]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Bitcode / Reader / BitcodeReader.cpp
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87
88 using namespace llvm;
89
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94
95 namespace {
96
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100
101 } // end anonymous namespace
102
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145
146   return std::move(Stream);
147 }
148
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155
156   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157     Result += (char)Record[i];
158   return false;
159 }
160
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179
180   std::string ProducerIdentification;
181
182   while (true) {
183     BitstreamEntry Entry;
184     if (Expected<BitstreamEntry> Res = Stream.advance())
185       Entry = Res.get();
186     else
187       return Res.takeError();
188
189     switch (Entry.Kind) {
190     default:
191     case BitstreamEntry::Error:
192       return error("Malformed block");
193     case BitstreamEntry::EndBlock:
194       return ProducerIdentification;
195     case BitstreamEntry::Record:
196       // The interesting case.
197       break;
198     }
199
200     // Read a record.
201     Record.clear();
202     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203     if (!MaybeBitCode)
204       return MaybeBitCode.takeError();
205     switch (MaybeBitCode.get()) {
206     default: // Default behavior: reject
207       return error("Invalid value");
208     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209       convertToString(Record, 0, ProducerIdentification);
210       break;
211     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212       unsigned epoch = (unsigned)Record[0];
213       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214         return error(
215           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
217       }
218     }
219     }
220   }
221 }
222
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224   // We expect a number of well-defined blocks, though we don't necessarily
225   // need to understand them all.
226   while (true) {
227     if (Stream.AtEndOfStream())
228       return "";
229
230     BitstreamEntry Entry;
231     if (Expected<BitstreamEntry> Res = Stream.advance())
232       Entry = std::move(Res.get());
233     else
234       return Res.takeError();
235
236     switch (Entry.Kind) {
237     case BitstreamEntry::EndBlock:
238     case BitstreamEntry::Error:
239       return error("Malformed block");
240
241     case BitstreamEntry::SubBlock:
242       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243         return readIdentificationBlock(Stream);
244
245       // Ignore other sub-blocks.
246       if (Error Err = Stream.SkipBlock())
247         return std::move(Err);
248       continue;
249     case BitstreamEntry::Record:
250       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251         continue;
252       else
253         return Skipped.takeError();
254     }
255   }
256 }
257
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Expected<BitstreamEntry> Res = Stream.advance())
311       Entry = std::move(Res.get());
312     else
313       return Res.takeError();
314
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329
330     case BitstreamEntry::Record:
331       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332         continue;
333       else
334         return Skipped.takeError();
335     }
336   }
337 }
338
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341     return std::move(Err);
342
343   SmallVector<uint64_t, 64> Record;
344
345   std::string Triple;
346
347   // Read all the records for this module.
348   while (true) {
349     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350     if (!MaybeEntry)
351       return MaybeEntry.takeError();
352     BitstreamEntry Entry = MaybeEntry.get();
353
354     switch (Entry.Kind) {
355     case BitstreamEntry::SubBlock: // Handled for us already.
356     case BitstreamEntry::Error:
357       return error("Malformed block");
358     case BitstreamEntry::EndBlock:
359       return Triple;
360     case BitstreamEntry::Record:
361       // The interesting case.
362       break;
363     }
364
365     // Read a record.
366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367     if (!MaybeRecord)
368       return MaybeRecord.takeError();
369     switch (MaybeRecord.get()) {
370     default: break;  // Default behavior, ignore unknown content.
371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
372       std::string S;
373       if (convertToString(Record, 0, S))
374         return error("Invalid record");
375       Triple = S;
376       break;
377     }
378     }
379     Record.clear();
380   }
381   llvm_unreachable("Exit infinite loop");
382 }
383
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385   // We expect a number of well-defined blocks, though we don't necessarily
386   // need to understand them all.
387   while (true) {
388     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389     if (!MaybeEntry)
390       return MaybeEntry.takeError();
391     BitstreamEntry Entry = MaybeEntry.get();
392
393     switch (Entry.Kind) {
394     case BitstreamEntry::Error:
395       return error("Malformed block");
396     case BitstreamEntry::EndBlock:
397       return "";
398
399     case BitstreamEntry::SubBlock:
400       if (Entry.ID == bitc::MODULE_BLOCK_ID)
401         return readModuleTriple(Stream);
402
403       // Ignore other sub-blocks.
404       if (Error Err = Stream.SkipBlock())
405         return std::move(Err);
406       continue;
407
408     case BitstreamEntry::Record:
409       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410         continue;
411       else
412         return Skipped.takeError();
413     }
414   }
415 }
416
417 namespace {
418
419 class BitcodeReaderBase {
420 protected:
421   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422       : Stream(std::move(Stream)), Strtab(Strtab) {
423     this->Stream.setBlockInfo(&BlockInfo);
424   }
425
426   BitstreamBlockInfo BlockInfo;
427   BitstreamCursor Stream;
428   StringRef Strtab;
429
430   /// In version 2 of the bitcode we store names of global values and comdats in
431   /// a string table rather than in the VST.
432   bool UseStrtab = false;
433
434   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435
436   /// If this module uses a string table, pop the reference to the string table
437   /// and return the referenced string and the rest of the record. Otherwise
438   /// just return the record itself.
439   std::pair<StringRef, ArrayRef<uint64_t>>
440   readNameFromStrtab(ArrayRef<uint64_t> Record);
441
442   bool readBlockInfo();
443
444   // Contains an arbitrary and optional string identifying the bitcode producer
445   std::string ProducerIdentification;
446
447   Error error(const Twine &Message);
448 };
449
450 } // end anonymous namespace
451
452 Error BitcodeReaderBase::error(const Twine &Message) {
453   std::string FullMsg = Message.str();
454   if (!ProducerIdentification.empty())
455     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456                LLVM_VERSION_STRING "')";
457   return ::error(FullMsg);
458 }
459
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462   if (Record.empty())
463     return error("Invalid record");
464   unsigned ModuleVersion = Record[0];
465   if (ModuleVersion > 2)
466     return error("Invalid value");
467   UseStrtab = ModuleVersion >= 2;
468   return ModuleVersion;
469 }
470
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473   if (!UseStrtab)
474     return {"", Record};
475   // Invalid reference. Let the caller complain about the record being empty.
476   if (Record[0] + Record[1] > Strtab.size())
477     return {"", {}};
478   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
479 }
480
481 namespace {
482
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484   LLVMContext &Context;
485   Module *TheModule = nullptr;
486   // Next offset to start scanning for lazy parsing of function bodies.
487   uint64_t NextUnreadBit = 0;
488   // Last function offset found in the VST.
489   uint64_t LastFunctionBlockBit = 0;
490   bool SeenValueSymbolTable = false;
491   uint64_t VSTOffset = 0;
492
493   std::vector<std::string> SectionTable;
494   std::vector<std::string> GCTable;
495
496   std::vector<Type*> TypeList;
497   DenseMap<Function *, FunctionType *> FunctionTypes;
498   BitcodeReaderValueList ValueList;
499   Optional<MetadataLoader> MDLoader;
500   std::vector<Comdat *> ComdatList;
501   SmallVector<Instruction *, 64> InstructionList;
502
503   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
504   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
506   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
507   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
508
509   /// The set of attributes by index.  Index zero in the file is for null, and
510   /// is thus not represented here.  As such all indices are off by one.
511   std::vector<AttributeList> MAttributes;
512
513   /// The set of attribute groups.
514   std::map<unsigned, AttributeList> MAttributeGroups;
515
516   /// While parsing a function body, this is a list of the basic blocks for the
517   /// function.
518   std::vector<BasicBlock*> FunctionBBs;
519
520   // When reading the module header, this list is populated with functions that
521   // have bodies later in the file.
522   std::vector<Function*> FunctionsWithBodies;
523
524   // When intrinsic functions are encountered which require upgrading they are
525   // stored here with their replacement function.
526   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
527   UpdatedIntrinsicMap UpgradedIntrinsics;
528   // Intrinsics which were remangled because of types rename
529   UpdatedIntrinsicMap RemangledIntrinsics;
530
531   // Several operations happen after the module header has been read, but
532   // before function bodies are processed. This keeps track of whether
533   // we've done this yet.
534   bool SeenFirstFunctionBody = false;
535
536   /// When function bodies are initially scanned, this map contains info about
537   /// where to find deferred function body in the stream.
