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2526       } else {
2527         Ok = false;
2528         break;
2529       }
2530     }
2531     if (Ok) {
2532       // Evaluate the expression in the larger type.
2533       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2534       // If it folds to something simple, use it. Otherwise, don't.
2535       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2536         return getTruncateExpr(Fold, Ty);
2537     }
2538   }
2539
2540   // Skip past any other cast SCEVs.
2541   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2542     ++Idx;
2543
2544   // If there are add operands they would be next.
2545   if (Idx < Ops.size()) {
2546     bool DeletedAdd = false;
2547     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2548       if (Ops.size() > AddOpsInlineThreshold ||
2549           Add->getNumOperands() > AddOpsInlineThreshold)
2550         break;
2551       // If we have an add, expand the add operands onto the end of the operands
2552       // list.
2553       Ops.erase(Ops.begin()+Idx);
2554       Ops.append(Add->op_begin(), Add->op_end());
2555       DeletedAdd = true;
2556     }
2557
2558     // If we deleted at least one add, we added operands to the end of the list,
2559     // and they are not necessarily sorted.  Recurse to resort and resimplify
2560     // any operands we just acquired.
2561     if (DeletedAdd)
2562       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2563   }
2564
2565   // Skip over the add expression until we get to a multiply.
2566   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2567     ++Idx;
2568
2569   // Check to see if there are any folding opportunities present with
2570   // operands multiplied by constant values.
2571   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2572     uint64_t BitWidth = getTypeSizeInBits(Ty);
2573     DenseMap<const SCEV *, APInt> M;
2574     SmallVector<const SCEV *, 8> NewOps;
2575     APInt AccumulatedConstant(BitWidth, 0);
2576     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2577                                      Ops.data(), Ops.size(),
2578                                      APInt(BitWidth, 1), *this)) {
2579       struct APIntCompare {
2580         bool operator()(const APInt &LHS, const APInt &RHS) const {
2581           return LHS.ult(RHS);
2582         }
2583       };
2584
2585       // Some interesting folding opportunity is present, so its worthwhile to
2586       // re-generate the operands list. Group the operands by constant scale,
2587       // to avoid multiplying by the same constant scale multiple times.
2588       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2589       for (const SCEV *NewOp : NewOps)
2590         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2591       // Re-generate the operands list.
2592       Ops.clear();
2593       if (AccumulatedConstant != 0)
2594         Ops.push_back(getConstant(AccumulatedConstant));
2595       for (auto &MulOp : MulOpLists)
2596         if (MulOp.first != 0)
2597           Ops.push_back(getMulExpr(
2598               getConstant(MulOp.first),
2599               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2600               SCEV::FlagAnyWrap, Depth + 1));
2601       if (Ops.empty())
2602         return getZero(Ty);
2603       if (Ops.size() == 1)
2604         return Ops[0];
2605       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2606     }
2607   }
2608
2609   // If we are adding something to a multiply expression, make sure the
2610   // something is not already an operand of the multiply.  If so, merge it into
2611   // the multiply.
2612   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2613     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2614     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2615       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2616       if (isa<SCEVConstant>(MulOpSCEV))
2617         continue;
2618       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2619         if (MulOpSCEV == Ops[AddOp]) {
2620           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2621           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2622           if (Mul->getNumOperands() != 2) {
2623             // If the multiply has more than two operands, we must get the
2624             // Y*Z term.
2625             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2626                                                 Mul->op_begin()+MulOp);
2627             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2628             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2629           }
2630           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2631           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2632           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2633                                             SCEV::FlagAnyWrap, Depth + 1);
2634           if (Ops.size() == 2) return OuterMul;
2635           if (AddOp < Idx) {
2636             Ops.erase(Ops.begin()+AddOp);
2637             Ops.erase(Ops.begin()+Idx-1);
2638           } else {
2639             Ops.erase(Ops.begin()+Idx);
2640             Ops.erase(Ops.begin()+AddOp-1);
2641           }
2642           Ops.push_back(OuterMul);
2643           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2644         }
2645
2646       // Check this multiply against other multiplies being added together.
2647       for (unsigned OtherMulIdx = Idx+1;
2648            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2649            ++OtherMulIdx) {
2650         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2651         // If MulOp occurs in OtherMul, we can fold the two multiplies
2652         // together.
2653         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2654              OMulOp != e; ++OMulOp)
2655           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2656             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2657             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2658             if (Mul->getNumOperands() != 2) {
2659               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2660                                                   Mul->op_begin()+MulOp);
2661               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2662               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2663             }
2664             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2665             if (OtherMul->getNumOperands() != 2) {
2666               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2667                                                   OtherMul->op_begin()+OMulOp);
2668               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2669               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2670             }
2671             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2672             const SCEV *InnerMulSum =
2673                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2674             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2675                                               SCEV::FlagAnyWrap, Depth + 1);
2676             if (Ops.size() == 2) return OuterMul;
2677             Ops.erase(Ops.begin()+Idx);
2678             Ops.erase(Ops.begin()+OtherMulIdx-1);
2679             Ops.push_back(OuterMul);
2680             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2681           }
2682       }
2683     }
2684   }
2685
2686   // If there are any add recurrences in the operands list, see if any other
2687   // added values are loop invariant.  If so, we can fold them into the
2688   // recurrence.
2689   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2690     ++Idx;
2691
2692   // Scan over all recurrences, trying to fold loop invariants into them.
2693   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2694     // Scan all of the other operands to this add and add them to the vector if
2695     // they are loop invariant w.r.t. the recurrence.
2696     SmallVector<const SCEV *, 8> LIOps;
2697     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2698     const Loop *AddRecLoop = AddRec->getLoop();
2699     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2700       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2701         LIOps.push_back(Ops[i]);
2702         Ops.erase(Ops.begin()+i);
2703         --i; --e;
2704       }
2705
2706     // If we found some loop invariants, fold them into the recurrence.
2707     if (!LIOps.empty()) {
2708       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2709       LIOps.push_back(AddRec->getStart());
2710
2711       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2712                                              AddRec->op_end());
2713       // This follows from the fact that the no-wrap flags on the outer add
2714       // expression are applicable on the 0th iteration, when the add recurrence
2715       // will be equal to its start value.
2716       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2717
2718       // Build the new addrec. Propagate the NUW and NSW flags if both the
2719       // outer add and the inner addrec are guaranteed to have no overflow.
2720       // Always propagate NW.
2721       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2722       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2723
2724       // If all of the other operands were loop invariant, we are done.
2725       if (Ops.size() == 1) return NewRec;
2726
2727       // Otherwise, add the folded AddRec by the non-invariant parts.
2728       for (unsigned i = 0;; ++i)
2729         if (Ops[i] == AddRec) {
2730           Ops[i] = NewRec;
2731           break;
2732         }
2733       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2734     }
2735
2736     // Okay, if there weren't any loop invariants to be folded, check to see if
2737     // there are multiple AddRec's with the same loop induction variable being
2738     // added together.  If so, we can fold them.
2739     for (unsigned OtherIdx = Idx+1;
2740          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2741          ++OtherIdx) {
2742       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2743       // so that the 1st found AddRecExpr is dominated by all others.
2744       assert(DT.dominates(
2745            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2746            AddRec->getLoop()->getHeader()) &&
2747         "AddRecExprs are not sorted in reverse dominance order?");
2748       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2749         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2750         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2751                                                AddRec->op_end());
2752         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2753              ++OtherIdx) {
2754           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2755           if (OtherAddRec->getLoop() == AddRecLoop) {
2756             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2757                  i != e; ++i) {
2758               if (i >= AddRecOps.size()) {
2759                 AddRecOps.append(OtherAddRec->op_begin()+i,
2760                                  OtherAddRec->op_end());
2761                 break;
2762               }
2763               SmallVector<const SCEV *, 2> TwoOps = {
2764                   AddRecOps[i], OtherAddRec->getOperand(i)};
2765               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2766             }
2767             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2768           }
2769         }
2770         // Step size has changed, so we cannot guarantee no self-wraparound.
2771         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2772         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2773       }
2774     }
2775
2776     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2777     // next one.
2778   }
2779
2780   // Okay, it looks like we really DO need an add expr.  Check to see if we
2781   // already have one, otherwise create a new one.
2782   return getOrCreateAddExpr(Ops, Flags);
2783 }
2784
2785 const SCEV *
2786 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2787                                     SCEV::NoWrapFlags Flags) {
2788   FoldingSetNodeID ID;
2789   ID.AddInteger(scAddExpr);
2790   for (const SCEV *Op : Ops)
2791     ID.AddPointer(Op);
2792   void *IP = nullptr;
2793   SCEVAddExpr *S =
2794       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2795   if (!S) {
2796     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2797     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2798     S = new (SCEVAllocator)
2799         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2800     UniqueSCEVs.InsertNode(S, IP);
2801     addToLoopUseLists(S);
2802   }
2803   S->setNoWrapFlags(Flags);
2804   return S;
2805 }
2806
2807 const SCEV *
2808 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2809                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2810   FoldingSetNodeID ID;
2811   ID.AddInteger(scAddRecExpr);
2812   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2813     ID.AddPointer(Ops[i]);
2814   ID.AddPointer(L);
2815   void *IP = nullptr;
2816   SCEVAddRecExpr *S =
2817       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2818   if (!S) {
2819     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2820     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2821     S = new (SCEVAllocator)
2822         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2823     UniqueSCEVs.InsertNode(S, IP);
2824     addToLoopUseLists(S);
2825   }
2826   S->setNoWrapFlags(Flags);
2827   return S;
2828 }
2829
2830 const SCEV *
2831 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2832                                     SCEV::NoWrapFlags Flags) {
2833   FoldingSetNodeID ID;
2834   ID.AddInteger(scMulExpr);
2835   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2836     ID.AddPointer(Ops[i]);
2837   void *IP = nullptr;
2838   SCEVMulExpr *S =
2839     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2840   if (!S) {
2841     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2842     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2843     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2844                                         O, Ops.size());
2845     UniqueSCEVs.InsertNode(S, IP);
2846     addToLoopUseLists(S);
2847   }
2848   S->setNoWrapFlags(Flags);
2849   return S;
2850 }
2851
2852 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2853   uint64_t k = i*j;
2854   if (j > 1 && k / j != i) Overflow = true;
2855   return k;
2856 }
2857
2858 /// Compute the result of "n choose k", the binomial coefficient.  If an
2859 /// intermediate computation overflows, Overflow will be set and the return will
2860 /// be garbage. Overflow is not cleared on absence of overflow.
2861 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2862   // We use the multiplicative formula:
2863   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2864   // At each iteration, we take the n-th term of the numeral and divide by the
2865   // (k-n)th term of the denominator.  This division will always produce an
2866   // integral result, and helps reduce the chance of overflow in the
2867   // intermediate computations. However, we can still overflow even when the
2868   // final result would fit.
2869
2870   if (n == 0 || n == k) return 1;
2871   if (k > n) return 0;
2872
2873   if (k > n/2)
2874     k = n-k;
2875
2876   uint64_t r = 1;
2877   for (uint64_t i = 1; i <= k; ++i) {
2878     r = umul_ov(r, n-(i-1), Overflow);
2879     r /= i;
2880   }
2881   return r;
2882 }
2883
2884 /// Determine if any of the operands in this SCEV are a constant or if
2885 /// any of the add or multiply expressions in this SCEV contain a constant.
2886 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2887   struct FindConstantInAddMulChain {
2888     bool FoundConstant = false;
2889
2890     bool follow(const SCEV *S) {
2891       FoundConstant |= isa<SCEVConstant>(S);
2892       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2893     }
2894
2895     bool isDone() const {
2896       return FoundConstant;
2897     }
2898   };
2899
2900   FindConstantInAddMulChain F;
2901   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2902   ST.visitAll(StartExpr);
2903   return F.FoundConstant;
2904 }
2905
2906 /// Get a canonical multiply expression, or something simpler if possible.
2907 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2908                                         SCEV::NoWrapFlags Flags,
2909                                         unsigned Depth) {
2910   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2911          "only nuw or nsw allowed");
2912   assert(!Ops.empty() && "Cannot get empty mul!");
2913   if (Ops.size() == 1) return Ops[0];
2914 #ifndef NDEBUG
2915   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2916   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2917     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2918            "SCEVMulExpr operand types don't match!");
2919 #endif
2920
2921   // Sort by complexity, this groups all similar expression types together.
2922   GroupByComplexity(Ops, &LI, DT);
2923
2924   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2925
2926   // Limit recursion calls depth.
2927   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2928     return getOrCreateMulExpr(Ops, Flags);
2929
2930   // If there are any constants, fold them together.
2931   unsigned Idx = 0;
2932   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2933
2934     if (Ops.size() == 2)
2935       // C1*(C2+V) -> C1*C2 + C1*V
2936       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2937         // If any of Add's ops are Adds or Muls with a constant, apply this
2938         // transformation as well.
2939         //
2940         // TODO: There are some cases where this transformation is not
2941         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2942         // this transformation should be narrowed down.
2943         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2944           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2945                                        SCEV::FlagAnyWrap, Depth + 1),
2946                             getMulExpr(LHSC, Add->getOperand(1),
2947                                        SCEV::FlagAnyWrap, Depth + 1),
2948                             SCEV::FlagAnyWrap, Depth + 1);
2949
2950     ++Idx;
2951     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2952       // We found two constants, fold them together!
2953       ConstantInt *Fold =
2954           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2955       Ops[0] = getConstant(Fold);
2956       Ops.erase(Ops.begin()+1);  // Erase the folded element
2957       if (Ops.size() == 1) return Ops[0];
2958       LHSC = cast<SCEVConstant>(Ops[0]);
2959     }
2960
2961     // If we are left with a constant one being multiplied, strip it off.
2962     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2963       Ops.erase(Ops.begin());
2964       --Idx;
2965     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2966       // If we have a multiply of zero, it will always be zero.
2967       return Ops[0];
2968     } else if (Ops[0]->isAllOnesValue()) {
2969       // If we have a mul by -1 of an add, try distributing the -1 among the
2970       // add operands.
2971       if (Ops.size() == 2) {
2972         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2973           SmallVector<const SCEV *, 4> NewOps;
2974           bool AnyFolded = false;
2975           for (const SCEV *AddOp : Add->operands()) {
2976             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2977                                          Depth + 1);
2978             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2979             NewOps.push_back(Mul);
2980           }
2981           if (AnyFolded)
2982             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2983         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2984           // Negation preserves a recurrence's no self-wrap property.
2985           SmallVector<const SCEV *, 4> Operands;
2986           for (const SCEV *AddRecOp : AddRec->operands())
2987             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2988                                           Depth + 1));
2989
2990           return getAddRecExpr(Operands, AddRec->getLoop(),
2991                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2992         }
2993       }
2994     }
2995
2996     if (Ops.size() == 1)
2997       return Ops[0];
2998   }
2999
3000   // Skip over the add expression until we get to a multiply.
3001   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3002     ++Idx;
3003
3004   // If there are mul operands inline them all into this expression.
3005   if (Idx < Ops.size()) {
3006     bool DeletedMul = false;
3007     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3008       if (Ops.size() > MulOpsInlineThreshold)
3009         break;
3010       // If we have an mul, expand the mul operands onto the end of the
3011       // operands list.
3012       Ops.erase(Ops.begin()+Idx);
3013       Ops.append(Mul->op_begin(), Mul->op_end());
3014       DeletedMul = true;
3015     }
3016
3017     // If we deleted at least one mul, we added operands to the end of the
3018     // list, and they are not necessarily sorted.  Recurse to resort and
3019     // resimplify any operands we just acquired.
3020     if (DeletedMul)
3021       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3022   }
3023
3024   // If there are any add recurrences in the operands list, see if any other
3025   // added values are loop invariant.  If so, we can fold them into the
3026   // recurrence.
3027   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3028     ++Idx;
3029
3030   // Scan over all recurrences, trying to fold loop invariants into them.
3031   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3032     // Scan all of the other operands to this mul and add them to the vector
3033     // if they are loop invariant w.r.t. the recurrence.
3034     SmallVector<const SCEV *, 8> LIOps;
3035     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3036     const Loop *AddRecLoop = AddRec->getLoop();
3037     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3038       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3039         LIOps.push_back(Ops[i]);
3040         Ops.erase(Ops.begin()+i);
3041         --i; --e;
3042       }
3043
3044     // If we found some loop invariants, fold them into the recurrence.
3045     if (!LIOps.empty()) {
3046       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3047       SmallVector<const SCEV *, 4> NewOps;
3048       NewOps.reserve(AddRec->getNumOperands());
3049       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3050       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3051         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3052                                     SCEV::FlagAnyWrap, Depth + 1));
3053
3054       // Build the new addrec. Propagate the NUW and NSW flags if both the
3055       // outer mul and the inner addrec are guaranteed to have no overflow.
3056       //
3057       // No self-wrap cannot be guaranteed after changing the step size, but
3058       // will be inferred if either NUW or NSW is true.
3059       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
3060       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3061
3062       // If all of the other operands were loop invariant, we are done.
3063       if (Ops.size() == 1) return NewRec;
3064
3065       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3066       for (unsigned i = 0;; ++i)
3067         if (Ops[i] == AddRec) {
3068           Ops[i] = NewRec;
3069           break;
3070         }
3071       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3072     }
3073
3074     // Okay, if there weren't any loop invariants to be folded, check to see
3075     // if there are multiple AddRec's with the same loop induction variable
3076     // being multiplied together.  If so, we can fold them.
3077
3078     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3079     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3080     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3081     //   ]]],+,...up to x=2n}.
3082     // Note that the arguments to choose() are always integers with values
3083     // known at compile time, never SCEV objects.
3084     //
3085     // The implementation avoids pointless extra computations when the two
3086     // addrec's are of different length (mathematically, it's equivalent to
3087     // an infinite stream of zeros on the right).
3088     bool OpsModified = false;
3089     for (unsigned OtherIdx = Idx+1;
3090          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3091          ++OtherIdx) {
3092       const SCEVAddRecExpr *OtherAddRec =
3093         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3094       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3095         continue;
3096
3097       // Limit max number of arguments to avoid creation of unreasonably big
3098       // SCEVAddRecs with very complex operands.
3099       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3100           MaxAddRecSize || isHugeExpression(AddRec) ||
3101           isHugeExpression(OtherAddRec))
3102         continue;
3103
3104       bool Overflow = false;
3105       Type *Ty = AddRec->getType();
3106       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3107       SmallVector<const SCEV*, 7> AddRecOps;
3108       for (int x = 0, xe = AddRec->getNumOperands() +
3109              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3110         SmallVector <const SCEV *, 7> SumOps;
3111         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3112           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3113           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3114                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3115                z < ze && !Overflow; ++z) {
3116             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3117             uint64_t Coeff;
3118             if (LargerThan64Bits)
3119               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3120             else
3121               Coeff = Coeff1*Coeff2;
3122             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3123             const SCEV *Term1 = AddRec->getOperand(y-z);
3124             const SCEV *Term2 = OtherAddRec->getOperand(z);
3125             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3126                                         SCEV::FlagAnyWrap, Depth + 1));
3127           }
3128         }
3129         if (SumOps.empty())
3130           SumOps.push_back(getZero(Ty));
3131         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3132       }
3133       if (!Overflow) {
3134         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3135                                               SCEV::FlagAnyWrap);
3136         if (Ops.size() == 2) return NewAddRec;
3137         Ops[Idx] = NewAddRec;
3138         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3139         OpsModified = true;
3140         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3141         if (!AddRec)
3142           break;
3143       }
3144     }
3145     if (OpsModified)
3146       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3147
3148     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3149     // next one.
3150   }
3151
3152   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3153   // already have one, otherwise create a new one.
3154   return getOrCreateMulExpr(Ops, Flags);
3155 }
3156
3157 /// Represents an unsigned remainder expression based on unsigned division.
3158 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3159                                          const SCEV *RHS) {
3160   assert(getEffectiveSCEVType(LHS->getType()) ==
3161          getEffectiveSCEVType(RHS->getType()) &&
3162          "SCEVURemExpr operand types don't match!");
3163
3164   // Short-circuit easy cases
3165   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3166     // If constant is one, the result is trivial
3167     if (RHSC->getValue()->isOne())
3168       return getZero(LHS->getType()); // X urem 1 --> 0
3169
3170     // If constant is a power of two, fold into a zext(trunc(LHS)).
3171     if (RHSC->getAPInt().isPowerOf2()) {
3172       Type *FullTy = LHS->getType();
3173       Type *TruncTy =
3174           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3175       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3176     }
3177   }
3178
3179   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3180   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3181   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3182   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3183 }
3184
3185 /// Get a canonical unsigned division expression, or something simpler if
3186 /// possible.
3187 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3188                                          const SCEV *RHS) {
3189   assert(getEffectiveSCEVType(LHS->getType()) ==
3190          getEffectiveSCEVType(RHS->getType()) &&
3191          "SCEVUDivExpr operand types don't match!");
3192
3193   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3194     if (RHSC->getValue()->isOne())
3195       return LHS;                               // X udiv 1 --> x
3196     // If the denominator is zero, the result of the udiv is undefined. Don't
3197     // try to analyze it, because the resolution chosen here may differ from
3198     // the resolution chosen in other parts of the compiler.
3199     if (!RHSC->getValue()->isZero()) {
3200       // Determine if the division can be folded into the operands of
3201       // its operands.
3202       // TODO: Generalize this to non-constants by using known-bits information.
3203       Type *Ty = LHS->getType();
3204       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3205       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3206       // For non-power-of-two values, effectively round the value up to the
3207       // nearest power of two.
3208       if (!RHSC->getAPInt().isPowerOf2())
3209         ++MaxShiftAmt;
3210       IntegerType *ExtTy =
3211         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3212       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3213         if (const SCEVConstant *Step =
3214             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3215           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3216           const APInt &StepInt = Step->getAPInt();
3217           const APInt &DivInt = RHSC->getAPInt();
3218           if (!StepInt.urem(DivInt) &&
3219               getZeroExtendExpr(AR, ExtTy) ==
3220               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3221                             getZeroExtendExpr(Step, ExtTy),
3222                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3223             SmallVector<const SCEV *, 4> Operands;
3224             for (const SCEV *Op : AR->operands())
3225               Operands.push_back(getUDivExpr(Op, RHS));
3226             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3227           }
3228           /// Get a canonical UDivExpr for a recurrence.
3229           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3230           // We can currently only fold X%N if X is constant.
3231           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3232           if (StartC && !DivInt.urem(StepInt) &&
3233               getZeroExtendExpr(AR, ExtTy) ==
3234               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3235                             getZeroExtendExpr(Step, ExtTy),
3236                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3237             const APInt &StartInt = StartC->getAPInt();
3238             const APInt &StartRem = StartInt.urem(StepInt);
3239             if (StartRem != 0)
3240               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3241                                   AR->getLoop(), SCEV::FlagNW);
3242           }
3243         }
3244       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3245       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3246         SmallVector<const SCEV *, 4> Operands;
3247         for (const SCEV *Op : M->operands())
3248           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3249         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3250           // Find an operand that's safely divisible.
3251           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3252             const SCEV *Op = M->getOperand(i);
3253             const SCEV *Div = getUDivExpr(Op, RHSC);
3254             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3255               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3256                                                       M->op_end());
3257               Operands[i] = Div;
3258               return getMulExpr(Operands);
3259             }
3260           }
3261       }
3262
3263       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3264       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3265         if (auto *DivisorConstant =
3266                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3267           bool Overflow = false;
3268           APInt NewRHS =
3269               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3270           if (Overflow) {
3271             return getConstant(RHSC->getType(), 0, false);
3272           }
3273           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3274         }
3275       }
3276
3277       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3278       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3279         SmallVector<const SCEV *, 4> Operands;
3280         for (const SCEV *Op : A->operands())
3281           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3282         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3283           Operands.clear();
3284           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3285             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3286             if (isa<SCEVUDivExpr>(Op) ||
3287                 getMulExpr(Op, RHS) != A->getOperand(i))
3288               break;
3289             Operands.push_back(Op);
3290           }
3291           if (Operands.size() == A->getNumOperands())
3292             return getAddExpr(Operands);
3293         }
3294       }
3295
3296       // Fold if both operands are constant.
3297       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3298         Constant *LHSCV = LHSC->getValue();
3299         Constant *RHSCV = RHSC->getValue();
3300         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3301                                                                    RHSCV)));
3302       }
3303     }
3304   }
3305
3306   FoldingSetNodeID ID;
3307   ID.AddInteger(scUDivExpr);
3308   ID.AddPointer(LHS);
3309   ID.AddPointer(RHS);
3310   void *IP = nullptr;
3311   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3312   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3313                                              LHS, RHS);
3314   UniqueSCEVs.InsertNode(S, IP);
3315   addToLoopUseLists(S);
3316   return S;
3317 }
3318
3319 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3320   APInt A = C1->getAPInt().abs();
3321   APInt B = C2->getAPInt().abs();
3322   uint32_t ABW = A.getBitWidth();
3323   uint32_t BBW = B.getBitWidth();
3324
3325   if (ABW > BBW)
3326     B = B.zext(ABW);
3327   else if (ABW < BBW)
3328     A = A.zext(BBW);
3329
3330   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3331 }
3332
3333 /// Get a canonical unsigned division expression, or something simpler if
3334 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3335 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3336 /// it's not exact because the udiv may be clearing bits.
3337 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3338                                               const SCEV *RHS) {
3339   // TODO: we could try to find factors in all sorts of things, but for now we
3340   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3341   // end of this file for inspiration.
3342
3343   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3344   if (!Mul || !Mul->hasNoUnsignedWrap())
3345     return getUDivExpr(LHS, RHS);
3346
3347   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3348     // If the mulexpr multiplies by a constant, then that constant must be the
3349     // first element of the mulexpr.
3350     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3351       if (LHSCst == RHSCst) {
3352         SmallVector<const SCEV *, 2> Operands;
3353         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3354         return getMulExpr(Operands);
3355       }
3356
3357       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3358       // that there's a factor provided by one of the other terms. We need to
3359       // check.
3360       APInt Factor = gcd(LHSCst, RHSCst);
3361       if (!Factor.isIntN(1)) {
3362         LHSCst =
3363             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3364         RHSCst =
3365             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3366         SmallVector<const SCEV *, 2> Operands;
3367         Operands.push_back(LHSCst);
3368         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3369         LHS = getMulExpr(Operands);
3370         RHS = RHSCst;
3371         Mul = dyn_cast<SCEVMulExpr>(LHS);
3372         if (!Mul)
3373           return getUDivExactExpr(LHS, RHS);
3374       }
3375     }
3376   }
3377
3378   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3379     if (Mul->getOperand(i) == RHS) {
3380       SmallVector<const SCEV *, 2> Operands;
3381       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3382       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3383       return getMulExpr(Operands);
3384     }
3385   }
3386
3387   return getUDivExpr(LHS, RHS);
3388 }
3389
3390 /// Get an add recurrence expression for the specified loop.  Simplify the
3391 /// expression as much as possible.
3392 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3393                                            const Loop *L,
3394                                            SCEV::NoWrapFlags Flags) {
3395   SmallVector<const SCEV *, 4> Operands;
3396   Operands.push_back(Start);
3397   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3398     if (StepChrec->getLoop() == L) {
3399       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3400       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3401     }
3402
3403   Operands.push_back(Step);
3404   return getAddRecExpr(Operands, L, Flags);
3405 }
3406
3407 /// Get an add recurrence expression for the specified loop.  Simplify the
3408 /// expression as much as possible.
3409 const SCEV *
3410 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3411                                const Loop *L, SCEV::NoWrapFlags Flags) {
3412   if (Operands.size() == 1) return Operands[0];
3413 #ifndef NDEBUG
3414   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3415   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3416     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3417            "SCEVAddRecExpr operand types don't match!");
3418   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3419     assert(isLoopInvariant(Operands[i], L) &&
3420            "SCEVAddRecExpr operand is not loop-invariant!");
3421 #endif
3422
3423   if (Operands.back()->isZero()) {
3424     Operands.pop_back();
3425     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3426   }
3427
3428   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3429   // use that information to infer NUW and NSW flags. However, computing a
3430   // BE count requires calling getAddRecExpr, so we may not yet have a
3431   // meaningful BE count at this point (and if we don't, we'd be stuck
3432   // with a SCEVCouldNotCompute as the cached BE count).
3433
3434   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3435
3436   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3437   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3438     const Loop *NestedLoop = NestedAR->getLoop();
3439     if (L->contains(NestedLoop)
3440             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3441             : (!NestedLoop->contains(L) &&
3442                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3443       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3444                                                   NestedAR->op_end());
3445       Operands[0] = NestedAR->getStart();
3446       // AddRecs require their operands be loop-invariant with respect to their
3447       // loops. Don't perform this transformation if it would break this
3448       // requirement.
3449       bool AllInvariant = all_of(
3450           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3451
3452       if (AllInvariant) {
3453         // Create a recurrence for the outer loop with the same step size.
3454         //
3455         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3456         // inner recurrence has the same property.
3457         SCEV::NoWrapFlags OuterFlags =
3458           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3459
3460         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3461         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3462           return isLoopInvariant(Op, NestedLoop);
3463         });
3464
3465         if (AllInvariant) {
3466           // Ok, both add recurrences are valid after the transformation.
3467           //
3468           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3469           // the outer recurrence has the same property.
3470           SCEV::NoWrapFlags InnerFlags =
3471             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3472           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3473         }
3474       }
3475       // Reset Operands to its original state.
3476       Operands[0] = NestedAR;
3477     }
3478   }
3479
3480   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3481   // already have one, otherwise create a new one.
3482   return getOrCreateAddRecExpr(Operands, L, Flags);
3483 }
3484
3485 const SCEV *
3486 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3487                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3488   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3489   // getSCEV(Base)->getType() has the same address space as Base->getType()
3490   // because SCEV::getType() preserves the address space.
3491   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3492   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3493   // instruction to its SCEV, because the Instruction may be guarded by control
3494   // flow and the no-overflow bits may not be valid for the expression in any
3495   // context. This can be fixed similarly to how these flags are handled for
3496   // adds.
3497   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3498                                              : SCEV::FlagAnyWrap;
3499
3500   const SCEV *TotalOffset = getZero(IntPtrTy);
3501   // The array size is unimportant. The first thing we do on CurTy is getting
3502   // its element type.
3503   Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3504   for (const SCEV *IndexExpr : IndexExprs) {
3505     // Compute the (potentially symbolic) offset in bytes for this index.
3506     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3507       // For a struct, add the member offset.
3508       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3509       unsigned FieldNo = Index->getZExtValue();
3510       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3511
3512       // Add the field offset to the running total offset.
3513       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3514
3515       // Update CurTy to the type of the field at Index.
3516       CurTy = STy->getTypeAtIndex(Index);
3517     } else {
3518       // Update CurTy to its element type.
3519       CurTy = cast<SequentialType>(CurTy)->getElementType();
3520       // For an array, add the element offset, explicitly scaled.
3521       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3522       // Getelementptr indices are signed.
3523       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3524
3525       // Multiply the index by the element size to compute the element offset.
3526       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3527
3528       // Add the element offset to the running total offset.
3529       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3530     }
3531   }
3532
3533   // Add the total offset from all the GEP indices to the base.
3534   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3535 }
3536
3537 std::tuple<const SCEV *, FoldingSetNodeID, void *>
3538 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3539                                          ArrayRef<const SCEV *> Ops) {
3540   FoldingSetNodeID ID;
3541   void *IP = nullptr;
3542   ID.AddInteger(SCEVType);
3543   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3544     ID.AddPointer(Ops[i]);
3545   return std::tuple<const SCEV *, FoldingSetNodeID, void *>(
3546       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3547 }
3548
3549 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
3550                                            SmallVectorImpl<const SCEV *> &Ops) {
3551   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3552   if (Ops.size() == 1) return Ops[0];
3553 #ifndef NDEBUG
3554   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3555   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3556     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3557            "Operand types don't match!");
3558 #endif
3559
3560   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3561   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3562
3563   // Sort by complexity, this groups all similar expression types together.
3564   GroupByComplexity(Ops, &LI, DT);
3565
3566   // Check if we have created the same expression before.
3567   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3568     return S;
3569   }
3570
3571   // If there are any constants, fold them together.
3572   unsigned Idx = 0;
3573   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3574     ++Idx;
3575     assert(Idx < Ops.size());
3576     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3577       if (Kind == scSMaxExpr)
3578         return APIntOps::smax(LHS, RHS);
3579       else if (Kind == scSMinExpr)
3580         return APIntOps::smin(LHS, RHS);
3581       else if (Kind == scUMaxExpr)
3582         return APIntOps::umax(LHS, RHS);
3583       else if (Kind == scUMinExpr)
3584         return APIntOps::umin(LHS, RHS);
3585       llvm_unreachable("Unknown SCEV min/max opcode");
3586     };
3587
3588     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3589       // We found two constants, fold them together!
3590       ConstantInt *Fold = ConstantInt::get(
3591           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3592       Ops[0] = getConstant(Fold);
3593       Ops.erase(Ops.begin()+1);  // Erase the folded element
3594       if (Ops.size() == 1) return Ops[0];
3595       LHSC = cast<SCEVConstant>(Ops[0]);
3596     }
3597
3598     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3599     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3600
3601     if (IsMax ? IsMinV : IsMaxV) {
3602       // If we are left with a constant minimum(/maximum)-int, strip it off.
3603       Ops.erase(Ops.begin());
3604       --Idx;
3605     } else if (IsMax ? IsMaxV : IsMinV) {
3606       // If we have a max(/min) with a constant maximum(/minimum)-int,
3607       // it will always be the extremum.
3608       return LHSC;
3609     }
3610
3611     if (Ops.size() == 1) return Ops[0];
3612   }
3613
3614   // Find the first operation of the same kind
3615   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3616     ++Idx;
3617
3618   // Check to see if one of the operands is of the same kind. If so, expand its
3619   // operands onto our operand list, and recurse to simplify.
3620   if (Idx < Ops.size()) {
3621     bool DeletedAny = false;
3622     while (Ops[Idx]->getSCEVType() == Kind) {
3623       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3624       Ops.erase(Ops.begin()+Idx);
3625       Ops.append(SMME->op_begin(), SMME->op_end());
3626       DeletedAny = true;
3627     }
3628
3629     if (DeletedAny)
3630       return getMinMaxExpr(Kind, Ops);
3631   }
3632
3633   // Okay, check to see if the same value occurs in the operand list twice.  If
3634   // so, delete one.  Since we sorted the list, these values are required to
3635   // be adjacent.
3636   llvm::CmpInst::Predicate GEPred =
3637       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3638   llvm::CmpInst::Predicate LEPred =
3639       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3640   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3641   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3642   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3643     if (Ops[i] == Ops[i + 1] ||
3644         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3645       //  X op Y op Y  -->  X op Y
3646       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3647       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3648       --i;
3649       --e;
3650     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3651                                                Ops[i + 1])) {
3652       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3653       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3654       --i;
3655       --e;
3656     }
3657   }
3658
3659   if (Ops.size() == 1) return Ops[0];
3660
3661   assert(!Ops.empty() && "Reduced smax down to nothing!");
3662
3663   // Okay, it looks like we really DO need an expr.  Check to see if we
3664   // already have one, otherwise create a new one.
3665   const SCEV *ExistingSCEV;
3666   FoldingSetNodeID ID;
3667   void *IP;
3668   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3669   if (ExistingSCEV)
3670     return ExistingSCEV;
3671   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3672   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3673   SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
3674       ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
3675
3676   UniqueSCEVs.InsertNode(S, IP);
3677   addToLoopUseLists(S);
3678   return S;
3679 }
3680
3681 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3682   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3683   return getSMaxExpr(Ops);
3684 }
3685
3686 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3687   return getMinMaxExpr(scSMaxExpr, Ops);
3688 }
3689
3690 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3691   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3692   return getUMaxExpr(Ops);
3693 }
3694
3695 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3696   return getMinMaxExpr(scUMaxExpr, Ops);
3697 }
3698
3699 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3700                                          const SCEV *RHS) {
3701   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3702   return getSMinExpr(Ops);
3703 }
3704
3705 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3706   return getMinMaxExpr(scSMinExpr, Ops);
3707 }
3708
3709 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3710                                          const SCEV *RHS) {
3711   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3712   return getUMinExpr(Ops);
3713 }
3714
3715 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3716   return getMinMaxExpr(scUMinExpr, Ops);
3717 }
3718
3719 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3720   // We can bypass creating a target-independent
3721   // constant expression and then folding it back into a ConstantInt.
3722   // This is just a compile-time optimization.
3723   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3724 }
3725
3726 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3727                                              StructType *STy,
3728                                              unsigned FieldNo) {
3729   // We can bypass creating a target-independent
3730   // constant expression and then folding it back into a ConstantInt.
3731   // This is just a compile-time optimization.
3732   return getConstant(
3733       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3734 }
3735
3736 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3737   // Don't attempt to do anything other than create a SCEVUnknown object
3738   // here.  createSCEV only calls getUnknown after checking for all other
3739   // interesting possibilities, and any other code that calls getUnknown
3740   // is doing so in order to hide a value from SCEV canonicalization.
3741
3742   FoldingSetNodeID ID;
3743   ID.AddInteger(scUnknown);
3744   ID.AddPointer(V);
3745   void *IP = nullptr;
3746   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3747     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3748            "Stale SCEVUnknown in uniquing map!");
3749     return S;
3750   }
3751   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3752                                             FirstUnknown);
3753   FirstUnknown = cast<SCEVUnknown>(S);
3754   UniqueSCEVs.InsertNode(S, IP);
3755   return S;
3756 }
3757
3758 //===----------------------------------------------------------------------===//
3759 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3760 //
3761
3762 /// Test if values of the given type are analyzable within the SCEV
3763 /// framework. This primarily includes integer types, and it can optionally
3764 /// include pointer types if the ScalarEvolution class has access to
3765 /// target-specific information.
