]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Analysis/TargetTransformInfo.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Analysis / TargetTransformInfo.cpp
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/TargetTransformInfoImpl.h"
11 #include "llvm/IR/CallSite.h"
12 #include "llvm/IR/DataLayout.h"
13 #include "llvm/IR/Instruction.h"
14 #include "llvm/IR/Instructions.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/Module.h"
17 #include "llvm/IR/Operator.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include <utility>
24
25 using namespace llvm;
26 using namespace PatternMatch;
27
28 #define DEBUG_TYPE "tti"
29
30 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
31                                      cl::Hidden,
32                                      cl::desc("Recognize reduction patterns."));
33
34 namespace {
35 /// No-op implementation of the TTI interface using the utility base
36 /// classes.
37 ///
38 /// This is used when no target specific information is available.
39 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
40   explicit NoTTIImpl(const DataLayout &DL)
41       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
42 };
43 }
44
45 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
46   // If the loop has irreducible control flow, it can not be converted to
47   // Hardware loop.
48   LoopBlocksRPO RPOT(L);  
49   RPOT.perform(&LI);
50   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
51     return false;
52   return true;
53 }
54
55 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
56                                                LoopInfo &LI, DominatorTree &DT,
57                                                bool ForceNestedLoop,
58                                                bool ForceHardwareLoopPHI) {
59   SmallVector<BasicBlock *, 4> ExitingBlocks;
60   L->getExitingBlocks(ExitingBlocks);
61
62   for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
63                                                IE = ExitingBlocks.end();
64        I != IE; ++I) {
65     BasicBlock *BB = *I;
66
67     // If we pass the updated counter back through a phi, we need to know
68     // which latch the updated value will be coming from.
69     if (!L->isLoopLatch(BB)) {
70       if (ForceHardwareLoopPHI || CounterInReg)
71         continue;
72     }
73
74     const SCEV *EC = SE.getExitCount(L, BB);
75     if (isa<SCEVCouldNotCompute>(EC))
76       continue;
77     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
78       if (ConstEC->getValue()->isZero())
79         continue;
80     } else if (!SE.isLoopInvariant(EC, L))
81       continue;
82
83     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
84       continue;
85
86     // If this exiting block is contained in a nested loop, it is not eligible
87     // for insertion of the branch-and-decrement since the inner loop would
88     // end up messing up the value in the CTR.
89     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
90       continue;
91
92     // We now have a loop-invariant count of loop iterations (which is not the
93     // constant zero) for which we know that this loop will not exit via this
94     // existing block.
95
96     // We need to make sure that this block will run on every loop iteration.
97     // For this to be true, we must dominate all blocks with backedges. Such
98     // blocks are in-loop predecessors to the header block.
99     bool NotAlways = false;
100     for (pred_iterator PI = pred_begin(L->getHeader()),
101                        PIE = pred_end(L->getHeader());
102          PI != PIE; ++PI) {
103       if (!L->contains(*PI))
104         continue;
105
106       if (!DT.dominates(*I, *PI)) {
107         NotAlways = true;
108         break;
109       }
110     }
111
112     if (NotAlways)
113       continue;
114
115     // Make sure this blocks ends with a conditional branch.
116     Instruction *TI = BB->getTerminator();
117     if (!TI)
118       continue;
119
120     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
121       if (!BI->isConditional())
122         continue;
123
124       ExitBranch = BI;
125     } else
126       continue;
127
128     // Note that this block may not be the loop latch block, even if the loop
129     // has a latch block.