538   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
539
540   /// When Metadata block is initially scanned when parsing the module, we may
541   /// choose to defer parsing of the metadata. This vector contains info about
542   /// which Metadata blocks are deferred.
543   std::vector<uint64_t> DeferredMetadataInfo;
544
545   /// These are basic blocks forward-referenced by block addresses.  They are
546   /// inserted lazily into functions when they're loaded.  The basic block ID is
547   /// its index into the vector.
548   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
549   std::deque<Function *> BasicBlockFwdRefQueue;
550
551   /// Indicates that we are using a new encoding for instruction operands where
552   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
553   /// instruction number, for a more compact encoding.  Some instruction
554   /// operands are not relative to the instruction ID: basic block numbers, and
555   /// types. Once the old style function blocks have been phased out, we would
556   /// not need this flag.
557   bool UseRelativeIDs = false;
558
559   /// True if all functions will be materialized, negating the need to process
560   /// (e.g.) blockaddress forward references.
561   bool WillMaterializeAllForwardRefs = false;
562
563   bool StripDebugInfo = false;
564   TBAAVerifier TBAAVerifyHelper;
565
566   std::vector<std::string> BundleTags;
567   SmallVector<SyncScope::ID, 8> SSIDs;
568
569 public:
570   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
571                 StringRef ProducerIdentification, LLVMContext &Context);
572
573   Error materializeForwardReferencedFunctions();
574
575   Error materialize(GlobalValue *GV) override;
576   Error materializeModule() override;
577   std::vector<StructType *> getIdentifiedStructTypes() const override;
578
579   /// Main interface to parsing a bitcode buffer.
580   /// \returns true if an error occurred.
581   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
582                          bool IsImporting = false);
583
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588
589   void setStripDebugInfo() override;
590
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717
718   /// Upgrades old-style typeless byval attributes by adding the corresponding
719   /// argument's pointee type.
720   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
728
729   Error parseComdatRecord(ArrayRef<uint64_t> Record);
730   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
731   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
733                                         ArrayRef<uint64_t> Record);
734
735   Error parseAttributeBlock();
736   Error parseAttributeGroupBlock();
737   Error parseTypeTable();
738   Error parseTypeTableBody();
739   Error parseOperandBundleTags();
740   Error parseSyncScopeNames();
741
742   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
743                                 unsigned NameIndex, Triple &TT);
744   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
745                                ArrayRef<uint64_t> Record);
746   Error parseValueSymbolTable(uint64_t Offset = 0);
747   Error parseGlobalValueSymbolTable();
748   Error parseConstants();
749   Error rememberAndSkipFunctionBodies();
750   Error rememberAndSkipFunctionBody();
751   /// Save the positions of the Metadata blocks and skip parsing the blocks.
752   Error rememberAndSkipMetadata();
753   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
754   Error parseFunctionBody(Function *F);
755   Error globalCleanup();
756   Error resolveGlobalAndIndirectSymbolInits();
757   Error parseUseLists();
758   Error findFunctionInStream(
759       Function *F,
760       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
761
762   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
763 };
764
765 /// Class to manage reading and parsing function summary index bitcode
766 /// files/sections.
767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
768   /// The module index built during parsing.
769   ModuleSummaryIndex &TheIndex;
770
771   /// Indicates whether we have encountered a global value summary section
772   /// yet during parsing.
773   bool SeenGlobalValSummary = false;
774
775   /// Indicates whether we have already parsed the VST, used for error checking.
776   bool SeenValueSymbolTable = false;
777
778   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
779   /// Used to enable on-demand parsing of the VST.
780   uint64_t VSTOffset = 0;
781
782   // Map to save ValueId to ValueInfo association that was recorded in the
783   // ValueSymbolTable. It is used after the VST is parsed to convert
784   // call graph edges read from the function summary from referencing
785   // callees by their ValueId to using the ValueInfo instead, which is how
786   // they are recorded in the summary index being built.
787   // We save a GUID which refers to the same global as the ValueInfo, but
788   // ignoring the linkage, i.e. for values other than local linkage they are
789   // identical.
790   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
791       ValueIdToValueInfoMap;
792
793   /// Map populated during module path string table parsing, from the
794   /// module ID to a string reference owned by the index's module
795   /// path string table, used to correlate with combined index
796   /// summary records.
797   DenseMap<uint64_t, StringRef> ModuleIdMap;
798
799   /// Original source file name recorded in a bitcode record.
800   std::string SourceFileName;
801
802   /// The string identifier given to this module by the client, normally the
803   /// path to the bitcode file.
804   StringRef ModulePath;
805
806   /// For per-module summary indexes, the unique numerical identifier given to
807   /// this module by the client.
808   unsigned ModuleId;
809
810 public:
811   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
812                                   ModuleSummaryIndex &TheIndex,
813                                   StringRef ModulePath, unsigned ModuleId);
814
815   Error parseModule();
816
817 private:
818   void setValueGUID(uint64_t ValueID, StringRef ValueName,
819                     GlobalValue::LinkageTypes Linkage,
820                     StringRef SourceFileName);
821   Error parseValueSymbolTable(
822       uint64_t Offset,
823       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
824   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
825   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
826                                                     bool IsOldProfileFormat,
827                                                     bool HasProfile,
828                                                     bool HasRelBF);
829   Error parseEntireSummary(unsigned ID);
830   Error parseModuleStringTable();
831   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
832   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
833                                        TypeIdCompatibleVtableInfo &TypeId);
834
835   std::pair<ValueInfo, GlobalValue::GUID>
836   getValueInfoFromValueId(unsigned ValueId);
837
838   void addThisModule();
839   ModuleSummaryIndex::ModuleInfo *getThisModule();
840 };
841
842 } // end anonymous namespace
843
844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
845                                                     Error Err) {
846   if (Err) {
847     std::error_code EC;
848     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
849       EC = EIB.convertToErrorCode();
850       Ctx.emitError(EIB.message());
851     });
852     return EC;
853   }
854   return std::error_code();
855 }
856
857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
858                              StringRef ProducerIdentification,
859                              LLVMContext &Context)
860     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
861       ValueList(Context, Stream.SizeInBytes()) {
862   this->ProducerIdentification = ProducerIdentification;
863 }
864
865 Error BitcodeReader::materializeForwardReferencedFunctions() {
866   if (WillMaterializeAllForwardRefs)
867     return Error::success();
868
869   // Prevent recursion.
870   WillMaterializeAllForwardRefs = true;
871
872   while (!BasicBlockFwdRefQueue.empty()) {
873     Function *F = BasicBlockFwdRefQueue.front();
874     BasicBlockFwdRefQueue.pop_front();
875     assert(F && "Expected valid function");
876     if (!BasicBlockFwdRefs.count(F))
877       // Already materialized.
878       continue;
879
880     // Check for a function that isn't materializable to prevent an infinite
881     // loop.  When parsing a blockaddress stored in a global variable, there
882     // isn't a trivial way to check if a function will have a body without a
883     // linear search through FunctionsWithBodies, so just check it here.
884     if (!F->isMaterializable())
885       return error("Never resolved function from blockaddress");
886
887     // Try to materialize F.
888     if (Error Err = materialize(F))
889       return Err;
890   }
891   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
892
893   // Reset state.
894   WillMaterializeAllForwardRefs = false;
895   return Error::success();
896 }
897
898 //===----------------------------------------------------------------------===//
899 //  Helper functions to implement forward reference resolution, etc.
900 //===----------------------------------------------------------------------===//
901
902 static bool hasImplicitComdat(size_t Val) {
903   switch (Val) {
904   default:
905     return false;
906   case 1:  // Old WeakAnyLinkage
907   case 4:  // Old LinkOnceAnyLinkage
908   case 10: // Old WeakODRLinkage
909   case 11: // Old LinkOnceODRLinkage
910     return true;
911   }
912 }
913
914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
915   switch (Val) {
916   default: // Map unknown/new linkages to external
917   case 0:
918     return GlobalValue::ExternalLinkage;
919   case 2:
920     return GlobalValue::AppendingLinkage;
921   case 3:
922     return GlobalValue::InternalLinkage;
923   case 5:
924     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
925   case 6:
926     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
927   case 7:
928     return GlobalValue::ExternalWeakLinkage;
929   case 8:
930     return GlobalValue::CommonLinkage;
931   case 9:
932     return GlobalValue::PrivateLinkage;
933   case 12:
934     return GlobalValue::AvailableExternallyLinkage;
935   case 13:
936     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
937   case 14:
938     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
939   case 15:
940     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
941   case 1: // Old value with implicit comdat.