3766 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3767   // Integers and pointers are always SCEVable.
3768   return Ty->isIntOrPtrTy();
3769 }
3770
3771 /// Return the size in bits of the specified type, for which isSCEVable must
3772 /// return true.
3773 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3774   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3775   if (Ty->isPointerTy())
3776     return getDataLayout().getIndexTypeSizeInBits(Ty);
3777   return getDataLayout().getTypeSizeInBits(Ty);
3778 }
3779
3780 /// Return a type with the same bitwidth as the given type and which represents
3781 /// how SCEV will treat the given type, for which isSCEVable must return
3782 /// true. For pointer types, this is the pointer-sized integer type.
3783 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3784   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3785
3786   if (Ty->isIntegerTy())
3787     return Ty;
3788
3789   // The only other support type is pointer.
3790   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3791   return getDataLayout().getIntPtrType(Ty);
3792 }
3793
3794 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3795   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3796 }
3797
3798 const SCEV *ScalarEvolution::getCouldNotCompute() {
3799   return CouldNotCompute.get();
3800 }
3801
3802 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3803   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3804     auto *SU = dyn_cast<SCEVUnknown>(S);
3805     return SU && SU->getValue() == nullptr;
3806   });
3807
3808   return !ContainsNulls;
3809 }
3810
3811 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3812   HasRecMapType::iterator I = HasRecMap.find(S);
3813   if (I != HasRecMap.end())
3814     return I->second;
3815
3816   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3817   HasRecMap.insert({S, FoundAddRec});
3818   return FoundAddRec;
3819 }
3820
3821 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3822 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3823 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3824 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3825   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3826   if (!Add)
3827     return {S, nullptr};
3828
3829   if (Add->getNumOperands() != 2)
3830     return {S, nullptr};
3831
3832   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3833   if (!ConstOp)
3834     return {S, nullptr};
3835
3836   return {Add->getOperand(1), ConstOp->getValue()};
3837 }
3838
3839 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3840 /// by the value and offset from any ValueOffsetPair in the set.
3841 SetVector<ScalarEvolution::ValueOffsetPair> *
3842 ScalarEvolution::getSCEVValues(const SCEV *S) {
3843   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3844   if (SI == ExprValueMap.end())
3845     return nullptr;
3846 #ifndef NDEBUG
3847   if (VerifySCEVMap) {
3848     // Check there is no dangling Value in the set returned.
3849     for (const auto &VE : SI->second)
3850       assert(ValueExprMap.count(VE.first));
3851   }
3852 #endif
3853   return &SI->second;
3854 }
3855
3856 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3857 /// cannot be used separately. eraseValueFromMap should be used to remove
3858 /// V from ValueExprMap and ExprValueMap at the same time.
3859 void ScalarEvolution::eraseValueFromMap(Value *V) {
3860   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3861   if (I != ValueExprMap.end()) {
3862     const SCEV *S = I->second;
3863     // Remove {V, 0} from the set of ExprValueMap[S]
3864     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3865       SV->remove({V, nullptr});
3866
3867     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3868     const SCEV *Stripped;
3869     ConstantInt *Offset;
3870     std::tie(Stripped, Offset) = splitAddExpr(S);
3871     if (Offset != nullptr) {
3872       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3873         SV->remove({V, Offset});
3874     }
3875     ValueExprMap.erase(V);
3876   }
3877 }
3878
3879 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3880 /// TODO: In reality it is better to check the poison recursively
3881 /// but this is better than nothing.
3882 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3883   if (auto *I = dyn_cast<Instruction>(V)) {
3884     if (isa<OverflowingBinaryOperator>(I)) {
3885       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3886         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3887           return true;
3888         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3889           return true;
3890       }
3891     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3892       return true;
3893   }
3894   return false;
3895 }
3896
3897 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3898 /// create a new one.
3899 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3900   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3901
3902   const SCEV *S = getExistingSCEV(V);
3903   if (S == nullptr) {
3904     S = createSCEV(V);
3905     // During PHI resolution, it is possible to create two SCEVs for the same
3906     // V, so it is needed to double check whether V->S is inserted into
3907     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3908     std::pair<ValueExprMapType::iterator, bool> Pair =
3909         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3910     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3911       ExprValueMap[S].insert({V, nullptr});
3912
3913       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3914       // ExprValueMap.
3915       const SCEV *Stripped = S;
3916       ConstantInt *Offset = nullptr;
3917       std::tie(Stripped, Offset) = splitAddExpr(S);
3918       // If stripped is SCEVUnknown, don't bother to save
3919       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3920       // increase the complexity of the expansion code.
3921       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3922       // because it may generate add/sub instead of GEP in SCEV expansion.
3923       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3924           !isa<GetElementPtrInst>(V))
3925         ExprValueMap[Stripped].insert({V, Offset});
3926     }
3927   }
3928   return S;
3929 }
3930
3931 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3932   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3933
3934   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3935   if (I != ValueExprMap.end()) {
3936     const SCEV *S = I->second;
3937     if (checkValidity(S))
3938       return S;
3939     eraseValueFromMap(V);
3940     forgetMemoizedResults(S);
3941   }
3942   return nullptr;
3943 }
3944
3945 /// Return a SCEV corresponding to -V = -1*V
3946 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3947                                              SCEV::NoWrapFlags Flags) {
3948   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3949     return getConstant(
3950                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3951
3952   Type *Ty = V->getType();
3953   Ty = getEffectiveSCEVType(Ty);
3954   return getMulExpr(
3955       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3956 }
3957
3958 /// If Expr computes ~A, return A else return nullptr
3959 static const SCEV *MatchNotExpr(const SCEV *Expr) {
3960   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
3961   if (!Add || Add->getNumOperands() != 2 ||
3962       !Add->getOperand(0)->isAllOnesValue())
3963     return nullptr;
3964
3965   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
3966   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
3967       !AddRHS->getOperand(0)->isAllOnesValue())
3968     return nullptr;
3969
3970   return AddRHS->getOperand(1);
3971 }
3972
3973 /// Return a SCEV corresponding to ~V = -1-V
3974 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3975   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3976     return getConstant(
3977                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3978
3979   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
3980   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
3981     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
3982       SmallVector<const SCEV *, 2> MatchedOperands;
3983       for (const SCEV *Operand : MME->operands()) {
3984         const SCEV *Matched = MatchNotExpr(Operand);
3985         if (!Matched)
3986           return (const SCEV *)nullptr;
3987         MatchedOperands.push_back(Matched);
3988       }
3989       return getMinMaxExpr(
3990           SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
3991           MatchedOperands);
3992     };
3993     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
3994       return Replaced;
3995   }
3996
3997   Type *Ty = V->getType();
3998   Ty = getEffectiveSCEVType(Ty);
3999   const SCEV *AllOnes =
4000                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
4001   return getMinusSCEV(AllOnes, V);
4002 }
4003
4004 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4005                                           SCEV::NoWrapFlags Flags,
4006                                           unsigned Depth) {
4007   // Fast path: X - X --> 0.
4008   if (LHS == RHS)
4009     return getZero(LHS->getType());
4010
4011   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4012   // makes it so that we cannot make much use of NUW.
4013   auto AddFlags = SCEV::FlagAnyWrap;
4014   const bool RHSIsNotMinSigned =
4015       !getSignedRangeMin(RHS).isMinSignedValue();
4016   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4017     // Let M be the minimum representable signed value. Then (-1)*RHS
4018     // signed-wraps if and only if RHS is M. That can happen even for
4019     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4020     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4021     // (-1)*RHS, we need to prove that RHS != M.
4022     //
4023     // If LHS is non-negative and we know that LHS - RHS does not
4024     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4025     // either by proving that RHS > M or that LHS >= 0.
4026     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4027       AddFlags = SCEV::FlagNSW;
4028     }
4029   }
4030
4031   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4032   // RHS is NSW and LHS >= 0.
4033   //
4034   // The difficulty here is that the NSW flag may have been proven
4035   // relative to a loop that is to be found in a recurrence in LHS and
4036   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4037   // larger scope than intended.
4038   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4039
4040   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4041 }
4042
4043 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4044                                                      unsigned Depth) {
4045   Type *SrcTy = V->getType();
4046   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4047          "Cannot truncate or zero extend with non-integer arguments!");
4048   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4049     return V;  // No conversion
4050   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4051     return getTruncateExpr(V, Ty, Depth);
4052   return getZeroExtendExpr(V, Ty, Depth);
4053 }
4054
4055 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4056                                                      unsigned Depth) {
4057   Type *SrcTy = V->getType();
4058   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4059          "Cannot truncate or zero extend with non-integer arguments!");
4060   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4061     return V;  // No conversion
4062   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4063     return getTruncateExpr(V, Ty, Depth);
4064   return getSignExtendExpr(V, Ty, Depth);
4065 }
4066
4067 const SCEV *
4068 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4069   Type *SrcTy = V->getType();
4070   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4071          "Cannot noop or zero extend with non-integer arguments!");
4072   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4073          "getNoopOrZeroExtend cannot truncate!");
4074   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4075     return V;  // No conversion
4076   return getZeroExtendExpr(V, Ty);
4077 }
4078
4079 const SCEV *
4080 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4081   Type *SrcTy = V->getType();
4082   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4083          "Cannot noop or sign extend with non-integer arguments!");
4084   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4085          "getNoopOrSignExtend cannot truncate!");
4086   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4087     return V;  // No conversion
4088   return getSignExtendExpr(V, Ty);
4089 }
4090
4091 const SCEV *
4092 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4093   Type *SrcTy = V->getType();
4094   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4095          "Cannot noop or any extend with non-integer arguments!");
4096   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4097          "getNoopOrAnyExtend cannot truncate!");
4098   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4099     return V;  // No conversion
4100   return getAnyExtendExpr(V, Ty);
4101 }
4102
4103 const SCEV *
4104 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4105   Type *SrcTy = V->getType();
4106   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4107          "Cannot truncate or noop with non-integer arguments!");
4108   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4109          "getTruncateOrNoop cannot extend!");
4110   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4111     return V;  // No conversion
4112   return getTruncateExpr(V, Ty);
4113 }
4114
4115 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4116                                                         const SCEV *RHS) {
4117   const SCEV *PromotedLHS = LHS;
4118   const SCEV *PromotedRHS = RHS;
4119
4120   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4121     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4122   else
4123     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4124
4125   return getUMaxExpr(PromotedLHS, PromotedRHS);
4126 }
4127
4128 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4129                                                         const SCEV *RHS) {
4130   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4131   return getUMinFromMismatchedTypes(Ops);
4132 }
4133
4134 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4135     SmallVectorImpl<const SCEV *> &Ops) {
4136   assert(!Ops.empty() && "At least one operand must be!");
4137   // Trivial case.
4138   if (Ops.size() == 1)
4139     return Ops[0];
4140
4141   // Find the max type first.
4142   Type *MaxType = nullptr;
4143   for (auto *S : Ops)
4144     if (MaxType)
4145       MaxType = getWiderType(MaxType, S->getType());
4146     else
4147       MaxType = S->getType();
4148
4149   // Extend all ops to max type.
4150   SmallVector<const SCEV *, 2> PromotedOps;
4151   for (auto *S : Ops)
4152     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4153
4154   // Generate umin.
4155   return getUMinExpr(PromotedOps);
4156 }
4157
4158 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4159   // A pointer operand may evaluate to a nonpointer expression, such as null.
4160   if (!V->getType()->isPointerTy())
4161     return V;
4162
4163   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4164     return getPointerBase(Cast->getOperand());
4165   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4166     const SCEV *PtrOp = nullptr;
4167     for (const SCEV *NAryOp : NAry->operands()) {
4168       if (NAryOp->getType()->isPointerTy()) {
4169         // Cannot find the base of an expression with multiple pointer operands.
4170         if (PtrOp)
4171           return V;
4172         PtrOp = NAryOp;
4173       }
4174     }
4175     if (!PtrOp)
4176       return V;
4177     return getPointerBase(PtrOp);
4178   }
4179   return V;
4180 }
4181
4182 /// Push users of the given Instruction onto the given Worklist.
4183 static void
4184 PushDefUseChildren(Instruction *I,
4185                    SmallVectorImpl<Instruction *> &Worklist) {
4186   // Push the def-use children onto the Worklist stack.
4187   for (User *U : I->users())
4188     Worklist.push_back(cast<Instruction>(U));
4189 }
4190
4191 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4192   SmallVector<Instruction *, 16> Worklist;
4193   PushDefUseChildren(PN, Worklist);
4194
4195   SmallPtrSet<Instruction *, 8> Visited;
4196   Visited.insert(PN);
4197   while (!Worklist.empty()) {
4198     Instruction *I = Worklist.pop_back_val();
4199     if (!Visited.insert(I).second)
4200       continue;
4201
4202     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4203     if (It != ValueExprMap.end()) {
4204       const SCEV *Old = It->second;
4205
4206       // Short-circuit the def-use traversal if the symbolic name
4207       // ceases to appear in expressions.
4208       if (Old != SymName && !hasOperand(Old, SymName))
4209         continue;
4210
4211       // SCEVUnknown for a PHI either means that it has an unrecognized
4212       // structure, it's a PHI that's in the progress of being computed
4213       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4214       // additional loop trip count information isn't going to change anything.
4215       // In the second case, createNodeForPHI will perform the necessary
4216       // updates on its own when it gets to that point. In the third, we do
4217       // want to forget the SCEVUnknown.
4218       if (!isa<PHINode>(I) ||
4219           !isa<SCEVUnknown>(Old) ||
4220           (I != PN && Old == SymName)) {
4221         eraseValueFromMap(It->first);
4222         forgetMemoizedResults(Old);
4223       }
4224     }
4225
4226     PushDefUseChildren(I, Worklist);
4227   }
4228 }
4229
4230 namespace {
4231
4232 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4233 /// expression in case its Loop is L. If it is not L then
4234 /// if IgnoreOtherLoops is true then use AddRec itself
4235 /// otherwise rewrite cannot be done.
4236 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4237 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4238 public:
4239   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4240                              bool IgnoreOtherLoops = true) {
4241     SCEVInitRewriter Rewriter(L, SE);
4242     const SCEV *Result = Rewriter.visit(S);
4243     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4244       return SE.getCouldNotCompute();
4245     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4246                ? SE.getCouldNotCompute()
4247                : Result;
4248   }
4249
4250   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4251     if (!SE.isLoopInvariant(Expr, L))
4252       SeenLoopVariantSCEVUnknown = true;
4253     return Expr;
4254   }
4255
4256   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4257     // Only re-write AddRecExprs for this loop.
4258     if (Expr->getLoop() == L)
4259       return Expr->getStart();
4260     SeenOtherLoops = true;
4261     return Expr;
4262   }
4263
4264   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4265
4266   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4267
4268 private:
4269   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4270       : SCEVRewriteVisitor(SE), L(L) {}
4271
4272   const Loop *L;
4273   bool SeenLoopVariantSCEVUnknown = false;
4274   bool SeenOtherLoops = false;
4275 };
4276
4277 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4278 /// increment expression in case its Loop is L. If it is not L then
4279 /// use AddRec itself.
4280 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4281 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4282 public:
4283   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4284     SCEVPostIncRewriter Rewriter(L, SE);
4285     const SCEV *Result = Rewriter.visit(S);
4286     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4287         ? SE.getCouldNotCompute()
4288         : Result;
4289   }
4290
4291   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4292     if (!SE.isLoopInvariant(Expr, L))
4293       SeenLoopVariantSCEVUnknown = true;
4294     return Expr;
4295   }
4296
4297   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4298     // Only re-write AddRecExprs for this loop.
4299     if (Expr->getLoop() == L)
4300       return Expr->getPostIncExpr(SE);
4301     SeenOtherLoops = true;
4302     return Expr;
4303   }
4304
4305   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4306
4307   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4308
4309 private:
4310   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4311       : SCEVRewriteVisitor(SE), L(L) {}
4312
4313   const Loop *L;
4314   bool SeenLoopVariantSCEVUnknown = false;
4315   bool SeenOtherLoops = false;
4316 };
4317
4318 /// This class evaluates the compare condition by matching it against the
4319 /// condition of loop latch. If there is a match we assume a true value
4320 /// for the condition while building SCEV nodes.
4321 class SCEVBackedgeConditionFolder
4322     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4323 public:
4324   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4325                              ScalarEvolution &SE) {
4326     bool IsPosBECond = false;
4327     Value *BECond = nullptr;
4328     if (BasicBlock *Latch = L->getLoopLatch()) {
4329       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4330       if (BI && BI->isConditional()) {
4331         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4332                "Both outgoing branches should not target same header!");
4333         BECond = BI->getCondition();
4334         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4335       } else {
4336         return S;
4337       }
4338     }
4339     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4340     return Rewriter.visit(S);
4341   }
4342
4343   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4344     const SCEV *Result = Expr;
4345     bool InvariantF = SE.isLoopInvariant(Expr, L);
4346
4347     if (!InvariantF) {
4348       Instruction *I = cast<Instruction>(Expr->getValue());
4349       switch (I->getOpcode()) {
4350       case Instruction::Select: {
4351         SelectInst *SI = cast<SelectInst>(I);
4352         Optional<const SCEV *> Res =
4353             compareWithBackedgeCondition(SI->getCondition());
4354         if (Res.hasValue()) {
4355           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4356           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4357         }
4358         break;
4359       }
4360       default: {
4361         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4362         if (Res.hasValue())
4363           Result = Res.getValue();
4364         break;
4365       }
4366       }
4367     }
4368     return Result;
4369   }
4370
4371 private:
4372   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4373                                        bool IsPosBECond, ScalarEvolution &SE)
4374       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4375         IsPositiveBECond(IsPosBECond) {}
4376
4377   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4378
4379   const Loop *L;
4380   /// Loop back condition.
4381   Value *BackedgeCond = nullptr;
4382   /// Set to true if loop back is on positive branch condition.
4383   bool IsPositiveBECond;
4384 };
4385
4386 Optional<const SCEV *>
4387 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4388
4389   // If value matches the backedge condition for loop latch,
4390   // then return a constant evolution node based on loopback
4391   // branch taken.
4392   if (BackedgeCond == IC)
4393     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4394                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4395   return None;
4396 }
4397
4398 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4399 public:
4400   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4401                              ScalarEvolution &SE) {
4402     SCEVShiftRewriter Rewriter(L, SE);
4403     const SCEV *Result = Rewriter.visit(S);
4404     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4405   }
4406
4407   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4408     // Only allow AddRecExprs for this loop.
4409     if (!SE.isLoopInvariant(Expr, L))
4410       Valid = false;
4411     return Expr;
4412   }
4413
4414   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4415     if (Expr->getLoop() == L && Expr->isAffine())
4416       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4417     Valid = false;
4418     return Expr;
4419   }
4420
4421   bool isValid() { return Valid; }
4422
4423 private:
4424   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4425       : SCEVRewriteVisitor(SE), L(L) {}
4426
4427   const Loop *L;
4428   bool Valid = true;
4429 };
4430
4431 } // end anonymous namespace
4432
4433 SCEV::NoWrapFlags
4434 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4435   if (!AR->isAffine())
4436     return SCEV::FlagAnyWrap;
4437
4438   using OBO = OverflowingBinaryOperator;
4439
4440   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4441
4442   if (!AR->hasNoSignedWrap()) {
4443     ConstantRange AddRecRange = getSignedRange(AR);
4444     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4445
4446     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4447         Instruction::Add, IncRange, OBO::NoSignedWrap);
4448     if (NSWRegion.contains(AddRecRange))
4449       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4450   }
4451
4452   if (!AR->hasNoUnsignedWrap()) {
4453     ConstantRange AddRecRange = getUnsignedRange(AR);
4454     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4455
4456     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4457         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4458     if (NUWRegion.contains(AddRecRange))
4459       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4460   }
4461
4462   return Result;
4463 }
4464
4465 namespace {
4466
4467 /// Represents an abstract binary operation.  This may exist as a
4468 /// normal instruction or constant expression, or may have been
4469 /// derived from an expression tree.
4470 struct BinaryOp {
4471   unsigned Opcode;
4472   Value *LHS;
4473   Value *RHS;
4474   bool IsNSW = false;
4475   bool IsNUW = false;
4476
4477   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4478   /// constant expression.
4479   Operator *Op = nullptr;
4480
4481   explicit BinaryOp(Operator *Op)
4482       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4483         Op(Op) {
4484     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4485       IsNSW = OBO->hasNoSignedWrap();
4486       IsNUW = OBO->hasNoUnsignedWrap();
4487     }
4488   }
4489
4490   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4491                     bool IsNUW = false)
4492       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4493 };
4494
4495 } // end anonymous namespace
4496
4497 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4498 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4499   auto *Op = dyn_cast<Operator>(V);
4500   if (!Op)
4501     return None;
4502
4503   // Implementation detail: all the cleverness here should happen without
4504   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4505   // SCEV expressions when possible, and we should not break that.
4506
4507   switch (Op->getOpcode()) {
4508   case Instruction::Add:
4509   case Instruction::Sub:
4510   case Instruction::Mul:
4511   case Instruction::UDiv:
4512   case Instruction::URem:
4513   case Instruction::And:
4514   case Instruction::Or:
4515   case Instruction::AShr:
4516   case Instruction::Shl:
4517     return BinaryOp(Op);
4518
4519   case Instruction::Xor:
4520     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4521       // If the RHS of the xor is a signmask, then this is just an add.
4522       // Instcombine turns add of signmask into xor as a strength reduction step.
4523       if (RHSC->getValue().isSignMask())
4524         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4525     return BinaryOp(Op);
4526
4527   case Instruction::LShr:
4528     // Turn logical shift right of a constant into a unsigned divide.
4529     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4530       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4531
4532       // If the shift count is not less than the bitwidth, the result of
4533       // the shift is undefined. Don't try to analyze it, because the
4534       // resolution chosen here may differ from the resolution chosen in
4535       // other parts of the compiler.
4536       if (SA->getValue().ult(BitWidth)) {
4537         Constant *X =
4538             ConstantInt::get(SA->getContext(),
4539                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4540         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4541       }
4542     }
4543     return BinaryOp(Op);
4544
4545   case Instruction::ExtractValue: {
4546     auto *EVI = cast<ExtractValueInst>(Op);
4547     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4548       break;
4549
4550     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4551     if (!WO)
4552       break;
4553
4554     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4555     bool Signed = WO->isSigned();
4556     // TODO: Should add nuw/nsw flags for mul as well.
4557     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4558       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4559
4560     // Now that we know that all uses of the arithmetic-result component of
4561     // CI are guarded by the overflow check, we can go ahead and pretend
4562     // that the arithmetic is non-overflowing.
4563     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4564                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4565   }
4566
4567   default:
4568     break;
4569   }
4570
4571   return None;
4572 }
4573
4574 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4575 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4576 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4577 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4578 /// follows one of the following patterns:
4579 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4580 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4581 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4582 /// we return the type of the truncation operation, and indicate whether the
4583 /// truncated type should be treated as signed/unsigned by setting
4584 /// \p Signed to true/false, respectively.
4585 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4586                                bool &Signed, ScalarEvolution &SE) {
4587   // The case where Op == SymbolicPHI (that is, with no type conversions on
4588   // the way) is handled by the regular add recurrence creating logic and
4589   // would have already been triggered in createAddRecForPHI. Reaching it here
4590   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4591   // because one of the other operands of the SCEVAddExpr updating this PHI is
4592   // not invariant).
4593   //
4594   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4595   // this case predicates that allow us to prove that Op == SymbolicPHI will
4596   // be added.
4597   if (Op == SymbolicPHI)
4598     return nullptr;
4599
4600   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4601   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4602   if (SourceBits != NewBits)
4603     return nullptr;
4604
4605   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4606   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4607   if (!SExt && !ZExt)
4608     return nullptr;
4609   const SCEVTruncateExpr *Trunc =
4610       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4611            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4612   if (!Trunc)
4613     return nullptr;
4614   const SCEV *X = Trunc->getOperand();
4615   if (X != SymbolicPHI)
4616     return nullptr;
4617   Signed = SExt != nullptr;
4618   return Trunc->getType();
4619 }
4620
4621 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4622   if (!PN->getType()->isIntegerTy())
4623     return nullptr;
4624   const Loop *L = LI.getLoopFor(PN->getParent());
4625   if (!L || L->getHeader() != PN->getParent())
4626     return nullptr;
4627   return L;
4628 }
4629
4630 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4631 // computation that updates the phi follows the following pattern:
4632 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4633 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4634 // If so, try to see if it can be rewritten as an AddRecExpr under some
4635 // Predicates. If successful, return them as a pair. Also cache the results
4636 // of the analysis.
4637 //
4638 // Example usage scenario:
4639 //    Say the Rewriter is called for the following SCEV:
4640 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4641 //    where:
4642 //         %X = phi i64 (%Start, %BEValue)
4643 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4644 //    and call this function with %SymbolicPHI = %X.
4645 //
4646 //    The analysis will find that the value coming around the backedge has
4647 //    the following SCEV:
4648 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4649 //    Upon concluding that this matches the desired pattern, the function
4650 //    will return the pair {NewAddRec, SmallPredsVec} where:
4651 //         NewAddRec = {%Start,+,%Step}
4652 //         SmallPredsVec = {P1, P2, P3} as follows:
4653 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4654 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4655 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4656 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4657 //    under the predicates {P1,P2,P3}.
4658 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4659 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4660 //
4661 // TODO's:
4662 //
4663 // 1) Extend the Induction descriptor to also support inductions that involve
4664 //    casts: When needed (namely, when we are called in the context of the
4665 //    vectorizer induction analysis), a Set of cast instructions will be
4666 //    populated by this method, and provided back to isInductionPHI. This is
4667 //    needed to allow the vectorizer to properly record them to be ignored by
4668 //    the cost model and to avoid vectorizing them (otherwise these casts,
4669 //    which are redundant under the runtime overflow checks, will be
4670 //    vectorized, which can be costly).
4671 //
4672 // 2) Support additional induction/PHISCEV patterns: We also want to support
4673 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4674 //    after the induction update operation (the induction increment):
4675 //
4676 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4677 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4678 //
4679 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4680 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4681 //
4682 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4683 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4684 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4685   SmallVector<const SCEVPredicate *, 3> Predicates;
4686
4687   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4688   // return an AddRec expression under some predicate.
4689
4690   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4691   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4692   assert(L && "Expecting an integer loop header phi");
4693
4694   // The loop may have multiple entrances or multiple exits; we can analyze
4695   // this phi as an addrec if it has a unique entry value and a unique
4696   // backedge value.
4697   Value *BEValueV = nullptr, *StartValueV = nullptr;
4698   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4699     Value *V = PN->getIncomingValue(i);
4700     if (L->contains(PN->getIncomingBlock(i))) {
4701       if (!BEValueV) {
4702         BEValueV = V;
4703       } else if (BEValueV != V) {
4704         BEValueV = nullptr;
4705         break;
4706       }
4707     } else if (!StartValueV) {
4708       StartValueV = V;
4709     } else if (StartValueV != V) {
4710       StartValueV = nullptr;
4711       break;
4712     }
4713   }
4714   if (!BEValueV || !StartValueV)
4715     return None;
4716
4717   const SCEV *BEValue = getSCEV(BEValueV);
4718
4719   // If the value coming around the backedge is an add with the symbolic
4720   // value we just inserted, possibly with casts that we can ignore under
4721   // an appropriate runtime guard, then we found a simple induction variable!
4722   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4723   if (!Add)
4724     return None;
4725
4726   // If there is a single occurrence of the symbolic value, possibly
4727   // casted, replace it with a recurrence.
4728   unsigned FoundIndex = Add->getNumOperands();
4729   Type *TruncTy = nullptr;
4730   bool Signed;
4731   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4732     if ((TruncTy =
4733              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4734       if (FoundIndex == e) {
4735         FoundIndex = i;
4736         break;
4737       }
4738
4739   if (FoundIndex == Add->getNumOperands())
4740     return None;
4741
4742   // Create an add with everything but the specified operand.
4743   SmallVector<const SCEV *, 8> Ops;
4744   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4745     if (i != FoundIndex)
4746       Ops.push_back(Add->getOperand(i));
4747   const SCEV *Accum = getAddExpr(Ops);
4748
4749   // The runtime checks will not be valid if the step amount is
4750   // varying inside the loop.
4751   if (!isLoopInvariant(Accum, L))
4752     return None;
4753
4754   // *** Part2: Create the predicates
4755
4756   // Analysis was successful: we have a phi-with-cast pattern for which we
4757   // can return an AddRec expression under the following predicates:
4758   //
4759   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4760   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4761   // P2: An Equal predicate that guarantees that
4762   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4763   // P3: An Equal predicate that guarantees that
4764   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4765   //
4766   // As we next prove, the above predicates guarantee that:
4767   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4768   //
4769   //
4770   // More formally, we want to prove that:
4771   //     Expr(i+1) = Start + (i+1) * Accum
4772   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4773   //
4774   // Given that:
4775   // 1) Expr(0) = Start
4776   // 2) Expr(1) = Start + Accum
4777   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4778   // 3) Induction hypothesis (step i):
4779   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4780   //
4781   // Proof:
4782   //  Expr(i+1) =
4783   //   = Start + (i+1)*Accum
4784   //   = (Start + i*Accum) + Accum
4785   //   = Expr(i) + Accum
4786   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4787   //                                                             :: from step i
4788   //
4789   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4790   //
4791   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4792   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4793   //     + Accum                                                     :: from P3
4794   //
4795   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4796   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4797   //
4798   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4799   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4800   //
4801   // By induction, the same applies to all iterations 1<=i<n:
4802   //
4803
4804   // Create a truncated addrec for which we will add a no overflow check (P1).
4805   const SCEV *StartVal = getSCEV(StartValueV);
4806   const SCEV *PHISCEV =
4807       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4808                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4809
4810   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4811   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4812   // will be constant.
4813   //
4814   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4815   // add P1.
4816   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4817     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4818         Signed ? SCEVWrapPredicate::IncrementNSSW
4819                : SCEVWrapPredicate::IncrementNUSW;
4820     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4821     Predicates.push_back(AddRecPred);
4822   }
4823
4824   // Create the Equal Predicates P2,P3:
4825
4826   // It is possible that the predicates P2 and/or P3 are computable at
4827   // compile time due to StartVal and/or Accum being constants.
4828   // If either one is, then we can check that now and escape if either P2
4829   // or P3 is false.
4830
4831   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4832   // for each of StartVal and Accum
4833   auto getExtendedExpr = [&](const SCEV *Expr,
4834                              bool CreateSignExtend) -> const SCEV * {
4835     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4836     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4837     const SCEV *ExtendedExpr =
4838         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4839                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4840     return ExtendedExpr;
4841   };
4842
4843   // Given:
4844   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4845   //               = getExtendedExpr(Expr)
4846   // Determine whether the predicate P: Expr == ExtendedExpr
4847   // is known to be false at compile time
4848   auto PredIsKnownFalse = [&](const SCEV *Expr,
4849                               const SCEV *ExtendedExpr) -> bool {
4850     return Expr != ExtendedExpr &&
4851            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4852   };
4853
4854   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4855   if (PredIsKnownFalse(StartVal, StartExtended)) {
4856     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4857     return None;
4858   }
4859
4860   // The Step is always Signed (because the overflow checks are either
4861   // NSSW or NUSW)
4862   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4863   if (PredIsKnownFalse(Accum, AccumExtended)) {
4864     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4865     return None;
4866   }
4867
4868   auto AppendPredicate = [&](const SCEV *Expr,
4869                              const SCEV *ExtendedExpr) -> void {
4870     if (Expr != ExtendedExpr &&
4871         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4872       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4873       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4874       Predicates.push_back(Pred);
4875     }
4876   };
4877
4878   AppendPredicate(StartVal, StartExtended);
4879   AppendPredicate(Accum, AccumExtended);
4880
4881   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4882   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4883   // into NewAR if it will also add the runtime overflow checks specified in
4884   // Predicates.
4885   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4886
4887   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4888       std::make_pair(NewAR, Predicates);
4889   // Remember the result of the analysis for this SCEV at this locayyytion.
4890   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4891   return PredRewrite;
4892 }
4893
4894 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4895 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4896   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4897   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4898   if (!L)
4899     return None;
4900
4901   // Check to see if we already analyzed this PHI.
4902   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4903   if (I != PredicatedSCEVRewrites.end()) {
4904     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4905         I->second;
4906     // Analysis was done before and failed to create an AddRec:
4907     if (Rewrite.first == SymbolicPHI)
4908       return None;
4909     // Analysis was done before and succeeded to create an AddRec under
4910     // a predicate:
4911     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4912     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4913     return Rewrite;
4914   }
4915
4916   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4917     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4918
4919   // Record in the cache that the analysis failed
4920   if (!Rewrite) {
4921     SmallVector<const SCEVPredicate *, 3> Predicates;
4922     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4923     return None;
4924   }
4925
4926   return Rewrite;
4927 }
4928
4929 // FIXME: This utility is currently required because the Rewriter currently
4930 // does not rewrite this expression:
4931 // {0, +, (sext ix (trunc iy to ix) to iy)}
4932 // into {0, +, %step},
4933 // even when the following Equal predicate exists:
4934 // "%step == (sext ix (trunc iy to ix) to iy)".
4935 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4936     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4937   if (AR1 == AR2)
4938     return true;
4939
4940   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4941     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4942         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4943       return false;
4944     return true;
4945   };
4946
4947   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4948       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4949     return false;
4950   return true;
4951 }
4952
4953 /// A helper function for createAddRecFromPHI to handle simple cases.
4954 ///
4955 /// This function tries to find an AddRec expression for the simplest (yet most
4956 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4957 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4958 /// technique for finding the AddRec expression.
4959 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4960                                                       Value *BEValueV,
4961                                                       Value *StartValueV) {
4962   const Loop *L = LI.getLoopFor(PN->getParent());
4963   assert(L && L->getHeader() == PN->getParent());
4964   assert(BEValueV && StartValueV);
4965
4966   auto BO = MatchBinaryOp(BEValueV, DT);
4967   if (!BO)
4968     return nullptr;
4969
4970   if (BO->Opcode != Instruction::Add)
4971     return nullptr;
4972
4973   const SCEV *Accum = nullptr;
4974   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4975     Accum = getSCEV(BO->RHS);
4976   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4977     Accum = getSCEV(BO->LHS);
4978
4979   if (!Accum)
4980     return nullptr;
4981
4982   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4983   if (BO->IsNUW)
4984     Flags = setFlags(Flags, SCEV::FlagNUW);
4985   if (BO->IsNSW)
4986     Flags = setFlags(Flags, SCEV::FlagNSW);
4987
4988   const SCEV *StartVal = getSCEV(StartValueV);
4989   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4990
4991   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4992
4993   // We can add Flags to the post-inc expression only if we
4994   // know that it is *undefined behavior* for BEValueV to
4995   // overflow.
4996   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4997     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4998       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4999
5000   return PHISCEV;
5001 }
5002
5003 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5004   const Loop *L = LI.getLoopFor(PN->getParent());
5005   if (!L || L->getHeader() != PN->getParent())
5006     return nullptr;
5007
5008   // The loop may have multiple entrances or multiple exits; we can analyze
5009   // this phi as an addrec if it has a unique entry value and a unique
5010   // backedge value.
5011   Value *BEValueV = nullptr, *StartValueV = nullptr;
5012   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5013     Value *V = PN->getIncomingValue(i);
5014     if (L->contains(PN->getIncomingBlock(i))) {
5015       if (!BEValueV) {
5016         BEValueV = V;
5017       } else if (BEValueV != V) {
5018         BEValueV = nullptr;
5019         break;
5020       }
5021     } else if (!StartValueV) {
5022       StartValueV = V;
5023     } else if (StartValueV != V) {
5024       StartValueV = nullptr;
5025       break;
5026     }
5027   }
5028   if (!BEValueV || !StartValueV)
5029     return nullptr;
5030
5031   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5032          "PHI node already processed?");
5033
5034   // First, try to find AddRec expression without creating a fictituos symbolic
5035   // value for PN.
5036   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5037     return S;
5038
5039   // Handle PHI node value symbolically.
5040   const SCEV *SymbolicName = getUnknown(PN);
5041   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5042
5043   // Using this symbolic name for the PHI, analyze the value coming around
5044   // the back-edge.
5045   const SCEV *BEValue = getSCEV(BEValueV);
5046
5047   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5048   // has a special value for the first iteration of the loop.
5049
5050   // If the value coming around the backedge is an add with the symbolic
5051   // value we just inserted, then we found a simple induction variable!
5052   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5053     // If there is a single occurrence of the symbolic value, replace it
5054     // with a recurrence.
5055     unsigned FoundIndex = Add->getNumOperands();
5056     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5057       if (Add->getOperand(i) == SymbolicName)
5058         if (FoundIndex == e) {
5059           FoundIndex = i;
5060           break;
5061         }
5062
5063     if (FoundIndex != Add->getNumOperands()) {
5064       // Create an add with everything but the specified operand.
5065       SmallVector<const SCEV *, 8> Ops;
5066       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5067         if (i != FoundIndex)
5068           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5069                                                              L, *this));
5070       const SCEV *Accum = getAddExpr(Ops);
5071
5072       // This is not a valid addrec if the step amount is varying each
5073       // loop iteration, but is not itself an addrec in this loop.