130     ExitBlock = *I;
131     ExitCount = EC;
132     break;
133   }
134
135   if (!ExitBlock)
136     return false;
137   return true;
138 }
139
140 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
141     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
142
143 TargetTransformInfo::~TargetTransformInfo() {}
144
145 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
146     : TTIImpl(std::move(Arg.TTIImpl)) {}
147
148 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
149   TTIImpl = std::move(RHS.TTIImpl);
150   return *this;
151 }
152
153 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
154                                           Type *OpTy) const {
155   int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
156   assert(Cost >= 0 && "TTI should not produce negative costs!");
157   return Cost;
158 }
159
160 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs,
161                                      const User *U) const {
162   int Cost = TTIImpl->getCallCost(FTy, NumArgs, U);
163   assert(Cost >= 0 && "TTI should not produce negative costs!");
164   return Cost;
165 }
166
167 int TargetTransformInfo::getCallCost(const Function *F,
168                                      ArrayRef<const Value *> Arguments,
169                                      const User *U) const {
170   int Cost = TTIImpl->getCallCost(F, Arguments, U);
171   assert(Cost >= 0 && "TTI should not produce negative costs!");
172   return Cost;
173 }
174
175 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
176   return TTIImpl->getInliningThresholdMultiplier();
177 }
178
179 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
180   return TTIImpl->getInlinerVectorBonusPercent();
181 }
182
183 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
184                                     ArrayRef<const Value *> Operands) const {
185   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
186 }
187
188 int TargetTransformInfo::getExtCost(const Instruction *I,
189                                     const Value *Src) const {
190   return TTIImpl->getExtCost(I, Src);
191 }
192
193 int TargetTransformInfo::getIntrinsicCost(
194     Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments,
195     const User *U) const {
196   int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U);
197   assert(Cost >= 0 && "TTI should not produce negative costs!");
198   return Cost;
199 }
200
201 unsigned
202 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
203                                                       unsigned &JTSize) const {
204   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
205 }
206
207 int TargetTransformInfo::getUserCost(const User *U,
208     ArrayRef<const Value *> Operands) const {
209   int Cost = TTIImpl->getUserCost(U, Operands);
210   assert(Cost >= 0 && "TTI should not produce negative costs!");
211   return Cost;
212 }
213
214 bool TargetTransformInfo::hasBranchDivergence() const {
215   return TTIImpl->hasBranchDivergence();
216 }
217
218 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
219   return TTIImpl->isSourceOfDivergence(V);
220 }
221
222 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
223   return TTIImpl->isAlwaysUniform(V);
224 }
225
226 unsigned TargetTransformInfo::getFlatAddressSpace() const {
227   return TTIImpl->getFlatAddressSpace();
228 }
229
230 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
231   return TTIImpl->isLoweredToCall(F);
232 }
233
234 bool TargetTransformInfo::isHardwareLoopProfitable(
235   Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
236   TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
237   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
238 }
239
240 void TargetTransformInfo::getUnrollingPreferences(
241     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
242   return TTIImpl->getUnrollingPreferences(L, SE, UP);
243 }
244
245 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
246   return TTIImpl->isLegalAddImmediate(Imm);
247 }
248
249 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
250   return TTIImpl->isLegalICmpImmediate(Imm);
251 }
252
253 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
254                                                 int64_t BaseOffset,
255                                                 bool HasBaseReg,
256                                                 int64_t Scale,
257                                                 unsigned AddrSpace,
258                                                 Instruction *I) const {
259   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
260                                         Scale, AddrSpace, I);
261 }
262
263 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
264   return TTIImpl->isLSRCostLess(C1, C2);
265 }
266
267 bool TargetTransformInfo::canMacroFuseCmp() const {
268   return TTIImpl->canMacroFuseCmp();
269 }
270
271 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
272                                      ScalarEvolution *SE, LoopInfo *LI,
273                                      DominatorTree *DT, AssumptionCache *AC,
274                                      TargetLibraryInfo *LibInfo) const {
275   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
276 }
277
278 bool TargetTransformInfo::shouldFavorPostInc() const {
279   return TTIImpl->shouldFavorPostInc();
280 }
281
282 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
283   return TTIImpl->shouldFavorBackedgeIndex(L);
284 }
285
286 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const {
287   return TTIImpl->isLegalMaskedStore(DataType);
288 }
289
290 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const {
291   return TTIImpl->isLegalMaskedLoad(DataType);
292 }
293
294 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
295                                          unsigned Alignment) const {
296   return TTIImpl->isLegalNTStore(DataType, Alignment);
297 }
298
299 bool TargetTransformInfo::isLegalNTLoad(Type *DataType,
300                                         unsigned Alignment) const {
301   return TTIImpl->isLegalNTLoad(DataType, Alignment);
302 }
303
304 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
305   return TTIImpl->isLegalMaskedGather(DataType);
306 }
307
308 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
309   return TTIImpl->isLegalMaskedScatter(DataType);
310 }
311
312 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
313   return TTIImpl->isLegalMaskedCompressStore(DataType);
314 }
315
316 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
317   return TTIImpl->isLegalMaskedExpandLoad(DataType);
318 }
319
320 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
321   return TTIImpl->hasDivRemOp(DataType, IsSigned);
322 }
323
324 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
325                                              unsigned AddrSpace) const {
326   return TTIImpl->hasVolatileVariant(I, AddrSpace);
327 }
328
329 bool TargetTransformInfo::prefersVectorizedAddressing() const {
330   return TTIImpl->prefersVectorizedAddressing();
331 }
332
333 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
334                                               int64_t BaseOffset,
335                                               bool HasBaseReg,
336                                               int64_t Scale,
337                                               unsigned AddrSpace) const {