942   case 16:
943     return GlobalValue::WeakAnyLinkage;
944   case 10: // Old value with implicit comdat.
945   case 17:
946     return GlobalValue::WeakODRLinkage;
947   case 4: // Old value with implicit comdat.
948   case 18:
949     return GlobalValue::LinkOnceAnyLinkage;
950   case 11: // Old value with implicit comdat.
951   case 19:
952     return GlobalValue::LinkOnceODRLinkage;
953   }
954 }
955
956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
957   FunctionSummary::FFlags Flags;
958   Flags.ReadNone = RawFlags & 0x1;
959   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
960   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
961   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
962   Flags.NoInline = (RawFlags >> 4) & 0x1;
963   return Flags;
964 }
965
966 /// Decode the flags for GlobalValue in the summary.
967 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
968                                                             uint64_t Version) {
969   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
970   // like getDecodedLinkage() above. Any future change to the linkage enum and
971   // to getDecodedLinkage() will need to be taken into account here as above.
972   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
973   RawFlags = RawFlags >> 4;
974   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
975   // The Live flag wasn't introduced until version 3. For dead stripping
976   // to work correctly on earlier versions, we must conservatively treat all
977   // values as live.
978   bool Live = (RawFlags & 0x2) || Version < 3;
979   bool Local = (RawFlags & 0x4);
980   bool AutoHide = (RawFlags & 0x8);
981
982   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
983 }
984
985 // Decode the flags for GlobalVariable in the summary
986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
987   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false,
988                                      (RawFlags & 0x2) ? true : false);
989 }
990
991 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
992   switch (Val) {
993   default: // Map unknown visibilities to default.
994   case 0: return GlobalValue::DefaultVisibility;
995   case 1: return GlobalValue::HiddenVisibility;
996   case 2: return GlobalValue::ProtectedVisibility;
997   }
998 }
999
1000 static GlobalValue::DLLStorageClassTypes
1001 getDecodedDLLStorageClass(unsigned Val) {
1002   switch (Val) {
1003   default: // Map unknown values to default.
1004   case 0: return GlobalValue::DefaultStorageClass;
1005   case 1: return GlobalValue::DLLImportStorageClass;
1006   case 2: return GlobalValue::DLLExportStorageClass;
1007   }
1008 }
1009
1010 static bool getDecodedDSOLocal(unsigned Val) {
1011   switch(Val) {
1012   default: // Map unknown values to preemptable.
1013   case 0:  return false;
1014   case 1:  return true;
1015   }
1016 }
1017
1018 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1019   switch (Val) {
1020     case 0: return GlobalVariable::NotThreadLocal;
1021     default: // Map unknown non-zero value to general dynamic.
1022     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1023     case 2: return GlobalVariable::LocalDynamicTLSModel;
1024     case 3: return GlobalVariable::InitialExecTLSModel;
1025     case 4: return GlobalVariable::LocalExecTLSModel;
1026   }
1027 }
1028
1029 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1030   switch (Val) {
1031     default: // Map unknown to UnnamedAddr::None.
1032     case 0: return GlobalVariable::UnnamedAddr::None;
1033     case 1: return GlobalVariable::UnnamedAddr::Global;
1034     case 2: return GlobalVariable::UnnamedAddr::Local;
1035   }
1036 }
1037
1038 static int getDecodedCastOpcode(unsigned Val) {
1039   switch (Val) {
1040   default: return -1;
1041   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1042   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1043   case bitc::CAST_SEXT    : return Instruction::SExt;
1044   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1045   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1046   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1047   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1048   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1049   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1050   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1051   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1052   case bitc::CAST_BITCAST : return Instruction::BitCast;
1053   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1054   }
1055 }
1056
1057 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1058   bool IsFP = Ty->isFPOrFPVectorTy();
1059   // UnOps are only valid for int/fp or vector of int/fp types
1060   if (!IsFP && !Ty->isIntOrIntVectorTy())
1061     return -1;
1062
1063   switch (Val) {
1064   default:
1065     return -1;
1066   case bitc::UNOP_NEG:
1067     return IsFP ? Instruction::FNeg : -1;
1068   }
1069 }
1070
1071 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1072   bool IsFP = Ty->isFPOrFPVectorTy();
1073   // BinOps are only valid for int/fp or vector of int/fp types
1074   if (!IsFP && !Ty->isIntOrIntVectorTy())
1075     return -1;
1076
1077   switch (Val) {
1078   default:
1079     return -1;
1080   case bitc::BINOP_ADD:
1081     return IsFP ? Instruction::FAdd : Instruction::Add;
1082   case bitc::BINOP_SUB:
1083     return IsFP ? Instruction::FSub : Instruction::Sub;
1084   case bitc::BINOP_MUL:
1085     return IsFP ? Instruction::FMul : Instruction::Mul;
1086   case bitc::BINOP_UDIV:
1087     return IsFP ? -1 : Instruction::UDiv;
1088   case bitc::BINOP_SDIV:
1089     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1090   case bitc::BINOP_UREM:
1091     return IsFP ? -1 : Instruction::URem;
1092   case bitc::BINOP_SREM:
1093     return IsFP ? Instruction::FRem : Instruction::SRem;
1094   case bitc::BINOP_SHL:
1095     return IsFP ? -1 : Instruction::Shl;
1096   case bitc::BINOP_LSHR:
1097     return IsFP ? -1 : Instruction::LShr;
1098   case bitc::BINOP_ASHR:
1099     return IsFP ? -1 : Instruction::AShr;
1100   case bitc::BINOP_AND:
1101     return IsFP ? -1 : Instruction::And;
1102   case bitc::BINOP_OR:
1103     return IsFP ? -1 : Instruction::Or;
1104   case bitc::BINOP_XOR:
1105     return IsFP ? -1 : Instruction::Xor;
1106   }
1107 }
1108
1109 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1110   switch (Val) {
1111   default: return AtomicRMWInst::BAD_BINOP;
1112   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1113   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1114   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1115   case bitc::RMW_AND: return AtomicRMWInst::And;
1116   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1117   case bitc::RMW_OR: return AtomicRMWInst::Or;
1118   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1119   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1120   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1121   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1122   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1123   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1124   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1125   }
1126 }
1127
1128 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1129   switch (Val) {
1130   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1131   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1132   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1133   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1134   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1135   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1136   default: // Map unknown orderings to sequentially-consistent.
1137   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1138   }
1139 }
1140
1141 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1142   switch (Val) {
1143   default: // Map unknown selection kinds to any.
1144   case bitc::COMDAT_SELECTION_KIND_ANY:
1145     return Comdat::Any;
1146   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1147     return Comdat::ExactMatch;
1148   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1149     return Comdat::Largest;
1150   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1151     return Comdat::NoDuplicates;
1152   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1153     return Comdat::SameSize;
1154   }
1155 }
1156
1157 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1158   FastMathFlags FMF;
1159   if (0 != (Val & bitc::UnsafeAlgebra))
1160     FMF.setFast();
1161   if (0 != (Val & bitc::AllowReassoc))
1162     FMF.setAllowReassoc();
1163   if (0 != (Val & bitc::NoNaNs))
1164     FMF.setNoNaNs();
1165   if (0 != (Val & bitc::NoInfs))
1166     FMF.setNoInfs();
1167   if (0 != (Val & bitc::NoSignedZeros))
1168     FMF.setNoSignedZeros();
1169   if (0 != (Val & bitc::AllowReciprocal))
1170     FMF.setAllowReciprocal();
1171   if (0 != (Val & bitc::AllowContract))
1172     FMF.setAllowContract(true);
1173   if (0 != (Val & bitc::ApproxFunc))
1174     FMF.setApproxFunc();
1175   return FMF;
1176 }
1177
1178 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1179   switch (Val) {
1180   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1181   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1182   }
1183 }
1184
1185 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1186   // The type table size is always specified correctly.
1187   if (ID >= TypeList.size())
1188     return nullptr;
1189
1190   if (Type *Ty = TypeList[ID])
1191     return Ty;
1192
1193   // If we have a forward reference, the only possible case is when it is to a
1194   // named struct.  Just create a placeholder for now.