5074       if (isLoopInvariant(Accum, L) ||
5075           (isa<SCEVAddRecExpr>(Accum) &&
5076            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5077         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5078
5079         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5080           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5081             if (BO->IsNUW)
5082               Flags = setFlags(Flags, SCEV::FlagNUW);
5083             if (BO->IsNSW)
5084               Flags = setFlags(Flags, SCEV::FlagNSW);
5085           }
5086         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5087           // If the increment is an inbounds GEP, then we know the address
5088           // space cannot be wrapped around. We cannot make any guarantee
5089           // about signed or unsigned overflow because pointers are
5090           // unsigned but we may have a negative index from the base
5091           // pointer. We can guarantee that no unsigned wrap occurs if the
5092           // indices form a positive value.
5093           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5094             Flags = setFlags(Flags, SCEV::FlagNW);
5095
5096             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5097             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5098               Flags = setFlags(Flags, SCEV::FlagNUW);
5099           }
5100
5101           // We cannot transfer nuw and nsw flags from subtraction
5102           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5103           // for instance.
5104         }
5105
5106         const SCEV *StartVal = getSCEV(StartValueV);
5107         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5108
5109         // Okay, for the entire analysis of this edge we assumed the PHI
5110         // to be symbolic.  We now need to go back and purge all of the
5111         // entries for the scalars that use the symbolic expression.
5112         forgetSymbolicName(PN, SymbolicName);
5113         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5114
5115         // We can add Flags to the post-inc expression only if we
5116         // know that it is *undefined behavior* for BEValueV to
5117         // overflow.
5118         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5119           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5120             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5121
5122         return PHISCEV;
5123       }
5124     }
5125   } else {
5126     // Otherwise, this could be a loop like this:
5127     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5128     // In this case, j = {1,+,1}  and BEValue is j.
5129     // Because the other in-value of i (0) fits the evolution of BEValue
5130     // i really is an addrec evolution.
5131     //
5132     // We can generalize this saying that i is the shifted value of BEValue
5133     // by one iteration:
5134     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5135     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5136     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5137     if (Shifted != getCouldNotCompute() &&
5138         Start != getCouldNotCompute()) {
5139       const SCEV *StartVal = getSCEV(StartValueV);
5140       if (Start == StartVal) {
5141         // Okay, for the entire analysis of this edge we assumed the PHI
5142         // to be symbolic.  We now need to go back and purge all of the
5143         // entries for the scalars that use the symbolic expression.
5144         forgetSymbolicName(PN, SymbolicName);
5145         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5146         return Shifted;
5147       }
5148     }
5149   }
5150
5151   // Remove the temporary PHI node SCEV that has been inserted while intending
5152   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5153   // as it will prevent later (possibly simpler) SCEV expressions to be added
5154   // to the ValueExprMap.
5155   eraseValueFromMap(PN);
5156
5157   return nullptr;
5158 }
5159
5160 // Checks if the SCEV S is available at BB.  S is considered available at BB
5161 // if S can be materialized at BB without introducing a fault.
5162 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5163                                BasicBlock *BB) {
5164   struct CheckAvailable {
5165     bool TraversalDone = false;
5166     bool Available = true;
5167
5168     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5169     BasicBlock *BB = nullptr;
5170     DominatorTree &DT;
5171
5172     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5173       : L(L), BB(BB), DT(DT) {}
5174
5175     bool setUnavailable() {
5176       TraversalDone = true;
5177       Available = false;
5178       return false;
5179     }
5180
5181     bool follow(const SCEV *S) {
5182       switch (S->getSCEVType()) {
5183       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5184       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5185       case scUMinExpr:
5186       case scSMinExpr:
5187         // These expressions are available if their operand(s) is/are.
5188         return true;
5189
5190       case scAddRecExpr: {
5191         // We allow add recurrences that are on the loop BB is in, or some
5192         // outer loop.  This guarantees availability because the value of the
5193         // add recurrence at BB is simply the "current" value of the induction
5194         // variable.  We can relax this in the future; for instance an add
5195         // recurrence on a sibling dominating loop is also available at BB.
5196         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5197         if (L && (ARLoop == L || ARLoop->contains(L)))
5198           return true;
5199
5200         return setUnavailable();
5201       }
5202
5203       case scUnknown: {
5204         // For SCEVUnknown, we check for simple dominance.
5205         const auto *SU = cast<SCEVUnknown>(S);
5206         Value *V = SU->getValue();
5207
5208         if (isa<Argument>(V))
5209           return false;
5210
5211         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5212           return false;
5213
5214         return setUnavailable();
5215       }
5216
5217       case scUDivExpr:
5218       case scCouldNotCompute:
5219         // We do not try to smart about these at all.
5220         return setUnavailable();
5221       }
5222       llvm_unreachable("switch should be fully covered!");
5223     }
5224
5225     bool isDone() { return TraversalDone; }
5226   };
5227
5228   CheckAvailable CA(L, BB, DT);
5229   SCEVTraversal<CheckAvailable> ST(CA);
5230
5231   ST.visitAll(S);
5232   return CA.Available;
5233 }
5234
5235 // Try to match a control flow sequence that branches out at BI and merges back
5236 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5237 // match.
5238 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5239                           Value *&C, Value *&LHS, Value *&RHS) {
5240   C = BI->getCondition();
5241
5242   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5243   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5244
5245   if (!LeftEdge.isSingleEdge())
5246     return false;
5247
5248   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5249
5250   Use &LeftUse = Merge->getOperandUse(0);
5251   Use &RightUse = Merge->getOperandUse(1);
5252
5253   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5254     LHS = LeftUse;
5255     RHS = RightUse;
5256     return true;
5257   }
5258
5259   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5260     LHS = RightUse;
5261     RHS = LeftUse;
5262     return true;
5263   }
5264
5265   return false;
5266 }
5267
5268 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5269   auto IsReachable =
5270       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5271   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5272     const Loop *L = LI.getLoopFor(PN->getParent());
5273
5274     // We don't want to break LCSSA, even in a SCEV expression tree.
5275     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5276       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5277         return nullptr;
5278
5279     // Try to match
5280     //
5281     //  br %cond, label %left, label %right
5282     // left:
5283     //  br label %merge
5284     // right:
5285     //  br label %merge
5286     // merge:
5287     //  V = phi [ %x, %left ], [ %y, %right ]
5288     //
5289     // as "select %cond, %x, %y"
5290
5291     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5292     assert(IDom && "At least the entry block should dominate PN");
5293
5294     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5295     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5296
5297     if (BI && BI->isConditional() &&
5298         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5299         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5300         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5301       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5302   }
5303
5304   return nullptr;
5305 }
5306
5307 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5308   if (const SCEV *S = createAddRecFromPHI(PN))
5309     return S;
5310
5311   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5312     return S;
5313
5314   // If the PHI has a single incoming value, follow that value, unless the
5315   // PHI's incoming blocks are in a different loop, in which case doing so
5316   // risks breaking LCSSA form. Instcombine would normally zap these, but
5317   // it doesn't have DominatorTree information, so it may miss cases.
5318   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5319     if (LI.replacementPreservesLCSSAForm(PN, V))
5320       return getSCEV(V);
5321
5322   // If it's not a loop phi, we can't handle it yet.
5323   return getUnknown(PN);
5324 }
5325
5326 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5327                                                       Value *Cond,
5328                                                       Value *TrueVal,
5329                                                       Value *FalseVal) {
5330   // Handle "constant" branch or select. This can occur for instance when a
5331   // loop pass transforms an inner loop and moves on to process the outer loop.
5332   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5333     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5334
5335   // Try to match some simple smax or umax patterns.
5336   auto *ICI = dyn_cast<ICmpInst>(Cond);
5337   if (!ICI)
5338     return getUnknown(I);
5339
5340   Value *LHS = ICI->getOperand(0);
5341   Value *RHS = ICI->getOperand(1);
5342
5343   switch (ICI->getPredicate()) {
5344   case ICmpInst::ICMP_SLT:
5345   case ICmpInst::ICMP_SLE:
5346     std::swap(LHS, RHS);
5347     LLVM_FALLTHROUGH;
5348   case ICmpInst::ICMP_SGT:
5349   case ICmpInst::ICMP_SGE:
5350     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5351     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5352     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5353       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5354       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5355       const SCEV *LA = getSCEV(TrueVal);
5356       const SCEV *RA = getSCEV(FalseVal);
5357       const SCEV *LDiff = getMinusSCEV(LA, LS);
5358       const SCEV *RDiff = getMinusSCEV(RA, RS);
5359       if (LDiff == RDiff)
5360         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5361       LDiff = getMinusSCEV(LA, RS);
5362       RDiff = getMinusSCEV(RA, LS);
5363       if (LDiff == RDiff)
5364         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5365     }
5366     break;
5367   case ICmpInst::ICMP_ULT:
5368   case ICmpInst::ICMP_ULE:
5369     std::swap(LHS, RHS);
5370     LLVM_FALLTHROUGH;
5371   case ICmpInst::ICMP_UGT:
5372   case ICmpInst::ICMP_UGE:
5373     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5374     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5375     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5376       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5377       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5378       const SCEV *LA = getSCEV(TrueVal);
5379       const SCEV *RA = getSCEV(FalseVal);
5380       const SCEV *LDiff = getMinusSCEV(LA, LS);
5381       const SCEV *RDiff = getMinusSCEV(RA, RS);
5382       if (LDiff == RDiff)
5383         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5384       LDiff = getMinusSCEV(LA, RS);
5385       RDiff = getMinusSCEV(RA, LS);
5386       if (LDiff == RDiff)
5387         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5388     }
5389     break;
5390   case ICmpInst::ICMP_NE:
5391     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5392     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5393         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5394       const SCEV *One = getOne(I->getType());
5395       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5396       const SCEV *LA = getSCEV(TrueVal);
5397       const SCEV *RA = getSCEV(FalseVal);
5398       const SCEV *LDiff = getMinusSCEV(LA, LS);
5399       const SCEV *RDiff = getMinusSCEV(RA, One);
5400       if (LDiff == RDiff)
5401         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5402     }
5403     break;
5404   case ICmpInst::ICMP_EQ:
5405     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5406     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5407         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5408       const SCEV *One = getOne(I->getType());
5409       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5410       const SCEV *LA = getSCEV(TrueVal);
5411       const SCEV *RA = getSCEV(FalseVal);
5412       const SCEV *LDiff = getMinusSCEV(LA, One);
5413       const SCEV *RDiff = getMinusSCEV(RA, LS);
5414       if (LDiff == RDiff)
5415         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5416     }
5417     break;
5418   default:
5419     break;
5420   }
5421
5422   return getUnknown(I);
5423 }
5424
5425 /// Expand GEP instructions into add and multiply operations. This allows them
5426 /// to be analyzed by regular SCEV code.
5427 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5428   // Don't attempt to analyze GEPs over unsized objects.
5429   if (!GEP->getSourceElementType()->isSized())
5430     return getUnknown(GEP);
5431
5432   SmallVector<const SCEV *, 4> IndexExprs;
5433   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5434     IndexExprs.push_back(getSCEV(*Index));
5435   return getGEPExpr(GEP, IndexExprs);
5436 }
5437
5438 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5439   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5440     return C->getAPInt().countTrailingZeros();
5441
5442   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5443     return std::min(GetMinTrailingZeros(T->getOperand()),
5444                     (uint32_t)getTypeSizeInBits(T->getType()));
5445
5446   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5447     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5448     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5449                ? getTypeSizeInBits(E->getType())
5450                : OpRes;
5451   }
5452
5453   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5454     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5455     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5456                ? getTypeSizeInBits(E->getType())
5457                : OpRes;
5458   }
5459
5460   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5461     // The result is the min of all operands results.
5462     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5463     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5464       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5465     return MinOpRes;
5466   }
5467
5468   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5469     // The result is the sum of all operands results.
5470     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5471     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5472     for (unsigned i = 1, e = M->getNumOperands();
5473          SumOpRes != BitWidth && i != e; ++i)
5474       SumOpRes =
5475           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5476     return SumOpRes;
5477   }
5478
5479   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5480     // The result is the min of all operands results.
5481     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5482     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5483       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5484     return MinOpRes;
5485   }
5486
5487   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5488     // The result is the min of all operands results.
5489     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5490     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5491       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5492     return MinOpRes;
5493   }
5494
5495   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5496     // The result is the min of all operands results.
5497     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5498     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5499       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5500     return MinOpRes;
5501   }
5502
5503   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5504     // For a SCEVUnknown, ask ValueTracking.
5505     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5506     return Known.countMinTrailingZeros();
5507   }
5508
5509   // SCEVUDivExpr
5510   return 0;
5511 }
5512
5513 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5514   auto I = MinTrailingZerosCache.find(S);
5515   if (I != MinTrailingZerosCache.end())
5516     return I->second;
5517
5518   uint32_t Result = GetMinTrailingZerosImpl(S);
5519   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5520   assert(InsertPair.second && "Should insert a new key");
5521   return InsertPair.first->second;
5522 }
5523
5524 /// Helper method to assign a range to V from metadata present in the IR.
5525 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5526   if (Instruction *I = dyn_cast<Instruction>(V))
5527     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5528       return getConstantRangeFromMetadata(*MD);
5529
5530   return None;
5531 }
5532
5533 /// Determine the range for a particular SCEV.  If SignHint is
5534 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5535 /// with a "cleaner" unsigned (resp. signed) representation.
5536 const ConstantRange &
5537 ScalarEvolution::getRangeRef(const SCEV *S,
5538                              ScalarEvolution::RangeSignHint SignHint) {
5539   DenseMap<const SCEV *, ConstantRange> &Cache =
5540       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5541                                                        : SignedRanges;
5542   ConstantRange::PreferredRangeType RangeType =
5543       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5544           ? ConstantRange::Unsigned : ConstantRange::Signed;
5545
5546   // See if we've computed this range already.
5547   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5548   if (I != Cache.end())
5549     return I->second;
5550
5551   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5552     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5553
5554   unsigned BitWidth = getTypeSizeInBits(S->getType());
5555   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5556
5557   // If the value has known zeros, the maximum value will have those known zeros
5558   // as well.
5559   uint32_t TZ = GetMinTrailingZeros(S);
5560   if (TZ != 0) {
5561     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5562       ConservativeResult =
5563           ConstantRange(APInt::getMinValue(BitWidth),
5564                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5565     else
5566       ConservativeResult = ConstantRange(
5567           APInt::getSignedMinValue(BitWidth),
5568           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5569   }
5570
5571   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5572     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5573     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5574       X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5575     return setRange(Add, SignHint,
5576                     ConservativeResult.intersectWith(X, RangeType));
5577   }
5578
5579   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5580     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5581     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5582       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5583     return setRange(Mul, SignHint,
5584                     ConservativeResult.intersectWith(X, RangeType));
5585   }
5586
5587   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5588     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5589     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5590       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5591     return setRange(SMax, SignHint,
5592                     ConservativeResult.intersectWith(X, RangeType));
5593   }
5594
5595   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5596     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5597     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5598       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5599     return setRange(UMax, SignHint,
5600                     ConservativeResult.intersectWith(X, RangeType));
5601   }
5602
5603   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5604     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5605     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5606       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5607     return setRange(SMin, SignHint,
5608                     ConservativeResult.intersectWith(X, RangeType));
5609   }
5610
5611   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5612     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5613     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5614       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5615     return setRange(UMin, SignHint,
5616                     ConservativeResult.intersectWith(X, RangeType));
5617   }
5618
5619   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5620     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5621     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5622     return setRange(UDiv, SignHint,
5623                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5624   }
5625
5626   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5627     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5628     return setRange(ZExt, SignHint,
5629                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5630                                                      RangeType));
5631   }
5632
5633   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5634     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5635     return setRange(SExt, SignHint,
5636                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5637                                                      RangeType));
5638   }
5639
5640   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5641     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5642     return setRange(Trunc, SignHint,
5643                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5644                                                      RangeType));
5645   }
5646
5647   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5648     // If there's no unsigned wrap, the value will never be less than its
5649     // initial value.
5650     if (AddRec->hasNoUnsignedWrap())
5651       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5652         if (!C->getValue()->isZero())
5653           ConservativeResult = ConservativeResult.intersectWith(
5654               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)), RangeType);
5655
5656     // If there's no signed wrap, and all the operands have the same sign or
5657     // zero, the value won't ever change sign.
5658     if (AddRec->hasNoSignedWrap()) {
5659       bool AllNonNeg = true;
5660       bool AllNonPos = true;
5661       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5662         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5663         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5664       }
5665       if (AllNonNeg)
5666         ConservativeResult = ConservativeResult.intersectWith(
5667           ConstantRange(APInt(BitWidth, 0),
5668                         APInt::getSignedMinValue(BitWidth)), RangeType);
5669       else if (AllNonPos)
5670         ConservativeResult = ConservativeResult.intersectWith(
5671           ConstantRange(APInt::getSignedMinValue(BitWidth),
5672                         APInt(BitWidth, 1)), RangeType);
5673     }
5674
5675     // TODO: non-affine addrec
5676     if (AddRec->isAffine()) {
5677       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5678       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5679           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5680         auto RangeFromAffine = getRangeForAffineAR(
5681             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5682             BitWidth);
5683         if (!RangeFromAffine.isFullSet())
5684           ConservativeResult =
5685               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5686
5687         auto RangeFromFactoring = getRangeViaFactoring(
5688             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5689             BitWidth);
5690         if (!RangeFromFactoring.isFullSet())
5691           ConservativeResult =
5692               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5693       }
5694     }
5695
5696     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5697   }
5698
5699   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5700     // Check if the IR explicitly contains !range metadata.
5701     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5702     if (MDRange.hasValue())
5703       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5704                                                             RangeType);
5705
5706     // Split here to avoid paying the compile-time cost of calling both
5707     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5708     // if needed.
5709     const DataLayout &DL = getDataLayout();
5710     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5711       // For a SCEVUnknown, ask ValueTracking.
5712       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5713       if (Known.One != ~Known.Zero + 1)
5714         ConservativeResult =
5715             ConservativeResult.intersectWith(
5716                 ConstantRange(Known.One, ~Known.Zero + 1), RangeType);
5717     } else {
5718       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5719              "generalize as needed!");
5720       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5721       if (NS > 1)
5722         ConservativeResult = ConservativeResult.intersectWith(
5723             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5724                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5725             RangeType);
5726     }
5727
5728     // A range of Phi is a subset of union of all ranges of its input.
5729     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5730       // Make sure that we do not run over cycled Phis.
5731       if (PendingPhiRanges.insert(Phi).second) {
5732         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5733         for (auto &Op : Phi->operands()) {
5734           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5735           RangeFromOps = RangeFromOps.unionWith(OpRange);
5736           // No point to continue if we already have a full set.
5737           if (RangeFromOps.isFullSet())
5738             break;
5739         }
5740         ConservativeResult =
5741             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5742         bool Erased = PendingPhiRanges.erase(Phi);
5743         assert(Erased && "Failed to erase Phi properly?");
5744         (void) Erased;
5745       }
5746     }
5747
5748     return setRange(U, SignHint, std::move(ConservativeResult));
5749   }
5750
5751   return setRange(S, SignHint, std::move(ConservativeResult));
5752 }
5753
5754 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5755 // values that the expression can take. Initially, the expression has a value
5756 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5757 // argument defines if we treat Step as signed or unsigned.
5758 static ConstantRange getRangeForAffineARHelper(APInt Step,
5759                                                const ConstantRange &StartRange,
5760                                                const APInt &MaxBECount,
5761                                                unsigned BitWidth, bool Signed) {
5762   // If either Step or MaxBECount is 0, then the expression won't change, and we
5763   // just need to return the initial range.
5764   if (Step == 0 || MaxBECount == 0)
5765     return StartRange;
5766
5767   // If we don't know anything about the initial value (i.e. StartRange is
5768   // FullRange), then we don't know anything about the final range either.
5769   // Return FullRange.
5770   if (StartRange.isFullSet())
5771     return ConstantRange::getFull(BitWidth);
5772
5773   // If Step is signed and negative, then we use its absolute value, but we also
5774   // note that we're moving in the opposite direction.
5775   bool Descending = Signed && Step.isNegative();
5776
5777   if (Signed)
5778     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5779     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5780     // This equations hold true due to the well-defined wrap-around behavior of
5781     // APInt.
5782     Step = Step.abs();
5783
5784   // Check if Offset is more than full span of BitWidth. If it is, the
5785   // expression is guaranteed to overflow.
5786   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5787     return ConstantRange::getFull(BitWidth);
5788
5789   // Offset is by how much the expression can change. Checks above guarantee no
5790   // overflow here.
5791   APInt Offset = Step * MaxBECount;
5792
5793   // Minimum value of the final range will match the minimal value of StartRange
5794   // if the expression is increasing and will be decreased by Offset otherwise.
5795   // Maximum value of the final range will match the maximal value of StartRange
5796   // if the expression is decreasing and will be increased by Offset otherwise.
5797   APInt StartLower = StartRange.getLower();
5798   APInt StartUpper = StartRange.getUpper() - 1;
5799   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5800                                    : (StartUpper + std::move(Offset));
5801
5802   // It's possible that the new minimum/maximum value will fall into the initial
5803   // range (due to wrap around). This means that the expression can take any
5804   // value in this bitwidth, and we have to return full range.
5805   if (StartRange.contains(MovedBoundary))
5806     return ConstantRange::getFull(BitWidth);
5807
5808   APInt NewLower =
5809       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5810   APInt NewUpper =
5811       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5812   NewUpper += 1;
5813
5814   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5815   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5816 }
5817
5818 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5819                                                    const SCEV *Step,
5820                                                    const SCEV *MaxBECount,
5821                                                    unsigned BitWidth) {
5822   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5823          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5824          "Precondition!");
5825
5826   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5827   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5828
5829   // First, consider step signed.
5830   ConstantRange StartSRange = getSignedRange(Start);
5831   ConstantRange StepSRange = getSignedRange(Step);
5832
5833   // If Step can be both positive and negative, we need to find ranges for the
5834   // maximum absolute step values in both directions and union them.
5835   ConstantRange SR =
5836       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5837                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5838   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5839                                               StartSRange, MaxBECountValue,
5840                                               BitWidth, /* Signed = */ true));
5841
5842   // Next, consider step unsigned.
5843   ConstantRange UR = getRangeForAffineARHelper(
5844       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5845       MaxBECountValue, BitWidth, /* Signed = */ false);
5846
5847   // Finally, intersect signed and unsigned ranges.
5848   return SR.intersectWith(UR, ConstantRange::Smallest);
5849 }
5850
5851 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5852                                                     const SCEV *Step,
5853                                                     const SCEV *MaxBECount,
5854                                                     unsigned BitWidth) {
5855   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5856   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5857
5858   struct SelectPattern {
5859     Value *Condition = nullptr;
5860     APInt TrueValue;
5861     APInt FalseValue;
5862
5863     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5864                            const SCEV *S) {
5865       Optional<unsigned> CastOp;
5866       APInt Offset(BitWidth, 0);
5867
5868       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5869              "Should be!");
5870
5871       // Peel off a constant offset:
5872       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5873         // In the future we could consider being smarter here and handle
5874         // {Start+Step,+,Step} too.
5875         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5876           return;
5877
5878         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5879         S = SA->getOperand(1);
5880       }
5881
5882       // Peel off a cast operation
5883       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5884         CastOp = SCast->getSCEVType();
5885         S = SCast->getOperand();
5886       }
5887
5888       using namespace llvm::PatternMatch;
5889
5890       auto *SU = dyn_cast<SCEVUnknown>(S);
5891       const APInt *TrueVal, *FalseVal;
5892       if (!SU ||
5893           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5894                                           m_APInt(FalseVal)))) {
5895         Condition = nullptr;
5896         return;
5897       }
5898
5899       TrueValue = *TrueVal;
5900       FalseValue = *FalseVal;
5901
5902       // Re-apply the cast we peeled off earlier
5903       if (CastOp.hasValue())
5904         switch (*CastOp) {
5905         default:
5906           llvm_unreachable("Unknown SCEV cast type!");
5907
5908         case scTruncate:
5909           TrueValue = TrueValue.trunc(BitWidth);
5910           FalseValue = FalseValue.trunc(BitWidth);
5911           break;
5912         case scZeroExtend:
5913           TrueValue = TrueValue.zext(BitWidth);
5914           FalseValue = FalseValue.zext(BitWidth);
5915           break;
5916         case scSignExtend:
5917           TrueValue = TrueValue.sext(BitWidth);
5918           FalseValue = FalseValue.sext(BitWidth);
5919           break;
5920         }
5921
5922       // Re-apply the constant offset we peeled off earlier
5923       TrueValue += Offset;
5924       FalseValue += Offset;
5925     }
5926
5927     bool isRecognized() { return Condition != nullptr; }
5928   };
5929
5930   SelectPattern StartPattern(*this, BitWidth, Start);
5931   if (!StartPattern.isRecognized())
5932     return ConstantRange::getFull(BitWidth);
5933
5934   SelectPattern StepPattern(*this, BitWidth, Step);
5935   if (!StepPattern.isRecognized())
5936     return ConstantRange::getFull(BitWidth);
5937
5938   if (StartPattern.Condition != StepPattern.Condition) {
5939     // We don't handle this case today; but we could, by considering four
5940     // possibilities below instead of two. I'm not sure if there are cases where
5941     // that will help over what getRange already does, though.
5942     return ConstantRange::getFull(BitWidth);
5943   }
5944
5945   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5946   // construct arbitrary general SCEV expressions here.  This function is called
5947   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5948   // say) can end up caching a suboptimal value.
5949
5950   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5951   // C2352 and C2512 (otherwise it isn't needed).
5952
5953   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5954   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5955   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5956   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5957
5958   ConstantRange TrueRange =
5959       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5960   ConstantRange FalseRange =
5961       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5962
5963   return TrueRange.unionWith(FalseRange);
5964 }
5965
5966 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5967   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5968   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5969
5970   // Return early if there are no flags to propagate to the SCEV.
5971   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5972   if (BinOp->hasNoUnsignedWrap())
5973     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5974   if (BinOp->hasNoSignedWrap())
5975     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5976   if (Flags == SCEV::FlagAnyWrap)
5977     return SCEV::FlagAnyWrap;
5978
5979   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5980 }
5981
5982 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5983   // Here we check that I is in the header of the innermost loop containing I,
5984   // since we only deal with instructions in the loop header. The actual loop we
5985   // need to check later will come from an add recurrence, but getting that
5986   // requires computing the SCEV of the operands, which can be expensive. This
5987   // check we can do cheaply to rule out some cases early.
5988   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5989   if (InnermostContainingLoop == nullptr ||
5990       InnermostContainingLoop->getHeader() != I->getParent())
5991     return false;
5992
5993   // Only proceed if we can prove that I does not yield poison.
5994   if (!programUndefinedIfFullPoison(I))
5995     return false;
5996
5997   // At this point we know that if I is executed, then it does not wrap
5998   // according to at least one of NSW or NUW. If I is not executed, then we do
5999   // not know if the calculation that I represents would wrap. Multiple
6000   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6001   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6002   // derived from other instructions that map to the same SCEV. We cannot make
6003   // that guarantee for cases where I is not executed. So we need to find the
6004   // loop that I is considered in relation to and prove that I is executed for
6005   // every iteration of that loop. That implies that the value that I
6006   // calculates does not wrap anywhere in the loop, so then we can apply the
6007   // flags to the SCEV.
6008   //
6009   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6010   // from different loops, so that we know which loop to prove that I is
6011   // executed in.
6012   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6013     // I could be an extractvalue from a call to an overflow intrinsic.
6014     // TODO: We can do better here in some cases.
6015     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6016       return false;
6017     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6018     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6019       bool AllOtherOpsLoopInvariant = true;
6020       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6021            ++OtherOpIndex) {
6022         if (OtherOpIndex != OpIndex) {
6023           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6024           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6025             AllOtherOpsLoopInvariant = false;
6026             break;
6027           }
6028         }
6029       }
6030       if (AllOtherOpsLoopInvariant &&
6031           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6032         return true;
6033     }
6034   }
6035   return false;
6036 }
6037
6038 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6039   // If we know that \c I can never be poison period, then that's enough.
6040   if (isSCEVExprNeverPoison(I))
6041     return true;
6042
6043   // For an add recurrence specifically, we assume that infinite loops without
6044   // side effects are undefined behavior, and then reason as follows:
6045   //
6046   // If the add recurrence is poison in any iteration, it is poison on all
6047   // future iterations (since incrementing poison yields poison). If the result
6048   // of the add recurrence is fed into the loop latch condition and the loop
6049   // does not contain any throws or exiting blocks other than the latch, we now
6050   // have the ability to "choose" whether the backedge is taken or not (by
6051   // choosing a sufficiently evil value for the poison feeding into the branch)
6052   // for every iteration including and after the one in which \p I first became
6053   // poison.  There are two possibilities (let's call the iteration in which \p
6054   // I first became poison as K):
6055   //
6056   //  1. In the set of iterations including and after K, the loop body executes
6057   //     no side effects.  In this case executing the backege an infinte number
6058   //     of times will yield undefined behavior.
6059   //
6060   //  2. In the set of iterations including and after K, the loop body executes
6061   //     at least one side effect.  In this case, that specific instance of side
6062   //     effect is control dependent on poison, which also yields undefined
6063   //     behavior.
6064
6065   auto *ExitingBB = L->getExitingBlock();
6066   auto *LatchBB = L->getLoopLatch();
6067   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6068     return false;
6069
6070   SmallPtrSet<const Instruction *, 16> Pushed;
6071   SmallVector<const Instruction *, 8> PoisonStack;
6072
6073   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6074   // things that are known to be fully poison under that assumption go on the
6075   // PoisonStack.
6076   Pushed.insert(I);
6077   PoisonStack.push_back(I);
6078
6079   bool LatchControlDependentOnPoison = false;
6080   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6081     const Instruction *Poison = PoisonStack.pop_back_val();
6082
6083     for (auto *PoisonUser : Poison->users()) {
6084       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6085         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6086           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6087       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6088         assert(BI->isConditional() && "Only possibility!");
6089         if (BI->getParent() == LatchBB) {
6090           LatchControlDependentOnPoison = true;
6091           break;
6092         }
6093       }
6094     }
6095   }
6096
6097   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6098 }
6099
6100 ScalarEvolution::LoopProperties
6101 ScalarEvolution::getLoopProperties(const Loop *L) {
6102   using LoopProperties = ScalarEvolution::LoopProperties;
6103
6104   auto Itr = LoopPropertiesCache.find(L);
6105   if (Itr == LoopPropertiesCache.end()) {
6106     auto HasSideEffects = [](Instruction *I) {
6107       if (auto *SI = dyn_cast<StoreInst>(I))
6108         return !SI->isSimple();
6109
6110       return I->mayHaveSideEffects();
6111     };
6112
6113     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6114                          /*HasNoSideEffects*/ true};
6115
6116     for (auto *BB : L->getBlocks())
6117       for (auto &I : *BB) {
6118         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6119           LP.HasNoAbnormalExits = false;
6120         if (HasSideEffects(&I))
6121           LP.HasNoSideEffects = false;
6122         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6123           break; // We're already as pessimistic as we can get.
6124       }
6125
6126     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6127     assert(InsertPair.second && "We just checked!");
6128     Itr = InsertPair.first;
6129   }
6130
6131   return Itr->second;
6132 }
6133
6134 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6135   if (!isSCEVable(V->getType()))
6136     return getUnknown(V);
6137
6138   if (Instruction *I = dyn_cast<Instruction>(V)) {
6139     // Don't attempt to analyze instructions in blocks that aren't
6140     // reachable. Such instructions don't matter, and they aren't required
6141     // to obey basic rules for definitions dominating uses which this
6142     // analysis depends on.
6143     if (!DT.isReachableFromEntry(I->getParent()))
6144       return getUnknown(UndefValue::get(V->getType()));
6145   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6146     return getConstant(CI);
6147   else if (isa<ConstantPointerNull>(V))
6148     return getZero(V->getType());
6149   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6150     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6151   else if (!isa<ConstantExpr>(V))
6152     return getUnknown(V);
6153
6154   Operator *U = cast<Operator>(V);
6155   if (auto BO = MatchBinaryOp(U, DT)) {
6156     switch (BO->Opcode) {
6157     case Instruction::Add: {
6158       // The simple thing to do would be to just call getSCEV on both operands
6159       // and call getAddExpr with the result. However if we're looking at a
6160       // bunch of things all added together, this can be quite inefficient,
6161       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6162       // Instead, gather up all the operands and make a single getAddExpr call.
6163       // LLVM IR canonical form means we need only traverse the left operands.
6164       SmallVector<const SCEV *, 4> AddOps;
6165       do {
6166         if (BO->Op) {
6167           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6168             AddOps.push_back(OpSCEV);
6169             break;
6170           }
6171
6172           // If a NUW or NSW flag can be applied to the SCEV for this
6173           // addition, then compute the SCEV for this addition by itself
6174           // with a separate call to getAddExpr. We need to do that
6175           // instead of pushing the operands of the addition onto AddOps,
6176           // since the flags are only known to apply to this particular
6177           // addition - they may not apply to other additions that can be
6178           // formed with operands from AddOps.
6179           const SCEV *RHS = getSCEV(BO->RHS);
6180           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6181           if (Flags != SCEV::FlagAnyWrap) {
6182             const SCEV *LHS = getSCEV(BO->LHS);
6183             if (BO->Opcode == Instruction::Sub)
6184               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6185             else
6186               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6187             break;
6188           }
6189         }
6190
6191         if (BO->Opcode == Instruction::Sub)
6192           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6193         else
6194           AddOps.push_back(getSCEV(BO->RHS));
6195
6196         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6197         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6198                        NewBO->Opcode != Instruction::Sub)) {
6199           AddOps.push_back(getSCEV(BO->LHS));
6200           break;
6201         }
6202         BO = NewBO;
6203       } while (true);
6204
6205       return getAddExpr(AddOps);
6206     }
6207
6208     case Instruction::Mul: {
6209       SmallVector<const SCEV *, 4> MulOps;
6210       do {
6211         if (BO->Op) {
6212           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6213             MulOps.push_back(OpSCEV);
6214             break;
6215           }
6216
6217           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6218           if (Flags != SCEV::FlagAnyWrap) {
6219             MulOps.push_back(
6220                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6221             break;
6222           }
6223         }
6224
6225         MulOps.push_back(getSCEV(BO->RHS));
6226         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6227         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6228           MulOps.push_back(getSCEV(BO->LHS));
6229           break;
6230         }
6231         BO = NewBO;
6232       } while (true);
6233
6234       return getMulExpr(MulOps);
6235     }
6236     case Instruction::UDiv:
6237       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6238     case Instruction::URem:
6239       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6240     case Instruction::Sub: {
6241       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6242       if (BO->Op)
6243         Flags = getNoWrapFlagsFromUB(BO->Op);
6244       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6245     }
6246     case Instruction::And:
6247       // For an expression like x&255 that merely masks off the high bits,
6248       // use zext(trunc(x)) as the SCEV expression.
6249       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6250         if (CI->isZero())
6251           return getSCEV(BO->RHS);
6252         if (CI->isMinusOne())
6253           return getSCEV(BO->LHS);
6254         const APInt &A = CI->getValue();
6255
6256         // Instcombine's ShrinkDemandedConstant may strip bits out of
6257         // constants, obscuring what would otherwise be a low-bits mask.
6258         // Use computeKnownBits to compute what ShrinkDemandedConstant
6259         // knew about to reconstruct a low-bits mask value.
6260         unsigned LZ = A.countLeadingZeros();
6261         unsigned TZ = A.countTrailingZeros();
6262         unsigned BitWidth = A.getBitWidth();
6263         KnownBits Known(BitWidth);
6264         computeKnownBits(BO->LHS, Known, getDataLayout(),
6265                          0, &AC, nullptr, &DT);
6266
6267         APInt EffectiveMask =
6268             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6269         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6270           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6271           const SCEV *LHS = getSCEV(BO->LHS);
6272           const SCEV *ShiftedLHS = nullptr;
6273           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6274             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6275               // For an expression like (x * 8) & 8, simplify the multiply.
6276               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6277               unsigned GCD = std::min(MulZeros, TZ);
6278               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6279               SmallVector<const SCEV*, 4> MulOps;
6280               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6281               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6282               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6283               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6284             }
6285           }
6286           if (!ShiftedLHS)
6287             ShiftedLHS = getUDivExpr(LHS, MulCount);
6288           return getMulExpr(
6289               getZeroExtendExpr(
6290                   getTruncateExpr(ShiftedLHS,
6291                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6292                   BO->LHS->getType()),
6293               MulCount);
6294         }
6295       }
6296       break;
6297
6298     case Instruction::Or:
6299       // If the RHS of the Or is a constant, we may have something like:
6300       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6301       // optimizations will transparently handle this case.
6302       //
6303       // In order for this transformation to be safe, the LHS must be of the
6304       // form X*(2^n) and the Or constant must be less than 2^n.
6305       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6306         const SCEV *LHS = getSCEV(BO->LHS);
6307         const APInt &CIVal = CI->getValue();
6308         if (GetMinTrailingZeros(LHS) >=
6309             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6310           // Build a plain add SCEV.
6311           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6312           // If the LHS of the add was an addrec and it has no-wrap flags,
6313           // transfer the no-wrap flags, since an or won't introduce a wrap.