338   int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
339                                            Scale, AddrSpace);
340   assert(Cost >= 0 && "TTI should not produce negative costs!");
341   return Cost;
342 }
343
344 bool TargetTransformInfo::LSRWithInstrQueries() const {
345   return TTIImpl->LSRWithInstrQueries();
346 }
347
348 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
349   return TTIImpl->isTruncateFree(Ty1, Ty2);
350 }
351
352 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
353   return TTIImpl->isProfitableToHoist(I);
354 }
355
356 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
357
358 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
359   return TTIImpl->isTypeLegal(Ty);
360 }
361
362 unsigned TargetTransformInfo::getJumpBufAlignment() const {
363   return TTIImpl->getJumpBufAlignment();
364 }
365
366 unsigned TargetTransformInfo::getJumpBufSize() const {
367   return TTIImpl->getJumpBufSize();
368 }
369
370 bool TargetTransformInfo::shouldBuildLookupTables() const {
371   return TTIImpl->shouldBuildLookupTables();
372 }
373 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
374   return TTIImpl->shouldBuildLookupTablesForConstant(C);
375 }
376
377 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
378   return TTIImpl->useColdCCForColdCall(F);
379 }
380
381 unsigned TargetTransformInfo::
382 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
383   return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
384 }
385
386 unsigned TargetTransformInfo::
387 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
388                                  unsigned VF) const {
389   return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
390 }
391
392 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
393   return TTIImpl->supportsEfficientVectorElementLoadStore();
394 }
395
396 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
397   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
398 }
399
400 TargetTransformInfo::MemCmpExpansionOptions
401 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
402   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
403 }
404
405 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
406   return TTIImpl->enableInterleavedAccessVectorization();
407 }
408
409 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
410   return TTIImpl->enableMaskedInterleavedAccessVectorization();
411 }
412
413 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
414   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
415 }
416
417 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
418                                                          unsigned BitWidth,
419                                                          unsigned AddressSpace,
420                                                          unsigned Alignment,
421                                                          bool *Fast) const {
422   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
423                                                  Alignment, Fast);
424 }
425
426 TargetTransformInfo::PopcntSupportKind
427 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
428   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
429 }
430
431 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
432   return TTIImpl->haveFastSqrt(Ty);
433 }
434
435 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
436   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
437 }
438
439 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
440   int Cost = TTIImpl->getFPOpCost(Ty);
441   assert(Cost >= 0 && "TTI should not produce negative costs!");
442   return Cost;
443 }
444
445 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
446                                                const APInt &Imm,
447                                                Type *Ty) const {
448   int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
449   assert(Cost >= 0 && "TTI should not produce negative costs!");
450   return Cost;
451 }
452
453 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
454   int Cost = TTIImpl->getIntImmCost(Imm, Ty);
455   assert(Cost >= 0 && "TTI should not produce negative costs!");
456   return Cost;
457 }
458
459 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
460                                        const APInt &Imm, Type *Ty) const {
461   int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
462   assert(Cost >= 0 && "TTI should not produce negative costs!");
463   return Cost;
464 }
465
466 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
467                                        const APInt &Imm, Type *Ty) const {
468   int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
469   assert(Cost >= 0 && "TTI should not produce negative costs!");
470   return Cost;
471 }
472
473 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
474   return TTIImpl->getNumberOfRegisters(Vector);
475 }
476
477 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
478   return TTIImpl->getRegisterBitWidth(Vector);
479 }
480
481 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
482   return TTIImpl->getMinVectorRegisterBitWidth();
483 }
484
485 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
486   return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
487 }
488
489 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
490   return TTIImpl->getMinimumVF(ElemWidth);
491 }
492
493 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
494     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
495   return TTIImpl->shouldConsiderAddressTypePromotion(
496       I, AllowPromotionWithoutCommonHeader);
497 }
498
499 unsigned TargetTransformInfo::getCacheLineSize() const {
500   return TTIImpl->getCacheLineSize();
501 }
502
503 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
504   const {
505   return TTIImpl->getCacheSize(Level);
506 }
507
508 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
509   CacheLevel Level) const {
510   return TTIImpl->getCacheAssociativity(Level);
511 }
512
513 unsigned TargetTransformInfo::getPrefetchDistance() const {
514   return TTIImpl->getPrefetchDistance();
515 }
516
517 unsigned TargetTransformInfo::getMinPrefetchStride() const {
518   return TTIImpl->getMinPrefetchStride();
519 }
520
521 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
522   return TTIImpl->getMaxPrefetchIterationsAhead();
523 }
524
525 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
526   return TTIImpl->getMaxInterleaveFactor(VF);
527 }
528
529 TargetTransformInfo::OperandValueKind
530 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) {
531   OperandValueKind OpInfo = OK_AnyValue;
532   OpProps = OP_None;
533
534   if (auto *CI = dyn_cast<ConstantInt>(V)) {
535     if (CI->getValue().isPowerOf2())
536       OpProps = OP_PowerOf2;
537     return OK_UniformConstantValue;
538   }
539
540   // A broadcast shuffle creates a uniform value.
541   // TODO: Add support for non-zero index broadcasts.
542   // TODO: Add support for different source vector width.
543   if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
544     if (ShuffleInst->isZeroEltSplat())
545       OpInfo = OK_UniformValue;
546
547   const Value *Splat = getSplatValue(V);
548
549   // Check for a splat of a constant or for a non uniform vector of constants
550   // and check if the constant(s) are all powers of two.