1195   return TypeList[ID] = createIdentifiedStructType(Context);
1196 }
1197
1198 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1199                                                       StringRef Name) {
1200   auto *Ret = StructType::create(Context, Name);
1201   IdentifiedStructTypes.push_back(Ret);
1202   return Ret;
1203 }
1204
1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1206   auto *Ret = StructType::create(Context);
1207   IdentifiedStructTypes.push_back(Ret);
1208   return Ret;
1209 }
1210
1211 //===----------------------------------------------------------------------===//
1212 //  Functions for parsing blocks from the bitcode file
1213 //===----------------------------------------------------------------------===//
1214
1215 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1216   switch (Val) {
1217   case Attribute::EndAttrKinds:
1218     llvm_unreachable("Synthetic enumerators which should never get here");
1219
1220   case Attribute::None:            return 0;
1221   case Attribute::ZExt:            return 1 << 0;
1222   case Attribute::SExt:            return 1 << 1;
1223   case Attribute::NoReturn:        return 1 << 2;
1224   case Attribute::InReg:           return 1 << 3;
1225   case Attribute::StructRet:       return 1 << 4;
1226   case Attribute::NoUnwind:        return 1 << 5;
1227   case Attribute::NoAlias:         return 1 << 6;
1228   case Attribute::ByVal:           return 1 << 7;
1229   case Attribute::Nest:            return 1 << 8;
1230   case Attribute::ReadNone:        return 1 << 9;
1231   case Attribute::ReadOnly:        return 1 << 10;
1232   case Attribute::NoInline:        return 1 << 11;
1233   case Attribute::AlwaysInline:    return 1 << 12;
1234   case Attribute::OptimizeForSize: return 1 << 13;
1235   case Attribute::StackProtect:    return 1 << 14;
1236   case Attribute::StackProtectReq: return 1 << 15;
1237   case Attribute::Alignment:       return 31 << 16;
1238   case Attribute::NoCapture:       return 1 << 21;
1239   case Attribute::NoRedZone:       return 1 << 22;
1240   case Attribute::NoImplicitFloat: return 1 << 23;
1241   case Attribute::Naked:           return 1 << 24;
1242   case Attribute::InlineHint:      return 1 << 25;
1243   case Attribute::StackAlignment:  return 7 << 26;
1244   case Attribute::ReturnsTwice:    return 1 << 29;
1245   case Attribute::UWTable:         return 1 << 30;
1246   case Attribute::NonLazyBind:     return 1U << 31;
1247   case Attribute::SanitizeAddress: return 1ULL << 32;
1248   case Attribute::MinSize:         return 1ULL << 33;
1249   case Attribute::NoDuplicate:     return 1ULL << 34;
1250   case Attribute::StackProtectStrong: return 1ULL << 35;
1251   case Attribute::SanitizeThread:  return 1ULL << 36;
1252   case Attribute::SanitizeMemory:  return 1ULL << 37;
1253   case Attribute::NoBuiltin:       return 1ULL << 38;
1254   case Attribute::Returned:        return 1ULL << 39;
1255   case Attribute::Cold:            return 1ULL << 40;
1256   case Attribute::Builtin:         return 1ULL << 41;
1257   case Attribute::OptimizeNone:    return 1ULL << 42;
1258   case Attribute::InAlloca:        return 1ULL << 43;
1259   case Attribute::NonNull:         return 1ULL << 44;
1260   case Attribute::JumpTable:       return 1ULL << 45;
1261   case Attribute::Convergent:      return 1ULL << 46;
1262   case Attribute::SafeStack:       return 1ULL << 47;
1263   case Attribute::NoRecurse:       return 1ULL << 48;
1264   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1265   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1266   case Attribute::SwiftSelf:       return 1ULL << 51;
1267   case Attribute::SwiftError:      return 1ULL << 52;
1268   case Attribute::WriteOnly:       return 1ULL << 53;
1269   case Attribute::Speculatable:    return 1ULL << 54;
1270   case Attribute::StrictFP:        return 1ULL << 55;
1271   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1272   case Attribute::NoCfCheck:       return 1ULL << 57;
1273   case Attribute::OptForFuzzing:   return 1ULL << 58;
1274   case Attribute::ShadowCallStack: return 1ULL << 59;
1275   case Attribute::SpeculativeLoadHardening:
1276     return 1ULL << 60;
1277   case Attribute::ImmArg:
1278     return 1ULL << 61;
1279   case Attribute::WillReturn:
1280     return 1ULL << 62;
1281   case Attribute::NoFree:
1282     return 1ULL << 63;
1283   case Attribute::NoSync:
1284     llvm_unreachable("nosync attribute not supported in raw format");
1285     break;
1286   case Attribute::Dereferenceable:
1287     llvm_unreachable("dereferenceable attribute not supported in raw format");
1288     break;
1289   case Attribute::DereferenceableOrNull:
1290     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1291                      "format");
1292     break;
1293   case Attribute::ArgMemOnly:
1294     llvm_unreachable("argmemonly attribute not supported in raw format");
1295     break;
1296   case Attribute::AllocSize:
1297     llvm_unreachable("allocsize not supported in raw format");
1298     break;
1299   case Attribute::SanitizeMemTag:
1300     llvm_unreachable("sanitize_memtag attribute not supported in raw format");
1301     break;
1302   }
1303   llvm_unreachable("Unsupported attribute type");
1304 }
1305
1306 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1307   if (!Val) return;
1308
1309   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1310        I = Attribute::AttrKind(I + 1)) {
1311     if (I == Attribute::SanitizeMemTag ||
1312         I == Attribute::Dereferenceable ||
1313         I == Attribute::DereferenceableOrNull ||
1314         I == Attribute::ArgMemOnly ||
1315         I == Attribute::AllocSize ||
1316         I == Attribute::NoSync)
1317       continue;
1318     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1319       if (I == Attribute::Alignment)
1320         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1321       else if (I == Attribute::StackAlignment)
1322         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1323       else
1324         B.addAttribute(I);
1325     }
1326   }
1327 }
1328
1329 /// This fills an AttrBuilder object with the LLVM attributes that have
1330 /// been decoded from the given integer. This function must stay in sync with
1331 /// 'encodeLLVMAttributesForBitcode'.
1332 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1333                                            uint64_t EncodedAttrs) {
1334   // FIXME: Remove in 4.0.
1335
1336   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1337   // the bits above 31 down by 11 bits.
1338   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1339   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1340          "Alignment must be a power of two.");
1341
1342   if (Alignment)
1343     B.addAlignmentAttr(Alignment);
1344   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1345                           (EncodedAttrs & 0xffff));
1346 }
1347
1348 Error BitcodeReader::parseAttributeBlock() {
1349   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1350     return Err;
1351
1352   if (!MAttributes.empty())
1353     return error("Invalid multiple blocks");
1354
1355   SmallVector<uint64_t, 64> Record;
1356
1357   SmallVector<AttributeList, 8> Attrs;
1358
1359   // Read all the records.
1360   while (true) {
1361     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1362     if (!MaybeEntry)
1363       return MaybeEntry.takeError();
1364     BitstreamEntry Entry = MaybeEntry.get();
1365
1366     switch (Entry.Kind) {
1367     case BitstreamEntry::SubBlock: // Handled for us already.
1368     case BitstreamEntry::Error:
1369       return error("Malformed block");
1370     case BitstreamEntry::EndBlock:
1371       return Error::success();
1372     case BitstreamEntry::Record:
1373       // The interesting case.
1374       break;
1375     }
1376
1377     // Read a record.
1378     Record.clear();
1379     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1380     if (!MaybeRecord)
1381       return MaybeRecord.takeError();
1382     switch (MaybeRecord.get()) {
1383     default:  // Default behavior: ignore.
1384       break;
1385     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1386       // FIXME: Remove in 4.0.
1387       if (Record.size() & 1)
1388         return error("Invalid record");
1389
1390       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1391         AttrBuilder B;
1392         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1393         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1394       }
1395
1396       MAttributes.push_back(AttributeList::get(Context, Attrs));
1397       Attrs.clear();
1398       break;
1399     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1400       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1401         Attrs.push_back(MAttributeGroups[Record[i]]);
1402
1403       MAttributes.push_back(AttributeList::get(Context, Attrs));
1404       Attrs.clear();
1405       break;
1406     }
1407   }
1408 }
1409
1410 // Returns Attribute::None on unrecognized codes.