6314           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6315             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6316             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6317                 OldAR->getNoWrapFlags());
6318           }
6319           return S;
6320         }
6321       }
6322       break;
6323
6324     case Instruction::Xor:
6325       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6326         // If the RHS of xor is -1, then this is a not operation.
6327         if (CI->isMinusOne())
6328           return getNotSCEV(getSCEV(BO->LHS));
6329
6330         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6331         // This is a variant of the check for xor with -1, and it handles
6332         // the case where instcombine has trimmed non-demanded bits out
6333         // of an xor with -1.
6334         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6335           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6336             if (LBO->getOpcode() == Instruction::And &&
6337                 LCI->getValue() == CI->getValue())
6338               if (const SCEVZeroExtendExpr *Z =
6339                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6340                 Type *UTy = BO->LHS->getType();
6341                 const SCEV *Z0 = Z->getOperand();
6342                 Type *Z0Ty = Z0->getType();
6343                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6344
6345                 // If C is a low-bits mask, the zero extend is serving to
6346                 // mask off the high bits. Complement the operand and
6347                 // re-apply the zext.
6348                 if (CI->getValue().isMask(Z0TySize))
6349                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6350
6351                 // If C is a single bit, it may be in the sign-bit position
6352                 // before the zero-extend. In this case, represent the xor
6353                 // using an add, which is equivalent, and re-apply the zext.
6354                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6355                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6356                     Trunc.isSignMask())
6357                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6358                                            UTy);
6359               }
6360       }
6361       break;
6362
6363     case Instruction::Shl:
6364       // Turn shift left of a constant amount into a multiply.
6365       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6366         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6367
6368         // If the shift count is not less than the bitwidth, the result of
6369         // the shift is undefined. Don't try to analyze it, because the
6370         // resolution chosen here may differ from the resolution chosen in
6371         // other parts of the compiler.
6372         if (SA->getValue().uge(BitWidth))
6373           break;
6374
6375         // It is currently not resolved how to interpret NSW for left
6376         // shift by BitWidth - 1, so we avoid applying flags in that
6377         // case. Remove this check (or this comment) once the situation
6378         // is resolved. See
6379         // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6380         // and http://reviews.llvm.org/D8890 .
6381         auto Flags = SCEV::FlagAnyWrap;
6382         if (BO->Op && SA->getValue().ult(BitWidth - 1))
6383           Flags = getNoWrapFlagsFromUB(BO->Op);
6384
6385         Constant *X = ConstantInt::get(
6386             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6387         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6388       }
6389       break;
6390
6391     case Instruction::AShr: {
6392       // AShr X, C, where C is a constant.
6393       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6394       if (!CI)
6395         break;
6396
6397       Type *OuterTy = BO->LHS->getType();
6398       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6399       // If the shift count is not less than the bitwidth, the result of
6400       // the shift is undefined. Don't try to analyze it, because the
6401       // resolution chosen here may differ from the resolution chosen in
6402       // other parts of the compiler.
6403       if (CI->getValue().uge(BitWidth))
6404         break;
6405
6406       if (CI->isZero())
6407         return getSCEV(BO->LHS); // shift by zero --> noop
6408
6409       uint64_t AShrAmt = CI->getZExtValue();
6410       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6411
6412       Operator *L = dyn_cast<Operator>(BO->LHS);
6413       if (L && L->getOpcode() == Instruction::Shl) {
6414         // X = Shl A, n
6415         // Y = AShr X, m
6416         // Both n and m are constant.
6417
6418         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6419         if (L->getOperand(1) == BO->RHS)
6420           // For a two-shift sext-inreg, i.e. n = m,
6421           // use sext(trunc(x)) as the SCEV expression.
6422           return getSignExtendExpr(
6423               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6424
6425         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6426         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6427           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6428           if (ShlAmt > AShrAmt) {
6429             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6430             // expression. We already checked that ShlAmt < BitWidth, so
6431             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6432             // ShlAmt - AShrAmt < Amt.
6433             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6434                                             ShlAmt - AShrAmt);
6435             return getSignExtendExpr(
6436                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6437                 getConstant(Mul)), OuterTy);
6438           }
6439         }
6440       }
6441       break;
6442     }
6443     }
6444   }
6445
6446   switch (U->getOpcode()) {
6447   case Instruction::Trunc:
6448     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6449
6450   case Instruction::ZExt:
6451     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6452
6453   case Instruction::SExt:
6454     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6455       // The NSW flag of a subtract does not always survive the conversion to
6456       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6457       // more likely to preserve NSW and allow later AddRec optimisations.
6458       //
6459       // NOTE: This is effectively duplicating this logic from getSignExtend:
6460       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6461       // but by that point the NSW information has potentially been lost.
6462       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6463         Type *Ty = U->getType();
6464         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6465         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6466         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6467       }
6468     }
6469     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6470
6471   case Instruction::BitCast:
6472     // BitCasts are no-op casts so we just eliminate the cast.
6473     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6474       return getSCEV(U->getOperand(0));
6475     break;
6476
6477   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6478   // lead to pointer expressions which cannot safely be expanded to GEPs,
6479   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6480   // simplifying integer expressions.
6481
6482   case Instruction::GetElementPtr:
6483     return createNodeForGEP(cast<GEPOperator>(U));
6484
6485   case Instruction::PHI:
6486     return createNodeForPHI(cast<PHINode>(U));
6487
6488   case Instruction::Select:
6489     // U can also be a select constant expr, which let fall through.  Since
6490     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6491     // constant expressions cannot have instructions as operands, we'd have
6492     // returned getUnknown for a select constant expressions anyway.
6493     if (isa<Instruction>(U))
6494       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6495                                       U->getOperand(1), U->getOperand(2));
6496     break;
6497
6498   case Instruction::Call:
6499   case Instruction::Invoke:
6500     if (Value *RV = CallSite(U).getReturnedArgOperand())
6501       return getSCEV(RV);
6502     break;
6503   }
6504
6505   return getUnknown(V);
6506 }
6507
6508 //===----------------------------------------------------------------------===//
6509 //                   Iteration Count Computation Code
6510 //
6511
6512 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6513   if (!ExitCount)
6514     return 0;
6515
6516   ConstantInt *ExitConst = ExitCount->getValue();
6517
6518   // Guard against huge trip counts.
6519   if (ExitConst->getValue().getActiveBits() > 32)
6520     return 0;
6521
6522   // In case of integer overflow, this returns 0, which is correct.
6523   return ((unsigned)ExitConst->getZExtValue()) + 1;
6524 }
6525
6526 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6527   if (BasicBlock *ExitingBB = L->getExitingBlock())
6528     return getSmallConstantTripCount(L, ExitingBB);
6529
6530   // No trip count information for multiple exits.
6531   return 0;
6532 }
6533
6534 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6535                                                     BasicBlock *ExitingBlock) {
6536   assert(ExitingBlock && "Must pass a non-null exiting block!");
6537   assert(L->isLoopExiting(ExitingBlock) &&
6538          "Exiting block must actually branch out of the loop!");
6539   const SCEVConstant *ExitCount =
6540       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6541   return getConstantTripCount(ExitCount);
6542 }
6543
6544 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6545   const auto *MaxExitCount =
6546       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6547   return getConstantTripCount(MaxExitCount);
6548 }
6549
6550 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6551   if (BasicBlock *ExitingBB = L->getExitingBlock())
6552     return getSmallConstantTripMultiple(L, ExitingBB);
6553
6554   // No trip multiple information for multiple exits.
6555   return 0;
6556 }
6557
6558 /// Returns the largest constant divisor of the trip count of this loop as a
6559 /// normal unsigned value, if possible. This means that the actual trip count is
6560 /// always a multiple of the returned value (don't forget the trip count could
6561 /// very well be zero as well!).
6562 ///
6563 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6564 /// multiple of a constant (which is also the case if the trip count is simply
6565 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6566 /// if the trip count is very large (>= 2^32).
6567 ///
6568 /// As explained in the comments for getSmallConstantTripCount, this assumes
6569 /// that control exits the loop via ExitingBlock.
6570 unsigned
6571 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6572                                               BasicBlock *ExitingBlock) {
6573   assert(ExitingBlock && "Must pass a non-null exiting block!");
6574   assert(L->isLoopExiting(ExitingBlock) &&
6575          "Exiting block must actually branch out of the loop!");
6576   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6577   if (ExitCount == getCouldNotCompute())
6578     return 1;
6579
6580   // Get the trip count from the BE count by adding 1.
6581   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6582
6583   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6584   if (!TC)
6585     // Attempt to factor more general cases. Returns the greatest power of
6586     // two divisor. If overflow happens, the trip count expression is still
6587     // divisible by the greatest power of 2 divisor returned.
6588     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6589
6590   ConstantInt *Result = TC->getValue();
6591
6592   // Guard against huge trip counts (this requires checking
6593   // for zero to handle the case where the trip count == -1 and the
6594   // addition wraps).
6595   if (!Result || Result->getValue().getActiveBits() > 32 ||
6596       Result->getValue().getActiveBits() == 0)
6597     return 1;
6598
6599   return (unsigned)Result->getZExtValue();
6600 }
6601
6602 /// Get the expression for the number of loop iterations for which this loop is
6603 /// guaranteed not to exit via ExitingBlock. Otherwise return
6604 /// SCEVCouldNotCompute.
6605 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6606                                           BasicBlock *ExitingBlock) {
6607   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6608 }
6609
6610 const SCEV *
6611 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6612                                                  SCEVUnionPredicate &Preds) {
6613   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6614 }
6615
6616 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6617   return getBackedgeTakenInfo(L).getExact(L, this);
6618 }
6619
6620 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6621 /// known never to be less than the actual backedge taken count.
6622 const SCEV *ScalarEvolution::getConstantMaxBackedgeTakenCount(const Loop *L) {
6623   return getBackedgeTakenInfo(L).getMax(this);
6624 }
6625
6626 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6627   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6628 }
6629
6630 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6631 static void
6632 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6633   BasicBlock *Header = L->getHeader();
6634
6635   // Push all Loop-header PHIs onto the Worklist stack.
6636   for (PHINode &PN : Header->phis())
6637     Worklist.push_back(&PN);
6638 }
6639
6640 const ScalarEvolution::BackedgeTakenInfo &
6641 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6642   auto &BTI = getBackedgeTakenInfo(L);
6643   if (BTI.hasFullInfo())
6644     return BTI;
6645
6646   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6647
6648   if (!Pair.second)
6649     return Pair.first->second;
6650
6651   BackedgeTakenInfo Result =
6652       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6653
6654   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6655 }
6656
6657 const ScalarEvolution::BackedgeTakenInfo &
6658 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6659   // Initially insert an invalid entry for this loop. If the insertion
6660   // succeeds, proceed to actually compute a backedge-taken count and
6661   // update the value. The temporary CouldNotCompute value tells SCEV
6662   // code elsewhere that it shouldn't attempt to request a new
6663   // backedge-taken count, which could result in infinite recursion.
6664   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6665       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6666   if (!Pair.second)
6667     return Pair.first->second;
6668
6669   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6670   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6671   // must be cleared in this scope.
6672   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6673
6674   // In product build, there are no usage of statistic.
6675   (void)NumTripCountsComputed;
6676   (void)NumTripCountsNotComputed;
6677 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6678   const SCEV *BEExact = Result.getExact(L, this);
6679   if (BEExact != getCouldNotCompute()) {
6680     assert(isLoopInvariant(BEExact, L) &&
6681            isLoopInvariant(Result.getMax(this), L) &&
6682            "Computed backedge-taken count isn't loop invariant for loop!");
6683     ++NumTripCountsComputed;
6684   }
6685   else if (Result.getMax(this) == getCouldNotCompute() &&
6686            isa<PHINode>(L->getHeader()->begin())) {
6687     // Only count loops that have phi nodes as not being computable.
6688     ++NumTripCountsNotComputed;
6689   }
6690 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6691
6692   // Now that we know more about the trip count for this loop, forget any
6693   // existing SCEV values for PHI nodes in this loop since they are only
6694   // conservative estimates made without the benefit of trip count
6695   // information. This is similar to the code in forgetLoop, except that
6696   // it handles SCEVUnknown PHI nodes specially.
6697   if (Result.hasAnyInfo()) {
6698     SmallVector<Instruction *, 16> Worklist;
6699     PushLoopPHIs(L, Worklist);
6700
6701     SmallPtrSet<Instruction *, 8> Discovered;
6702     while (!Worklist.empty()) {
6703       Instruction *I = Worklist.pop_back_val();
6704
6705       ValueExprMapType::iterator It =
6706         ValueExprMap.find_as(static_cast<Value *>(I));
6707       if (It != ValueExprMap.end()) {
6708         const SCEV *Old = It->second;
6709
6710         // SCEVUnknown for a PHI either means that it has an unrecognized
6711         // structure, or it's a PHI that's in the progress of being computed
6712         // by createNodeForPHI.  In the former case, additional loop trip
6713         // count information isn't going to change anything. In the later
6714         // case, createNodeForPHI will perform the necessary updates on its
6715         // own when it gets to that point.
6716         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6717           eraseValueFromMap(It->first);
6718           forgetMemoizedResults(Old);
6719         }
6720         if (PHINode *PN = dyn_cast<PHINode>(I))
6721           ConstantEvolutionLoopExitValue.erase(PN);
6722       }
6723
6724       // Since we don't need to invalidate anything for correctness and we're
6725       // only invalidating to make SCEV's results more precise, we get to stop
6726       // early to avoid invalidating too much.  This is especially important in
6727       // cases like:
6728       //
6729       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6730       // loop0:
6731       //   %pn0 = phi
6732       //   ...
6733       // loop1:
6734       //   %pn1 = phi
6735       //   ...
6736       //
6737       // where both loop0 and loop1's backedge taken count uses the SCEV
6738       // expression for %v.  If we don't have the early stop below then in cases
6739       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6740       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6741       // count for loop1, effectively nullifying SCEV's trip count cache.
6742       for (auto *U : I->users())
6743         if (auto *I = dyn_cast<Instruction>(U)) {
6744           auto *LoopForUser = LI.getLoopFor(I->getParent());
6745           if (LoopForUser && L->contains(LoopForUser) &&
6746               Discovered.insert(I).second)
6747             Worklist.push_back(I);
6748         }
6749     }
6750   }
6751
6752   // Re-lookup the insert position, since the call to
6753   // computeBackedgeTakenCount above could result in a
6754   // recusive call to getBackedgeTakenInfo (on a different
6755   // loop), which would invalidate the iterator computed
6756   // earlier.
6757   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6758 }
6759
6760 void ScalarEvolution::forgetAllLoops() {
6761   // This method is intended to forget all info about loops. It should
6762   // invalidate caches as if the following happened:
6763   // - The trip counts of all loops have changed arbitrarily
6764   // - Every llvm::Value has been updated in place to produce a different
6765   // result.
6766   BackedgeTakenCounts.clear();
6767   PredicatedBackedgeTakenCounts.clear();
6768   LoopPropertiesCache.clear();
6769   ConstantEvolutionLoopExitValue.clear();
6770   ValueExprMap.clear();
6771   ValuesAtScopes.clear();
6772   LoopDispositions.clear();
6773   BlockDispositions.clear();
6774   UnsignedRanges.clear();
6775   SignedRanges.clear();
6776   ExprValueMap.clear();
6777   HasRecMap.clear();
6778   MinTrailingZerosCache.clear();
6779   PredicatedSCEVRewrites.clear();
6780 }
6781
6782 void ScalarEvolution::forgetLoop(const Loop *L) {
6783   // Drop any stored trip count value.
6784   auto RemoveLoopFromBackedgeMap =
6785       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6786         auto BTCPos = Map.find(L);
6787         if (BTCPos != Map.end()) {
6788           BTCPos->second.clear();
6789           Map.erase(BTCPos);
6790         }
6791       };
6792
6793   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6794   SmallVector<Instruction *, 32> Worklist;
6795   SmallPtrSet<Instruction *, 16> Visited;
6796
6797   // Iterate over all the loops and sub-loops to drop SCEV information.
6798   while (!LoopWorklist.empty()) {
6799     auto *CurrL = LoopWorklist.pop_back_val();
6800
6801     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6802     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6803
6804     // Drop information about predicated SCEV rewrites for this loop.
6805     for (auto I = PredicatedSCEVRewrites.begin();
6806          I != PredicatedSCEVRewrites.end();) {
6807       std::pair<const SCEV *, const Loop *> Entry = I->first;
6808       if (Entry.second == CurrL)
6809         PredicatedSCEVRewrites.erase(I++);
6810       else
6811         ++I;
6812     }
6813
6814     auto LoopUsersItr = LoopUsers.find(CurrL);
6815     if (LoopUsersItr != LoopUsers.end()) {
6816       for (auto *S : LoopUsersItr->second)
6817         forgetMemoizedResults(S);
6818       LoopUsers.erase(LoopUsersItr);
6819     }
6820
6821     // Drop information about expressions based on loop-header PHIs.
6822     PushLoopPHIs(CurrL, Worklist);
6823
6824     while (!Worklist.empty()) {
6825       Instruction *I = Worklist.pop_back_val();
6826       if (!Visited.insert(I).second)
6827         continue;
6828
6829       ValueExprMapType::iterator It =
6830           ValueExprMap.find_as(static_cast<Value *>(I));
6831       if (It != ValueExprMap.end()) {
6832         eraseValueFromMap(It->first);
6833         forgetMemoizedResults(It->second);
6834         if (PHINode *PN = dyn_cast<PHINode>(I))
6835           ConstantEvolutionLoopExitValue.erase(PN);
6836       }
6837
6838       PushDefUseChildren(I, Worklist);
6839     }
6840
6841     LoopPropertiesCache.erase(CurrL);
6842     // Forget all contained loops too, to avoid dangling entries in the
6843     // ValuesAtScopes map.
6844     LoopWorklist.append(CurrL->begin(), CurrL->end());
6845   }
6846 }
6847
6848 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6849   while (Loop *Parent = L->getParentLoop())
6850     L = Parent;
6851   forgetLoop(L);
6852 }
6853
6854 void ScalarEvolution::forgetValue(Value *V) {
6855   Instruction *I = dyn_cast<Instruction>(V);
6856   if (!I) return;
6857
6858   // Drop information about expressions based on loop-header PHIs.
6859   SmallVector<Instruction *, 16> Worklist;
6860   Worklist.push_back(I);
6861
6862   SmallPtrSet<Instruction *, 8> Visited;
6863   while (!Worklist.empty()) {
6864     I = Worklist.pop_back_val();
6865     if (!Visited.insert(I).second)
6866       continue;
6867
6868     ValueExprMapType::iterator It =
6869       ValueExprMap.find_as(static_cast<Value *>(I));
6870     if (It != ValueExprMap.end()) {
6871       eraseValueFromMap(It->first);
6872       forgetMemoizedResults(It->second);
6873       if (PHINode *PN = dyn_cast<PHINode>(I))
6874         ConstantEvolutionLoopExitValue.erase(PN);
6875     }
6876
6877     PushDefUseChildren(I, Worklist);
6878   }
6879 }
6880
6881 /// Get the exact loop backedge taken count considering all loop exits. A
6882 /// computable result can only be returned for loops with all exiting blocks
6883 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6884 /// is never skipped. This is a valid assumption as long as the loop exits via
6885 /// that test. For precise results, it is the caller's responsibility to specify
6886 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6887 const SCEV *
6888 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6889                                              SCEVUnionPredicate *Preds) const {
6890   // If any exits were not computable, the loop is not computable.
6891   if (!isComplete() || ExitNotTaken.empty())
6892     return SE->getCouldNotCompute();
6893
6894   const BasicBlock *Latch = L->getLoopLatch();
6895   // All exiting blocks we have collected must dominate the only backedge.
6896   if (!Latch)
6897     return SE->getCouldNotCompute();
6898
6899   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6900   // count is simply a minimum out of all these calculated exit counts.
6901   SmallVector<const SCEV *, 2> Ops;
6902   for (auto &ENT : ExitNotTaken) {
6903     const SCEV *BECount = ENT.ExactNotTaken;
6904     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6905     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6906            "We should only have known counts for exiting blocks that dominate "
6907            "latch!");
6908
6909     Ops.push_back(BECount);
6910
6911     if (Preds && !ENT.hasAlwaysTruePredicate())
6912       Preds->add(ENT.Predicate.get());
6913
6914     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6915            "Predicate should be always true!");
6916   }
6917
6918   return SE->getUMinFromMismatchedTypes(Ops);
6919 }
6920
6921 /// Get the exact not taken count for this loop exit.
6922 const SCEV *
6923 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6924                                              ScalarEvolution *SE) const {
6925   for (auto &ENT : ExitNotTaken)
6926     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6927       return ENT.ExactNotTaken;
6928
6929   return SE->getCouldNotCompute();
6930 }
6931
6932 /// getMax - Get the max backedge taken count for the loop.
6933 const SCEV *
6934 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6935   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6936     return !ENT.hasAlwaysTruePredicate();
6937   };
6938
6939   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6940     return SE->getCouldNotCompute();
6941
6942   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6943          "No point in having a non-constant max backedge taken count!");
6944   return getMax();
6945 }
6946
6947 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6948   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6949     return !ENT.hasAlwaysTruePredicate();
6950   };
6951   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6952 }
6953
6954 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6955                                                     ScalarEvolution *SE) const {
6956   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6957       SE->hasOperand(getMax(), S))
6958     return true;
6959
6960   for (auto &ENT : ExitNotTaken)
6961     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6962         SE->hasOperand(ENT.ExactNotTaken, S))
6963       return true;
6964
6965   return false;
6966 }
6967
6968 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6969     : ExactNotTaken(E), MaxNotTaken(E) {
6970   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6971           isa<SCEVConstant>(MaxNotTaken)) &&
6972          "No point in having a non-constant max backedge taken count!");
6973 }
6974
6975 ScalarEvolution::ExitLimit::ExitLimit(
6976     const SCEV *E, const SCEV *M, bool MaxOrZero,
6977     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6978     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6979   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6980           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6981          "Exact is not allowed to be less precise than Max");
6982   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6983           isa<SCEVConstant>(MaxNotTaken)) &&
6984          "No point in having a non-constant max backedge taken count!");
6985   for (auto *PredSet : PredSetList)
6986     for (auto *P : *PredSet)
6987       addPredicate(P);
6988 }
6989
6990 ScalarEvolution::ExitLimit::ExitLimit(
6991     const SCEV *E, const SCEV *M, bool MaxOrZero,
6992     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6993     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6994   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6995           isa<SCEVConstant>(MaxNotTaken)) &&
6996          "No point in having a non-constant max backedge taken count!");
6997 }
6998
6999 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7000                                       bool MaxOrZero)
7001     : ExitLimit(E, M, MaxOrZero, None) {
7002   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7003           isa<SCEVConstant>(MaxNotTaken)) &&
7004          "No point in having a non-constant max backedge taken count!");
7005 }
7006
7007 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7008 /// computable exit into a persistent ExitNotTakenInfo array.
7009 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7010     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
7011         ExitCounts,
7012     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
7013     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
7014   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7015
7016   ExitNotTaken.reserve(ExitCounts.size());
7017   std::transform(
7018       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7019       [&](const EdgeExitInfo &EEI) {
7020         BasicBlock *ExitBB = EEI.first;
7021         const ExitLimit &EL = EEI.second;
7022         if (EL.Predicates.empty())
7023           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
7024
7025         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7026         for (auto *Pred : EL.Predicates)
7027           Predicate->add(Pred);
7028
7029         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
7030       });
7031   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
7032          "No point in having a non-constant max backedge taken count!");
7033 }
7034
7035 /// Invalidate this result and free the ExitNotTakenInfo array.
7036 void ScalarEvolution::BackedgeTakenInfo::clear() {
7037   ExitNotTaken.clear();
7038 }
7039
7040 /// Compute the number of times the backedge of the specified loop will execute.
7041 ScalarEvolution::BackedgeTakenInfo
7042 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7043                                            bool AllowPredicates) {
7044   SmallVector<BasicBlock *, 8> ExitingBlocks;
7045   L->getExitingBlocks(ExitingBlocks);
7046
7047   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7048
7049   SmallVector<EdgeExitInfo, 4> ExitCounts;
7050   bool CouldComputeBECount = true;
7051   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7052   const SCEV *MustExitMaxBECount = nullptr;
7053   const SCEV *MayExitMaxBECount = nullptr;
7054   bool MustExitMaxOrZero = false;
7055
7056   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7057   // and compute maxBECount.
7058   // Do a union of all the predicates here.
7059   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7060     BasicBlock *ExitBB = ExitingBlocks[i];
7061     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7062
7063     assert((AllowPredicates || EL.Predicates.empty()) &&
7064            "Predicated exit limit when predicates are not allowed!");
7065
7066     // 1. For each exit that can be computed, add an entry to ExitCounts.
7067     // CouldComputeBECount is true only if all exits can be computed.
7068     if (EL.ExactNotTaken == getCouldNotCompute())
7069       // We couldn't compute an exact value for this exit, so
7070       // we won't be able to compute an exact value for the loop.
7071       CouldComputeBECount = false;
7072     else
7073       ExitCounts.emplace_back(ExitBB, EL);
7074
7075     // 2. Derive the loop's MaxBECount from each exit's max number of
7076     // non-exiting iterations. Partition the loop exits into two kinds:
7077     // LoopMustExits and LoopMayExits.
7078     //
7079     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7080     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7081     // MaxBECount is the minimum EL.MaxNotTaken of computable
7082     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7083     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7084     // computable EL.MaxNotTaken.
7085     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7086         DT.dominates(ExitBB, Latch)) {
7087       if (!MustExitMaxBECount) {
7088         MustExitMaxBECount = EL.MaxNotTaken;
7089         MustExitMaxOrZero = EL.MaxOrZero;
7090       } else {
7091         MustExitMaxBECount =
7092             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7093       }
7094     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7095       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7096         MayExitMaxBECount = EL.MaxNotTaken;
7097       else {
7098         MayExitMaxBECount =
7099             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7100       }
7101     }
7102   }
7103   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7104     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7105   // The loop backedge will be taken the maximum or zero times if there's
7106   // a single exit that must be taken the maximum or zero times.
7107   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7108   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7109                            MaxBECount, MaxOrZero);
7110 }
7111
7112 ScalarEvolution::ExitLimit
7113 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7114                                       bool AllowPredicates) {
7115   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7116   // If our exiting block does not dominate the latch, then its connection with
7117   // loop's exit limit may be far from trivial.
7118   const BasicBlock *Latch = L->getLoopLatch();
7119   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7120     return getCouldNotCompute();
7121
7122   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7123   Instruction *Term = ExitingBlock->getTerminator();
7124   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7125     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7126     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7127     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7128            "It should have one successor in loop and one exit block!");
7129     // Proceed to the next level to examine the exit condition expression.
7130     return computeExitLimitFromCond(
7131         L, BI->getCondition(), ExitIfTrue,
7132         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7133   }
7134
7135   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7136     // For switch, make sure that there is a single exit from the loop.
7137     BasicBlock *Exit = nullptr;
7138     for (auto *SBB : successors(ExitingBlock))
7139       if (!L->contains(SBB)) {
7140         if (Exit) // Multiple exit successors.
7141           return getCouldNotCompute();
7142         Exit = SBB;
7143       }
7144     assert(Exit && "Exiting block must have at least one exit");
7145     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7146                                                 /*ControlsExit=*/IsOnlyExit);
7147   }
7148
7149   return getCouldNotCompute();
7150 }
7151
7152 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7153     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7154     bool ControlsExit, bool AllowPredicates) {
7155   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7156   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7157                                         ControlsExit, AllowPredicates);
7158 }
7159
7160 Optional<ScalarEvolution::ExitLimit>
7161 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7162                                       bool ExitIfTrue, bool ControlsExit,
7163                                       bool AllowPredicates) {
7164   (void)this->L;
7165   (void)this->ExitIfTrue;
7166   (void)this->AllowPredicates;
7167
7168   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7169          this->AllowPredicates == AllowPredicates &&
7170          "Variance in assumed invariant key components!");
7171   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7172   if (Itr == TripCountMap.end())
7173     return None;
7174   return Itr->second;
7175 }
7176
7177 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7178                                              bool ExitIfTrue,
7179                                              bool ControlsExit,
7180                                              bool AllowPredicates,
7181                                              const ExitLimit &EL) {
7182   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7183          this->AllowPredicates == AllowPredicates &&
7184          "Variance in assumed invariant key components!");
7185
7186   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7187   assert(InsertResult.second && "Expected successful insertion!");
7188   (void)InsertResult;
7189   (void)ExitIfTrue;
7190 }
7191
7192 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7193     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7194     bool ControlsExit, bool AllowPredicates) {
7195
7196   if (auto MaybeEL =
7197           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7198     return *MaybeEL;
7199
7200   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7201                                               ControlsExit, AllowPredicates);
7202   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7203   return EL;
7204 }
7205
7206 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7207     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7208     bool ControlsExit, bool AllowPredicates) {
7209   // Check if the controlling expression for this loop is an And or Or.
7210   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7211     if (BO->getOpcode() == Instruction::And) {
7212       // Recurse on the operands of the and.
7213       bool EitherMayExit = !ExitIfTrue;
7214       ExitLimit EL0 = computeExitLimitFromCondCached(
7215           Cache, L, BO->getOperand(0), ExitIfTrue,
7216           ControlsExit && !EitherMayExit, AllowPredicates);
7217       ExitLimit EL1 = computeExitLimitFromCondCached(
7218           Cache, L, BO->getOperand(1), ExitIfTrue,
7219           ControlsExit && !EitherMayExit, AllowPredicates);
7220       const SCEV *BECount = getCouldNotCompute();
7221       const SCEV *MaxBECount = getCouldNotCompute();
7222       if (EitherMayExit) {
7223         // Both conditions must be true for the loop to continue executing.
7224         // Choose the less conservative count.
7225         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7226             EL1.ExactNotTaken == getCouldNotCompute())
7227           BECount = getCouldNotCompute();
7228         else
7229           BECount =
7230               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7231         if (EL0.MaxNotTaken == getCouldNotCompute())
7232           MaxBECount = EL1.MaxNotTaken;
7233         else if (EL1.MaxNotTaken == getCouldNotCompute())
7234           MaxBECount = EL0.MaxNotTaken;
7235         else
7236           MaxBECount =
7237               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7238       } else {
7239         // Both conditions must be true at the same time for the loop to exit.
7240         // For now, be conservative.
7241         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7242           MaxBECount = EL0.MaxNotTaken;
7243         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7244           BECount = EL0.ExactNotTaken;
7245       }
7246
7247       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7248       // to be more aggressive when computing BECount than when computing
7249       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7250       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7251       // to not.
7252       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7253           !isa<SCEVCouldNotCompute>(BECount))
7254         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7255
7256       return ExitLimit(BECount, MaxBECount, false,
7257                        {&EL0.Predicates, &EL1.Predicates});
7258     }
7259     if (BO->getOpcode() == Instruction::Or) {
7260       // Recurse on the operands of the or.
7261       bool EitherMayExit = ExitIfTrue;
7262       ExitLimit EL0 = computeExitLimitFromCondCached(
7263           Cache, L, BO->getOperand(0), ExitIfTrue,
7264           ControlsExit && !EitherMayExit, AllowPredicates);
7265       ExitLimit EL1 = computeExitLimitFromCondCached(
7266           Cache, L, BO->getOperand(1), ExitIfTrue,
7267           ControlsExit && !EitherMayExit, AllowPredicates);
7268       const SCEV *BECount = getCouldNotCompute();
7269       const SCEV *MaxBECount = getCouldNotCompute();
7270       if (EitherMayExit) {
7271         // Both conditions must be false for the loop to continue executing.
7272         // Choose the less conservative count.
7273         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7274             EL1.ExactNotTaken == getCouldNotCompute())
7275           BECount = getCouldNotCompute();
7276         else
7277           BECount =
7278               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7279         if (EL0.MaxNotTaken == getCouldNotCompute())
7280           MaxBECount = EL1.MaxNotTaken;
7281         else if (EL1.MaxNotTaken == getCouldNotCompute())
7282           MaxBECount = EL0.MaxNotTaken;
7283         else
7284           MaxBECount =
7285               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7286       } else {
7287         // Both conditions must be false at the same time for the loop to exit.
7288         // For now, be conservative.
7289         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7290           MaxBECount = EL0.MaxNotTaken;
7291         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7292           BECount = EL0.ExactNotTaken;
7293       }
7294       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7295       // to be more aggressive when computing BECount than when computing
7296       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7297       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7298       // to not.
7299       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7300           !isa<SCEVCouldNotCompute>(BECount))
7301         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7302
7303       return ExitLimit(BECount, MaxBECount, false,
7304                        {&EL0.Predicates, &EL1.Predicates});
7305     }
7306   }
7307
7308   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7309   // Proceed to the next level to examine the icmp.
7310   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7311     ExitLimit EL =
7312         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7313     if (EL.hasFullInfo() || !AllowPredicates)
7314       return EL;
7315
7316     // Try again, but use SCEV predicates this time.
7317     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7318                                     /*AllowPredicates=*/true);
7319   }
7320
7321   // Check for a constant condition. These are normally stripped out by
7322   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7323   // preserve the CFG and is temporarily leaving constant conditions
7324   // in place.
7325   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7326     if (ExitIfTrue == !CI->getZExtValue())
7327       // The backedge is always taken.
7328       return getCouldNotCompute();
7329     else
7330       // The backedge is never taken.
7331       return getZero(CI->getType());
7332   }
7333
7334   // If it's not an integer or pointer comparison then compute it the hard way.
7335   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7336 }
7337
7338 ScalarEvolution::ExitLimit
7339 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7340                                           ICmpInst *ExitCond,
7341                                           bool ExitIfTrue,
7342                                           bool ControlsExit,
7343                                           bool AllowPredicates) {
7344   // If the condition was exit on true, convert the condition to exit on false
7345   ICmpInst::Predicate Pred;
7346   if (!ExitIfTrue)
7347     Pred = ExitCond->getPredicate();
7348   else
7349     Pred = ExitCond->getInversePredicate();
7350   const ICmpInst::Predicate OriginalPred = Pred;
7351
7352   // Handle common loops like: for (X = "string"; *X; ++X)
7353   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7354     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7355       ExitLimit ItCnt =
7356         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7357       if (ItCnt.hasAnyInfo())
7358         return ItCnt;
7359     }
7360
7361   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7362   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7363
7364   // Try to evaluate any dependencies out of the loop.
7365   LHS = getSCEVAtScope(LHS, L);
7366   RHS = getSCEVAtScope(RHS, L);
7367
7368   // At this point, we would like to compute how many iterations of the
7369   // loop the predicate will return true for these inputs.
7370   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7371     // If there is a loop-invariant, force it into the RHS.
7372     std::swap(LHS, RHS);
7373     Pred = ICmpInst::getSwappedPredicate(Pred);
7374   }
7375
7376   // Simplify the operands before analyzing them.
7377   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7378
7379   // If we have a comparison of a chrec against a constant, try to use value
7380   // ranges to answer this query.
7381   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7382     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7383       if (AddRec->getLoop() == L) {
7384         // Form the constant range.
7385         ConstantRange CompRange =
7386             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7387
7388         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7389         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7390       }
7391
7392   switch (Pred) {
7393   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7394     // Convert to: while (X-Y != 0)
7395     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7396                                 AllowPredicates);
7397     if (EL.hasAnyInfo()) return EL;
7398     break;
7399   }
7400   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7401     // Convert to: while (X-Y == 0)
7402     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7403     if (EL.hasAnyInfo()) return EL;
7404     break;
7405   }
7406   case ICmpInst::ICMP_SLT:
7407   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7408     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7409     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7410                                     AllowPredicates);
7411     if (EL.hasAnyInfo()) return EL;
7412     break;
7413   }
7414   case ICmpInst::ICMP_SGT:
7415   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7416     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7417     ExitLimit EL =
7418         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7419                             AllowPredicates);
7420     if (EL.hasAnyInfo()) return EL;
7421     break;
7422   }
7423   default:
7424     break;
7425   }
7426
7427   auto *ExhaustiveCount =
7428       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7429
7430   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7431     return ExhaustiveCount;
7432
7433   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7434                                       ExitCond->getOperand(1), L, OriginalPred);
7435 }
7436
7437 ScalarEvolution::ExitLimit
7438 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7439                                                       SwitchInst *Switch,
7440                                                       BasicBlock *ExitingBlock,
7441                                                       bool ControlsExit) {
7442   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7443
7444   // Give up if the exit is the default dest of a switch.
7445   if (Switch->getDefaultDest() == ExitingBlock)
7446     return getCouldNotCompute();
7447
7448   assert(L->contains(Switch->getDefaultDest()) &&
7449          "Default case must not exit the loop!");
7450   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7451   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7452
7453   // while (X != Y) --> while (X-Y != 0)
7454   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7455   if (EL.hasAnyInfo())
7456     return EL;
7457
7458   return getCouldNotCompute();
7459 }
7460
7461 static ConstantInt *
7462 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7463                                 ScalarEvolution &SE) {
7464   const SCEV *InVal = SE.getConstant(C);
7465   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7466   assert(isa<SCEVConstant>(Val) &&
7467          "Evaluation of SCEV at constant didn't fold correctly?");
7468   return cast<SCEVConstant>(Val)->getValue();
7469 }
7470
7471 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7472 /// compute the backedge execution count.
7473 ScalarEvolution::ExitLimit
7474 ScalarEvolution::computeLoadConstantCompareExitLimit(
7475   LoadInst *LI,
7476   Constant *RHS,
7477   const Loop *L,
7478   ICmpInst::Predicate predicate) {
7479   if (LI->isVolatile()) return getCouldNotCompute();
7480
7481   // Check to see if the loaded pointer is a getelementptr of a global.