551   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
552     OpInfo = OK_NonUniformConstantValue;
553     if (Splat) {
554       OpInfo = OK_UniformConstantValue;
555       if (auto *CI = dyn_cast<ConstantInt>(Splat))
556         if (CI->getValue().isPowerOf2())
557           OpProps = OP_PowerOf2;
558     } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
559       OpProps = OP_PowerOf2;
560       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
561         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
562           if (CI->getValue().isPowerOf2())
563             continue;
564         OpProps = OP_None;
565         break;
566       }
567     }
568   }
569
570   // Check for a splat of a uniform value. This is not loop aware, so return
571   // true only for the obviously uniform cases (argument, globalvalue)
572   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
573     OpInfo = OK_UniformValue;
574
575   return OpInfo;
576 }
577
578 int TargetTransformInfo::getArithmeticInstrCost(
579     unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
580     OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
581     OperandValueProperties Opd2PropInfo,
582     ArrayRef<const Value *> Args) const {
583   int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
584                                              Opd1PropInfo, Opd2PropInfo, Args);
585   assert(Cost >= 0 && "TTI should not produce negative costs!");
586   return Cost;
587 }
588
589 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
590                                         Type *SubTp) const {
591   int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
592   assert(Cost >= 0 && "TTI should not produce negative costs!");
593   return Cost;
594 }
595
596 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
597                                  Type *Src, const Instruction *I) const {
598   assert ((I == nullptr || I->getOpcode() == Opcode) &&
599           "Opcode should reflect passed instruction.");
600   int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
601   assert(Cost >= 0 && "TTI should not produce negative costs!");
602   return Cost;
603 }
604
605 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
606                                                   VectorType *VecTy,
607                                                   unsigned Index) const {
608   int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
609   assert(Cost >= 0 && "TTI should not produce negative costs!");
610   return Cost;
611 }
612
613 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
614   int Cost = TTIImpl->getCFInstrCost(Opcode);
615   assert(Cost >= 0 && "TTI should not produce negative costs!");
616   return Cost;
617 }
618
619 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
620                                  Type *CondTy, const Instruction *I) const {
621   assert ((I == nullptr || I->getOpcode() == Opcode) &&
622           "Opcode should reflect passed instruction.");
623   int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
624   assert(Cost >= 0 && "TTI should not produce negative costs!");
625   return Cost;
626 }
627
628 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
629                                             unsigned Index) const {
630   int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
631   assert(Cost >= 0 && "TTI should not produce negative costs!");
632   return Cost;
633 }
634
635 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
636                                          unsigned Alignment,
637                                          unsigned AddressSpace,
638                                          const Instruction *I) const {
639   assert ((I == nullptr || I->getOpcode() == Opcode) &&
640           "Opcode should reflect passed instruction.");
641   int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
642   assert(Cost >= 0 && "TTI should not produce negative costs!");
643   return Cost;
644 }
645
646 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
647                                                unsigned Alignment,
648                                                unsigned AddressSpace) const {
649   int Cost =
650       TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
651   assert(Cost >= 0 && "TTI should not produce negative costs!");
652   return Cost;
653 }
654
655 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
656                                                 Value *Ptr, bool VariableMask,
657                                                 unsigned Alignment) const {
658   int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
659                                              Alignment);
660   assert(Cost >= 0 && "TTI should not produce negative costs!");
661   return Cost;
662 }
663
664 int TargetTransformInfo::getInterleavedMemoryOpCost(
665     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
666     unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
667     bool UseMaskForGaps) const {
668   int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
669                                                  Alignment, AddressSpace,
670                                                  UseMaskForCond,
671                                                  UseMaskForGaps);
672   assert(Cost >= 0 && "TTI should not produce negative costs!");
673   return Cost;
674 }
675
676 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
677                                     ArrayRef<Type *> Tys, FastMathFlags FMF,
678                                     unsigned ScalarizationCostPassed) const {
679   int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
680                                             ScalarizationCostPassed);
681   assert(Cost >= 0 && "TTI should not produce negative costs!");
682   return Cost;
683 }
684
685 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
686            ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
687   int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
688   assert(Cost >= 0 && "TTI should not produce negative costs!");
689   return Cost;
690 }
691
692 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
693                                           ArrayRef<Type *> Tys) const {
694   int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
695   assert(Cost >= 0 && "TTI should not produce negative costs!");
696   return Cost;
697 }
698
699 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
700   return TTIImpl->getNumberOfParts(Tp);
701 }
702
703 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
704                                                    ScalarEvolution *SE,
705                                                    const SCEV *Ptr) const {
706   int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
707   assert(Cost >= 0 && "TTI should not produce negative costs!");
708   return Cost;
709 }
710
711 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
712   int Cost = TTIImpl->getMemcpyCost(I);
713   assert(Cost >= 0 && "TTI should not produce negative costs!");
714   return Cost;
715 }
716
717 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
718                                                     bool IsPairwiseForm) const {
719   int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
720   assert(Cost >= 0 && "TTI should not produce negative costs!");
721   return Cost;
722 }
723
724 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
725                                                 bool IsPairwiseForm,