1411 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1412   switch (Code) {
1413   default:
1414     return Attribute::None;
1415   case bitc::ATTR_KIND_ALIGNMENT:
1416     return Attribute::Alignment;
1417   case bitc::ATTR_KIND_ALWAYS_INLINE:
1418     return Attribute::AlwaysInline;
1419   case bitc::ATTR_KIND_ARGMEMONLY:
1420     return Attribute::ArgMemOnly;
1421   case bitc::ATTR_KIND_BUILTIN:
1422     return Attribute::Builtin;
1423   case bitc::ATTR_KIND_BY_VAL:
1424     return Attribute::ByVal;
1425   case bitc::ATTR_KIND_IN_ALLOCA:
1426     return Attribute::InAlloca;
1427   case bitc::ATTR_KIND_COLD:
1428     return Attribute::Cold;
1429   case bitc::ATTR_KIND_CONVERGENT:
1430     return Attribute::Convergent;
1431   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1432     return Attribute::InaccessibleMemOnly;
1433   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1434     return Attribute::InaccessibleMemOrArgMemOnly;
1435   case bitc::ATTR_KIND_INLINE_HINT:
1436     return Attribute::InlineHint;
1437   case bitc::ATTR_KIND_IN_REG:
1438     return Attribute::InReg;
1439   case bitc::ATTR_KIND_JUMP_TABLE:
1440     return Attribute::JumpTable;
1441   case bitc::ATTR_KIND_MIN_SIZE:
1442     return Attribute::MinSize;
1443   case bitc::ATTR_KIND_NAKED:
1444     return Attribute::Naked;
1445   case bitc::ATTR_KIND_NEST:
1446     return Attribute::Nest;
1447   case bitc::ATTR_KIND_NO_ALIAS:
1448     return Attribute::NoAlias;
1449   case bitc::ATTR_KIND_NO_BUILTIN:
1450     return Attribute::NoBuiltin;
1451   case bitc::ATTR_KIND_NO_CAPTURE:
1452     return Attribute::NoCapture;
1453   case bitc::ATTR_KIND_NO_DUPLICATE:
1454     return Attribute::NoDuplicate;
1455   case bitc::ATTR_KIND_NOFREE:
1456     return Attribute::NoFree;
1457   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1458     return Attribute::NoImplicitFloat;
1459   case bitc::ATTR_KIND_NO_INLINE:
1460     return Attribute::NoInline;
1461   case bitc::ATTR_KIND_NO_RECURSE:
1462     return Attribute::NoRecurse;
1463   case bitc::ATTR_KIND_NON_LAZY_BIND:
1464     return Attribute::NonLazyBind;
1465   case bitc::ATTR_KIND_NON_NULL:
1466     return Attribute::NonNull;
1467   case bitc::ATTR_KIND_DEREFERENCEABLE:
1468     return Attribute::Dereferenceable;
1469   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1470     return Attribute::DereferenceableOrNull;
1471   case bitc::ATTR_KIND_ALLOC_SIZE:
1472     return Attribute::AllocSize;
1473   case bitc::ATTR_KIND_NO_RED_ZONE:
1474     return Attribute::NoRedZone;
1475   case bitc::ATTR_KIND_NO_RETURN:
1476     return Attribute::NoReturn;
1477   case bitc::ATTR_KIND_NOSYNC:
1478     return Attribute::NoSync;
1479   case bitc::ATTR_KIND_NOCF_CHECK:
1480     return Attribute::NoCfCheck;
1481   case bitc::ATTR_KIND_NO_UNWIND:
1482     return Attribute::NoUnwind;
1483   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1484     return Attribute::OptForFuzzing;
1485   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1486     return Attribute::OptimizeForSize;
1487   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1488     return Attribute::OptimizeNone;
1489   case bitc::ATTR_KIND_READ_NONE:
1490     return Attribute::ReadNone;
1491   case bitc::ATTR_KIND_READ_ONLY:
1492     return Attribute::ReadOnly;
1493   case bitc::ATTR_KIND_RETURNED:
1494     return Attribute::Returned;
1495   case bitc::ATTR_KIND_RETURNS_TWICE:
1496     return Attribute::ReturnsTwice;
1497   case bitc::ATTR_KIND_S_EXT:
1498     return Attribute::SExt;
1499   case bitc::ATTR_KIND_SPECULATABLE:
1500     return Attribute::Speculatable;
1501   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1502     return Attribute::StackAlignment;
1503   case bitc::ATTR_KIND_STACK_PROTECT:
1504     return Attribute::StackProtect;
1505   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1506     return Attribute::StackProtectReq;
1507   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1508     return Attribute::StackProtectStrong;
1509   case bitc::ATTR_KIND_SAFESTACK:
1510     return Attribute::SafeStack;
1511   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1512     return Attribute::ShadowCallStack;
1513   case bitc::ATTR_KIND_STRICT_FP:
1514     return Attribute::StrictFP;
1515   case bitc::ATTR_KIND_STRUCT_RET:
1516     return Attribute::StructRet;
1517   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1518     return Attribute::SanitizeAddress;
1519   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1520     return Attribute::SanitizeHWAddress;
1521   case bitc::ATTR_KIND_SANITIZE_THREAD:
1522     return Attribute::SanitizeThread;
1523   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1524     return Attribute::SanitizeMemory;
1525   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1526     return Attribute::SpeculativeLoadHardening;
1527   case bitc::ATTR_KIND_SWIFT_ERROR:
1528     return Attribute::SwiftError;
1529   case bitc::ATTR_KIND_SWIFT_SELF:
1530     return Attribute::SwiftSelf;
1531   case bitc::ATTR_KIND_UW_TABLE:
1532     return Attribute::UWTable;
1533   case bitc::ATTR_KIND_WILLRETURN:
1534     return Attribute::WillReturn;
1535   case bitc::ATTR_KIND_WRITEONLY:
1536     return Attribute::WriteOnly;
1537   case bitc::ATTR_KIND_Z_EXT:
1538     return Attribute::ZExt;
1539   case bitc::ATTR_KIND_IMMARG:
1540     return Attribute::ImmArg;
1541   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1542     return Attribute::SanitizeMemTag;
1543   }
1544 }
1545
1546 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1547                                          unsigned &Alignment) {
1548   // Note: Alignment in bitcode files is incremented by 1, so that zero
1549   // can be used for default alignment.
1550   if (Exponent > Value::MaxAlignmentExponent + 1)
1551     return error("Invalid alignment value");
1552   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1553   return Error::success();
1554 }
1555
1556 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1557   *Kind = getAttrFromCode(Code);
1558   if (*Kind == Attribute::None)
1559     return error("Unknown attribute kind (" + Twine(Code) + ")");
1560   return Error::success();
1561 }
1562
1563 Error BitcodeReader::parseAttributeGroupBlock() {
1564   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1565     return Err;
1566
1567   if (!MAttributeGroups.empty())
1568     return error("Invalid multiple blocks");
1569
1570   SmallVector<uint64_t, 64> Record;
1571
1572   // Read all the records.
1573   while (true) {
1574     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1575     if (!MaybeEntry)
1576       return MaybeEntry.takeError();
1577     BitstreamEntry Entry = MaybeEntry.get();
1578
1579     switch (Entry.Kind) {
1580     case BitstreamEntry::SubBlock: // Handled for us already.
1581     case BitstreamEntry::Error:
1582       return error("Malformed block");
1583     case BitstreamEntry::EndBlock:
1584       return Error::success();
1585     case BitstreamEntry::Record:
1586       // The interesting case.
1587       break;
1588     }
1589
1590     // Read a record.
1591     Record.clear();
1592     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1593     if (!MaybeRecord)
1594       return MaybeRecord.takeError();
1595     switch (MaybeRecord.get()) {
1596     default:  // Default behavior: ignore.
1597       break;
1598     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1599       if (Record.size() < 3)
1600         return error("Invalid record");
1601
1602       uint64_t GrpID = Record[0];
1603       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1604
1605       AttrBuilder B;
1606       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1607         if (Record[i] == 0) {        // Enum attribute
1608           Attribute::AttrKind Kind;
1609           if (Error Err = parseAttrKind(Record[++i], &Kind))
1610             return Err;
1611
1612           // Upgrade old-style byval attribute to one with a type, even if it's
1613           // nullptr. We will have to insert the real type when we associate
1614           // this AttributeList with a function.