7482   // TODO: Use SCEV instead of manually grubbing with GEPs.
7483   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7484   if (!GEP) return getCouldNotCompute();
7485
7486   // Make sure that it is really a constant global we are gepping, with an
7487   // initializer, and make sure the first IDX is really 0.
7488   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7489   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7490       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7491       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7492     return getCouldNotCompute();
7493
7494   // Okay, we allow one non-constant index into the GEP instruction.
7495   Value *VarIdx = nullptr;
7496   std::vector<Constant*> Indexes;
7497   unsigned VarIdxNum = 0;
7498   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7499     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7500       Indexes.push_back(CI);
7501     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7502       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7503       VarIdx = GEP->getOperand(i);
7504       VarIdxNum = i-2;
7505       Indexes.push_back(nullptr);
7506     }
7507
7508   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7509   if (!VarIdx)
7510     return getCouldNotCompute();
7511
7512   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7513   // Check to see if X is a loop variant variable value now.
7514   const SCEV *Idx = getSCEV(VarIdx);
7515   Idx = getSCEVAtScope(Idx, L);
7516
7517   // We can only recognize very limited forms of loop index expressions, in
7518   // particular, only affine AddRec's like {C1,+,C2}.
7519   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7520   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7521       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7522       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7523     return getCouldNotCompute();
7524
7525   unsigned MaxSteps = MaxBruteForceIterations;
7526   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7527     ConstantInt *ItCst = ConstantInt::get(
7528                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7529     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7530
7531     // Form the GEP offset.
7532     Indexes[VarIdxNum] = Val;
7533
7534     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7535                                                          Indexes);
7536     if (!Result) break;  // Cannot compute!
7537
7538     // Evaluate the condition for this iteration.
7539     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7540     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7541     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7542       ++NumArrayLenItCounts;
7543       return getConstant(ItCst);   // Found terminating iteration!
7544     }
7545   }
7546   return getCouldNotCompute();
7547 }
7548
7549 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7550     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7551   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7552   if (!RHS)
7553     return getCouldNotCompute();
7554
7555   const BasicBlock *Latch = L->getLoopLatch();
7556   if (!Latch)
7557     return getCouldNotCompute();
7558
7559   const BasicBlock *Predecessor = L->getLoopPredecessor();
7560   if (!Predecessor)
7561     return getCouldNotCompute();
7562
7563   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7564   // Return LHS in OutLHS and shift_opt in OutOpCode.
7565   auto MatchPositiveShift =
7566       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7567
7568     using namespace PatternMatch;
7569
7570     ConstantInt *ShiftAmt;
7571     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7572       OutOpCode = Instruction::LShr;
7573     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7574       OutOpCode = Instruction::AShr;
7575     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7576       OutOpCode = Instruction::Shl;
7577     else
7578       return false;
7579
7580     return ShiftAmt->getValue().isStrictlyPositive();
7581   };
7582
7583   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7584   //
7585   // loop:
7586   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7587   //   %iv.shifted = lshr i32 %iv, <positive constant>
7588   //
7589   // Return true on a successful match.  Return the corresponding PHI node (%iv
7590   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7591   auto MatchShiftRecurrence =
7592       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7593     Optional<Instruction::BinaryOps> PostShiftOpCode;
7594
7595     {
7596       Instruction::BinaryOps OpC;
7597       Value *V;
7598
7599       // If we encounter a shift instruction, "peel off" the shift operation,
7600       // and remember that we did so.  Later when we inspect %iv's backedge
7601       // value, we will make sure that the backedge value uses the same
7602       // operation.
7603       //
7604       // Note: the peeled shift operation does not have to be the same
7605       // instruction as the one feeding into the PHI's backedge value.  We only
7606       // really care about it being the same *kind* of shift instruction --
7607       // that's all that is required for our later inferences to hold.
7608       if (MatchPositiveShift(LHS, V, OpC)) {
7609         PostShiftOpCode = OpC;
7610         LHS = V;
7611       }
7612     }
7613
7614     PNOut = dyn_cast<PHINode>(LHS);
7615     if (!PNOut || PNOut->getParent() != L->getHeader())
7616       return false;
7617
7618     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7619     Value *OpLHS;
7620
7621     return
7622         // The backedge value for the PHI node must be a shift by a positive
7623         // amount
7624         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7625
7626         // of the PHI node itself
7627         OpLHS == PNOut &&
7628
7629         // and the kind of shift should be match the kind of shift we peeled
7630         // off, if any.
7631         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7632   };
7633
7634   PHINode *PN;
7635   Instruction::BinaryOps OpCode;
7636   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7637     return getCouldNotCompute();
7638
7639   const DataLayout &DL = getDataLayout();
7640
7641   // The key rationale for this optimization is that for some kinds of shift
7642   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7643   // within a finite number of iterations.  If the condition guarding the
7644   // backedge (in the sense that the backedge is taken if the condition is true)
7645   // is false for the value the shift recurrence stabilizes to, then we know
7646   // that the backedge is taken only a finite number of times.
7647
7648   ConstantInt *StableValue = nullptr;
7649   switch (OpCode) {
7650   default:
7651     llvm_unreachable("Impossible case!");
7652
7653   case Instruction::AShr: {
7654     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7655     // bitwidth(K) iterations.
7656     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7657     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7658                                        Predecessor->getTerminator(), &DT);
7659     auto *Ty = cast<IntegerType>(RHS->getType());
7660     if (Known.isNonNegative())
7661       StableValue = ConstantInt::get(Ty, 0);
7662     else if (Known.isNegative())
7663       StableValue = ConstantInt::get(Ty, -1, true);
7664     else
7665       return getCouldNotCompute();
7666
7667     break;
7668   }
7669   case Instruction::LShr:
7670   case Instruction::Shl:
7671     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7672     // stabilize to 0 in at most bitwidth(K) iterations.
7673     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7674     break;
7675   }
7676
7677   auto *Result =
7678       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7679   assert(Result->getType()->isIntegerTy(1) &&
7680          "Otherwise cannot be an operand to a branch instruction");
7681
7682   if (Result->isZeroValue()) {
7683     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7684     const SCEV *UpperBound =
7685         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7686     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7687   }
7688
7689   return getCouldNotCompute();
7690 }
7691
7692 /// Return true if we can constant fold an instruction of the specified type,
7693 /// assuming that all operands were constants.
7694 static bool CanConstantFold(const Instruction *I) {
7695   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7696       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7697       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7698     return true;
7699
7700   if (const CallInst *CI = dyn_cast<CallInst>(I))
7701     if (const Function *F = CI->getCalledFunction())
7702       return canConstantFoldCallTo(CI, F);
7703   return false;
7704 }
7705
7706 /// Determine whether this instruction can constant evolve within this loop
7707 /// assuming its operands can all constant evolve.
7708 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7709   // An instruction outside of the loop can't be derived from a loop PHI.
7710   if (!L->contains(I)) return false;
7711
7712   if (isa<PHINode>(I)) {
7713     // We don't currently keep track of the control flow needed to evaluate
7714     // PHIs, so we cannot handle PHIs inside of loops.
7715     return L->getHeader() == I->getParent();
7716   }
7717
7718   // If we won't be able to constant fold this expression even if the operands
7719   // are constants, bail early.
7720   return CanConstantFold(I);
7721 }
7722
7723 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7724 /// recursing through each instruction operand until reaching a loop header phi.
7725 static PHINode *
7726 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7727                                DenseMap<Instruction *, PHINode *> &PHIMap,
7728                                unsigned Depth) {
7729   if (Depth > MaxConstantEvolvingDepth)
7730     return nullptr;
7731
7732   // Otherwise, we can evaluate this instruction if all of its operands are
7733   // constant or derived from a PHI node themselves.
7734   PHINode *PHI = nullptr;
7735   for (Value *Op : UseInst->operands()) {
7736     if (isa<Constant>(Op)) continue;
7737
7738     Instruction *OpInst = dyn_cast<Instruction>(Op);
7739     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7740
7741     PHINode *P = dyn_cast<PHINode>(OpInst);
7742     if (!P)
7743       // If this operand is already visited, reuse the prior result.
7744       // We may have P != PHI if this is the deepest point at which the
7745       // inconsistent paths meet.
7746       P = PHIMap.lookup(OpInst);
7747     if (!P) {
7748       // Recurse and memoize the results, whether a phi is found or not.
7749       // This recursive call invalidates pointers into PHIMap.
7750       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7751       PHIMap[OpInst] = P;
7752     }
7753     if (!P)
7754       return nullptr;  // Not evolving from PHI
7755     if (PHI && PHI != P)
7756       return nullptr;  // Evolving from multiple different PHIs.
7757     PHI = P;
7758   }
7759   // This is a expression evolving from a constant PHI!
7760   return PHI;
7761 }
7762
7763 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7764 /// in the loop that V is derived from.  We allow arbitrary operations along the
7765 /// way, but the operands of an operation must either be constants or a value
7766 /// derived from a constant PHI.  If this expression does not fit with these
7767 /// constraints, return null.
7768 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7769   Instruction *I = dyn_cast<Instruction>(V);
7770   if (!I || !canConstantEvolve(I, L)) return nullptr;
7771
7772   if (PHINode *PN = dyn_cast<PHINode>(I))
7773     return PN;
7774
7775   // Record non-constant instructions contained by the loop.
7776   DenseMap<Instruction *, PHINode *> PHIMap;
7777   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7778 }
7779
7780 /// EvaluateExpression - Given an expression that passes the
7781 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7782 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7783 /// reason, return null.
7784 static Constant *EvaluateExpression(Value *V, const Loop *L,
7785                                     DenseMap<Instruction *, Constant *> &Vals,
7786                                     const DataLayout &DL,
7787                                     const TargetLibraryInfo *TLI) {
7788   // Convenient constant check, but redundant for recursive calls.
7789   if (Constant *C = dyn_cast<Constant>(V)) return C;
7790   Instruction *I = dyn_cast<Instruction>(V);
7791   if (!I) return nullptr;
7792
7793   if (Constant *C = Vals.lookup(I)) return C;
7794
7795   // An instruction inside the loop depends on a value outside the loop that we
7796   // weren't given a mapping for, or a value such as a call inside the loop.
7797   if (!canConstantEvolve(I, L)) return nullptr;
7798
7799   // An unmapped PHI can be due to a branch or another loop inside this loop,
7800   // or due to this not being the initial iteration through a loop where we
7801   // couldn't compute the evolution of this particular PHI last time.
7802   if (isa<PHINode>(I)) return nullptr;
7803
7804   std::vector<Constant*> Operands(I->getNumOperands());
7805
7806   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7807     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7808     if (!Operand) {
7809       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7810       if (!Operands[i]) return nullptr;
7811       continue;
7812     }
7813     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7814     Vals[Operand] = C;
7815     if (!C) return nullptr;
7816     Operands[i] = C;
7817   }
7818
7819   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7820     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7821                                            Operands[1], DL, TLI);
7822   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7823     if (!LI->isVolatile())
7824       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7825   }
7826   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7827 }
7828
7829
7830 // If every incoming value to PN except the one for BB is a specific Constant,
7831 // return that, else return nullptr.
7832 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7833   Constant *IncomingVal = nullptr;
7834
7835   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7836     if (PN->getIncomingBlock(i) == BB)
7837       continue;
7838
7839     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7840     if (!CurrentVal)
7841       return nullptr;
7842
7843     if (IncomingVal != CurrentVal) {
7844       if (IncomingVal)
7845         return nullptr;
7846       IncomingVal = CurrentVal;
7847     }
7848   }
7849
7850   return IncomingVal;
7851 }
7852
7853 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7854 /// in the header of its containing loop, we know the loop executes a
7855 /// constant number of times, and the PHI node is just a recurrence
7856 /// involving constants, fold it.
7857 Constant *
7858 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7859                                                    const APInt &BEs,
7860                                                    const Loop *L) {
7861   auto I = ConstantEvolutionLoopExitValue.find(PN);
7862   if (I != ConstantEvolutionLoopExitValue.end())
7863     return I->second;
7864
7865   if (BEs.ugt(MaxBruteForceIterations))
7866     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7867
7868   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7869
7870   DenseMap<Instruction *, Constant *> CurrentIterVals;
7871   BasicBlock *Header = L->getHeader();
7872   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7873
7874   BasicBlock *Latch = L->getLoopLatch();
7875   if (!Latch)
7876     return nullptr;
7877
7878   for (PHINode &PHI : Header->phis()) {
7879     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7880       CurrentIterVals[&PHI] = StartCST;
7881   }
7882   if (!CurrentIterVals.count(PN))
7883     return RetVal = nullptr;
7884
7885   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7886
7887   // Execute the loop symbolically to determine the exit value.
7888   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7889          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7890
7891   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7892   unsigned IterationNum = 0;
7893   const DataLayout &DL = getDataLayout();
7894   for (; ; ++IterationNum) {
7895     if (IterationNum == NumIterations)
7896       return RetVal = CurrentIterVals[PN];  // Got exit value!
7897
7898     // Compute the value of the PHIs for the next iteration.
7899     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7900     DenseMap<Instruction *, Constant *> NextIterVals;
7901     Constant *NextPHI =
7902         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7903     if (!NextPHI)
7904       return nullptr;        // Couldn't evaluate!
7905     NextIterVals[PN] = NextPHI;
7906
7907     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7908
7909     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7910     // cease to be able to evaluate one of them or if they stop evolving,
7911     // because that doesn't necessarily prevent us from computing PN.
7912     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7913     for (const auto &I : CurrentIterVals) {
7914       PHINode *PHI = dyn_cast<PHINode>(I.first);
7915       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7916       PHIsToCompute.emplace_back(PHI, I.second);
7917     }
7918     // We use two distinct loops because EvaluateExpression may invalidate any
7919     // iterators into CurrentIterVals.
7920     for (const auto &I : PHIsToCompute) {
7921       PHINode *PHI = I.first;
7922       Constant *&NextPHI = NextIterVals[PHI];
7923       if (!NextPHI) {   // Not already computed.
7924         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7925         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7926       }
7927       if (NextPHI != I.second)
7928         StoppedEvolving = false;
7929     }
7930
7931     // If all entries in CurrentIterVals == NextIterVals then we can stop
7932     // iterating, the loop can't continue to change.
7933     if (StoppedEvolving)
7934       return RetVal = CurrentIterVals[PN];
7935
7936     CurrentIterVals.swap(NextIterVals);
7937   }
7938 }
7939
7940 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7941                                                           Value *Cond,
7942                                                           bool ExitWhen) {
7943   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7944   if (!PN) return getCouldNotCompute();
7945
7946   // If the loop is canonicalized, the PHI will have exactly two entries.
7947   // That's the only form we support here.
7948   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7949
7950   DenseMap<Instruction *, Constant *> CurrentIterVals;
7951   BasicBlock *Header = L->getHeader();
7952   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7953
7954   BasicBlock *Latch = L->getLoopLatch();
7955   assert(Latch && "Should follow from NumIncomingValues == 2!");
7956
7957   for (PHINode &PHI : Header->phis()) {
7958     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7959       CurrentIterVals[&PHI] = StartCST;
7960   }
7961   if (!CurrentIterVals.count(PN))
7962     return getCouldNotCompute();
7963
7964   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7965   // the loop symbolically to determine when the condition gets a value of
7966   // "ExitWhen".
7967   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7968   const DataLayout &DL = getDataLayout();
7969   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7970     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7971         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7972
7973     // Couldn't symbolically evaluate.
7974     if (!CondVal) return getCouldNotCompute();
7975
7976     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7977       ++NumBruteForceTripCountsComputed;
7978       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7979     }
7980
7981     // Update all the PHI nodes for the next iteration.
7982     DenseMap<Instruction *, Constant *> NextIterVals;
7983
7984     // Create a list of which PHIs we need to compute. We want to do this before
7985     // calling EvaluateExpression on them because that may invalidate iterators
7986     // into CurrentIterVals.
7987     SmallVector<PHINode *, 8> PHIsToCompute;
7988     for (const auto &I : CurrentIterVals) {
7989       PHINode *PHI = dyn_cast<PHINode>(I.first);
7990       if (!PHI || PHI->getParent() != Header) continue;
7991       PHIsToCompute.push_back(PHI);
7992     }
7993     for (PHINode *PHI : PHIsToCompute) {
7994       Constant *&NextPHI = NextIterVals[PHI];
7995       if (NextPHI) continue;    // Already computed!
7996
7997       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7998       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7999     }
8000     CurrentIterVals.swap(NextIterVals);
8001   }
8002
8003   // Too many iterations were needed to evaluate.
8004   return getCouldNotCompute();
8005 }
8006
8007 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8008   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8009       ValuesAtScopes[V];
8010   // Check to see if we've folded this expression at this loop before.
8011   for (auto &LS : Values)
8012     if (LS.first == L)
8013       return LS.second ? LS.second : V;
8014
8015   Values.emplace_back(L, nullptr);
8016
8017   // Otherwise compute it.
8018   const SCEV *C = computeSCEVAtScope(V, L);
8019   for (auto &LS : reverse(ValuesAtScopes[V]))
8020     if (LS.first == L) {
8021       LS.second = C;
8022       break;
8023     }
8024   return C;
8025 }
8026
8027 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8028 /// will return Constants for objects which aren't represented by a
8029 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8030 /// Returns NULL if the SCEV isn't representable as a Constant.
8031 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8032   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
8033     case scCouldNotCompute:
8034     case scAddRecExpr:
8035       break;
8036     case scConstant:
8037       return cast<SCEVConstant>(V)->getValue();
8038     case scUnknown:
8039       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8040     case scSignExtend: {
8041       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8042       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8043         return ConstantExpr::getSExt(CastOp, SS->getType());
8044       break;
8045     }
8046     case scZeroExtend: {
8047       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8048       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8049         return ConstantExpr::getZExt(CastOp, SZ->getType());
8050       break;
8051     }
8052     case scTruncate: {
8053       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8054       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8055         return ConstantExpr::getTrunc(CastOp, ST->getType());
8056       break;
8057     }
8058     case scAddExpr: {
8059       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8060       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8061         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8062           unsigned AS = PTy->getAddressSpace();
8063           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8064           C = ConstantExpr::getBitCast(C, DestPtrTy);
8065         }
8066         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8067           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8068           if (!C2) return nullptr;
8069
8070           // First pointer!
8071           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8072             unsigned AS = C2->getType()->getPointerAddressSpace();
8073             std::swap(C, C2);
8074             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8075             // The offsets have been converted to bytes.  We can add bytes to an
8076             // i8* by GEP with the byte count in the first index.
8077             C = ConstantExpr::getBitCast(C, DestPtrTy);
8078           }
8079
8080           // Don't bother trying to sum two pointers. We probably can't
8081           // statically compute a load that results from it anyway.
8082           if (C2->getType()->isPointerTy())
8083             return nullptr;
8084
8085           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8086             if (PTy->getElementType()->isStructTy())
8087               C2 = ConstantExpr::getIntegerCast(
8088                   C2, Type::getInt32Ty(C->getContext()), true);
8089             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8090           } else
8091             C = ConstantExpr::getAdd(C, C2);
8092         }
8093         return C;
8094       }
8095       break;
8096     }
8097     case scMulExpr: {
8098       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8099       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8100         // Don't bother with pointers at all.
8101         if (C->getType()->isPointerTy()) return nullptr;
8102         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8103           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8104           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8105           C = ConstantExpr::getMul(C, C2);
8106         }
8107         return C;
8108       }
8109       break;
8110     }
8111     case scUDivExpr: {
8112       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8113       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8114         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8115           if (LHS->getType() == RHS->getType())
8116             return ConstantExpr::getUDiv(LHS, RHS);
8117       break;
8118     }
8119     case scSMaxExpr:
8120     case scUMaxExpr:
8121     case scSMinExpr:
8122     case scUMinExpr:
8123       break; // TODO: smax, umax, smin, umax.
8124   }
8125   return nullptr;
8126 }
8127
8128 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8129   if (isa<SCEVConstant>(V)) return V;
8130
8131   // If this instruction is evolved from a constant-evolving PHI, compute the
8132   // exit value from the loop without using SCEVs.
8133   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8134     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8135       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8136         const Loop *LI = this->LI[I->getParent()];
8137         // Looking for loop exit value.
8138         if (LI && LI->getParentLoop() == L &&
8139             PN->getParent() == LI->getHeader()) {
8140           // Okay, there is no closed form solution for the PHI node.  Check
8141           // to see if the loop that contains it has a known backedge-taken
8142           // count.  If so, we may be able to force computation of the exit
8143           // value.
8144           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8145           // This trivial case can show up in some degenerate cases where
8146           // the incoming IR has not yet been fully simplified.
8147           if (BackedgeTakenCount->isZero()) {
8148             Value *InitValue = nullptr;
8149             bool MultipleInitValues = false;
8150             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8151               if (!LI->contains(PN->getIncomingBlock(i))) {
8152                 if (!InitValue)
8153                   InitValue = PN->getIncomingValue(i);
8154                 else if (InitValue != PN->getIncomingValue(i)) {
8155                   MultipleInitValues = true;
8156                   break;
8157                 }
8158               }
8159             }
8160             if (!MultipleInitValues && InitValue)
8161               return getSCEV(InitValue);
8162           }
8163           // Do we have a loop invariant value flowing around the backedge
8164           // for a loop which must execute the backedge?
8165           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8166               isKnownPositive(BackedgeTakenCount) &&
8167               PN->getNumIncomingValues() == 2) {
8168             unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8169             const SCEV *OnBackedge = getSCEV(PN->getIncomingValue(InLoopPred));
8170             if (IsAvailableOnEntry(LI, DT, OnBackedge, PN->getParent()))
8171               return OnBackedge;
8172           }
8173           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8174             // Okay, we know how many times the containing loop executes.  If
8175             // this is a constant evolving PHI node, get the final value at
8176             // the specified iteration number.
8177             Constant *RV =
8178                 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8179             if (RV) return getSCEV(RV);
8180           }
8181         }
8182
8183         // If there is a single-input Phi, evaluate it at our scope. If we can
8184         // prove that this replacement does not break LCSSA form, use new value.
8185         if (PN->getNumOperands() == 1) {
8186           const SCEV *Input = getSCEV(PN->getOperand(0));
8187           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8188           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8189           // for the simplest case just support constants.
8190           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8191         }
8192       }
8193
8194       // Okay, this is an expression that we cannot symbolically evaluate
8195       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8196       // the arguments into constants, and if so, try to constant propagate the
8197       // result.  This is particularly useful for computing loop exit values.
8198       if (CanConstantFold(I)) {
8199         SmallVector<Constant *, 4> Operands;
8200         bool MadeImprovement = false;
8201         for (Value *Op : I->operands()) {
8202           if (Constant *C = dyn_cast<Constant>(Op)) {
8203             Operands.push_back(C);
8204             continue;
8205           }
8206
8207           // If any of the operands is non-constant and if they are
8208           // non-integer and non-pointer, don't even try to analyze them
8209           // with scev techniques.
8210           if (!isSCEVable(Op->getType()))
8211             return V;
8212
8213           const SCEV *OrigV = getSCEV(Op);
8214           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8215           MadeImprovement |= OrigV != OpV;
8216
8217           Constant *C = BuildConstantFromSCEV(OpV);
8218           if (!C) return V;
8219           if (C->getType() != Op->getType())
8220             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8221                                                               Op->getType(),
8222                                                               false),
8223                                       C, Op->getType());
8224           Operands.push_back(C);
8225         }
8226
8227         // Check to see if getSCEVAtScope actually made an improvement.
8228         if (MadeImprovement) {
8229           Constant *C = nullptr;
8230           const DataLayout &DL = getDataLayout();
8231           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8232             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8233                                                 Operands[1], DL, &TLI);
8234           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8235             if (!LI->isVolatile())
8236               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8237           } else
8238             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8239           if (!C) return V;
8240           return getSCEV(C);
8241         }
8242       }
8243     }
8244
8245     // This is some other type of SCEVUnknown, just return it.
8246     return V;
8247   }
8248
8249   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8250     // Avoid performing the look-up in the common case where the specified
8251     // expression has no loop-variant portions.
8252     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8253       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8254       if (OpAtScope != Comm->getOperand(i)) {
8255         // Okay, at least one of these operands is loop variant but might be
8256         // foldable.  Build a new instance of the folded commutative expression.
8257         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8258                                             Comm->op_begin()+i);
8259         NewOps.push_back(OpAtScope);
8260
8261         for (++i; i != e; ++i) {
8262           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8263           NewOps.push_back(OpAtScope);
8264         }
8265         if (isa<SCEVAddExpr>(Comm))
8266           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8267         if (isa<SCEVMulExpr>(Comm))
8268           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8269         if (isa<SCEVMinMaxExpr>(Comm))
8270           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8271         llvm_unreachable("Unknown commutative SCEV type!");
8272       }
8273     }
8274     // If we got here, all operands are loop invariant.
8275     return Comm;
8276   }
8277
8278   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8279     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8280     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8281     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8282       return Div;   // must be loop invariant
8283     return getUDivExpr(LHS, RHS);
8284   }
8285
8286   // If this is a loop recurrence for a loop that does not contain L, then we
8287   // are dealing with the final value computed by the loop.
8288   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8289     // First, attempt to evaluate each operand.
8290     // Avoid performing the look-up in the common case where the specified
8291     // expression has no loop-variant portions.
8292     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8293       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8294       if (OpAtScope == AddRec->getOperand(i))
8295         continue;
8296
8297       // Okay, at least one of these operands is loop variant but might be
8298       // foldable.  Build a new instance of the folded commutative expression.
8299       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8300                                           AddRec->op_begin()+i);
8301       NewOps.push_back(OpAtScope);
8302       for (++i; i != e; ++i)
8303         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8304
8305       const SCEV *FoldedRec =
8306         getAddRecExpr(NewOps, AddRec->getLoop(),
8307                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8308       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8309       // The addrec may be folded to a nonrecurrence, for example, if the
8310       // induction variable is multiplied by zero after constant folding. Go
8311       // ahead and return the folded value.
8312       if (!AddRec)
8313         return FoldedRec;
8314       break;
8315     }
8316
8317     // If the scope is outside the addrec's loop, evaluate it by using the
8318     // loop exit value of the addrec.
8319     if (!AddRec->getLoop()->contains(L)) {
8320       // To evaluate this recurrence, we need to know how many times the AddRec
8321       // loop iterates.  Compute this now.
8322       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8323       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8324
8325       // Then, evaluate the AddRec.
8326       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8327     }
8328
8329     return AddRec;
8330   }
8331
8332   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8333     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8334     if (Op == Cast->getOperand())
8335       return Cast;  // must be loop invariant
8336     return getZeroExtendExpr(Op, Cast->getType());
8337   }
8338
8339   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8340     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8341     if (Op == Cast->getOperand())
8342       return Cast;  // must be loop invariant
8343     return getSignExtendExpr(Op, Cast->getType());
8344   }
8345
8346   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8347     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8348     if (Op == Cast->getOperand())
8349       return Cast;  // must be loop invariant
8350     return getTruncateExpr(Op, Cast->getType());
8351   }
8352
8353   llvm_unreachable("Unknown SCEV type!");
8354 }
8355
8356 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8357   return getSCEVAtScope(getSCEV(V), L);
8358 }
8359
8360 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8361   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8362     return stripInjectiveFunctions(ZExt->getOperand());
8363   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8364     return stripInjectiveFunctions(SExt->getOperand());
8365   return S;
8366 }
8367
8368 /// Finds the minimum unsigned root of the following equation:
8369 ///
8370 ///     A * X = B (mod N)
8371 ///
8372 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8373 /// A and B isn't important.
8374 ///
8375 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8376 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8377                                                ScalarEvolution &SE) {
8378   uint32_t BW = A.getBitWidth();
8379   assert(BW == SE.getTypeSizeInBits(B->getType()));
8380   assert(A != 0 && "A must be non-zero.");
8381
8382   // 1. D = gcd(A, N)
8383   //
8384   // The gcd of A and N may have only one prime factor: 2. The number of
8385   // trailing zeros in A is its multiplicity
8386   uint32_t Mult2 = A.countTrailingZeros();
8387   // D = 2^Mult2
8388
8389   // 2. Check if B is divisible by D.
8390   //
8391   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8392   // is not less than multiplicity of this prime factor for D.
8393   if (SE.GetMinTrailingZeros(B) < Mult2)
8394     return SE.getCouldNotCompute();
8395
8396   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8397   // modulo (N / D).
8398   //
8399   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8400   // (N / D) in general. The inverse itself always fits into BW bits, though,
8401   // so we immediately truncate it.
8402   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8403   APInt Mod(BW + 1, 0);
8404   Mod.setBit(BW - Mult2);  // Mod = N / D
8405   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8406
8407   // 4. Compute the minimum unsigned root of the equation:
8408   // I * (B / D) mod (N / D)
8409   // To simplify the computation, we factor out the divide by D:
8410   // (I * B mod N) / D
8411   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8412   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8413 }
8414
8415 /// For a given quadratic addrec, generate coefficients of the corresponding
8416 /// quadratic equation, multiplied by a common value to ensure that they are
8417 /// integers.
8418 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8419 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8420 /// were multiplied by, and BitWidth is the bit width of the original addrec
8421 /// coefficients.
8422 /// This function returns None if the addrec coefficients are not compile-
8423 /// time constants.
8424 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8425 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8426   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8427   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8428   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8429   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8430   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8431                     << *AddRec << '\n');
8432
8433   // We currently can only solve this if the coefficients are constants.
8434   if (!LC || !MC || !NC) {
8435     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8436     return None;
8437   }
8438
8439   APInt L = LC->getAPInt();
8440   APInt M = MC->getAPInt();
8441   APInt N = NC->getAPInt();
8442   assert(!N.isNullValue() && "This is not a quadratic addrec");
8443
8444   unsigned BitWidth = LC->getAPInt().getBitWidth();
8445   unsigned NewWidth = BitWidth + 1;
8446   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8447                     << BitWidth << '\n');
8448   // The sign-extension (as opposed to a zero-extension) here matches the
8449   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8450   N = N.sext(NewWidth);
8451   M = M.sext(NewWidth);
8452   L = L.sext(NewWidth);
8453
8454   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8455   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8456   //   L+M, L+2M+N, L+3M+3N, ...
8457   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8458   //
8459   // The equation Acc = 0 is then
8460   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8461   // In a quadratic form it becomes:
8462   //   N n^2 + (2M-N) n + 2L = 0.
8463
8464   APInt A = N;
8465   APInt B = 2 * M - A;
8466   APInt C = 2 * L;
8467   APInt T = APInt(NewWidth, 2);
8468   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8469                     << "x + " << C << ", coeff bw: " << NewWidth
8470                     << ", multiplied by " << T << '\n');
8471   return std::make_tuple(A, B, C, T, BitWidth);
8472 }
8473
8474 /// Helper function to compare optional APInts:
8475 /// (a) if X and Y both exist, return min(X, Y),
8476 /// (b) if neither X nor Y exist, return None,
8477 /// (c) if exactly one of X and Y exists, return that value.
8478 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8479   if (X.hasValue() && Y.hasValue()) {
8480     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8481     APInt XW = X->sextOrSelf(W);
8482     APInt YW = Y->sextOrSelf(W);
8483     return XW.slt(YW) ? *X : *Y;
8484   }
8485   if (!X.hasValue() && !Y.hasValue())
8486     return None;
8487   return X.hasValue() ? *X : *Y;
8488 }
8489
8490 /// Helper function to truncate an optional APInt to a given BitWidth.
8491 /// When solving addrec-related equations, it is preferable to return a value
8492 /// that has the same bit width as the original addrec's coefficients. If the
8493 /// solution fits in the original bit width, truncate it (except for i1).
8494 /// Returning a value of a different bit width may inhibit some optimizations.
8495 ///
8496 /// In general, a solution to a quadratic equation generated from an addrec
8497 /// may require BW+1 bits, where BW is the bit width of the addrec's
8498 /// coefficients. The reason is that the coefficients of the quadratic
8499 /// equation are BW+1 bits wide (to avoid truncation when converting from
8500 /// the addrec to the equation).
8501 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8502   if (!X.hasValue())
8503     return None;
8504   unsigned W = X->getBitWidth();
8505   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8506     return X->trunc(BitWidth);
8507   return X;
8508 }
8509
8510 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8511 /// iterations. The values L, M, N are assumed to be signed, and they
8512 /// should all have the same bit widths.
8513 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8514 /// where BW is the bit width of the addrec's coefficients.
8515 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8516 /// returned as such, otherwise the bit width of the returned value may
8517 /// be greater than BW.
8518 ///
8519 /// This function returns None if
8520 /// (a) the addrec coefficients are not constant, or
8521 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8522 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8523 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8524 static Optional<APInt>
8525 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8526   APInt A, B, C, M;
8527   unsigned BitWidth;
8528   auto T = GetQuadraticEquation(AddRec);
8529   if (!T.hasValue())
8530     return None;
8531
8532   std::tie(A, B, C, M, BitWidth) = *T;
8533   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8534   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8535   if (!X.hasValue())
8536     return None;
8537
8538   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8539   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8540   if (!V->isZero())
8541     return None;
8542
8543   return TruncIfPossible(X, BitWidth);
8544 }
8545
8546 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8547 /// iterations. The values M, N are assumed to be signed, and they
8548 /// should all have the same bit widths.
8549 /// Find the least n such that c(n) does not belong to the given range,
8550 /// while c(n-1) does.
8551 ///
8552 /// This function returns None if
8553 /// (a) the addrec coefficients are not constant, or
8554 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8555 ///     bounds of the range.
8556 static Optional<APInt>
8557 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8558                           const ConstantRange &Range, ScalarEvolution &SE) {
8559   assert(AddRec->getOperand(0)->isZero() &&
8560          "Starting value of addrec should be 0");
8561   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8562                     << Range << ", addrec " << *AddRec << '\n');
8563   // This case is handled in getNumIterationsInRange. Here we can assume that
8564   // we start in the range.
8565   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8566          "Addrec's initial value should be in range");
8567
8568   APInt A, B, C, M;
8569   unsigned BitWidth;
8570   auto T = GetQuadraticEquation(AddRec);
8571   if (!T.hasValue())
8572     return None;
8573
8574   // Be careful about the return value: there can be two reasons for not
8575   // returning an actual number. First, if no solutions to the equations
8576   // were found, and second, if the solutions don't leave the given range.
8577   // The first case means that the actual solution is "unknown", the second
8578   // means that it's known, but not valid. If the solution is unknown, we
8579   // cannot make any conclusions.
8580   // Return a pair: the optional solution and a flag indicating if the
8581   // solution was found.
8582   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8583     // Solve for signed overflow and unsigned overflow, pick the lower
8584     // solution.
8585     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8586                       << Bound << " (before multiplying by " << M << ")\n");
8587     Bound *= M; // The quadratic equation multiplier.
8588
8589     Optional<APInt> SO = None;
8590     if (BitWidth > 1) {
8591       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8592                            "signed overflow\n");
8593       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8594     }
8595     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8596                          "unsigned overflow\n");
8597     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8598                                                               BitWidth+1);
8599
8600     auto LeavesRange = [&] (const APInt &X) {
8601       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8602       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8603       if (Range.contains(V0->getValue()))
8604         return false;
8605       // X should be at least 1, so X-1 is non-negative.
8606       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8607       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8608       if (Range.contains(V1->getValue()))
8609         return true;
8610       return false;
8611     };
8612
8613     // If SolveQuadraticEquationWrap returns None, it means that there can
8614     // be a solution, but the function failed to find it. We cannot treat it
8615     // as "no solution".
8616     if (!SO.hasValue() || !UO.hasValue())
8617       return { None, false };
8618
8619     // Check the smaller value first to see if it leaves the range.
8620     // At this point, both SO and UO must have values.
8621     Optional<APInt> Min = MinOptional(SO, UO);
8622     if (LeavesRange(*Min))
8623       return { Min, true };
8624     Optional<APInt> Max = Min == SO ? UO : SO;
8625     if (LeavesRange(*Max))
8626       return { Max, true };
8627
8628     // Solutions were found, but were eliminated, hence the "true".
8629     return { None, true };
8630   };
8631
8632   std::tie(A, B, C, M, BitWidth) = *T;
8633   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8634   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8635   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8636   auto SL = SolveForBoundary(Lower);
8637   auto SU = SolveForBoundary(Upper);
8638   // If any of the solutions was unknown, no meaninigful conclusions can
8639   // be made.
8640   if (!SL.second || !SU.second)
8641     return None;
8642
8643   // Claim: The correct solution is not some value between Min and Max.
8644   //
8645   // Justification: Assuming that Min and Max are different values, one of
8646   // them is when the first signed overflow happens, the other is when the
8647   // first unsigned overflow happens. Crossing the range boundary is only
8648   // possible via an overflow (treating 0 as a special case of it, modeling
8649   // an overflow as crossing k*2^W for some k).
8650   //
8651   // The interesting case here is when Min was eliminated as an invalid
8652   // solution, but Max was not. The argument is that if there was another
8653   // overflow between Min and Max, it would also have been eliminated if
8654   // it was considered.
8655   //
8656   // For a given boundary, it is possible to have two overflows of the same
8657   // type (signed/unsigned) without having the other type in between: this
8658   // can happen when the vertex of the parabola is between the iterations
8659   // corresponding to the overflows. This is only possible when the two
8660   // overflows cross k*2^W for the same k. In such case, if the second one
8661   // left the range (and was the first one to do so), the first overflow
8662   // would have to enter the range, which would mean that either we had left
8663   // the range before or that we started outside of it. Both of these cases
8664   // are contradictions.