726                                                 bool IsUnsigned) const {
727   int Cost =
728       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
729   assert(Cost >= 0 && "TTI should not produce negative costs!");
730   return Cost;
731 }
732
733 unsigned
734 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
735   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
736 }
737
738 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
739                                              MemIntrinsicInfo &Info) const {
740   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
741 }
742
743 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
744   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
745 }
746
747 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
748     IntrinsicInst *Inst, Type *ExpectedType) const {
749   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
750 }
751
752 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
753                                                      Value *Length,
754                                                      unsigned SrcAlign,
755                                                      unsigned DestAlign) const {
756   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
757                                             DestAlign);
758 }
759
760 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
761     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
762     unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
763   TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
764                                              SrcAlign, DestAlign);
765 }
766
767 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
768                                               const Function *Callee) const {
769   return TTIImpl->areInlineCompatible(Caller, Callee);
770 }
771
772 bool TargetTransformInfo::areFunctionArgsABICompatible(
773     const Function *Caller, const Function *Callee,
774     SmallPtrSetImpl<Argument *> &Args) const {
775   return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
776 }
777
778 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
779                                              Type *Ty) const {
780   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
781 }
782
783 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
784                                               Type *Ty) const {
785   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
786 }
787
788 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
789   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
790 }
791
792 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
793   return TTIImpl->isLegalToVectorizeLoad(LI);
794 }
795
796 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
797   return TTIImpl->isLegalToVectorizeStore(SI);
798 }
799
800 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
801     unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
802   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
803                                               AddrSpace);
804 }
805
806 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
807     unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
808   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
809                                                AddrSpace);
810 }
811
812 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
813                                                   unsigned LoadSize,
814                                                   unsigned ChainSizeInBytes,
815                                                   VectorType *VecTy) const {
816   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
817 }
818
819 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
820                                                    unsigned StoreSize,
821                                                    unsigned ChainSizeInBytes,
822                                                    VectorType *VecTy) const {
823   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
824 }
825
826 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
827                                                 Type *Ty, ReductionFlags Flags) const {
828   return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
829 }
830
831 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
832   return TTIImpl->shouldExpandReduction(II);
833 }
834
835 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
836   return TTIImpl->getGISelRematGlobalCost();
837 }
838
839 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
840   return TTIImpl->getInstructionLatency(I);
841 }
842
843 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
844                                      unsigned Level) {
845   // We don't need a shuffle if we just want to have element 0 in position 0 of
846   // the vector.
847   if (!SI && Level == 0 && IsLeft)
848     return true;
849   else if (!SI)
850     return false;
851
852   SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
853
854   // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
855   // we look at the left or right side.
856   for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
857     Mask[i] = val;
858
859   SmallVector<int, 16> ActualMask = SI->getShuffleMask();
860   return Mask == ActualMask;
861 }
862
863 namespace {
864 /// Kind of the reduction data.
865 enum ReductionKind {
866   RK_None,           /// Not a reduction.
867   RK_Arithmetic,     /// Binary reduction data.
868   RK_MinMax,         /// Min/max reduction data.
869   RK_UnsignedMinMax, /// Unsigned min/max reduction data.
870 };
871 /// Contains opcode + LHS/RHS parts of the reduction operations.
872 struct ReductionData {
873   ReductionData() = delete;
874   ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
875       : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
876     assert(Kind != RK_None && "expected binary or min/max reduction only.");
877   }
878   unsigned Opcode = 0;
879   Value *LHS = nullptr;
880   Value *RHS = nullptr;
881   ReductionKind Kind = RK_None;
882   bool hasSameData(ReductionData &RD) const {
883     return Kind == RD.Kind && Opcode == RD.Opcode;
884   }
885 };
886 } // namespace
887
888 static Optional<ReductionData> getReductionData(Instruction *I) {
889   Value *L, *R;
890   if (m_BinOp(m_Value(L), m_Value(R)).match(I))
891     return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
892   if (auto *SI = dyn_cast<SelectInst>(I)) {
893     if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
894         m_SMax(m_Value(L), m_Value(R)).match(SI) ||
895         m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
896         m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
897         m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
898         m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
899       auto *CI = cast<CmpInst>(SI->getCondition());
900       return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
901     }
902     if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
903         m_UMax(m_Value(L), m_Value(R)).match(SI)) {
904       auto *CI = cast<CmpInst>(SI->getCondition());
905       return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
906     }
907   }
908   return llvm::None;
909 }
910
911 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
912                                                    unsigned Level,
913                                                    unsigned NumLevels) {
914   // Match one level of pairwise operations.