1615           if (Kind == Attribute::ByVal)
1616             B.addByValAttr(nullptr);
1617
1618           B.addAttribute(Kind);
1619         } else if (Record[i] == 1) { // Integer attribute
1620           Attribute::AttrKind Kind;
1621           if (Error Err = parseAttrKind(Record[++i], &Kind))
1622             return Err;
1623           if (Kind == Attribute::Alignment)
1624             B.addAlignmentAttr(Record[++i]);
1625           else if (Kind == Attribute::StackAlignment)
1626             B.addStackAlignmentAttr(Record[++i]);
1627           else if (Kind == Attribute::Dereferenceable)
1628             B.addDereferenceableAttr(Record[++i]);
1629           else if (Kind == Attribute::DereferenceableOrNull)
1630             B.addDereferenceableOrNullAttr(Record[++i]);
1631           else if (Kind == Attribute::AllocSize)
1632             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1633         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1634           bool HasValue = (Record[i++] == 4);
1635           SmallString<64> KindStr;
1636           SmallString<64> ValStr;
1637
1638           while (Record[i] != 0 && i != e)
1639             KindStr += Record[i++];
1640           assert(Record[i] == 0 && "Kind string not null terminated");
1641
1642           if (HasValue) {
1643             // Has a value associated with it.
1644             ++i; // Skip the '0' that terminates the "kind" string.
1645             while (Record[i] != 0 && i != e)
1646               ValStr += Record[i++];
1647             assert(Record[i] == 0 && "Value string not null terminated");
1648           }
1649
1650           B.addAttribute(KindStr.str(), ValStr.str());
1651         } else {
1652           assert((Record[i] == 5 || Record[i] == 6) &&
1653                  "Invalid attribute group entry");
1654           bool HasType = Record[i] == 6;
1655           Attribute::AttrKind Kind;
1656           if (Error Err = parseAttrKind(Record[++i], &Kind))
1657             return Err;
1658           if (Kind == Attribute::ByVal)
1659             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1660         }
1661       }
1662
1663       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1664       break;
1665     }
1666     }
1667   }
1668 }
1669
1670 Error BitcodeReader::parseTypeTable() {
1671   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1672     return Err;
1673
1674   return parseTypeTableBody();
1675 }
1676
1677 Error BitcodeReader::parseTypeTableBody() {
1678   if (!TypeList.empty())
1679     return error("Invalid multiple blocks");
1680
1681   SmallVector<uint64_t, 64> Record;
1682   unsigned NumRecords = 0;
1683
1684   SmallString<64> TypeName;
1685
1686   // Read all the records for this type table.
1687   while (true) {
1688     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1689     if (!MaybeEntry)
1690       return MaybeEntry.takeError();
1691     BitstreamEntry Entry = MaybeEntry.get();
1692
1693     switch (Entry.Kind) {
1694     case BitstreamEntry::SubBlock: // Handled for us already.
1695     case BitstreamEntry::Error:
1696       return error("Malformed block");
1697     case BitstreamEntry::EndBlock:
1698       if (NumRecords != TypeList.size())
1699         return error("Malformed block");
1700       return Error::success();
1701     case BitstreamEntry::Record:
1702       // The interesting case.
1703       break;
1704     }
1705
1706     // Read a record.
1707     Record.clear();
1708     Type *ResultTy = nullptr;
1709     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1710     if (!MaybeRecord)
1711       return MaybeRecord.takeError();
1712     switch (MaybeRecord.get()) {
1713     default:
1714       return error("Invalid value");
1715     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1716       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1717       // type list.  This allows us to reserve space.
1718       if (Record.size() < 1)
1719         return error("Invalid record");
1720       TypeList.resize(Record[0]);
1721       continue;
1722     case bitc::TYPE_CODE_VOID:      // VOID
1723       ResultTy = Type::getVoidTy(Context);
1724       break;
1725     case bitc::TYPE_CODE_HALF:     // HALF
1726       ResultTy = Type::getHalfTy(Context);
1727       break;
1728     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1729       ResultTy = Type::getFloatTy(Context);
1730       break;
1731     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1732       ResultTy = Type::getDoubleTy(Context);
1733       break;
1734     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1735       ResultTy = Type::getX86_FP80Ty(Context);
1736       break;
1737     case bitc::TYPE_CODE_FP128:     // FP128
1738       ResultTy = Type::getFP128Ty(Context);
1739       break;
1740     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1741       ResultTy = Type::getPPC_FP128Ty(Context);
1742       break;
1743     case bitc::TYPE_CODE_LABEL:     // LABEL
1744       ResultTy = Type::getLabelTy(Context);
1745       break;
1746     case bitc::TYPE_CODE_METADATA:  // METADATA
1747       ResultTy = Type::getMetadataTy(Context);
1748       break;
1749     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1750       ResultTy = Type::getX86_MMXTy(Context);
1751       break;
1752     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1753       ResultTy = Type::getTokenTy(Context);
1754       break;
1755     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1756       if (Record.size() < 1)
1757         return error("Invalid record");
1758
1759       uint64_t NumBits = Record[0];
1760       if (NumBits < IntegerType::MIN_INT_BITS ||
1761           NumBits > IntegerType::MAX_INT_BITS)
1762         return error("Bitwidth for integer type out of range");
1763       ResultTy = IntegerType::get(Context, NumBits);
1764       break;
1765     }
1766     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1767                                     //          [pointee type, address space]
1768       if (Record.size() < 1)
1769         return error("Invalid record");
1770       unsigned AddressSpace = 0;
1771       if (Record.size() == 2)
1772         AddressSpace = Record[1];
1773       ResultTy = getTypeByID(Record[0]);
1774       if (!ResultTy ||
1775           !PointerType::isValidElementType(ResultTy))
1776         return error("Invalid type");
1777       ResultTy = PointerType::get(ResultTy, AddressSpace);
1778       break;
1779     }
1780     case bitc::TYPE_CODE_FUNCTION_OLD: {
1781       // FIXME: attrid is dead, remove it in LLVM 4.0
1782       // FUNCTION: [vararg, attrid, retty, paramty x N]
1783       if (Record.size() < 3)
1784         return error("Invalid record");
1785       SmallVector<Type*, 8> ArgTys;
1786       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1787         if (Type *T = getTypeByID(Record[i]))
1788           ArgTys.push_back(T);
1789         else
1790           break;
1791       }
1792
1793       ResultTy = getTypeByID(Record[2]);
1794       if (!ResultTy || ArgTys.size() < Record.size()-3)
1795         return error("Invalid type");
1796
1797       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1798       break;
1799     }
1800     case bitc::TYPE_CODE_FUNCTION: {
1801       // FUNCTION: [vararg, retty, paramty x N]
1802       if (Record.size() < 2)
1803         return error("Invalid record");
1804       SmallVector<Type*, 8> ArgTys;
1805       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1806         if (Type *T = getTypeByID(Record[i])) {
1807           if (!FunctionType::isValidArgumentType(T))
1808             return error("Invalid function argument type");
1809           ArgTys.push_back(T);
1810         }
1811         else
1812           break;
1813       }
1814
1815       ResultTy = getTypeByID(Record[1]);
1816       if (!ResultTy || ArgTys.size() < Record.size()-2)
1817         return error("Invalid type");
1818
1819       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1820       break;
1821     }
1822     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1823       if (Record.size() < 1)
1824         return error("Invalid record");
1825       SmallVector<Type*, 8> EltTys;
1826       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1827         if (Type *T = getTypeByID(Record[i]))
1828           EltTys.push_back(T);
1829         else
1830           break;
1831       }
1832       if (EltTys.size() != Record.size()-1)
1833         return error("Invalid type");
1834       ResultTy = StructType::get(Context, EltTys, Record[0]);
1835       break;
1836     }
1837     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1838       if (convertToString(Record, 0, TypeName))
1839         return error("Invalid record");
1840       continue;
1841
1842     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1843       if (Record.size() < 1)
1844         return error("Invalid record");
1845
1846       if (NumRecords >= TypeList.size())
1847         return error("Invalid TYPE table");
1848
1849       // Check to see if this was forward referenced, if so fill in the temp.
1850       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1851       if (Res) {
1852         Res->setName(TypeName);
1853         TypeList[NumRecords] = nullptr;
1854       } else  // Otherwise, create a new struct.
1855         Res = createIdentifiedStructType(Context, TypeName);
1856       TypeName.clear();
1857
1858       SmallVector<Type*, 8> EltTys;
1859       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1860         if (Type *T = getTypeByID(Record[i]))
1861           EltTys.push_back(T);
1862         else
1863           break;
1864       }
1865       if (EltTys.size() != Record.size()-1)
1866         return error("Invalid record");
1867       Res->setBody(EltTys, Record[0]);
1868       ResultTy = Res;
1869       break;
1870     }
1871     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1872       if (Record.size() != 1)
1873         return error("Invalid record");
1874
1875       if (NumRecords >= TypeList.size())
1876         return error("Invalid TYPE table");
1877
1878       // Check to see if this was forward referenced, if so fill in the temp.