8665   //
8666   // Claim: In the case where SolveForBoundary returns None, the correct
8667   // solution is not some value between the Max for this boundary and the
8668   // Min of the other boundary.
8669   //
8670   // Justification: Assume that we had such Max_A and Min_B corresponding
8671   // to range boundaries A and B and such that Max_A < Min_B. If there was
8672   // a solution between Max_A and Min_B, it would have to be caused by an
8673   // overflow corresponding to either A or B. It cannot correspond to B,
8674   // since Min_B is the first occurrence of such an overflow. If it
8675   // corresponded to A, it would have to be either a signed or an unsigned
8676   // overflow that is larger than both eliminated overflows for A. But
8677   // between the eliminated overflows and this overflow, the values would
8678   // cover the entire value space, thus crossing the other boundary, which
8679   // is a contradiction.
8680
8681   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8682 }
8683
8684 ScalarEvolution::ExitLimit
8685 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8686                               bool AllowPredicates) {
8687
8688   // This is only used for loops with a "x != y" exit test. The exit condition
8689   // is now expressed as a single expression, V = x-y. So the exit test is
8690   // effectively V != 0.  We know and take advantage of the fact that this
8691   // expression only being used in a comparison by zero context.
8692
8693   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8694   // If the value is a constant
8695   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8696     // If the value is already zero, the branch will execute zero times.
8697     if (C->getValue()->isZero()) return C;
8698     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8699   }
8700
8701   const SCEVAddRecExpr *AddRec =
8702       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8703
8704   if (!AddRec && AllowPredicates)
8705     // Try to make this an AddRec using runtime tests, in the first X
8706     // iterations of this loop, where X is the SCEV expression found by the
8707     // algorithm below.
8708     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8709
8710   if (!AddRec || AddRec->getLoop() != L)
8711     return getCouldNotCompute();
8712
8713   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8714   // the quadratic equation to solve it.
8715   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8716     // We can only use this value if the chrec ends up with an exact zero
8717     // value at this index.  When solving for "X*X != 5", for example, we
8718     // should not accept a root of 2.
8719     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8720       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8721       return ExitLimit(R, R, false, Predicates);
8722     }
8723     return getCouldNotCompute();
8724   }
8725
8726   // Otherwise we can only handle this if it is affine.
8727   if (!AddRec->isAffine())
8728     return getCouldNotCompute();
8729
8730   // If this is an affine expression, the execution count of this branch is
8731   // the minimum unsigned root of the following equation:
8732   //
8733   //     Start + Step*N = 0 (mod 2^BW)
8734   //
8735   // equivalent to:
8736   //
8737   //             Step*N = -Start (mod 2^BW)
8738   //
8739   // where BW is the common bit width of Start and Step.
8740
8741   // Get the initial value for the loop.
8742   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8743   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8744
8745   // For now we handle only constant steps.
8746   //
8747   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8748   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8749   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8750   // We have not yet seen any such cases.
8751   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8752   if (!StepC || StepC->getValue()->isZero())
8753     return getCouldNotCompute();
8754
8755   // For positive steps (counting up until unsigned overflow):
8756   //   N = -Start/Step (as unsigned)
8757   // For negative steps (counting down to zero):
8758   //   N = Start/-Step
8759   // First compute the unsigned distance from zero in the direction of Step.
8760   bool CountDown = StepC->getAPInt().isNegative();
8761   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8762
8763   // Handle unitary steps, which cannot wraparound.
8764   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8765   //   N = Distance (as unsigned)
8766   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8767     APInt MaxBECount = getUnsignedRangeMax(Distance);
8768
8769     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8770     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8771     // case, and see if we can improve the bound.
8772     //
8773     // Explicitly handling this here is necessary because getUnsignedRange
8774     // isn't context-sensitive; it doesn't know that we only care about the
8775     // range inside the loop.
8776     const SCEV *Zero = getZero(Distance->getType());
8777     const SCEV *One = getOne(Distance->getType());
8778     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8779     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8780       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8781       // as "unsigned_max(Distance + 1) - 1".
8782       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8783       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8784     }
8785     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8786   }
8787
8788   // If the condition controls loop exit (the loop exits only if the expression
8789   // is true) and the addition is no-wrap we can use unsigned divide to
8790   // compute the backedge count.  In this case, the step may not divide the
8791   // distance, but we don't care because if the condition is "missed" the loop
8792   // will have undefined behavior due to wrapping.
8793   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8794       loopHasNoAbnormalExits(AddRec->getLoop())) {
8795     const SCEV *Exact =
8796         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8797     const SCEV *Max =
8798         Exact == getCouldNotCompute()
8799             ? Exact
8800             : getConstant(getUnsignedRangeMax(Exact));
8801     return ExitLimit(Exact, Max, false, Predicates);
8802   }
8803
8804   // Solve the general equation.
8805   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8806                                                getNegativeSCEV(Start), *this);
8807   const SCEV *M = E == getCouldNotCompute()
8808                       ? E
8809                       : getConstant(getUnsignedRangeMax(E));
8810   return ExitLimit(E, M, false, Predicates);
8811 }
8812
8813 ScalarEvolution::ExitLimit
8814 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8815   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8816   // handle them yet except for the trivial case.  This could be expanded in the
8817   // future as needed.
8818
8819   // If the value is a constant, check to see if it is known to be non-zero
8820   // already.  If so, the backedge will execute zero times.
8821   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8822     if (!C->getValue()->isZero())
8823       return getZero(C->getType());
8824     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8825   }
8826
8827   // We could implement others, but I really doubt anyone writes loops like
8828   // this, and if they did, they would already be constant folded.
8829   return getCouldNotCompute();
8830 }
8831
8832 std::pair<BasicBlock *, BasicBlock *>
8833 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8834   // If the block has a unique predecessor, then there is no path from the
8835   // predecessor to the block that does not go through the direct edge
8836   // from the predecessor to the block.
8837   if (BasicBlock *Pred = BB->getSinglePredecessor())
8838     return {Pred, BB};
8839
8840   // A loop's header is defined to be a block that dominates the loop.
8841   // If the header has a unique predecessor outside the loop, it must be
8842   // a block that has exactly one successor that can reach the loop.
8843   if (Loop *L = LI.getLoopFor(BB))
8844     return {L->getLoopPredecessor(), L->getHeader()};
8845
8846   return {nullptr, nullptr};
8847 }
8848
8849 /// SCEV structural equivalence is usually sufficient for testing whether two
8850 /// expressions are equal, however for the purposes of looking for a condition
8851 /// guarding a loop, it can be useful to be a little more general, since a
8852 /// front-end may have replicated the controlling expression.
8853 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8854   // Quick check to see if they are the same SCEV.
8855   if (A == B) return true;
8856
8857   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8858     // Not all instructions that are "identical" compute the same value.  For
8859     // instance, two distinct alloca instructions allocating the same type are
8860     // identical and do not read memory; but compute distinct values.
8861     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8862   };
8863
8864   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8865   // two different instructions with the same value. Check for this case.
8866   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8867     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8868       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8869         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8870           if (ComputesEqualValues(AI, BI))
8871             return true;
8872
8873   // Otherwise assume they may have a different value.
8874   return false;
8875 }
8876
8877 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8878                                            const SCEV *&LHS, const SCEV *&RHS,
8879                                            unsigned Depth) {
8880   bool Changed = false;
8881   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8882   // '0 != 0'.
8883   auto TrivialCase = [&](bool TriviallyTrue) {
8884     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8885     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8886     return true;
8887   };
8888   // If we hit the max recursion limit bail out.
8889   if (Depth >= 3)
8890     return false;
8891
8892   // Canonicalize a constant to the right side.
8893   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8894     // Check for both operands constant.
8895     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8896       if (ConstantExpr::getICmp(Pred,
8897                                 LHSC->getValue(),
8898                                 RHSC->getValue())->isNullValue())
8899         return TrivialCase(false);
8900       else
8901         return TrivialCase(true);
8902     }
8903     // Otherwise swap the operands to put the constant on the right.
8904     std::swap(LHS, RHS);
8905     Pred = ICmpInst::getSwappedPredicate(Pred);
8906     Changed = true;
8907   }
8908
8909   // If we're comparing an addrec with a value which is loop-invariant in the
8910   // addrec's loop, put the addrec on the left. Also make a dominance check,
8911   // as both operands could be addrecs loop-invariant in each other's loop.
8912   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8913     const Loop *L = AR->getLoop();
8914     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8915       std::swap(LHS, RHS);
8916       Pred = ICmpInst::getSwappedPredicate(Pred);
8917       Changed = true;
8918     }
8919   }
8920
8921   // If there's a constant operand, canonicalize comparisons with boundary
8922   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8923   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8924     const APInt &RA = RC->getAPInt();
8925
8926     bool SimplifiedByConstantRange = false;
8927
8928     if (!ICmpInst::isEquality(Pred)) {
8929       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8930       if (ExactCR.isFullSet())
8931         return TrivialCase(true);
8932       else if (ExactCR.isEmptySet())
8933         return TrivialCase(false);
8934
8935       APInt NewRHS;
8936       CmpInst::Predicate NewPred;
8937       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8938           ICmpInst::isEquality(NewPred)) {
8939         // We were able to convert an inequality to an equality.
8940         Pred = NewPred;
8941         RHS = getConstant(NewRHS);
8942         Changed = SimplifiedByConstantRange = true;
8943       }
8944     }
8945
8946     if (!SimplifiedByConstantRange) {
8947       switch (Pred) {
8948       default:
8949         break;
8950       case ICmpInst::ICMP_EQ:
8951       case ICmpInst::ICMP_NE:
8952         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8953         if (!RA)
8954           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8955             if (const SCEVMulExpr *ME =
8956                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8957               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8958                   ME->getOperand(0)->isAllOnesValue()) {
8959                 RHS = AE->getOperand(1);
8960                 LHS = ME->getOperand(1);
8961                 Changed = true;
8962               }
8963         break;
8964
8965
8966         // The "Should have been caught earlier!" messages refer to the fact
8967         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8968         // should have fired on the corresponding cases, and canonicalized the
8969         // check to trivial case.
8970
8971       case ICmpInst::ICMP_UGE:
8972         assert(!RA.isMinValue() && "Should have been caught earlier!");
8973         Pred = ICmpInst::ICMP_UGT;
8974         RHS = getConstant(RA - 1);
8975         Changed = true;
8976         break;
8977       case ICmpInst::ICMP_ULE:
8978         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8979         Pred = ICmpInst::ICMP_ULT;
8980         RHS = getConstant(RA + 1);
8981         Changed = true;
8982         break;
8983       case ICmpInst::ICMP_SGE:
8984         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8985         Pred = ICmpInst::ICMP_SGT;
8986         RHS = getConstant(RA - 1);
8987         Changed = true;
8988         break;
8989       case ICmpInst::ICMP_SLE:
8990         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8991         Pred = ICmpInst::ICMP_SLT;
8992         RHS = getConstant(RA + 1);
8993         Changed = true;
8994         break;
8995       }
8996     }
8997   }
8998
8999   // Check for obvious equality.
9000   if (HasSameValue(LHS, RHS)) {
9001     if (ICmpInst::isTrueWhenEqual(Pred))
9002       return TrivialCase(true);
9003     if (ICmpInst::isFalseWhenEqual(Pred))
9004       return TrivialCase(false);
9005   }
9006
9007   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9008   // adding or subtracting 1 from one of the operands.
9009   switch (Pred) {
9010   case ICmpInst::ICMP_SLE:
9011     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9012       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9013                        SCEV::FlagNSW);
9014       Pred = ICmpInst::ICMP_SLT;
9015       Changed = true;
9016     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9017       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9018                        SCEV::FlagNSW);
9019       Pred = ICmpInst::ICMP_SLT;
9020       Changed = true;
9021     }
9022     break;
9023   case ICmpInst::ICMP_SGE:
9024     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9025       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9026                        SCEV::FlagNSW);
9027       Pred = ICmpInst::ICMP_SGT;
9028       Changed = true;
9029     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9030       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9031                        SCEV::FlagNSW);
9032       Pred = ICmpInst::ICMP_SGT;
9033       Changed = true;
9034     }
9035     break;
9036   case ICmpInst::ICMP_ULE:
9037     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9038       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9039                        SCEV::FlagNUW);
9040       Pred = ICmpInst::ICMP_ULT;
9041       Changed = true;
9042     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9043       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9044       Pred = ICmpInst::ICMP_ULT;
9045       Changed = true;
9046     }
9047     break;
9048   case ICmpInst::ICMP_UGE:
9049     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9050       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9051       Pred = ICmpInst::ICMP_UGT;
9052       Changed = true;
9053     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9054       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9055                        SCEV::FlagNUW);
9056       Pred = ICmpInst::ICMP_UGT;
9057       Changed = true;
9058     }
9059     break;
9060   default:
9061     break;
9062   }
9063
9064   // TODO: More simplifications are possible here.
9065
9066   // Recursively simplify until we either hit a recursion limit or nothing
9067   // changes.
9068   if (Changed)
9069     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9070
9071   return Changed;
9072 }
9073
9074 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9075   return getSignedRangeMax(S).isNegative();
9076 }
9077
9078 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9079   return getSignedRangeMin(S).isStrictlyPositive();
9080 }
9081
9082 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9083   return !getSignedRangeMin(S).isNegative();
9084 }
9085
9086 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9087   return !getSignedRangeMax(S).isStrictlyPositive();
9088 }
9089
9090 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9091   return isKnownNegative(S) || isKnownPositive(S);
9092 }
9093
9094 std::pair<const SCEV *, const SCEV *>
9095 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9096   // Compute SCEV on entry of loop L.
9097   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9098   if (Start == getCouldNotCompute())
9099     return { Start, Start };
9100   // Compute post increment SCEV for loop L.
9101   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9102   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9103   return { Start, PostInc };
9104 }
9105
9106 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9107                                           const SCEV *LHS, const SCEV *RHS) {
9108   // First collect all loops.
9109   SmallPtrSet<const Loop *, 8> LoopsUsed;
9110   getUsedLoops(LHS, LoopsUsed);
9111   getUsedLoops(RHS, LoopsUsed);
9112
9113   if (LoopsUsed.empty())
9114     return false;
9115
9116   // Domination relationship must be a linear order on collected loops.
9117 #ifndef NDEBUG
9118   for (auto *L1 : LoopsUsed)
9119     for (auto *L2 : LoopsUsed)
9120       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9121               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9122              "Domination relationship is not a linear order");
9123 #endif
9124
9125   const Loop *MDL =
9126       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9127                         [&](const Loop *L1, const Loop *L2) {
9128          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9129        });
9130
9131   // Get init and post increment value for LHS.
9132   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9133   // if LHS contains unknown non-invariant SCEV then bail out.
9134   if (SplitLHS.first == getCouldNotCompute())
9135     return false;
9136   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9137   // Get init and post increment value for RHS.
9138   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9139   // if RHS contains unknown non-invariant SCEV then bail out.
9140   if (SplitRHS.first == getCouldNotCompute())
9141     return false;
9142   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9143   // It is possible that init SCEV contains an invariant load but it does
9144   // not dominate MDL and is not available at MDL loop entry, so we should
9145   // check it here.
9146   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9147       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9148     return false;
9149
9150   return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
9151          isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9152                                      SplitRHS.second);
9153 }
9154
9155 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9156                                        const SCEV *LHS, const SCEV *RHS) {
9157   // Canonicalize the inputs first.
9158   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9159
9160   if (isKnownViaInduction(Pred, LHS, RHS))
9161     return true;
9162
9163   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9164     return true;
9165
9166   // Otherwise see what can be done with some simple reasoning.
9167   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9168 }
9169
9170 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9171                                               const SCEVAddRecExpr *LHS,
9172                                               const SCEV *RHS) {
9173   const Loop *L = LHS->getLoop();
9174   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9175          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9176 }
9177
9178 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9179                                            ICmpInst::Predicate Pred,
9180                                            bool &Increasing) {
9181   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9182
9183 #ifndef NDEBUG
9184   // Verify an invariant: inverting the predicate should turn a monotonically
9185   // increasing change to a monotonically decreasing one, and vice versa.
9186   bool IncreasingSwapped;
9187   bool ResultSwapped = isMonotonicPredicateImpl(
9188       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9189
9190   assert(Result == ResultSwapped && "should be able to analyze both!");
9191   if (ResultSwapped)
9192     assert(Increasing == !IncreasingSwapped &&
9193            "monotonicity should flip as we flip the predicate");
9194 #endif
9195
9196   return Result;
9197 }
9198
9199 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9200                                                ICmpInst::Predicate Pred,
9201                                                bool &Increasing) {
9202
9203   // A zero step value for LHS means the induction variable is essentially a
9204   // loop invariant value. We don't really depend on the predicate actually
9205   // flipping from false to true (for increasing predicates, and the other way
9206   // around for decreasing predicates), all we care about is that *if* the
9207   // predicate changes then it only changes from false to true.
9208   //
9209   // A zero step value in itself is not very useful, but there may be places
9210   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9211   // as general as possible.
9212
9213   switch (Pred) {
9214   default:
9215     return false; // Conservative answer
9216
9217   case ICmpInst::ICMP_UGT:
9218   case ICmpInst::ICMP_UGE:
9219   case ICmpInst::ICMP_ULT:
9220   case ICmpInst::ICMP_ULE:
9221     if (!LHS->hasNoUnsignedWrap())
9222       return false;
9223
9224     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9225     return true;
9226
9227   case ICmpInst::ICMP_SGT:
9228   case ICmpInst::ICMP_SGE:
9229   case ICmpInst::ICMP_SLT:
9230   case ICmpInst::ICMP_SLE: {
9231     if (!LHS->hasNoSignedWrap())
9232       return false;
9233
9234     const SCEV *Step = LHS->getStepRecurrence(*this);
9235
9236     if (isKnownNonNegative(Step)) {
9237       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9238       return true;
9239     }
9240
9241     if (isKnownNonPositive(Step)) {
9242       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9243       return true;
9244     }
9245
9246     return false;
9247   }
9248
9249   }
9250
9251   llvm_unreachable("switch has default clause!");
9252 }
9253
9254 bool ScalarEvolution::isLoopInvariantPredicate(
9255     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9256     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9257     const SCEV *&InvariantRHS) {
9258
9259   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9260   if (!isLoopInvariant(RHS, L)) {
9261     if (!isLoopInvariant(LHS, L))
9262       return false;
9263
9264     std::swap(LHS, RHS);
9265     Pred = ICmpInst::getSwappedPredicate(Pred);
9266   }
9267
9268   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9269   if (!ArLHS || ArLHS->getLoop() != L)
9270     return false;
9271
9272   bool Increasing;
9273   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9274     return false;
9275
9276   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9277   // true as the loop iterates, and the backedge is control dependent on
9278   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9279   //
9280   //   * if the predicate was false in the first iteration then the predicate
9281   //     is never evaluated again, since the loop exits without taking the
9282   //     backedge.
9283   //   * if the predicate was true in the first iteration then it will
9284   //     continue to be true for all future iterations since it is
9285   //     monotonically increasing.
9286   //
9287   // For both the above possibilities, we can replace the loop varying
9288   // predicate with its value on the first iteration of the loop (which is
9289   // loop invariant).
9290   //
9291   // A similar reasoning applies for a monotonically decreasing predicate, by
9292   // replacing true with false and false with true in the above two bullets.
9293
9294   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9295
9296   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9297     return false;
9298
9299   InvariantPred = Pred;
9300   InvariantLHS = ArLHS->getStart();
9301   InvariantRHS = RHS;
9302   return true;
9303 }
9304
9305 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9306     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9307   if (HasSameValue(LHS, RHS))
9308     return ICmpInst::isTrueWhenEqual(Pred);
9309
9310   // This code is split out from isKnownPredicate because it is called from
9311   // within isLoopEntryGuardedByCond.
9312
9313   auto CheckRanges =
9314       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9315     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9316         .contains(RangeLHS);
9317   };
9318
9319   // The check at the top of the function catches the case where the values are
9320   // known to be equal.
9321   if (Pred == CmpInst::ICMP_EQ)
9322     return false;
9323
9324   if (Pred == CmpInst::ICMP_NE)
9325     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9326            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9327            isKnownNonZero(getMinusSCEV(LHS, RHS));
9328
9329   if (CmpInst::isSigned(Pred))
9330     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9331
9332   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9333 }
9334
9335 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9336                                                     const SCEV *LHS,
9337                                                     const SCEV *RHS) {
9338   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9339   // Return Y via OutY.
9340   auto MatchBinaryAddToConst =
9341       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9342              SCEV::NoWrapFlags ExpectedFlags) {
9343     const SCEV *NonConstOp, *ConstOp;
9344     SCEV::NoWrapFlags FlagsPresent;
9345
9346     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9347         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9348       return false;
9349
9350     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9351     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9352   };
9353
9354   APInt C;
9355
9356   switch (Pred) {
9357   default:
9358     break;
9359
9360   case ICmpInst::ICMP_SGE:
9361     std::swap(LHS, RHS);
9362     LLVM_FALLTHROUGH;
9363   case ICmpInst::ICMP_SLE:
9364     // X s<= (X + C)<nsw> if C >= 0
9365     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9366       return true;
9367
9368     // (X + C)<nsw> s<= X if C <= 0
9369     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9370         !C.isStrictlyPositive())
9371       return true;
9372     break;
9373
9374   case ICmpInst::ICMP_SGT:
9375     std::swap(LHS, RHS);
9376     LLVM_FALLTHROUGH;
9377   case ICmpInst::ICMP_SLT:
9378     // X s< (X + C)<nsw> if C > 0
9379     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9380         C.isStrictlyPositive())
9381       return true;
9382
9383     // (X + C)<nsw> s< X if C < 0
9384     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9385       return true;
9386     break;
9387   }
9388
9389   return false;
9390 }
9391
9392 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9393                                                    const SCEV *LHS,
9394                                                    const SCEV *RHS) {
9395   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9396     return false;
9397
9398   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9399   // the stack can result in exponential time complexity.
9400   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9401
9402   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9403   //
9404   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9405   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9406   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9407   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9408   // use isKnownPredicate later if needed.
9409   return isKnownNonNegative(RHS) &&
9410          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9411          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9412 }
9413
9414 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9415                                         ICmpInst::Predicate Pred,
9416                                         const SCEV *LHS, const SCEV *RHS) {
9417   // No need to even try if we know the module has no guards.
9418   if (!HasGuards)
9419     return false;
9420
9421   return any_of(*BB, [&](Instruction &I) {
9422     using namespace llvm::PatternMatch;
9423
9424     Value *Condition;
9425     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9426                          m_Value(Condition))) &&
9427            isImpliedCond(Pred, LHS, RHS, Condition, false);
9428   });
9429 }
9430
9431 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9432 /// protected by a conditional between LHS and RHS.  This is used to
9433 /// to eliminate casts.
9434 bool
9435 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9436                                              ICmpInst::Predicate Pred,
9437                                              const SCEV *LHS, const SCEV *RHS) {
9438   // Interpret a null as meaning no loop, where there is obviously no guard
9439   // (interprocedural conditions notwithstanding).
9440   if (!L) return true;
9441
9442   if (VerifyIR)
9443     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9444            "This cannot be done on broken IR!");
9445
9446
9447   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9448     return true;
9449
9450   BasicBlock *Latch = L->getLoopLatch();
9451   if (!Latch)
9452     return false;
9453
9454   BranchInst *LoopContinuePredicate =
9455     dyn_cast<BranchInst>(Latch->getTerminator());
9456   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9457       isImpliedCond(Pred, LHS, RHS,
9458                     LoopContinuePredicate->getCondition(),
9459                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9460     return true;
9461
9462   // We don't want more than one activation of the following loops on the stack
9463   // -- that can lead to O(n!) time complexity.
9464   if (WalkingBEDominatingConds)
9465     return false;
9466
9467   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9468
9469   // See if we can exploit a trip count to prove the predicate.
9470   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9471   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9472   if (LatchBECount != getCouldNotCompute()) {
9473     // We know that Latch branches back to the loop header exactly
9474     // LatchBECount times.  This means the backdege condition at Latch is
9475     // equivalent to  "{0,+,1} u< LatchBECount".
9476     Type *Ty = LatchBECount->getType();
9477     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9478     const SCEV *LoopCounter =
9479       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9480     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9481                       LatchBECount))
9482       return true;
9483   }
9484
9485   // Check conditions due to any @llvm.assume intrinsics.
9486   for (auto &AssumeVH : AC.assumptions()) {
9487     if (!AssumeVH)
9488       continue;
9489     auto *CI = cast<CallInst>(AssumeVH);
9490     if (!DT.dominates(CI, Latch->getTerminator()))
9491       continue;
9492
9493     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9494       return true;
9495   }
9496
9497   // If the loop is not reachable from the entry block, we risk running into an
9498   // infinite loop as we walk up into the dom tree.  These loops do not matter
9499   // anyway, so we just return a conservative answer when we see them.
9500   if (!DT.isReachableFromEntry(L->getHeader()))
9501     return false;
9502
9503   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9504     return true;
9505
9506   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9507        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9508     assert(DTN && "should reach the loop header before reaching the root!");
9509
9510     BasicBlock *BB = DTN->getBlock();
9511     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9512       return true;
9513
9514     BasicBlock *PBB = BB->getSinglePredecessor();
9515     if (!PBB)
9516       continue;
9517
9518     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9519     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9520       continue;
9521
9522     Value *Condition = ContinuePredicate->getCondition();
9523
9524     // If we have an edge `E` within the loop body that dominates the only
9525     // latch, the condition guarding `E` also guards the backedge.  This
9526     // reasoning works only for loops with a single latch.
9527
9528     BasicBlockEdge DominatingEdge(PBB, BB);
9529     if (DominatingEdge.isSingleEdge()) {
9530       // We're constructively (and conservatively) enumerating edges within the
9531       // loop body that dominate the latch.  The dominator tree better agree
9532       // with us on this:
9533       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9534
9535       if (isImpliedCond(Pred, LHS, RHS, Condition,
9536                         BB != ContinuePredicate->getSuccessor(0)))
9537         return true;
9538     }
9539   }
9540
9541   return false;
9542 }
9543
9544 bool
9545 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9546                                           ICmpInst::Predicate Pred,
9547                                           const SCEV *LHS, const SCEV *RHS) {
9548   // Interpret a null as meaning no loop, where there is obviously no guard
9549   // (interprocedural conditions notwithstanding).
9550   if (!L) return false;
9551
9552   if (VerifyIR)
9553     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9554            "This cannot be done on broken IR!");
9555
9556   // Both LHS and RHS must be available at loop entry.
9557   assert(isAvailableAtLoopEntry(LHS, L) &&
9558          "LHS is not available at Loop Entry");
9559   assert(isAvailableAtLoopEntry(RHS, L) &&
9560          "RHS is not available at Loop Entry");
9561
9562   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9563     return true;
9564
9565   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9566   // the facts (a >= b && a != b) separately. A typical situation is when the
9567   // non-strict comparison is known from ranges and non-equality is known from
9568   // dominating predicates. If we are proving strict comparison, we always try
9569   // to prove non-equality and non-strict comparison separately.
9570   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9571   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9572   bool ProvedNonStrictComparison = false;
9573   bool ProvedNonEquality = false;
9574
9575   if (ProvingStrictComparison) {
9576     ProvedNonStrictComparison =
9577         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9578     ProvedNonEquality =
9579         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9580     if (ProvedNonStrictComparison && ProvedNonEquality)
9581       return true;
9582   }
9583
9584   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9585   auto ProveViaGuard = [&](BasicBlock *Block) {
9586     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9587       return true;
9588     if (ProvingStrictComparison) {
9589       if (!ProvedNonStrictComparison)
9590         ProvedNonStrictComparison =
9591             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9592       if (!ProvedNonEquality)
9593         ProvedNonEquality =
9594             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9595       if (ProvedNonStrictComparison && ProvedNonEquality)
9596         return true;
9597     }
9598     return false;
9599   };
9600
9601   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9602   auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9603     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9604       return true;
9605     if (ProvingStrictComparison) {
9606       if (!ProvedNonStrictComparison)
9607         ProvedNonStrictComparison =
9608             isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9609       if (!ProvedNonEquality)
9610         ProvedNonEquality =
9611             isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9612       if (ProvedNonStrictComparison && ProvedNonEquality)
9613         return true;
9614     }
9615     return false;
9616   };
9617
9618   // Starting at the loop predecessor, climb up the predecessor chain, as long
9619   // as there are predecessors that can be found that have unique successors
9620   // leading to the original header.
9621   for (std::pair<BasicBlock *, BasicBlock *>
9622          Pair(L->getLoopPredecessor(), L->getHeader());
9623        Pair.first;
9624        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9625
9626     if (ProveViaGuard(Pair.first))
9627       return true;
9628
9629     BranchInst *LoopEntryPredicate =
9630       dyn_cast<BranchInst>(Pair.first->getTerminator());
9631     if (!LoopEntryPredicate ||
9632         LoopEntryPredicate->isUnconditional())
9633       continue;
9634
9635     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9636                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9637       return true;
9638   }
9639
9640   // Check conditions due to any @llvm.assume intrinsics.
9641   for (auto &AssumeVH : AC.assumptions()) {
9642     if (!AssumeVH)
9643       continue;
9644     auto *CI = cast<CallInst>(AssumeVH);
9645     if (!DT.dominates(CI, L->getHeader()))
9646       continue;
9647
9648     if (ProveViaCond(CI->getArgOperand(0), false))
9649       return true;
9650   }
9651
9652   return false;
9653 }
9654
9655 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9656                                     const SCEV *LHS, const SCEV *RHS,
9657                                     Value *FoundCondValue,
9658                                     bool Inverse) {
9659   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9660     return false;
9661
9662   auto ClearOnExit =
9663       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9664
9665   // Recursively handle And and Or conditions.
9666   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9667     if (BO->getOpcode() == Instruction::And) {
9668       if (!Inverse)
9669         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9670                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9671     } else if (BO->getOpcode() == Instruction::Or) {
9672       if (Inverse)
9673         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9674                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9675     }
9676   }
9677
9678   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9679   if (!ICI) return false;
9680
9681   // Now that we found a conditional branch that dominates the loop or controls
9682   // the loop latch. Check to see if it is the comparison we are looking for.
9683   ICmpInst::Predicate FoundPred;
9684   if (Inverse)
9685     FoundPred = ICI->getInversePredicate();
9686   else
9687     FoundPred = ICI->getPredicate();
9688
9689   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9690   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9691
9692   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9693 }
9694
9695 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9696                                     const SCEV *RHS,
9697                                     ICmpInst::Predicate FoundPred,
9698                                     const SCEV *FoundLHS,
9699                                     const SCEV *FoundRHS) {
9700   // Balance the types.
9701   if (getTypeSizeInBits(LHS->getType()) <
9702       getTypeSizeInBits(FoundLHS->getType())) {
9703     if (CmpInst::isSigned(Pred)) {
9704       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9705       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9706     } else {
9707       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9708       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9709     }
9710   } else if (getTypeSizeInBits(LHS->getType()) >
9711       getTypeSizeInBits(FoundLHS->getType())) {
9712     if (CmpInst::isSigned(FoundPred)) {
9713       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9714       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9715     } else {
9716       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9717       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9718     }
9719   }
9720
9721   // Canonicalize the query to match the way instcombine will have
9722   // canonicalized the comparison.
9723   if (SimplifyICmpOperands(Pred, LHS, RHS))
9724     if (LHS == RHS)
9725       return CmpInst::isTrueWhenEqual(Pred);
9726   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9727     if (FoundLHS == FoundRHS)
9728       return CmpInst::isFalseWhenEqual(FoundPred);
9729
9730   // Check to see if we can make the LHS or RHS match.
9731   if (LHS == FoundRHS || RHS == FoundLHS) {
9732     if (isa<SCEVConstant>(RHS)) {
9733       std::swap(FoundLHS, FoundRHS);
9734       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9735     } else {
9736       std::swap(LHS, RHS);
9737       Pred = ICmpInst::getSwappedPredicate(Pred);
9738     }
9739   }
9740
9741   // Check whether the found predicate is the same as the desired predicate.
9742   if (FoundPred == Pred)
9743     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9744
9745   // Check whether swapping the found predicate makes it the same as the
9746   // desired predicate.
9747   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9748     if (isa<SCEVConstant>(RHS))
9749       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9750     else
9751       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9752                                    RHS, LHS, FoundLHS, FoundRHS);
9753   }
9754
9755   // Unsigned comparison is the same as signed comparison when both the operands
9756   // are non-negative.
9757   if (CmpInst::isUnsigned(FoundPred) &&
9758       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9759       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9760     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9761
9762   // Check if we can make progress by sharpening ranges.
9763   if (FoundPred == ICmpInst::ICMP_NE &&
9764       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9765
9766     const SCEVConstant *C = nullptr;
9767     const SCEV *V = nullptr;
9768
9769     if (isa<SCEVConstant>(FoundLHS)) {
9770       C = cast<SCEVConstant>(FoundLHS);
9771       V = FoundRHS;
9772     } else {
9773       C = cast<SCEVConstant>(FoundRHS);
9774       V = FoundLHS;
9775     }
9776
9777     // The guarding predicate tells us that C != V. If the known range
9778     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9779     // range we consider has to correspond to same signedness as the
9780     // predicate we're interested in folding.
9781
9782     APInt Min = ICmpInst::isSigned(Pred) ?
9783         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9784
9785     if (Min == C->getAPInt()) {
9786       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9787       // This is true even if (Min + 1) wraps around -- in case of
9788       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9789
9790       APInt SharperMin = Min + 1;
9791
9792       switch (Pred) {
9793         case ICmpInst::ICMP_SGE:
9794         case ICmpInst::ICMP_UGE:
9795           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9796           // RHS, we're done.
9797           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9798                                     getConstant(SharperMin)))
9799             return true;
9800           LLVM_FALLTHROUGH;
9801
9802         case ICmpInst::ICMP_SGT:
9803         case ICmpInst::ICMP_UGT:
9804           // We know from the range information that (V `Pred` Min ||
9805           // V == Min).  We know from the guarding condition that !(V
9806           // == Min).  This gives us
9807           //
9808           //       V `Pred` Min || V == Min && !(V == Min)
9809           //   =>  V `Pred` Min
9810           //
9811           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9812
9813           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9814             return true;
9815           LLVM_FALLTHROUGH;
9816
9817         default:
9818           // No change
9819           break;
9820       }
9821     }
9822   }
9823
9824   // Check whether the actual condition is beyond sufficient.
9825   if (FoundPred == ICmpInst::ICMP_EQ)
9826     if (ICmpInst::isTrueWhenEqual(Pred))
9827       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9828         return true;
9829   if (Pred == ICmpInst::ICMP_NE)
9830     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9831       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9832         return true;
9833
9834   // Otherwise assume the worst.
9835   return false;
9836 }
9837
9838 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9839                                      const SCEV *&L, const SCEV *&R,
9840                                      SCEV::NoWrapFlags &Flags) {
9841   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9842   if (!AE || AE->getNumOperands() != 2)
9843     return false;
9844
9845   L = AE->getOperand(0);
9846   R = AE->getOperand(1);
9847   Flags = AE->getNoWrapFlags();
9848   return true;
9849 }
9850
9851 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9852                                                            const SCEV *Less) {
9853   // We avoid subtracting expressions here because this function is usually
9854   // fairly deep in the call stack (i.e. is called many times).
9855
9856   // X - X = 0.
9857   if (More == Less)
9858     return APInt(getTypeSizeInBits(More->getType()), 0);
9859
9860   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9861     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9862     const auto *MAR = cast<SCEVAddRecExpr>(More);
9863
9864     if (LAR->getLoop() != MAR->getLoop())
9865       return None;
9866
9867     // We look at affine expressions only; not for correctness but to keep
9868     // getStepRecurrence cheap.
9869     if (!LAR->isAffine() || !MAR->isAffine())
9870       return None;
9871
9872     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9873       return None;
9874
9875     Less = LAR->getStart();
9876     More = MAR->getStart();
9877
9878     // fall through
9879   }
9880
9881   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9882     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9883     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9884     return M - L;
9885   }
9886
9887   SCEV::NoWrapFlags Flags;
9888   const SCEV *LLess = nullptr, *RLess = nullptr;
9889   const SCEV *LMore = nullptr, *RMore = nullptr;
9890   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9891   // Compare (X + C1) vs X.
9892   if (splitBinaryAdd(Less, LLess, RLess, Flags))
9893     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9894       if (RLess == More)
9895         return -(C1->getAPInt());
9896
9897   // Compare X vs (X + C2).
9898   if (splitBinaryAdd(More, LMore, RMore, Flags))
9899     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9900       if (RMore == Less)
9901         return C2->getAPInt();
9902
9903   // Compare (X + C1) vs (X + C2).
9904   if (C1 && C2 && RLess == RMore)
9905     return C2->getAPInt() - C1->getAPInt();
9906
9907   return None;
9908 }
9909
9910 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9911     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9912     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9913   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9914     return false;
9915
9916   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9917   if (!AddRecLHS)
9918     return false;
9919
9920   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9921   if (!AddRecFoundLHS)
9922     return false;
9923
9924   // We'd like to let SCEV reason about control dependencies, so we constrain
9925   // both the inequalities to be about add recurrences on the same loop.  This
9926   // way we can use isLoopEntryGuardedByCond later.