915   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
916   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
917   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
918   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
919   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
920   if (!I)
921     return RK_None;
922
923   assert(I->getType()->isVectorTy() && "Expecting a vector type");
924
925   Optional<ReductionData> RD = getReductionData(I);
926   if (!RD)
927     return RK_None;
928
929   ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
930   if (!LS && Level)
931     return RK_None;
932   ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
933   if (!RS && Level)
934     return RK_None;
935
936   // On level 0 we can omit one shufflevector instruction.
937   if (!Level && !RS && !LS)
938     return RK_None;
939
940   // Shuffle inputs must match.
941   Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
942   Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
943   Value *NextLevelOp = nullptr;
944   if (NextLevelOpR && NextLevelOpL) {
945     // If we have two shuffles their operands must match.
946     if (NextLevelOpL != NextLevelOpR)
947       return RK_None;
948
949     NextLevelOp = NextLevelOpL;
950   } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
951     // On the first level we can omit the shufflevector <0, undef,...>. So the
952     // input to the other shufflevector <1, undef> must match with one of the
953     // inputs to the current binary operation.
954     // Example:
955     //  %NextLevelOpL = shufflevector %R, <1, undef ...>
956     //  %BinOp        = fadd          %NextLevelOpL, %R
957     if (NextLevelOpL && NextLevelOpL != RD->RHS)
958       return RK_None;
959     else if (NextLevelOpR && NextLevelOpR != RD->LHS)
960       return RK_None;
961
962     NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
963   } else
964     return RK_None;
965
966   // Check that the next levels binary operation exists and matches with the
967   // current one.
968   if (Level + 1 != NumLevels) {
969     Optional<ReductionData> NextLevelRD =
970         getReductionData(cast<Instruction>(NextLevelOp));
971     if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
972       return RK_None;
973   }
974
975   // Shuffle mask for pairwise operation must match.
976   if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
977     if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
978       return RK_None;
979   } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
980     if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
981       return RK_None;
982   } else {
983     return RK_None;
984   }
985
986   if (++Level == NumLevels)
987     return RD->Kind;
988
989   // Match next level.
990   return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
991                                        NumLevels);
992 }
993
994 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
995                                             unsigned &Opcode, Type *&Ty) {
996   if (!EnableReduxCost)
997     return RK_None;
998
999   // Need to extract the first element.
1000   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1001   unsigned Idx = ~0u;
1002   if (CI)
1003     Idx = CI->getZExtValue();
1004   if (Idx != 0)
1005     return RK_None;
1006
1007   auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1008   if (!RdxStart)
1009     return RK_None;
1010   Optional<ReductionData> RD = getReductionData(RdxStart);
1011   if (!RD)
1012     return RK_None;
1013
1014   Type *VecTy = RdxStart->getType();
1015   unsigned NumVecElems = VecTy->getVectorNumElements();
1016   if (!isPowerOf2_32(NumVecElems))
1017     return RK_None;
1018
1019   // We look for a sequence of shuffle,shuffle,add triples like the following
1020   // that builds a pairwise reduction tree.
1021   //
1022   //  (X0, X1, X2, X3)
1023   //   (X0 + X1, X2 + X3, undef, undef)
1024   //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
1025   //
1026   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
1027   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
1028   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
1029   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
1030   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
1031   // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1032   //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
1033   // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1034   //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1035   // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
1036   // %r = extractelement <4 x float> %bin.rdx8, i32 0
1037   if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
1038       RK_None)
1039     return RK_None;
1040
1041   Opcode = RD->Opcode;
1042   Ty = VecTy;
1043
1044   return RD->Kind;
1045 }
1046
1047 static std::pair<Value *, ShuffleVectorInst *>
1048 getShuffleAndOtherOprd(Value *L, Value *R) {
1049   ShuffleVectorInst *S = nullptr;
1050
1051   if ((S = dyn_cast<ShuffleVectorInst>(L)))
1052     return std::make_pair(R, S);
1053
1054   S = dyn_cast<ShuffleVectorInst>(R);
1055   return std::make_pair(L, S);
1056 }
1057
1058 static ReductionKind
1059 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
1060                               unsigned &Opcode, Type *&Ty) {
1061   if (!EnableReduxCost)
1062     return RK_None;
1063
1064   // Need to extract the first element.
1065   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1066   unsigned Idx = ~0u;
1067   if (CI)
1068     Idx = CI->getZExtValue();
1069   if (Idx != 0)
1070     return RK_None;
1071
1072   auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1073   if (!RdxStart)
1074     return RK_None;
1075   Optional<ReductionData> RD = getReductionData(RdxStart);
1076   if (!RD)
1077     return RK_None;
1078
1079   Type *VecTy = ReduxRoot->getOperand(0)->getType();
1080   unsigned NumVecElems = VecTy->getVectorNumElements();
1081   if (!isPowerOf2_32(NumVecElems))
1082     return RK_None;
1083
1084   // We look for a sequence of shuffles and adds like the following matching one
1085   // fadd, shuffle vector pair at a time.