1879       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1880       if (Res) {
1881         Res->setName(TypeName);
1882         TypeList[NumRecords] = nullptr;
1883       } else  // Otherwise, create a new struct with no body.
1884         Res = createIdentifiedStructType(Context, TypeName);
1885       TypeName.clear();
1886       ResultTy = Res;
1887       break;
1888     }
1889     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1890       if (Record.size() < 2)
1891         return error("Invalid record");
1892       ResultTy = getTypeByID(Record[1]);
1893       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1894         return error("Invalid type");
1895       ResultTy = ArrayType::get(ResultTy, Record[0]);
1896       break;
1897     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1898                                     //         [numelts, eltty, scalable]
1899       if (Record.size() < 2)
1900         return error("Invalid record");
1901       if (Record[0] == 0)
1902         return error("Invalid vector length");
1903       ResultTy = getTypeByID(Record[1]);
1904       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1905         return error("Invalid type");
1906       bool Scalable = Record.size() > 2 ? Record[2] : false;
1907       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1908       break;
1909     }
1910
1911     if (NumRecords >= TypeList.size())
1912       return error("Invalid TYPE table");
1913     if (TypeList[NumRecords])
1914       return error(
1915           "Invalid TYPE table: Only named structs can be forward referenced");
1916     assert(ResultTy && "Didn't read a type?");
1917     TypeList[NumRecords++] = ResultTy;
1918   }
1919 }
1920
1921 Error BitcodeReader::parseOperandBundleTags() {
1922   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1923     return Err;
1924
1925   if (!BundleTags.empty())
1926     return error("Invalid multiple blocks");
1927
1928   SmallVector<uint64_t, 64> Record;
1929
1930   while (true) {
1931     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1932     if (!MaybeEntry)
1933       return MaybeEntry.takeError();
1934     BitstreamEntry Entry = MaybeEntry.get();
1935
1936     switch (Entry.Kind) {
1937     case BitstreamEntry::SubBlock: // Handled for us already.
1938     case BitstreamEntry::Error:
1939       return error("Malformed block");
1940     case BitstreamEntry::EndBlock:
1941       return Error::success();
1942     case BitstreamEntry::Record:
1943       // The interesting case.
1944       break;
1945     }
1946
1947     // Tags are implicitly mapped to integers by their order.
1948
1949     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1950     if (!MaybeRecord)
1951       return MaybeRecord.takeError();
1952     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1953       return error("Invalid record");
1954
1955     // OPERAND_BUNDLE_TAG: [strchr x N]
1956     BundleTags.emplace_back();
1957     if (convertToString(Record, 0, BundleTags.back()))
1958       return error("Invalid record");
1959     Record.clear();
1960   }
1961 }
1962
1963 Error BitcodeReader::parseSyncScopeNames() {
1964   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1965     return Err;
1966
1967   if (!SSIDs.empty())
1968     return error("Invalid multiple synchronization scope names blocks");
1969
1970   SmallVector<uint64_t, 64> Record;
1971   while (true) {
1972     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1973     if (!MaybeEntry)
1974       return MaybeEntry.takeError();
1975     BitstreamEntry Entry = MaybeEntry.get();
1976
1977     switch (Entry.Kind) {
1978     case BitstreamEntry::SubBlock: // Handled for us already.
1979     case BitstreamEntry::Error:
1980       return error("Malformed block");
1981     case BitstreamEntry::EndBlock:
1982       if (SSIDs.empty())
1983         return error("Invalid empty synchronization scope names block");
1984       return Error::success();
1985     case BitstreamEntry::Record:
1986       // The interesting case.
1987       break;
1988     }
1989
1990     // Synchronization scope names are implicitly mapped to synchronization
1991     // scope IDs by their order.
1992
1993     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1994     if (!MaybeRecord)
1995       return MaybeRecord.takeError();
1996     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1997       return error("Invalid record");
1998
1999     SmallString<16> SSN;
2000     if (convertToString(Record, 0, SSN))
2001       return error("Invalid record");
2002
2003     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2004     Record.clear();
2005   }
2006 }
2007
2008 /// Associate a value with its name from the given index in the provided record.
2009 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2010                                              unsigned NameIndex, Triple &TT) {
2011   SmallString<128> ValueName;
2012   if (convertToString(Record, NameIndex, ValueName))
2013     return error("Invalid record");
2014   unsigned ValueID = Record[0];
2015   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2016     return error("Invalid record");
2017   Value *V = ValueList[ValueID];
2018
2019   StringRef NameStr(ValueName.data(), ValueName.size());
2020   if (NameStr.find_first_of(0) != StringRef::npos)
2021     return error("Invalid value name");
2022   V->setName(NameStr);
2023   auto *GO = dyn_cast<GlobalObject>(V);
2024   if (GO) {
2025     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2026       if (TT.supportsCOMDAT())
2027         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2028       else
2029         GO->setComdat(nullptr);
2030     }
2031   }
2032   return V;
2033 }
2034
2035 /// Helper to note and return the current location, and jump to the given
2036 /// offset.
2037 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2038                                                  BitstreamCursor &Stream) {
2039   // Save the current parsing location so we can jump back at the end
2040   // of the VST read.
2041   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2042   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2043     return std::move(JumpFailed);
2044   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2045   if (!MaybeEntry)
2046     return MaybeEntry.takeError();
2047   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2048   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2049   return CurrentBit;
2050 }
2051
2052 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2053                                             Function *F,
2054                                             ArrayRef<uint64_t> Record) {
2055   // Note that we subtract 1 here because the offset is relative to one word
2056   // before the start of the identification or module block, which was
2057   // historically always the start of the regular bitcode header.
2058   uint64_t FuncWordOffset = Record[1] - 1;
2059   uint64_t FuncBitOffset = FuncWordOffset * 32;
2060   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2061   // Set the LastFunctionBlockBit to point to the last function block.
2062   // Later when parsing is resumed after function materialization,
2063   // we can simply skip that last function block.
2064   if (FuncBitOffset > LastFunctionBlockBit)
2065     LastFunctionBlockBit = FuncBitOffset;
2066 }
2067
2068 /// Read a new-style GlobalValue symbol table.
2069 Error BitcodeReader::parseGlobalValueSymbolTable() {
2070   unsigned FuncBitcodeOffsetDelta =
2071       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2072
2073   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2074     return Err;
2075
2076   SmallVector<uint64_t, 64> Record;
2077   while (true) {
2078     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2079     if (!MaybeEntry)
2080       return MaybeEntry.takeError();
2081     BitstreamEntry Entry = MaybeEntry.get();
2082
2083     switch (Entry.Kind) {
2084     case BitstreamEntry::SubBlock:
2085     case BitstreamEntry::Error:
2086       return error("Malformed block");
2087     case BitstreamEntry::EndBlock:
2088       return Error::success();
2089     case BitstreamEntry::Record:
2090       break;
2091     }
2092
2093     Record.clear();
2094     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2095     if (!MaybeRecord)
2096       return MaybeRecord.takeError();
2097     switch (MaybeRecord.get()) {
2098     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2099       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2100                               cast<Function>(ValueList[Record[0]]), Record);
2101       break;
2102     }
2103   }
2104 }
2105
2106 /// Parse the value symbol table at either the current parsing location or
2107 /// at the given bit offset if provided.
2108 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2109   uint64_t CurrentBit;
2110   // Pass in the Offset to distinguish between calling for the module-level
2111   // VST (where we want to jump to the VST offset) and the function-level
2112   // VST (where we don't).
2113   if (Offset > 0) {
2114     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2115     if (!MaybeCurrentBit)
2116       return MaybeCurrentBit.takeError();
2117     CurrentBit = MaybeCurrentBit.get();
2118     // If this module uses a string table, read this as a module-level VST.
2119     if (UseStrtab) {
2120       if (Error Err = parseGlobalValueSymbolTable())
2121         return Err;
2122       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2123         return JumpFailed;
2124       return Error::success();
2125     }
2126     // Otherwise, the VST will be in a similar format to a function-level VST,
2127     // and will contain symbol names.