9927
9928   const Loop *L = AddRecFoundLHS->getLoop();
9929   if (L != AddRecLHS->getLoop())
9930     return false;
9931
9932   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9933   //
9934   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9935   //                                                                  ... (2)
9936   //
9937   // Informal proof for (2), assuming (1) [*]:
9938   //
9939   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9940   //
9941   // Then
9942   //
9943   //       FoundLHS s< FoundRHS s< INT_MIN - C
9944   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9945   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9946   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9947   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9948   // <=>  FoundLHS + C s< FoundRHS + C
9949   //
9950   // [*]: (1) can be proved by ruling out overflow.
9951   //
9952   // [**]: This can be proved by analyzing all the four possibilities:
9953   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9954   //    (A s>= 0, B s>= 0).
9955   //
9956   // Note:
9957   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9958   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
9959   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
9960   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
9961   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9962   // C)".
9963
9964   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9965   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9966   if (!LDiff || !RDiff || *LDiff != *RDiff)
9967     return false;
9968
9969   if (LDiff->isMinValue())
9970     return true;
9971
9972   APInt FoundRHSLimit;
9973
9974   if (Pred == CmpInst::ICMP_ULT) {
9975     FoundRHSLimit = -(*RDiff);
9976   } else {
9977     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9978     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9979   }
9980
9981   // Try to prove (1) or (2), as needed.
9982   return isAvailableAtLoopEntry(FoundRHS, L) &&
9983          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9984                                   getConstant(FoundRHSLimit));
9985 }
9986
9987 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9988                                         const SCEV *LHS, const SCEV *RHS,
9989                                         const SCEV *FoundLHS,
9990                                         const SCEV *FoundRHS, unsigned Depth) {
9991   const PHINode *LPhi = nullptr, *RPhi = nullptr;
9992
9993   auto ClearOnExit = make_scope_exit([&]() {
9994     if (LPhi) {
9995       bool Erased = PendingMerges.erase(LPhi);
9996       assert(Erased && "Failed to erase LPhi!");
9997       (void)Erased;
9998     }
9999     if (RPhi) {
10000       bool Erased = PendingMerges.erase(RPhi);
10001       assert(Erased && "Failed to erase RPhi!");
10002       (void)Erased;
10003     }
10004   });
10005
10006   // Find respective Phis and check that they are not being pending.
10007   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10008     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10009       if (!PendingMerges.insert(Phi).second)
10010         return false;
10011       LPhi = Phi;
10012     }
10013   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10014     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10015       // If we detect a loop of Phi nodes being processed by this method, for
10016       // example:
10017       //
10018       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10019       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10020       //
10021       // we don't want to deal with a case that complex, so return conservative
10022       // answer false.
10023       if (!PendingMerges.insert(Phi).second)
10024         return false;
10025       RPhi = Phi;
10026     }
10027
10028   // If none of LHS, RHS is a Phi, nothing to do here.
10029   if (!LPhi && !RPhi)
10030     return false;
10031
10032   // If there is a SCEVUnknown Phi we are interested in, make it left.
10033   if (!LPhi) {
10034     std::swap(LHS, RHS);
10035     std::swap(FoundLHS, FoundRHS);
10036     std::swap(LPhi, RPhi);
10037     Pred = ICmpInst::getSwappedPredicate(Pred);
10038   }
10039
10040   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10041   const BasicBlock *LBB = LPhi->getParent();
10042   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10043
10044   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10045     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10046            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10047            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10048   };
10049
10050   if (RPhi && RPhi->getParent() == LBB) {
10051     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10052     // If we compare two Phis from the same block, and for each entry block
10053     // the predicate is true for incoming values from this block, then the
10054     // predicate is also true for the Phis.
10055     for (const BasicBlock *IncBB : predecessors(LBB)) {
10056       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10057       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10058       if (!ProvedEasily(L, R))
10059         return false;
10060     }
10061   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10062     // Case two: RHS is also a Phi from the same basic block, and it is an
10063     // AddRec. It means that there is a loop which has both AddRec and Unknown
10064     // PHIs, for it we can compare incoming values of AddRec from above the loop
10065     // and latch with their respective incoming values of LPhi.
10066     // TODO: Generalize to handle loops with many inputs in a header.
10067     if (LPhi->getNumIncomingValues() != 2) return false;
10068
10069     auto *RLoop = RAR->getLoop();
10070     auto *Predecessor = RLoop->getLoopPredecessor();
10071     assert(Predecessor && "Loop with AddRec with no predecessor?");
10072     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10073     if (!ProvedEasily(L1, RAR->getStart()))
10074       return false;
10075     auto *Latch = RLoop->getLoopLatch();
10076     assert(Latch && "Loop with AddRec with no latch?");
10077     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10078     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10079       return false;
10080   } else {
10081     // In all other cases go over inputs of LHS and compare each of them to RHS,
10082     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10083     // At this point RHS is either a non-Phi, or it is a Phi from some block
10084     // different from LBB.
10085     for (const BasicBlock *IncBB : predecessors(LBB)) {
10086       // Check that RHS is available in this block.
10087       if (!dominates(RHS, IncBB))
10088         return false;
10089       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10090       if (!ProvedEasily(L, RHS))
10091         return false;
10092     }
10093   }
10094   return true;
10095 }
10096
10097 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10098                                             const SCEV *LHS, const SCEV *RHS,
10099                                             const SCEV *FoundLHS,
10100                                             const SCEV *FoundRHS) {
10101   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10102     return true;
10103
10104   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10105     return true;
10106
10107   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10108                                      FoundLHS, FoundRHS) ||
10109          // ~x < ~y --> x > y
10110          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10111                                      getNotSCEV(FoundRHS),
10112                                      getNotSCEV(FoundLHS));
10113 }
10114
10115 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10116 template <typename MinMaxExprType>
10117 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10118                                  const SCEV *Candidate) {
10119   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10120   if (!MinMaxExpr)
10121     return false;
10122
10123   return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10124 }
10125
10126 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10127                                            ICmpInst::Predicate Pred,
10128                                            const SCEV *LHS, const SCEV *RHS) {
10129   // If both sides are affine addrecs for the same loop, with equal
10130   // steps, and we know the recurrences don't wrap, then we only
10131   // need to check the predicate on the starting values.
10132
10133   if (!ICmpInst::isRelational(Pred))
10134     return false;
10135
10136   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10137   if (!LAR)
10138     return false;
10139   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10140   if (!RAR)
10141     return false;
10142   if (LAR->getLoop() != RAR->getLoop())
10143     return false;
10144   if (!LAR->isAffine() || !RAR->isAffine())
10145     return false;
10146
10147   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10148     return false;
10149
10150   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10151                          SCEV::FlagNSW : SCEV::FlagNUW;
10152   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10153     return false;
10154
10155   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10156 }
10157
10158 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10159 /// expression?
10160 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10161                                         ICmpInst::Predicate Pred,
10162                                         const SCEV *LHS, const SCEV *RHS) {
10163   switch (Pred) {
10164   default:
10165     return false;
10166
10167   case ICmpInst::ICMP_SGE:
10168     std::swap(LHS, RHS);
10169     LLVM_FALLTHROUGH;
10170   case ICmpInst::ICMP_SLE:
10171     return
10172         // min(A, ...) <= A
10173         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10174         // A <= max(A, ...)
10175         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10176
10177   case ICmpInst::ICMP_UGE:
10178     std::swap(LHS, RHS);
10179     LLVM_FALLTHROUGH;
10180   case ICmpInst::ICMP_ULE:
10181     return
10182         // min(A, ...) <= A
10183         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10184         // A <= max(A, ...)
10185         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10186   }
10187
10188   llvm_unreachable("covered switch fell through?!");
10189 }
10190
10191 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10192                                              const SCEV *LHS, const SCEV *RHS,
10193                                              const SCEV *FoundLHS,
10194                                              const SCEV *FoundRHS,
10195                                              unsigned Depth) {
10196   assert(getTypeSizeInBits(LHS->getType()) ==
10197              getTypeSizeInBits(RHS->getType()) &&
10198          "LHS and RHS have different sizes?");
10199   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10200              getTypeSizeInBits(FoundRHS->getType()) &&
10201          "FoundLHS and FoundRHS have different sizes?");
10202   // We want to avoid hurting the compile time with analysis of too big trees.
10203   if (Depth > MaxSCEVOperationsImplicationDepth)
10204     return false;
10205   // We only want to work with ICMP_SGT comparison so far.
10206   // TODO: Extend to ICMP_UGT?
10207   if (Pred == ICmpInst::ICMP_SLT) {
10208     Pred = ICmpInst::ICMP_SGT;
10209     std::swap(LHS, RHS);
10210     std::swap(FoundLHS, FoundRHS);
10211   }
10212   if (Pred != ICmpInst::ICMP_SGT)
10213     return false;
10214
10215   auto GetOpFromSExt = [&](const SCEV *S) {
10216     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10217       return Ext->getOperand();
10218     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10219     // the constant in some cases.
10220     return S;
10221   };
10222
10223   // Acquire values from extensions.
10224   auto *OrigLHS = LHS;
10225   auto *OrigFoundLHS = FoundLHS;
10226   LHS = GetOpFromSExt(LHS);
10227   FoundLHS = GetOpFromSExt(FoundLHS);
10228
10229   // Is the SGT predicate can be proved trivially or using the found context.
10230   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10231     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10232            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10233                                   FoundRHS, Depth + 1);
10234   };
10235
10236   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10237     // We want to avoid creation of any new non-constant SCEV. Since we are
10238     // going to compare the operands to RHS, we should be certain that we don't
10239     // need any size extensions for this. So let's decline all cases when the
10240     // sizes of types of LHS and RHS do not match.
10241     // TODO: Maybe try to get RHS from sext to catch more cases?
10242     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10243       return false;
10244
10245     // Should not overflow.
10246     if (!LHSAddExpr->hasNoSignedWrap())
10247       return false;
10248
10249     auto *LL = LHSAddExpr->getOperand(0);
10250     auto *LR = LHSAddExpr->getOperand(1);
10251     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10252
10253     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10254     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10255       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10256     };
10257     // Try to prove the following rule:
10258     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10259     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10260     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10261       return true;
10262   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10263     Value *LL, *LR;
10264     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10265
10266     using namespace llvm::PatternMatch;
10267
10268     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10269       // Rules for division.
10270       // We are going to perform some comparisons with Denominator and its
10271       // derivative expressions. In general case, creating a SCEV for it may
10272       // lead to a complex analysis of the entire graph, and in particular it
10273       // can request trip count recalculation for the same loop. This would
10274       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10275       // this, we only want to create SCEVs that are constants in this section.
10276       // So we bail if Denominator is not a constant.
10277       if (!isa<ConstantInt>(LR))
10278         return false;
10279
10280       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10281
10282       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10283       // then a SCEV for the numerator already exists and matches with FoundLHS.
10284       auto *Numerator = getExistingSCEV(LL);
10285       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10286         return false;
10287
10288       // Make sure that the numerator matches with FoundLHS and the denominator
10289       // is positive.
10290       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10291         return false;
10292
10293       auto *DTy = Denominator->getType();
10294       auto *FRHSTy = FoundRHS->getType();
10295       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10296         // One of types is a pointer and another one is not. We cannot extend
10297         // them properly to a wider type, so let us just reject this case.
10298         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10299         // to avoid this check.
10300         return false;
10301
10302       // Given that:
10303       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10304       auto *WTy = getWiderType(DTy, FRHSTy);
10305       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10306       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10307
10308       // Try to prove the following rule:
10309       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10310       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10311       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10312       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10313       if (isKnownNonPositive(RHS) &&
10314           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10315         return true;
10316
10317       // Try to prove the following rule:
10318       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10319       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10320       // If we divide it by Denominator > 2, then:
10321       // 1. If FoundLHS is negative, then the result is 0.
10322       // 2. If FoundLHS is non-negative, then the result is non-negative.
10323       // Anyways, the result is non-negative.
10324       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10325       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10326       if (isKnownNegative(RHS) &&
10327           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10328         return true;
10329     }
10330   }
10331
10332   // If our expression contained SCEVUnknown Phis, and we split it down and now
10333   // need to prove something for them, try to prove the predicate for every
10334   // possible incoming values of those Phis.
10335   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10336     return true;
10337
10338   return false;
10339 }
10340
10341 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10342                                         const SCEV *LHS, const SCEV *RHS) {
10343   // zext x u<= sext x, sext x s<= zext x
10344   switch (Pred) {
10345   case ICmpInst::ICMP_SGE:
10346     std::swap(LHS, RHS);
10347     LLVM_FALLTHROUGH;
10348   case ICmpInst::ICMP_SLE: {
10349     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10350     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10351     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10352     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10353       return true;
10354     break;
10355   }
10356   case ICmpInst::ICMP_UGE:
10357     std::swap(LHS, RHS);
10358     LLVM_FALLTHROUGH;
10359   case ICmpInst::ICMP_ULE: {
10360     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10361     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10362     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10363     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10364       return true;
10365     break;
10366   }
10367   default:
10368     break;
10369   };
10370   return false;
10371 }
10372
10373 bool
10374 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10375                                            const SCEV *LHS, const SCEV *RHS) {
10376   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10377          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10378          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10379          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10380          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10381 }
10382
10383 bool
10384 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10385                                              const SCEV *LHS, const SCEV *RHS,
10386                                              const SCEV *FoundLHS,
10387                                              const SCEV *FoundRHS) {
10388   switch (Pred) {
10389   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10390   case ICmpInst::ICMP_EQ:
10391   case ICmpInst::ICMP_NE:
10392     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10393       return true;
10394     break;
10395   case ICmpInst::ICMP_SLT:
10396   case ICmpInst::ICMP_SLE:
10397     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10398         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10399       return true;
10400     break;
10401   case ICmpInst::ICMP_SGT:
10402   case ICmpInst::ICMP_SGE:
10403     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10404         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10405       return true;
10406     break;
10407   case ICmpInst::ICMP_ULT:
10408   case ICmpInst::ICMP_ULE:
10409     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10410         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10411       return true;
10412     break;
10413   case ICmpInst::ICMP_UGT:
10414   case ICmpInst::ICMP_UGE:
10415     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10416         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10417       return true;
10418     break;
10419   }
10420
10421   // Maybe it can be proved via operations?
10422   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10423     return true;
10424
10425   return false;
10426 }
10427
10428 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10429                                                      const SCEV *LHS,
10430                                                      const SCEV *RHS,
10431                                                      const SCEV *FoundLHS,
10432                                                      const SCEV *FoundRHS) {
10433   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10434     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10435     // reduce the compile time impact of this optimization.
10436     return false;
10437
10438   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10439   if (!Addend)
10440     return false;
10441
10442   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10443
10444   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10445   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10446   ConstantRange FoundLHSRange =
10447       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10448
10449   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10450   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10451
10452   // We can also compute the range of values for `LHS` that satisfy the
10453   // consequent, "`LHS` `Pred` `RHS`":
10454   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10455   ConstantRange SatisfyingLHSRange =
10456       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10457
10458   // The antecedent implies the consequent if every value of `LHS` that
10459   // satisfies the antecedent also satisfies the consequent.
10460   return SatisfyingLHSRange.contains(LHSRange);
10461 }
10462
10463 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10464                                          bool IsSigned, bool NoWrap) {
10465   assert(isKnownPositive(Stride) && "Positive stride expected!");
10466
10467   if (NoWrap) return false;
10468
10469   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10470   const SCEV *One = getOne(Stride->getType());
10471
10472   if (IsSigned) {
10473     APInt MaxRHS = getSignedRangeMax(RHS);
10474     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10475     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10476
10477     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10478     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10479   }
10480
10481   APInt MaxRHS = getUnsignedRangeMax(RHS);
10482   APInt MaxValue = APInt::getMaxValue(BitWidth);
10483   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10484
10485   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10486   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10487 }
10488
10489 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10490                                          bool IsSigned, bool NoWrap) {
10491   if (NoWrap) return false;
10492
10493   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10494   const SCEV *One = getOne(Stride->getType());
10495
10496   if (IsSigned) {
10497     APInt MinRHS = getSignedRangeMin(RHS);
10498     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10499     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10500
10501     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10502     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10503   }
10504
10505   APInt MinRHS = getUnsignedRangeMin(RHS);
10506   APInt MinValue = APInt::getMinValue(BitWidth);
10507   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10508
10509   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10510   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10511 }
10512
10513 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10514                                             bool Equality) {
10515   const SCEV *One = getOne(Step->getType());
10516   Delta = Equality ? getAddExpr(Delta, Step)
10517                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10518   return getUDivExpr(Delta, Step);
10519 }
10520
10521 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10522                                                     const SCEV *Stride,
10523                                                     const SCEV *End,
10524                                                     unsigned BitWidth,
10525                                                     bool IsSigned) {
10526
10527   assert(!isKnownNonPositive(Stride) &&
10528          "Stride is expected strictly positive!");
10529   // Calculate the maximum backedge count based on the range of values
10530   // permitted by Start, End, and Stride.
10531   const SCEV *MaxBECount;
10532   APInt MinStart =
10533       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10534
10535   APInt StrideForMaxBECount =
10536       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10537
10538   // We already know that the stride is positive, so we paper over conservatism
10539   // in our range computation by forcing StrideForMaxBECount to be at least one.
10540   // In theory this is unnecessary, but we expect MaxBECount to be a
10541   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10542   // is nothing to constant fold it to).
10543   APInt One(BitWidth, 1, IsSigned);
10544   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10545
10546   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10547                             : APInt::getMaxValue(BitWidth);
10548   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10549
10550   // Although End can be a MAX expression we estimate MaxEnd considering only
10551   // the case End = RHS of the loop termination condition. This is safe because
10552   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10553   // taken count.
10554   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10555                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10556
10557   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10558                               getConstant(StrideForMaxBECount) /* Step */,
10559                               false /* Equality */);
10560
10561   return MaxBECount;
10562 }
10563
10564 ScalarEvolution::ExitLimit
10565 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10566                                   const Loop *L, bool IsSigned,
10567                                   bool ControlsExit, bool AllowPredicates) {
10568   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10569
10570   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10571   bool PredicatedIV = false;
10572
10573   if (!IV && AllowPredicates) {
10574     // Try to make this an AddRec using runtime tests, in the first X
10575     // iterations of this loop, where X is the SCEV expression found by the
10576     // algorithm below.
10577     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10578     PredicatedIV = true;
10579   }
10580
10581   // Avoid weird loops
10582   if (!IV || IV->getLoop() != L || !IV->isAffine())
10583     return getCouldNotCompute();
10584
10585   bool NoWrap = ControlsExit &&
10586                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10587
10588   const SCEV *Stride = IV->getStepRecurrence(*this);
10589
10590   bool PositiveStride = isKnownPositive(Stride);
10591
10592   // Avoid negative or zero stride values.
10593   if (!PositiveStride) {
10594     // We can compute the correct backedge taken count for loops with unknown
10595     // strides if we can prove that the loop is not an infinite loop with side
10596     // effects. Here's the loop structure we are trying to handle -
10597     //
10598     // i = start
10599     // do {
10600     //   A[i] = i;
10601     //   i += s;
10602     // } while (i < end);
10603     //
10604     // The backedge taken count for such loops is evaluated as -
10605     // (max(end, start + stride) - start - 1) /u stride
10606     //
10607     // The additional preconditions that we need to check to prove correctness
10608     // of the above formula is as follows -
10609     //
10610     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10611     //    NoWrap flag).
10612     // b) loop is single exit with no side effects.
10613     //
10614     //
10615     // Precondition a) implies that if the stride is negative, this is a single
10616     // trip loop. The backedge taken count formula reduces to zero in this case.
10617     //
10618     // Precondition b) implies that the unknown stride cannot be zero otherwise
10619     // we have UB.
10620     //
10621     // The positive stride case is the same as isKnownPositive(Stride) returning
10622     // true (original behavior of the function).
10623     //
10624     // We want to make sure that the stride is truly unknown as there are edge
10625     // cases where ScalarEvolution propagates no wrap flags to the
10626     // post-increment/decrement IV even though the increment/decrement operation
10627     // itself is wrapping. The computed backedge taken count may be wrong in
10628     // such cases. This is prevented by checking that the stride is not known to
10629     // be either positive or non-positive. For example, no wrap flags are
10630     // propagated to the post-increment IV of this loop with a trip count of 2 -
10631     //
10632     // unsigned char i;
10633     // for(i=127; i<128; i+=129)
10634     //   A[i] = i;
10635     //
10636     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10637         !loopHasNoSideEffects(L))
10638       return getCouldNotCompute();
10639   } else if (!Stride->isOne() &&
10640              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10641     // Avoid proven overflow cases: this will ensure that the backedge taken
10642     // count will not generate any unsigned overflow. Relaxed no-overflow
10643     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10644     // undefined behaviors like the case of C language.
10645     return getCouldNotCompute();
10646
10647   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10648                                       : ICmpInst::ICMP_ULT;
10649   const SCEV *Start = IV->getStart();
10650   const SCEV *End = RHS;
10651   // When the RHS is not invariant, we do not know the end bound of the loop and
10652   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10653   // calculate the MaxBECount, given the start, stride and max value for the end
10654   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10655   // checked above).
10656   if (!isLoopInvariant(RHS, L)) {
10657     const SCEV *MaxBECount = computeMaxBECountForLT(
10658         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10659     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10660                      false /*MaxOrZero*/, Predicates);
10661   }
10662   // If the backedge is taken at least once, then it will be taken
10663   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10664   // is the LHS value of the less-than comparison the first time it is evaluated
10665   // and End is the RHS.
10666   const SCEV *BECountIfBackedgeTaken =
10667     computeBECount(getMinusSCEV(End, Start), Stride, false);
10668   // If the loop entry is guarded by the result of the backedge test of the
10669   // first loop iteration, then we know the backedge will be taken at least
10670   // once and so the backedge taken count is as above. If not then we use the
10671   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10672   // as if the backedge is taken at least once max(End,Start) is End and so the
10673   // result is as above, and if not max(End,Start) is Start so we get a backedge
10674   // count of zero.
10675   const SCEV *BECount;
10676   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10677     BECount = BECountIfBackedgeTaken;
10678   else {
10679     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10680     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10681   }
10682
10683   const SCEV *MaxBECount;
10684   bool MaxOrZero = false;
10685   if (isa<SCEVConstant>(BECount))
10686     MaxBECount = BECount;
10687   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10688     // If we know exactly how many times the backedge will be taken if it's
10689     // taken at least once, then the backedge count will either be that or
10690     // zero.
10691     MaxBECount = BECountIfBackedgeTaken;
10692     MaxOrZero = true;
10693   } else {
10694     MaxBECount = computeMaxBECountForLT(
10695         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10696   }
10697
10698   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10699       !isa<SCEVCouldNotCompute>(BECount))
10700     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10701
10702   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10703 }
10704
10705 ScalarEvolution::ExitLimit
10706 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10707                                      const Loop *L, bool IsSigned,
10708                                      bool ControlsExit, bool AllowPredicates) {
10709   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10710   // We handle only IV > Invariant
10711   if (!isLoopInvariant(RHS, L))
10712     return getCouldNotCompute();
10713
10714   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10715   if (!IV && AllowPredicates)
10716     // Try to make this an AddRec using runtime tests, in the first X
10717     // iterations of this loop, where X is the SCEV expression found by the
10718     // algorithm below.
10719     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10720
10721   // Avoid weird loops
10722   if (!IV || IV->getLoop() != L || !IV->isAffine())
10723     return getCouldNotCompute();
10724
10725   bool NoWrap = ControlsExit &&
10726                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10727
10728   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10729
10730   // Avoid negative or zero stride values
10731   if (!isKnownPositive(Stride))
10732     return getCouldNotCompute();
10733
10734   // Avoid proven overflow cases: this will ensure that the backedge taken count
10735   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10736   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10737   // behaviors like the case of C language.
10738   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10739     return getCouldNotCompute();
10740
10741   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10742                                       : ICmpInst::ICMP_UGT;
10743
10744   const SCEV *Start = IV->getStart();
10745   const SCEV *End = RHS;
10746   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10747     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10748
10749   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10750
10751   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10752                             : getUnsignedRangeMax(Start);
10753
10754   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10755                              : getUnsignedRangeMin(Stride);
10756
10757   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10758   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10759                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10760
10761   // Although End can be a MIN expression we estimate MinEnd considering only
10762   // the case End = RHS. This is safe because in the other case (Start - End)
10763   // is zero, leading to a zero maximum backedge taken count.
10764   APInt MinEnd =
10765     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10766              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10767
10768   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10769                                ? BECount
10770                                : computeBECount(getConstant(MaxStart - MinEnd),
10771                                                 getConstant(MinStride), false);
10772
10773   if (isa<SCEVCouldNotCompute>(MaxBECount))
10774     MaxBECount = BECount;
10775
10776   return ExitLimit(BECount, MaxBECount, false, Predicates);
10777 }
10778
10779 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10780                                                     ScalarEvolution &SE) const {
10781   if (Range.isFullSet())  // Infinite loop.
10782     return SE.getCouldNotCompute();
10783
10784   // If the start is a non-zero constant, shift the range to simplify things.
10785   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10786     if (!SC->getValue()->isZero()) {
10787       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10788       Operands[0] = SE.getZero(SC->getType());
10789       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10790                                              getNoWrapFlags(FlagNW));
10791       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10792         return ShiftedAddRec->getNumIterationsInRange(
10793             Range.subtract(SC->getAPInt()), SE);
10794       // This is strange and shouldn't happen.
10795       return SE.getCouldNotCompute();
10796     }
10797
10798   // The only time we can solve this is when we have all constant indices.
10799   // Otherwise, we cannot determine the overflow conditions.
10800   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10801     return SE.getCouldNotCompute();
10802
10803   // Okay at this point we know that all elements of the chrec are constants and
10804   // that the start element is zero.
10805
10806   // First check to see if the range contains zero.  If not, the first
10807   // iteration exits.
10808   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10809   if (!Range.contains(APInt(BitWidth, 0)))
10810     return SE.getZero(getType());
10811
10812   if (isAffine()) {
10813     // If this is an affine expression then we have this situation:
10814     //   Solve {0,+,A} in Range  ===  Ax in Range
10815
10816     // We know that zero is in the range.  If A is positive then we know that
10817     // the upper value of the range must be the first possible exit value.
10818     // If A is negative then the lower of the range is the last possible loop
10819     // value.  Also note that we already checked for a full range.
10820     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10821     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10822
10823     // The exit value should be (End+A)/A.
10824     APInt ExitVal = (End + A).udiv(A);
10825     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10826
10827     // Evaluate at the exit value.  If we really did fall out of the valid
10828     // range, then we computed our trip count, otherwise wrap around or other
10829     // things must have happened.
10830     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10831     if (Range.contains(Val->getValue()))
10832       return SE.getCouldNotCompute();  // Something strange happened
10833
10834     // Ensure that the previous value is in the range.  This is a sanity check.
10835     assert(Range.contains(
10836            EvaluateConstantChrecAtConstant(this,
10837            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10838            "Linear scev computation is off in a bad way!");
10839     return SE.getConstant(ExitValue);
10840   }
10841
10842   if (isQuadratic()) {
10843     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10844       return SE.getConstant(S.getValue());
10845   }
10846
10847   return SE.getCouldNotCompute();
10848 }
10849
10850 const SCEVAddRecExpr *
10851 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10852   assert(getNumOperands() > 1 && "AddRec with zero step?");
10853   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10854   // but in this case we cannot guarantee that the value returned will be an
10855   // AddRec because SCEV does not have a fixed point where it stops
10856   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10857   // may happen if we reach arithmetic depth limit while simplifying. So we
10858   // construct the returned value explicitly.
10859   SmallVector<const SCEV *, 3> Ops;
10860   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10861   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10862   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10863     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10864   // We know that the last operand is not a constant zero (otherwise it would
10865   // have been popped out earlier). This guarantees us that if the result has
10866   // the same last operand, then it will also not be popped out, meaning that
10867   // the returned value will be an AddRec.
10868   const SCEV *Last = getOperand(getNumOperands() - 1);
10869   assert(!Last->isZero() && "Recurrency with zero step?");
10870   Ops.push_back(Last);
10871   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10872                                                SCEV::FlagAnyWrap));
10873 }
10874
10875 // Return true when S contains at least an undef value.
10876 static inline bool containsUndefs(const SCEV *S) {
10877   return SCEVExprContains(S, [](const SCEV *S) {
10878     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10879       return isa<UndefValue>(SU->getValue());
10880     return false;
10881   });
10882 }
10883
10884 namespace {
10885
10886 // Collect all steps of SCEV expressions.
10887 struct SCEVCollectStrides {
10888   ScalarEvolution &SE;
10889   SmallVectorImpl<const SCEV *> &Strides;
10890
10891   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10892       : SE(SE), Strides(S) {}
10893
10894   bool follow(const SCEV *S) {
10895     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10896       Strides.push_back(AR->getStepRecurrence(SE));
10897     return true;
10898   }
10899
10900   bool isDone() const { return false; }
10901 };
10902
10903 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10904 struct SCEVCollectTerms {
10905   SmallVectorImpl<const SCEV *> &Terms;
10906
10907   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10908
10909   bool follow(const SCEV *S) {
10910     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10911         isa<SCEVSignExtendExpr>(S)) {
10912       if (!containsUndefs(S))
10913         Terms.push_back(S);
10914
10915       // Stop recursion: once we collected a term, do not walk its operands.
10916       return false;
10917     }
10918
10919     // Keep looking.
10920     return true;
10921   }
10922
10923   bool isDone() const { return false; }
10924 };
10925
10926 // Check if a SCEV contains an AddRecExpr.
10927 struct SCEVHasAddRec {
10928   bool &ContainsAddRec;
10929
10930   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10931     ContainsAddRec = false;
10932   }
10933
10934   bool follow(const SCEV *S) {
10935     if (isa<SCEVAddRecExpr>(S)) {
10936       ContainsAddRec = true;
10937
10938       // Stop recursion: once we collected a term, do not walk its operands.
10939       return false;
10940     }
10941
10942     // Keep looking.
10943     return true;
10944   }
10945
10946   bool isDone() const { return false; }
10947 };
10948
10949 // Find factors that are multiplied with an expression that (possibly as a
10950 // subexpression) contains an AddRecExpr. In the expression:
10951 //
10952 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10953 //
10954 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10955 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10956 // parameters as they form a product with an induction variable.
10957 //
10958 // This collector expects all array size parameters to be in the same MulExpr.
10959 // It might be necessary to later add support for collecting parameters that are
10960 // spread over different nested MulExpr.
10961 struct SCEVCollectAddRecMultiplies {
10962   SmallVectorImpl<const SCEV *> &Terms;
10963   ScalarEvolution &SE;
10964
10965   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10966       : Terms(T), SE(SE) {}
10967
10968   bool follow(const SCEV *S) {
10969     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10970       bool HasAddRec = false;
10971       SmallVector<const SCEV *, 0> Operands;
10972       for (auto Op : Mul->operands()) {
10973         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10974         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10975           Operands.push_back(Op);
10976         } else if (Unknown) {
10977           HasAddRec = true;
10978         } else {
10979           bool ContainsAddRec;
10980           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10981           visitAll(Op, ContiansAddRec);
10982           HasAddRec |= ContainsAddRec;
10983         }
10984       }
10985       if (Operands.size() == 0)
10986         return true;
10987
10988       if (!HasAddRec)
10989         return false;
10990
10991       Terms.push_back(SE.getMulExpr(Operands));
10992       // Stop recursion: once we collected a term, do not walk its operands.
10993       return false;
10994     }
10995
10996     // Keep looking.
10997     return true;
10998   }
10999
11000   bool isDone() const { return false; }
11001 };
11002
11003 } // end anonymous namespace
11004
11005 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11006 /// two places:
11007 ///   1) The strides of AddRec expressions.
11008 ///   2) Unknowns that are multiplied with AddRec expressions.
11009 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11010     SmallVectorImpl<const SCEV *> &Terms) {
11011   SmallVector<const SCEV *, 4> Strides;
11012   SCEVCollectStrides StrideCollector(*this, Strides);
11013   visitAll(Expr, StrideCollector);
11014
11015   LLVM_DEBUG({
11016     dbgs() << "Strides:\n";
11017     for (const SCEV *S : Strides)
11018       dbgs() << *S << "\n";
11019   });
11020
11021   for (const SCEV *S : Strides) {
11022     SCEVCollectTerms TermCollector(Terms);
11023     visitAll(S, TermCollector);
11024   }
11025
11026   LLVM_DEBUG({
11027     dbgs() << "Terms:\n";
11028     for (const SCEV *T : Terms)
11029       dbgs() << *T << "\n";
11030   });
11031
11032   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11033   visitAll(Expr, MulCollector);
11034 }
11035
11036 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11037                                    SmallVectorImpl<const SCEV *> &Terms,
11038                                    SmallVectorImpl<const SCEV *> &Sizes) {
11039   int Last = Terms.size() - 1;
11040   const SCEV *Step = Terms[Last];
11041
11042   // End of recursion.
11043   if (Last == 0) {
11044     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11045       SmallVector<const SCEV *, 2> Qs;
11046       for (const SCEV *Op : M->operands())
11047         if (!isa<SCEVConstant>(Op))
11048           Qs.push_back(Op);
11049
11050       Step = SE.getMulExpr(Qs);
11051     }
11052
11053     Sizes.push_back(Step);
11054     return true;
11055   }
11056
11057   for (const SCEV *&Term : Terms) {
11058     // Normalize the terms before the next call to findArrayDimensionsRec.
11059     const SCEV *Q, *R;
11060     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11061
11062     // Bail out when GCD does not evenly divide one of the terms.
11063     if (!R->isZero())
11064       return false;
11065
11066     Term = Q;
11067   }
11068
11069   // Remove all SCEVConstants.
11070   Terms.erase(
11071       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11072       Terms.end());
11073
11074   if (Terms.size() > 0)
11075     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11076       return false;
11077
11078   Sizes.push_back(Step);
11079   return true;
11080 }
11081
11082 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11083 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11084   for (const SCEV *T : Terms)
11085     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
11086       return true;
11087   return false;
11088 }
11089
11090 // Return the number of product terms in S.
11091 static inline int numberOfTerms(const SCEV *S) {
11092   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11093     return Expr->getNumOperands();
11094   return 1;
11095 }
11096
11097 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11098   if (isa<SCEVConstant>(T))
11099     return nullptr;
11100
11101   if (isa<SCEVUnknown>(T))
11102     return T;
11103
11104   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11105     SmallVector<const SCEV *, 2> Factors;
11106     for (const SCEV *Op : M->operands())
11107       if (!isa<SCEVConstant>(Op))
11108         Factors.push_back(Op);
11109
11110     return SE.getMulExpr(Factors);
11111   }
11112
11113   return T;
11114 }
11115
11116 /// Return the size of an element read or written by Inst.
11117 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11118   Type *Ty;
11119   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11120     Ty = Store->getValueOperand()->getType();
11121   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11122     Ty = Load->getType();
11123   else
11124     return nullptr;
11125
11126   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11127   return getSizeOfExpr(ETy, Ty);
11128 }
11129
11130 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11131                                           SmallVectorImpl<const SCEV *> &Sizes,
11132                                           const SCEV *ElementSize) {
11133   if (Terms.size() < 1 || !ElementSize)
11134     return;
11135
11136   // Early return when Terms do not contain parameters: we do not delinearize
11137   // non parametric SCEVs.
11138   if (!containsParameters(Terms))
11139     return;
11140
11141   LLVM_DEBUG({
11142     dbgs() << "Terms:\n";
11143     for (const SCEV *T : Terms)
11144       dbgs() << *T << "\n";
11145   });
11146
11147   // Remove duplicates.
11148   array_pod_sort(Terms.begin(), Terms.end());
11149   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11150
11151   // Put larger terms first.
11152   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11153     return numberOfTerms(LHS) > numberOfTerms(RHS);
11154   });
11155
11156   // Try to divide all terms by the element size. If term is not divisible by
11157   // element size, proceed with the original term.
11158   for (const SCEV *&Term : Terms) {
11159     const SCEV *Q, *R;
11160     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11161     if (!Q->isZero())
11162       Term = Q;
11163   }
11164
11165   SmallVector<const SCEV *, 4> NewTerms;
11166
11167   // Remove constant factors.
11168   for (const SCEV *T : Terms)
11169     if (const SCEV *NewT = removeConstantFactors(*this, T))
11170       NewTerms.push_back(NewT);
11171
11172   LLVM_DEBUG({
11173     dbgs() << "Terms after sorting:\n";
11174     for (const SCEV *T : NewTerms)
11175       dbgs() << *T << "\n";
11176   });
11177
11178   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11179     Sizes.clear();
11180     return;
11181   }
11182
11183   // The last element to be pushed into Sizes is the size of an element.
11184   Sizes.push_back(ElementSize);
11185
11186   LLVM_DEBUG({
11187     dbgs() << "Sizes:\n";
11188     for (const SCEV *S : Sizes)
11189       dbgs() << *S << "\n";
11190   });
11191 }
11192
11193 void ScalarEvolution::computeAccessFunctions(
11194     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11195     SmallVectorImpl<const SCEV *> &Sizes) {
11196   // Early exit in case this SCEV is not an affine multivariate function.
11197   if (Sizes.empty())
11198     return;
11199
11200   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11201     if (!AR->isAffine())
11202       return;
11203
11204   const SCEV *Res = Expr;
11205   int Last = Sizes.size() - 1;
11206   for (int i = Last; i >= 0; i--) {
11207     const SCEV *Q, *R;
11208     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11209
11210     LLVM_DEBUG({
11211       dbgs() << "Res: " << *Res << "\n";
11212       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11213       dbgs() << "Res divided by Sizes[i]:\n";
11214       dbgs() << "Quotient: " << *Q << "\n";
11215       dbgs() << "Remainder: " << *R << "\n";
11216     });
11217
11218     Res = Q;
11219
11220     // Do not record the last subscript corresponding to the size of elements in
11221     // the array.