1086   //
1087   // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
1088   //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
1089   // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
1090   // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
1091   //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1092   // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
1093   // %r = extractelement <4 x float> %bin.rdx8, i32 0
1094
1095   unsigned MaskStart = 1;
1096   Instruction *RdxOp = RdxStart;
1097   SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
1098   unsigned NumVecElemsRemain = NumVecElems;
1099   while (NumVecElemsRemain - 1) {
1100     // Check for the right reduction operation.
1101     if (!RdxOp)
1102       return RK_None;
1103     Optional<ReductionData> RDLevel = getReductionData(RdxOp);
1104     if (!RDLevel || !RDLevel->hasSameData(*RD))
1105       return RK_None;
1106
1107     Value *NextRdxOp;
1108     ShuffleVectorInst *Shuffle;
1109     std::tie(NextRdxOp, Shuffle) =
1110         getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
1111
1112     // Check the current reduction operation and the shuffle use the same value.
1113     if (Shuffle == nullptr)
1114       return RK_None;
1115     if (Shuffle->getOperand(0) != NextRdxOp)
1116       return RK_None;
1117
1118     // Check that shuffle masks matches.
1119     for (unsigned j = 0; j != MaskStart; ++j)
1120       ShuffleMask[j] = MaskStart + j;
1121     // Fill the rest of the mask with -1 for undef.
1122     std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
1123
1124     SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
1125     if (ShuffleMask != Mask)
1126       return RK_None;
1127
1128     RdxOp = dyn_cast<Instruction>(NextRdxOp);
1129     NumVecElemsRemain /= 2;
1130     MaskStart *= 2;
1131   }
1132
1133   Opcode = RD->Opcode;
1134   Ty = VecTy;
1135   return RD->Kind;
1136 }
1137
1138 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1139   switch (I->getOpcode()) {
1140   case Instruction::GetElementPtr:
1141     return getUserCost(I);
1142
1143   case Instruction::Ret:
1144   case Instruction::PHI:
1145   case Instruction::Br: {
1146     return getCFInstrCost(I->getOpcode());
1147   }
1148   case Instruction::Add:
1149   case Instruction::FAdd:
1150   case Instruction::Sub:
1151   case Instruction::FSub:
1152   case Instruction::Mul:
1153   case Instruction::FMul:
1154   case Instruction::UDiv:
1155   case Instruction::SDiv:
1156   case Instruction::FDiv:
1157   case Instruction::URem:
1158   case Instruction::SRem:
1159   case Instruction::FRem:
1160   case Instruction::Shl:
1161   case Instruction::LShr:
1162   case Instruction::AShr:
1163   case Instruction::And:
1164   case Instruction::Or:
1165   case Instruction::Xor: {
1166     TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1167     TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1168     Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1169     Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
1170     SmallVector<const Value *, 2> Operands(I->operand_values());
1171     return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1172                                   Op1VP, Op2VP, Operands);
1173   }
1174   case Instruction::FNeg: {
1175     TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1176     TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1177     Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1178     Op2VK = OK_AnyValue;
1179     Op2VP = OP_None;
1180     SmallVector<const Value *, 2> Operands(I->operand_values());
1181     return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1182                                   Op1VP, Op2VP, Operands);
1183   }
1184   case Instruction::Select: {
1185     const SelectInst *SI = cast<SelectInst>(I);
1186     Type *CondTy = SI->getCondition()->getType();
1187     return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
1188   }
1189   case Instruction::ICmp:
1190   case Instruction::FCmp: {
1191     Type *ValTy = I->getOperand(0)->getType();
1192     return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
1193   }
1194   case Instruction::Store: {
1195     const StoreInst *SI = cast<StoreInst>(I);
1196     Type *ValTy = SI->getValueOperand()->getType();
1197     return getMemoryOpCost(I->getOpcode(), ValTy,
1198                                 SI->getAlignment(),
1199                                 SI->getPointerAddressSpace(), I);
1200   }
1201   case Instruction::Load: {
1202     const LoadInst *LI = cast<LoadInst>(I);
1203     return getMemoryOpCost(I->getOpcode(), I->getType(),
1204                                 LI->getAlignment(),
1205                                 LI->getPointerAddressSpace(), I);
1206   }
1207   case Instruction::ZExt:
1208   case Instruction::SExt:
1209   case Instruction::FPToUI:
1210   case Instruction::FPToSI:
1211   case Instruction::FPExt:
1212   case Instruction::PtrToInt:
1213   case Instruction::IntToPtr:
1214   case Instruction::SIToFP:
1215   case Instruction::UIToFP:
1216   case Instruction::Trunc:
1217   case Instruction::FPTrunc:
1218   case Instruction::BitCast:
1219   case Instruction::AddrSpaceCast: {
1220     Type *SrcTy = I->getOperand(0)->getType();
1221     return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
1222   }
1223   case Instruction::ExtractElement: {
1224     const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
1225     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1226     unsigned Idx = -1;
1227     if (CI)
1228       Idx = CI->getZExtValue();
1229
1230     // Try to match a reduction sequence (series of shufflevector and vector
1231     // adds followed by a extractelement).