11222     if (i == Last) {
11223
11224       // Bail out if the remainder is too complex.
11225       if (isa<SCEVAddRecExpr>(R)) {
11226         Subscripts.clear();
11227         Sizes.clear();
11228         return;
11229       }
11230
11231       continue;
11232     }
11233
11234     // Record the access function for the current subscript.
11235     Subscripts.push_back(R);
11236   }
11237
11238   // Also push in last position the remainder of the last division: it will be
11239   // the access function of the innermost dimension.
11240   Subscripts.push_back(Res);
11241
11242   std::reverse(Subscripts.begin(), Subscripts.end());
11243
11244   LLVM_DEBUG({
11245     dbgs() << "Subscripts:\n";
11246     for (const SCEV *S : Subscripts)
11247       dbgs() << *S << "\n";
11248   });
11249 }
11250
11251 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11252 /// sizes of an array access. Returns the remainder of the delinearization that
11253 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11254 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11255 /// expressions in the stride and base of a SCEV corresponding to the
11256 /// computation of a GCD (greatest common divisor) of base and stride.  When
11257 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11258 ///
11259 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11260 ///
11261 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11262 ///
11263 ///    for (long i = 0; i < n; i++)
11264 ///      for (long j = 0; j < m; j++)
11265 ///        for (long k = 0; k < o; k++)
11266 ///          A[i][j][k] = 1.0;
11267 ///  }
11268 ///
11269 /// the delinearization input is the following AddRec SCEV:
11270 ///
11271 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11272 ///
11273 /// From this SCEV, we are able to say that the base offset of the access is %A
11274 /// because it appears as an offset that does not divide any of the strides in
11275 /// the loops:
11276 ///
11277 ///  CHECK: Base offset: %A
11278 ///
11279 /// and then SCEV->delinearize determines the size of some of the dimensions of
11280 /// the array as these are the multiples by which the strides are happening:
11281 ///
11282 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11283 ///
11284 /// Note that the outermost dimension remains of UnknownSize because there are
11285 /// no strides that would help identifying the size of the last dimension: when
11286 /// the array has been statically allocated, one could compute the size of that
11287 /// dimension by dividing the overall size of the array by the size of the known
11288 /// dimensions: %m * %o * 8.
11289 ///
11290 /// Finally delinearize provides the access functions for the array reference
11291 /// that does correspond to A[i][j][k] of the above C testcase:
11292 ///
11293 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11294 ///
11295 /// The testcases are checking the output of a function pass:
11296 /// DelinearizationPass that walks through all loads and stores of a function
11297 /// asking for the SCEV of the memory access with respect to all enclosing
11298 /// loops, calling SCEV->delinearize on that and printing the results.
11299 void ScalarEvolution::delinearize(const SCEV *Expr,
11300                                  SmallVectorImpl<const SCEV *> &Subscripts,
11301                                  SmallVectorImpl<const SCEV *> &Sizes,
11302                                  const SCEV *ElementSize) {
11303   // First step: collect parametric terms.
11304   SmallVector<const SCEV *, 4> Terms;
11305   collectParametricTerms(Expr, Terms);
11306
11307   if (Terms.empty())
11308     return;
11309
11310   // Second step: find subscript sizes.
11311   findArrayDimensions(Terms, Sizes, ElementSize);
11312
11313   if (Sizes.empty())
11314     return;
11315
11316   // Third step: compute the access functions for each subscript.
11317   computeAccessFunctions(Expr, Subscripts, Sizes);
11318
11319   if (Subscripts.empty())
11320     return;
11321
11322   LLVM_DEBUG({
11323     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11324     dbgs() << "ArrayDecl[UnknownSize]";
11325     for (const SCEV *S : Sizes)
11326       dbgs() << "[" << *S << "]";
11327
11328     dbgs() << "\nArrayRef";
11329     for (const SCEV *S : Subscripts)
11330       dbgs() << "[" << *S << "]";
11331     dbgs() << "\n";
11332   });
11333 }
11334
11335 //===----------------------------------------------------------------------===//
11336 //                   SCEVCallbackVH Class Implementation
11337 //===----------------------------------------------------------------------===//
11338
11339 void ScalarEvolution::SCEVCallbackVH::deleted() {
11340   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11341   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11342     SE->ConstantEvolutionLoopExitValue.erase(PN);
11343   SE->eraseValueFromMap(getValPtr());
11344   // this now dangles!
11345 }
11346
11347 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11348   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11349
11350   // Forget all the expressions associated with users of the old value,
11351   // so that future queries will recompute the expressions using the new
11352   // value.
11353   Value *Old = getValPtr();
11354   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11355   SmallPtrSet<User *, 8> Visited;
11356   while (!Worklist.empty()) {
11357     User *U = Worklist.pop_back_val();
11358     // Deleting the Old value will cause this to dangle. Postpone
11359     // that until everything else is done.
11360     if (U == Old)
11361       continue;
11362     if (!Visited.insert(U).second)
11363       continue;
11364     if (PHINode *PN = dyn_cast<PHINode>(U))
11365       SE->ConstantEvolutionLoopExitValue.erase(PN);
11366     SE->eraseValueFromMap(U);
11367     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11368   }
11369   // Delete the Old value.
11370   if (PHINode *PN = dyn_cast<PHINode>(Old))
11371     SE->ConstantEvolutionLoopExitValue.erase(PN);
11372   SE->eraseValueFromMap(Old);
11373   // this now dangles!
11374 }
11375
11376 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11377   : CallbackVH(V), SE(se) {}
11378
11379 //===----------------------------------------------------------------------===//
11380 //                   ScalarEvolution Class Implementation
11381 //===----------------------------------------------------------------------===//
11382
11383 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11384                                  AssumptionCache &AC, DominatorTree &DT,
11385                                  LoopInfo &LI)
11386     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11387       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11388       LoopDispositions(64), BlockDispositions(64) {
11389   // To use guards for proving predicates, we need to scan every instruction in
11390   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11391   // time if the IR does not actually contain any calls to
11392   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11393   //
11394   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11395   // to _add_ guards to the module when there weren't any before, and wants
11396   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11397   // efficient in lieu of being smart in that rather obscure case.
11398
11399   auto *GuardDecl = F.getParent()->getFunction(
11400       Intrinsic::getName(Intrinsic::experimental_guard));
11401   HasGuards = GuardDecl && !GuardDecl->use_empty();
11402 }
11403
11404 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11405     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11406       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11407       ValueExprMap(std::move(Arg.ValueExprMap)),
11408       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11409       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11410       PendingMerges(std::move(Arg.PendingMerges)),
11411       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11412       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11413       PredicatedBackedgeTakenCounts(
11414           std::move(Arg.PredicatedBackedgeTakenCounts)),
11415       ConstantEvolutionLoopExitValue(
11416           std::move(Arg.ConstantEvolutionLoopExitValue)),
11417       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11418       LoopDispositions(std::move(Arg.LoopDispositions)),
11419       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11420       BlockDispositions(std::move(Arg.BlockDispositions)),
11421       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11422       SignedRanges(std::move(Arg.SignedRanges)),
11423       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11424       UniquePreds(std::move(Arg.UniquePreds)),
11425       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11426       LoopUsers(std::move(Arg.LoopUsers)),
11427       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11428       FirstUnknown(Arg.FirstUnknown) {
11429   Arg.FirstUnknown = nullptr;
11430 }
11431
11432 ScalarEvolution::~ScalarEvolution() {
11433   // Iterate through all the SCEVUnknown instances and call their
11434   // destructors, so that they release their references to their values.
11435   for (SCEVUnknown *U = FirstUnknown; U;) {
11436     SCEVUnknown *Tmp = U;
11437     U = U->Next;
11438     Tmp->~SCEVUnknown();
11439   }
11440   FirstUnknown = nullptr;
11441
11442   ExprValueMap.clear();
11443   ValueExprMap.clear();
11444   HasRecMap.clear();
11445
11446   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11447   // that a loop had multiple computable exits.
11448   for (auto &BTCI : BackedgeTakenCounts)
11449     BTCI.second.clear();
11450   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11451     BTCI.second.clear();
11452
11453   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11454   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11455   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11456   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11457   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11458 }
11459
11460 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11461   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11462 }
11463
11464 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11465                           const Loop *L) {
11466   // Print all inner loops first
11467   for (Loop *I : *L)
11468     PrintLoopInfo(OS, SE, I);
11469
11470   OS << "Loop ";
11471   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11472   OS << ": ";
11473
11474   SmallVector<BasicBlock *, 8> ExitingBlocks;
11475   L->getExitingBlocks(ExitingBlocks);
11476   if (ExitingBlocks.size() != 1)
11477     OS << "<multiple exits> ";
11478
11479   if (SE->hasLoopInvariantBackedgeTakenCount(L))
11480     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11481   else
11482     OS << "Unpredictable backedge-taken count.\n";
11483
11484   if (ExitingBlocks.size() > 1)
11485     for (BasicBlock *ExitingBlock : ExitingBlocks) {
11486       OS << "  exit count for " << ExitingBlock->getName() << ": "
11487          << *SE->getExitCount(L, ExitingBlock) << "\n";
11488     }
11489
11490   OS << "Loop ";
11491   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11492   OS << ": ";
11493
11494   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
11495     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
11496     if (SE->isBackedgeTakenCountMaxOrZero(L))
11497       OS << ", actual taken count either this or zero.";
11498   } else {
11499     OS << "Unpredictable max backedge-taken count. ";
11500   }
11501
11502   OS << "\n"
11503         "Loop ";
11504   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11505   OS << ": ";
11506
11507   SCEVUnionPredicate Pred;
11508   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11509   if (!isa<SCEVCouldNotCompute>(PBT)) {
11510     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11511     OS << " Predicates:\n";
11512     Pred.print(OS, 4);
11513   } else {
11514     OS << "Unpredictable predicated backedge-taken count. ";
11515   }
11516   OS << "\n";
11517
11518   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11519     OS << "Loop ";
11520     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11521     OS << ": ";
11522     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11523   }
11524 }
11525
11526 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11527   switch (LD) {
11528   case ScalarEvolution::LoopVariant:
11529     return "Variant";
11530   case ScalarEvolution::LoopInvariant:
11531     return "Invariant";
11532   case ScalarEvolution::LoopComputable:
11533     return "Computable";
11534   }
11535   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11536 }
11537
11538 void ScalarEvolution::print(raw_ostream &OS) const {
11539   // ScalarEvolution's implementation of the print method is to print
11540   // out SCEV values of all instructions that are interesting. Doing
11541   // this potentially causes it to create new SCEV objects though,
11542   // which technically conflicts with the const qualifier. This isn't
11543   // observable from outside the class though, so casting away the
11544   // const isn't dangerous.
11545   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11546
11547   OS << "Classifying expressions for: ";
11548   F.printAsOperand(OS, /*PrintType=*/false);
11549   OS << "\n";
11550   for (Instruction &I : instructions(F))
11551     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11552       OS << I << '\n';
11553       OS << "  -->  ";
11554       const SCEV *SV = SE.getSCEV(&I);
11555       SV->print(OS);
11556       if (!isa<SCEVCouldNotCompute>(SV)) {
11557         OS << " U: ";
11558         SE.getUnsignedRange(SV).print(OS);
11559         OS << " S: ";
11560         SE.getSignedRange(SV).print(OS);
11561       }
11562
11563       const Loop *L = LI.getLoopFor(I.getParent());
11564
11565       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11566       if (AtUse != SV) {
11567         OS << "  -->  ";
11568         AtUse->print(OS);
11569         if (!isa<SCEVCouldNotCompute>(AtUse)) {
11570           OS << " U: ";
11571           SE.getUnsignedRange(AtUse).print(OS);
11572           OS << " S: ";
11573           SE.getSignedRange(AtUse).print(OS);
11574         }
11575       }
11576
11577       if (L) {
11578         OS << "\t\t" "Exits: ";
11579         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11580         if (!SE.isLoopInvariant(ExitValue, L)) {
11581           OS << "<<Unknown>>";
11582         } else {
11583           OS << *ExitValue;
11584         }
11585
11586         bool First = true;
11587         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11588           if (First) {
11589             OS << "\t\t" "LoopDispositions: { ";
11590             First = false;
11591           } else {
11592             OS << ", ";
11593           }
11594
11595           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11596           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11597         }
11598
11599         for (auto *InnerL : depth_first(L)) {
11600           if (InnerL == L)
11601             continue;
11602           if (First) {
11603             OS << "\t\t" "LoopDispositions: { ";
11604             First = false;
11605           } else {
11606             OS << ", ";
11607           }
11608
11609           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11610           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11611         }
11612
11613         OS << " }";
11614       }
11615
11616       OS << "\n";
11617     }
11618
11619   OS << "Determining loop execution counts for: ";
11620   F.printAsOperand(OS, /*PrintType=*/false);
11621   OS << "\n";
11622   for (Loop *I : LI)
11623     PrintLoopInfo(OS, &SE, I);
11624 }
11625
11626 ScalarEvolution::LoopDisposition
11627 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11628   auto &Values = LoopDispositions[S];
11629   for (auto &V : Values) {
11630     if (V.getPointer() == L)
11631       return V.getInt();
11632   }
11633   Values.emplace_back(L, LoopVariant);
11634   LoopDisposition D = computeLoopDisposition(S, L);
11635   auto &Values2 = LoopDispositions[S];
11636   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11637     if (V.getPointer() == L) {
11638       V.setInt(D);
11639       break;
11640     }
11641   }
11642   return D;
11643 }
11644
11645 ScalarEvolution::LoopDisposition
11646 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11647   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11648   case scConstant:
11649     return LoopInvariant;
11650   case scTruncate:
11651   case scZeroExtend:
11652   case scSignExtend:
11653     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11654   case scAddRecExpr: {
11655     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11656
11657     // If L is the addrec's loop, it's computable.
11658     if (AR->getLoop() == L)
11659       return LoopComputable;
11660
11661     // Add recurrences are never invariant in the function-body (null loop).
11662     if (!L)
11663       return LoopVariant;
11664
11665     // Everything that is not defined at loop entry is variant.
11666     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11667       return LoopVariant;
11668     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11669            " dominate the contained loop's header?");
11670
11671     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11672     if (AR->getLoop()->contains(L))
11673       return LoopInvariant;
11674
11675     // This recurrence is variant w.r.t. L if any of its operands
11676     // are variant.
11677     for (auto *Op : AR->operands())
11678       if (!isLoopInvariant(Op, L))
11679         return LoopVariant;
11680
11681     // Otherwise it's loop-invariant.
11682     return LoopInvariant;
11683   }
11684   case scAddExpr:
11685   case scMulExpr:
11686   case scUMaxExpr:
11687   case scSMaxExpr:
11688   case scUMinExpr:
11689   case scSMinExpr: {
11690     bool HasVarying = false;
11691     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11692       LoopDisposition D = getLoopDisposition(Op, L);
11693       if (D == LoopVariant)
11694         return LoopVariant;
11695       if (D == LoopComputable)
11696         HasVarying = true;
11697     }
11698     return HasVarying ? LoopComputable : LoopInvariant;
11699   }
11700   case scUDivExpr: {
11701     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11702     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11703     if (LD == LoopVariant)
11704       return LoopVariant;
11705     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11706     if (RD == LoopVariant)
11707       return LoopVariant;
11708     return (LD == LoopInvariant && RD == LoopInvariant) ?
11709            LoopInvariant : LoopComputable;
11710   }
11711   case scUnknown:
11712     // All non-instruction values are loop invariant.  All instructions are loop
11713     // invariant if they are not contained in the specified loop.
11714     // Instructions are never considered invariant in the function body
11715     // (null loop) because they are defined within the "loop".
11716     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11717       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11718     return LoopInvariant;
11719   case scCouldNotCompute:
11720     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11721   }
11722   llvm_unreachable("Unknown SCEV kind!");
11723 }
11724
11725 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11726   return getLoopDisposition(S, L) == LoopInvariant;
11727 }
11728
11729 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11730   return getLoopDisposition(S, L) == LoopComputable;
11731 }
11732
11733 ScalarEvolution::BlockDisposition
11734 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11735   auto &Values = BlockDispositions[S];
11736   for (auto &V : Values) {
11737     if (V.getPointer() == BB)
11738       return V.getInt();
11739   }
11740   Values.emplace_back(BB, DoesNotDominateBlock);
11741   BlockDisposition D = computeBlockDisposition(S, BB);
11742   auto &Values2 = BlockDispositions[S];
11743   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11744     if (V.getPointer() == BB) {
11745       V.setInt(D);
11746       break;
11747     }
11748   }
11749   return D;
11750 }
11751
11752 ScalarEvolution::BlockDisposition
11753 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11754   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11755   case scConstant:
11756     return ProperlyDominatesBlock;
11757   case scTruncate:
11758   case scZeroExtend:
11759   case scSignExtend:
11760     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11761   case scAddRecExpr: {
11762     // This uses a "dominates" query instead of "properly dominates" query
11763     // to test for proper dominance too, because the instruction which
11764     // produces the addrec's value is a PHI, and a PHI effectively properly
11765     // dominates its entire containing block.
11766     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11767     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11768       return DoesNotDominateBlock;
11769
11770     // Fall through into SCEVNAryExpr handling.
11771     LLVM_FALLTHROUGH;
11772   }
11773   case scAddExpr:
11774   case scMulExpr:
11775   case scUMaxExpr:
11776   case scSMaxExpr:
11777   case scUMinExpr:
11778   case scSMinExpr: {
11779     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11780     bool Proper = true;
11781     for (const SCEV *NAryOp : NAry->operands()) {
11782       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11783       if (D == DoesNotDominateBlock)
11784         return DoesNotDominateBlock;
11785       if (D == DominatesBlock)
11786         Proper = false;
11787     }
11788     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11789   }
11790   case scUDivExpr: {
11791     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11792     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11793     BlockDisposition LD = getBlockDisposition(LHS, BB);
11794     if (LD == DoesNotDominateBlock)
11795       return DoesNotDominateBlock;
11796     BlockDisposition RD = getBlockDisposition(RHS, BB);
11797     if (RD == DoesNotDominateBlock)
11798       return DoesNotDominateBlock;
11799     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11800       ProperlyDominatesBlock : DominatesBlock;
11801   }
11802   case scUnknown:
11803     if (Instruction *I =
11804           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11805       if (I->getParent() == BB)
11806         return DominatesBlock;
11807       if (DT.properlyDominates(I->getParent(), BB))
11808         return ProperlyDominatesBlock;
11809       return DoesNotDominateBlock;
11810     }
11811     return ProperlyDominatesBlock;
11812   case scCouldNotCompute:
11813     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11814   }
11815   llvm_unreachable("Unknown SCEV kind!");
11816 }
11817
11818 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11819   return getBlockDisposition(S, BB) >= DominatesBlock;
11820 }
11821
11822 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11823   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11824 }
11825
11826 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11827   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11828 }
11829
11830 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11831   auto IsS = [&](const SCEV *X) { return S == X; };
11832   auto ContainsS = [&](const SCEV *X) {
11833     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11834   };
11835   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11836 }
11837
11838 void
11839 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11840   ValuesAtScopes.erase(S);
11841   LoopDispositions.erase(S);
11842   BlockDispositions.erase(S);
11843   UnsignedRanges.erase(S);
11844   SignedRanges.erase(S);
11845   ExprValueMap.erase(S);
11846   HasRecMap.erase(S);
11847   MinTrailingZerosCache.erase(S);
11848
11849   for (auto I = PredicatedSCEVRewrites.begin();
11850        I != PredicatedSCEVRewrites.end();) {
11851     std::pair<const SCEV *, const Loop *> Entry = I->first;
11852     if (Entry.first == S)
11853       PredicatedSCEVRewrites.erase(I++);
11854     else
11855       ++I;
11856   }
11857
11858   auto RemoveSCEVFromBackedgeMap =
11859       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11860         for (auto I = Map.begin(), E = Map.end(); I != E;) {
11861           BackedgeTakenInfo &BEInfo = I->second;
11862           if (BEInfo.hasOperand(S, this)) {
11863             BEInfo.clear();
11864             Map.erase(I++);
11865           } else
11866             ++I;
11867         }
11868       };
11869
11870   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11871   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11872 }
11873
11874 void
11875 ScalarEvolution::getUsedLoops(const SCEV *S,
11876                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11877   struct FindUsedLoops {
11878     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11879         : LoopsUsed(LoopsUsed) {}
11880     SmallPtrSetImpl<const Loop *> &LoopsUsed;
11881     bool follow(const SCEV *S) {
11882       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11883         LoopsUsed.insert(AR->getLoop());
11884       return true;
11885     }
11886
11887     bool isDone() const { return false; }
11888   };
11889
11890   FindUsedLoops F(LoopsUsed);
11891   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11892 }
11893
11894 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11895   SmallPtrSet<const Loop *, 8> LoopsUsed;
11896   getUsedLoops(S, LoopsUsed);
11897   for (auto *L : LoopsUsed)
11898     LoopUsers[L].push_back(S);
11899 }
11900
11901 void ScalarEvolution::verify() const {
11902   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11903   ScalarEvolution SE2(F, TLI, AC, DT, LI);
11904
11905   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11906
11907   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11908   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11909     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11910
11911     const SCEV *visitConstant(const SCEVConstant *Constant) {
11912       return SE.getConstant(Constant->getAPInt());
11913     }
11914
11915     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11916       return SE.getUnknown(Expr->getValue());
11917     }
11918
11919     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11920       return SE.getCouldNotCompute();
11921     }
11922   };
11923
11924   SCEVMapper SCM(SE2);
11925
11926   while (!LoopStack.empty()) {
11927     auto *L = LoopStack.pop_back_val();
11928     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11929
11930     auto *CurBECount = SCM.visit(
11931         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11932     auto *NewBECount = SE2.getBackedgeTakenCount(L);
11933
11934     if (CurBECount == SE2.getCouldNotCompute() ||
11935         NewBECount == SE2.getCouldNotCompute()) {
11936       // NB! This situation is legal, but is very suspicious -- whatever pass
11937       // change the loop to make a trip count go from could not compute to
11938       // computable or vice-versa *should have* invalidated SCEV.  However, we
11939       // choose not to assert here (for now) since we don't want false
11940       // positives.
11941       continue;
11942     }
11943
11944     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11945       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11946       // not propagate undef aggressively).  This means we can (and do) fail
11947       // verification in cases where a transform makes the trip count of a loop
11948       // go from "undef" to "undef+1" (say).  The transform is fine, since in
11949       // both cases the loop iterates "undef" times, but SCEV thinks we
11950       // increased the trip count of the loop by 1 incorrectly.
11951       continue;
11952     }
11953
11954     if (SE.getTypeSizeInBits(CurBECount->getType()) >
11955         SE.getTypeSizeInBits(NewBECount->getType()))
11956       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11957     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11958              SE.getTypeSizeInBits(NewBECount->getType()))
11959       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11960
11961     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
11962
11963     // Unless VerifySCEVStrict is set, we only compare constant deltas.
11964     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
11965       dbgs() << "Trip Count for " << *L << " Changed!\n";
11966       dbgs() << "Old: " << *CurBECount << "\n";
11967       dbgs() << "New: " << *NewBECount << "\n";
11968       dbgs() << "Delta: " << *Delta << "\n";
11969       std::abort();
11970     }
11971   }
11972 }
11973
11974 bool ScalarEvolution::invalidate(
11975     Function &F, const PreservedAnalyses &PA,
11976     FunctionAnalysisManager::Invalidator &Inv) {
11977   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11978   // of its dependencies is invalidated.
11979   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11980   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11981          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11982          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11983          Inv.invalidate<LoopAnalysis>(F, PA);
11984 }
11985
11986 AnalysisKey ScalarEvolutionAnalysis::Key;
11987
11988 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11989                                              FunctionAnalysisManager &AM) {
11990   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11991                          AM.getResult<AssumptionAnalysis>(F),
11992                          AM.getResult<DominatorTreeAnalysis>(F),
11993                          AM.getResult<LoopAnalysis>(F));
11994 }
11995
11996 PreservedAnalyses
11997 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11998   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11999   return PreservedAnalyses::all();
12000 }
12001
12002 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12003                       "Scalar Evolution Analysis", false, true)
12004 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12005 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12006 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12007 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12008 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12009                     "Scalar Evolution Analysis", false, true)
12010
12011 char ScalarEvolutionWrapperPass::ID = 0;
12012
12013 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12014   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12015 }
12016
12017 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12018   SE.reset(new ScalarEvolution(
12019       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12020       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12021       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12022       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12023   return false;
12024 }
12025
12026 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12027
12028 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12029   SE->print(OS);
12030 }
12031
12032 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12033   if (!VerifySCEV)
12034     return;
12035
12036   SE->verify();
12037 }
12038
12039 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12040   AU.setPreservesAll();
12041   AU.addRequiredTransitive<AssumptionCacheTracker>();
12042   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12043   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12044   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12045 }
12046
12047 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12048                                                         const SCEV *RHS) {
12049   FoldingSetNodeID ID;
12050   assert(LHS->getType() == RHS->getType() &&
12051          "Type mismatch between LHS and RHS");
12052   // Unique this node based on the arguments
12053   ID.AddInteger(SCEVPredicate::P_Equal);
12054   ID.AddPointer(LHS);
12055   ID.AddPointer(RHS);
12056   void *IP = nullptr;
12057   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12058     return S;
12059   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12060       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12061   UniquePreds.InsertNode(Eq, IP);
12062   return Eq;
12063 }
12064
12065 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12066     const SCEVAddRecExpr *AR,
12067     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12068   FoldingSetNodeID ID;
12069   // Unique this node based on the arguments
12070   ID.AddInteger(SCEVPredicate::P_Wrap);
12071   ID.AddPointer(AR);
12072   ID.AddInteger(AddedFlags);
12073   void *IP = nullptr;
12074   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12075     return S;
12076   auto *OF = new (SCEVAllocator)
12077       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12078   UniquePreds.InsertNode(OF, IP);
12079   return OF;
12080 }
12081
12082 namespace {
12083
12084 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12085 public:
12086
12087   /// Rewrites \p S in the context of a loop L and the SCEV predication
12088   /// infrastructure.
12089   ///
12090   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12091   /// equivalences present in \p Pred.
12092   ///
12093   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12094   /// \p NewPreds such that the result will be an AddRecExpr.
12095   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12096                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12097                              SCEVUnionPredicate *Pred) {
12098     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12099     return Rewriter.visit(S);
12100   }
12101
12102   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12103     if (Pred) {
12104       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12105       for (auto *Pred : ExprPreds)
12106         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12107           if (IPred->getLHS() == Expr)
12108             return IPred->getRHS();
12109     }
12110     return convertToAddRecWithPreds(Expr);
12111   }
12112
12113   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12114     const SCEV *Operand = visit(Expr->getOperand());
12115     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12116     if (AR && AR->getLoop() == L && AR->isAffine()) {
12117       // This couldn't be folded because the operand didn't have the nuw
12118       // flag. Add the nusw flag as an assumption that we could make.
12119       const SCEV *Step = AR->getStepRecurrence(SE);
12120       Type *Ty = Expr->getType();
12121       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12122         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12123                                 SE.getSignExtendExpr(Step, Ty), L,
12124                                 AR->getNoWrapFlags());
12125     }
12126     return SE.getZeroExtendExpr(Operand, Expr->getType());
12127   }
12128
12129   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12130     const SCEV *Operand = visit(Expr->getOperand());
12131     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12132     if (AR && AR->getLoop() == L && AR->isAffine()) {
12133       // This couldn't be folded because the operand didn't have the nsw
12134       // flag. Add the nssw flag as an assumption that we could make.
12135       const SCEV *Step = AR->getStepRecurrence(SE);
12136       Type *Ty = Expr->getType();
12137       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12138         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12139                                 SE.getSignExtendExpr(Step, Ty), L,
12140                                 AR->getNoWrapFlags());
12141     }
12142     return SE.getSignExtendExpr(Operand, Expr->getType());
12143   }
12144
12145 private:
12146   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12147                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12148                         SCEVUnionPredicate *Pred)
12149       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12150
12151   bool addOverflowAssumption(const SCEVPredicate *P) {
12152     if (!NewPreds) {
12153       // Check if we've already made this assumption.
12154       return Pred && Pred->implies(P);
12155     }
12156     NewPreds->insert(P);
12157     return true;
12158   }
12159
12160   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12161                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12162     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12163     return addOverflowAssumption(A);
12164   }
12165
12166   // If \p Expr represents a PHINode, we try to see if it can be represented
12167   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12168   // to add this predicate as a runtime overflow check, we return the AddRec.
12169   // If \p Expr does not meet these conditions (is not a PHI node, or we
12170   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12171   // return \p Expr.
12172   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12173     if (!isa<PHINode>(Expr->getValue()))
12174       return Expr;
12175     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12176     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12177     if (!PredicatedRewrite)
12178       return Expr;
12179     for (auto *P : PredicatedRewrite->second){
12180       // Wrap predicates from outer loops are not supported.
12181       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12182         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12183         if (L != AR->getLoop())
12184           return Expr;
12185       }
12186       if (!addOverflowAssumption(P))
12187         return Expr;
12188     }
12189     return PredicatedRewrite->first;
12190   }
12191
12192   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12193   SCEVUnionPredicate *Pred;
12194   const Loop *L;
12195 };
12196
12197 } // end anonymous namespace
12198
12199 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12200                                                    SCEVUnionPredicate &Preds) {
12201   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12202 }
12203
12204 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12205     const SCEV *S, const Loop *L,
12206     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12207   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12208   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12209   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12210
12211   if (!AddRec)
12212     return nullptr;
12213
12214   // Since the transformation was successful, we can now transfer the SCEV
12215   // predicates.
12216   for (auto *P : TransformPreds)
12217     Preds.insert(P);
12218
12219   return AddRec;
12220 }
12221
12222 /// SCEV predicates
12223 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12224                              SCEVPredicateKind Kind)
12225     : FastID(ID), Kind(Kind) {}
12226
12227 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12228                                        const SCEV *LHS, const SCEV *RHS)
12229     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12230   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12231   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12232 }
12233
12234 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12235   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12236
12237   if (!Op)
12238     return false;
12239
12240   return Op->LHS == LHS && Op->RHS == RHS;
12241 }
12242
12243 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12244
12245 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12246
12247 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12248   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12249 }
12250
12251 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12252                                      const SCEVAddRecExpr *AR,
12253                                      IncrementWrapFlags Flags)
12254     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12255
12256 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12257
12258 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12259   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12260
12261   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12262 }
12263
12264 bool SCEVWrapPredicate::isAlwaysTrue() const {
12265   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12266   IncrementWrapFlags IFlags = Flags;
12267
12268   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12269     IFlags = clearFlags(IFlags, IncrementNSSW);
12270
12271   return IFlags == IncrementAnyWrap;
12272 }
12273
12274 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12275   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12276   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12277     OS << "<nusw>";
12278   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12279     OS << "<nssw>";
12280   OS << "\n";
12281 }
12282
12283 SCEVWrapPredicate::IncrementWrapFlags
12284 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12285                                    ScalarEvolution &SE) {
12286   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12287   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12288
12289   // We can safely transfer the NSW flag as NSSW.
12290   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12291     ImpliedFlags = IncrementNSSW;
12292
12293   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12294     // If the increment is positive, the SCEV NUW flag will also imply the
12295     // WrapPredicate NUSW flag.
12296     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12297       if (Step->getValue()->getValue().isNonNegative())
12298         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12299   }
12300
12301   return ImpliedFlags;
12302 }
12303
12304 /// Union predicates don't get cached so create a dummy set ID for it.
12305 SCEVUnionPredicate::SCEVUnionPredicate()
12306     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12307
12308 bool SCEVUnionPredicate::isAlwaysTrue() const {
12309   return all_of(Preds,
12310                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12311 }
12312
12313 ArrayRef<const SCEVPredicate *>
12314 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12315   auto I = SCEVToPreds.find(Expr);
12316   if (I == SCEVToPreds.end())
12317     return ArrayRef<const SCEVPredicate *>();
12318   return I->second;
12319 }
12320
12321 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12322   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12323     return all_of(Set->Preds,
12324                   [this](const SCEVPredicate *I) { return this->implies(I); });
12325
12326   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12327   if (ScevPredsIt == SCEVToPreds.end())
12328     return false;
12329   auto &SCEVPreds = ScevPredsIt->second;
12330
12331   return any_of(SCEVPreds,
12332                 [N](const SCEVPredicate *I) { return I->implies(N); });
12333 }
12334
12335 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12336
12337 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12338   for (auto Pred : Preds)
12339     Pred->print(OS, Depth);
12340 }
12341
12342 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12343   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12344     for (auto Pred : Set->Preds)
12345       add(Pred);
12346     return;
12347   }
12348
12349   if (implies(N))
12350     return;
12351
12352   const SCEV *Key = N->getExpr();
12353   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12354                 " associated expression!");
12355
12356   SCEVToPreds[Key].push_back(N);
12357   Preds.push_back(N);
12358 }
12359
12360 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12361                                                      Loop &L)
12362     : SE(SE), L(L) {}
12363
12364 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12365   const SCEV *Expr = SE.getSCEV(V);
12366   RewriteEntry &Entry = RewriteMap[Expr];
12367
12368   // If we already have an entry and the version matches, return it.
12369   if (Entry.second && Generation == Entry.first)
12370     return Entry.second;
12371
12372   // We found an entry but it's stale. Rewrite the stale entry
12373   // according to the current predicate.
12374   if (Entry.second)
12375     Expr = Entry.second;
12376
12377   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12378   Entry = {Generation, NewSCEV};
12379
12380   return NewSCEV;
12381 }
12382
12383 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12384   if (!BackedgeCount) {
12385     SCEVUnionPredicate BackedgePred;
12386     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12387     addPredicate(BackedgePred);
12388   }
12389   return BackedgeCount;
12390 }
12391
12392 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12393   if (Preds.implies(&Pred))
12394     return;
12395   Preds.add(&Pred);
12396   updateGeneration();
12397 }
12398
12399 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12400   return Preds;
12401 }
12402
12403 void PredicatedScalarEvolution::updateGeneration() {
12404   // If the generation number wrapped recompute everything.
12405   if (++Generation == 0) {
12406     for (auto &II : RewriteMap) {
12407       const SCEV *Rewritten = II.second.second;
12408       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12409     }
12410   }
12411 }
12412
12413 void PredicatedScalarEvolution::setNoOverflow(
12414     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12415   const SCEV *Expr = getSCEV(V);
12416   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12417
12418   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12419
12420   // Clear the statically implied flags.
12421   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12422   addPredicate(*SE.getWrapPredicate(AR, Flags));
12423
12424   auto II = FlagsMap.insert({V, Flags});
12425   if (!II.second)
12426     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12427 }
12428
12429 bool PredicatedScalarEvolution::hasNoOverflow(
12430     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12431   const SCEV *Expr = getSCEV(V);
12432   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12433
12434   Flags = SCEVWrapPredicate::clearFlags(
12435       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12436
12437   auto II = FlagsMap.find(V);
12438
12439   if (II != FlagsMap.end())
12440     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12441
12442   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12443 }
12444
12445 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12446   const SCEV *Expr = this->getSCEV(V);
12447   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12448   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12449
12450   if (!New)
12451     return nullptr;
12452
12453   for (auto *P : NewPreds)
12454     Preds.add(P);
12455
12456   updateGeneration();
12457   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12458   return New;
12459 }
12460
12461 PredicatedScalarEvolution::PredicatedScalarEvolution(
12462     const PredicatedScalarEvolution &Init)
12463     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12464       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12465   for (const auto &I : Init.FlagsMap)
12466     FlagsMap.insert(I);
12467 }
12468
12469 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12470   // For each block.
12471   for (auto *BB : L.getBlocks())
12472     for (auto &I : *BB) {
12473       if (!SE.isSCEVable(I.getType()))
12474         continue;
12475
12476       auto *Expr = SE.getSCEV(&I);
12477       auto II = RewriteMap.find(Expr);
12478
12479       if (II == RewriteMap.end())
12480         continue;
12481
12482       // Don't print things that are not interesting.
12483       if (II->second.second == Expr)
12484         continue;
12485
12486       OS.indent(Depth) << "[PSE]" << I << ":\n";
12487       OS.indent(Depth + 2) << *Expr << "\n";
12488       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12489     }
12490 }
12491
12492 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12493 // arbitrary expressions.
12494 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12495 // 4, A / B becomes X / 8).
12496 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12497                                 const SCEV *&RHS) {
12498   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12499   if (Add == nullptr || Add->getNumOperands() != 2)
12500     return false;
12501
12502   const SCEV *A = Add->getOperand(1);
12503   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12504
12505   if (Mul == nullptr)
12506     return false;
12507
12508   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12509     // (SomeExpr + (-(SomeExpr / B) * B)).
12510     if (Expr == getURemExpr(A, B)) {
12511       LHS = A;
12512       RHS = B;
12513       return true;
12514     }
12515     return false;
12516   };
12517
12518   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12519   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12520     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12521            MatchURemWithDivisor(Mul->getOperand(2));
12522
12523   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12524   if (Mul->getNumOperands() == 2)
12525     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12526            MatchURemWithDivisor(Mul->getOperand(0)) ||
12527            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12528            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12529   return false;
12530 }