1232     unsigned ReduxOpCode;
1233     Type *ReduxType;
1234
1235     switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
1236     case RK_Arithmetic:
1237       return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1238                                              /*IsPairwiseForm=*/false);
1239     case RK_MinMax:
1240       return getMinMaxReductionCost(
1241           ReduxType, CmpInst::makeCmpResultType(ReduxType),
1242           /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1243     case RK_UnsignedMinMax:
1244       return getMinMaxReductionCost(
1245           ReduxType, CmpInst::makeCmpResultType(ReduxType),
1246           /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1247     case RK_None:
1248       break;
1249     }
1250
1251     switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
1252     case RK_Arithmetic:
1253       return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1254                                              /*IsPairwiseForm=*/true);
1255     case RK_MinMax:
1256       return getMinMaxReductionCost(
1257           ReduxType, CmpInst::makeCmpResultType(ReduxType),
1258           /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1259     case RK_UnsignedMinMax:
1260       return getMinMaxReductionCost(
1261           ReduxType, CmpInst::makeCmpResultType(ReduxType),
1262           /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1263     case RK_None:
1264       break;
1265     }
1266
1267     return getVectorInstrCost(I->getOpcode(),
1268                                    EEI->getOperand(0)->getType(), Idx);
1269   }
1270   case Instruction::InsertElement: {
1271     const InsertElementInst * IE = cast<InsertElementInst>(I);
1272     ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
1273     unsigned Idx = -1;
1274     if (CI)
1275       Idx = CI->getZExtValue();
1276     return getVectorInstrCost(I->getOpcode(),
1277                                    IE->getType(), Idx);
1278   }
1279   case Instruction::ShuffleVector: {
1280     const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1281     Type *Ty = Shuffle->getType();
1282     Type *SrcTy = Shuffle->getOperand(0)->getType();
1283
1284     // TODO: Identify and add costs for insert subvector, etc.
1285     int SubIndex;
1286     if (Shuffle->isExtractSubvectorMask(SubIndex))
1287       return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty);
1288
1289     if (Shuffle->changesLength())
1290       return -1;
1291
1292     if (Shuffle->isIdentity())
1293       return 0;
1294
1295     if (Shuffle->isReverse())
1296       return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
1297
1298     if (Shuffle->isSelect())
1299       return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
1300
1301     if (Shuffle->isTranspose())
1302       return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
1303
1304     if (Shuffle->isZeroEltSplat())
1305       return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
1306
1307     if (Shuffle->isSingleSource())
1308       return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
1309
1310     return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
1311   }
1312   case Instruction::Call:
1313     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1314       SmallVector<Value *, 4> Args(II->arg_operands());
1315
1316       FastMathFlags FMF;
1317       if (auto *FPMO = dyn_cast<FPMathOperator>(II))
1318         FMF = FPMO->getFastMathFlags();
1319
1320       return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
1321                                         Args, FMF);
1322     }
1323     return -1;
1324   default:
1325     // We don't have any information on this instruction.
1326     return -1;
1327   }
1328 }
1329
1330 TargetTransformInfo::Concept::~Concept() {}
1331
1332 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1333
1334 TargetIRAnalysis::TargetIRAnalysis(
1335     std::function<Result(const Function &)> TTICallback)
1336     : TTICallback(std::move(TTICallback)) {}
1337
1338 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1339                                                FunctionAnalysisManager &) {
1340   return TTICallback(F);
1341 }
1342
1343 AnalysisKey TargetIRAnalysis::Key;
1344
1345 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1346   return Result(F.getParent()->getDataLayout());
1347 }
1348
1349 // Register the basic pass.
1350 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1351                 "Target Transform Information", false, true)
1352 char TargetTransformInfoWrapperPass::ID = 0;
1353
1354 void TargetTransformInfoWrapperPass::anchor() {}
1355
1356 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1357     : ImmutablePass(ID) {
1358   initializeTargetTransformInfoWrapperPassPass(
1359       *PassRegistry::getPassRegistry());
1360 }
1361
1362 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1363     TargetIRAnalysis TIRA)
1364     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1365   initializeTargetTransformInfoWrapperPassPass(
1366       *PassRegistry::getPassRegistry());
1367 }
1368
1369 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1370   FunctionAnalysisManager DummyFAM;
1371   TTI = TIRA.run(F, DummyFAM);
1372   return *TTI;
1373 }
1374
1375 ImmutablePass *
1376 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1377   return new TargetTransformInfoWrapperPass(std::move(TIRA));
1378 }