2128   }
2129
2130   // Compute the delta between the bitcode indices in the VST (the word offset
2131   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2132   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2133   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2134   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2135   // just before entering the VST subblock because: 1) the EnterSubBlock
2136   // changes the AbbrevID width; 2) the VST block is nested within the same
2137   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2138   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2139   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2140   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2141   unsigned FuncBitcodeOffsetDelta =
2142       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2143
2144   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2145     return Err;
2146
2147   SmallVector<uint64_t, 64> Record;
2148
2149   Triple TT(TheModule->getTargetTriple());
2150
2151   // Read all the records for this value table.
2152   SmallString<128> ValueName;
2153
2154   while (true) {
2155     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2156     if (!MaybeEntry)
2157       return MaybeEntry.takeError();
2158     BitstreamEntry Entry = MaybeEntry.get();
2159
2160     switch (Entry.Kind) {
2161     case BitstreamEntry::SubBlock: // Handled for us already.
2162     case BitstreamEntry::Error:
2163       return error("Malformed block");
2164     case BitstreamEntry::EndBlock:
2165       if (Offset > 0)
2166         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2167           return JumpFailed;
2168       return Error::success();
2169     case BitstreamEntry::Record:
2170       // The interesting case.
2171       break;
2172     }
2173
2174     // Read a record.
2175     Record.clear();
2176     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2177     if (!MaybeRecord)
2178       return MaybeRecord.takeError();
2179     switch (MaybeRecord.get()) {
2180     default:  // Default behavior: unknown type.
2181       break;
2182     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2183       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2184       if (Error Err = ValOrErr.takeError())
2185         return Err;
2186       ValOrErr.get();
2187       break;
2188     }
2189     case bitc::VST_CODE_FNENTRY: {
2190       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2191       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2192       if (Error Err = ValOrErr.takeError())
2193         return Err;
2194       Value *V = ValOrErr.get();
2195
2196       // Ignore function offsets emitted for aliases of functions in older
2197       // versions of LLVM.
2198       if (auto *F = dyn_cast<Function>(V))
2199         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2200       break;
2201     }
2202     case bitc::VST_CODE_BBENTRY: {
2203       if (convertToString(Record, 1, ValueName))
2204         return error("Invalid record");
2205       BasicBlock *BB = getBasicBlock(Record[0]);
2206       if (!BB)
2207         return error("Invalid record");
2208
2209       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2210       ValueName.clear();
2211       break;
2212     }
2213     }
2214   }
2215 }
2216
2217 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2218 /// encoding.
2219 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2220   if ((V & 1) == 0)
2221     return V >> 1;
2222   if (V != 1)
2223     return -(V >> 1);
2224   // There is no such thing as -0 with integers.  "-0" really means MININT.
2225   return 1ULL << 63;
2226 }
2227
2228 /// Resolve all of the initializers for global values and aliases that we can.
2229 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2230   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2231   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2232       IndirectSymbolInitWorklist;
2233   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2234   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2235   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2236
2237   GlobalInitWorklist.swap(GlobalInits);
2238   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2239   FunctionPrefixWorklist.swap(FunctionPrefixes);
2240   FunctionPrologueWorklist.swap(FunctionPrologues);
2241   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2242
2243   while (!GlobalInitWorklist.empty()) {
2244     unsigned ValID = GlobalInitWorklist.back().second;
2245     if (ValID >= ValueList.size()) {
2246       // Not ready to resolve this yet, it requires something later in the file.
2247       GlobalInits.push_back(GlobalInitWorklist.back());
2248     } else {
2249       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2250         GlobalInitWorklist.back().first->setInitializer(C);
2251       else
2252         return error("Expected a constant");
2253     }
2254     GlobalInitWorklist.pop_back();
2255   }
2256
2257   while (!IndirectSymbolInitWorklist.empty()) {
2258     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2259     if (ValID >= ValueList.size()) {
2260       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2261     } else {
2262       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2263       if (!C)
2264         return error("Expected a constant");
2265       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2266       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2267         return error("Alias and aliasee types don't match");
2268       GIS->setIndirectSymbol(C);
2269     }
2270     IndirectSymbolInitWorklist.pop_back();
2271   }
2272
2273   while (!FunctionPrefixWorklist.empty()) {
2274     unsigned ValID = FunctionPrefixWorklist.back().second;
2275     if (ValID >= ValueList.size()) {
2276       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2277     } else {
2278       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2279         FunctionPrefixWorklist.back().first->setPrefixData(C);
2280       else
2281         return error("Expected a constant");
2282     }
2283     FunctionPrefixWorklist.pop_back();
2284   }
2285
2286   while (!FunctionPrologueWorklist.empty()) {
2287     unsigned ValID = FunctionPrologueWorklist.back().second;
2288     if (ValID >= ValueList.size()) {
2289       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2290     } else {
2291       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2292         FunctionPrologueWorklist.back().first->setPrologueData(C);
2293       else
2294         return error("Expected a constant");
2295     }
2296     FunctionPrologueWorklist.pop_back();
2297   }
2298
2299   while (!FunctionPersonalityFnWorklist.empty()) {
2300     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2301     if (ValID >= ValueList.size()) {
2302       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2303     } else {
2304       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2305         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2306       else
2307         return error("Expected a constant");
2308     }
2309     FunctionPersonalityFnWorklist.pop_back();
2310   }
2311
2312   return Error::success();
2313 }
2314
2315 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2316   SmallVector<uint64_t, 8> Words(Vals.size());
2317   transform(Vals, Words.begin(),
2318                  BitcodeReader::decodeSignRotatedValue);
2319
2320   return APInt(TypeBits, Words);
2321 }
2322
2323 Error BitcodeReader::parseConstants() {
2324   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2325     return Err;
2326
2327   SmallVector<uint64_t, 64> Record;
2328
2329   // Read all the records for this value table.
2330   Type *CurTy = Type::getInt32Ty(Context);
2331   Type *CurFullTy = Type::getInt32Ty(Context);
2332   unsigned NextCstNo = ValueList.size();
2333
2334   while (true) {
2335     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2336     if (!MaybeEntry)
2337       return MaybeEntry.takeError();
2338     BitstreamEntry Entry = MaybeEntry.get();
2339
2340     switch (Entry.Kind) {
2341     case BitstreamEntry::SubBlock: // Handled for us already.
2342     case BitstreamEntry::Error:
2343       return error("Malformed block");
2344     case BitstreamEntry::EndBlock:
2345       if (NextCstNo != ValueList.size())
2346         return error("Invalid constant reference");
2347
2348       // Once all the constants have been read, go through and resolve forward
2349       // references.
2350       ValueList.resolveConstantForwardRefs();
2351       return Error::success();
2352     case BitstreamEntry::Record:
2353       // The interesting case.
2354       break;
2355     }
2356
2357     // Read a record.
2358     Record.clear();
2359     Type *VoidType = Type::getVoidTy(Context);
2360     Value *V = nullptr;
2361     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2362     if (!MaybeBitCode)
2363       return MaybeBitCode.takeError();
2364     switch (unsigned BitCode = MaybeBitCode.get()) {
2365     default:  // Default behavior: unknown constant
2366     case bitc::CST_CODE_UNDEF:     // UNDEF
2367       V = UndefValue::get(CurTy);
2368       break;
2369     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2370       if (Record.empty())
2371         return error("Invalid record");
2372       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2373         return error("Invalid record");
2374       if (TypeList[Record[0]] == VoidType)
2375         return error("Invalid constant type");
2376       CurFullTy = TypeList[Record[0]];
2377       CurTy = flattenPointerTypes(CurFullTy);
2378       continue;  // Skip the ValueList manipulation.
2379     case bitc::CST_CODE_NULL:      // NULL
2380       V = Constant::getNullValue(CurTy);
2381       break;
2382     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2383       if (!CurTy->isIntegerTy() || Record.empty())
2384         return error("Invalid record");
2385       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2386       break;
2387     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2388       if (!CurTy->isIntegerTy() || Record.empty())
2389         return error("Invalid record");
2390
2391       APInt VInt =
2392           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2393       V = ConstantInt::get(Context, VInt);
2394
2395       break;
2396     }
2397     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2398       if (Record.empty())
2399         return error("Invalid record");
2400       if (CurTy->isHalfTy())
2401         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2402                                              APInt(16, (uint16_t)Record[0])));
2403       else if (CurTy->isFloatTy())
2404         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2405                                              APInt(32, (uint32_t)Record[0])));
2406       else if (CurTy->isDoubleTy())
2407         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2408                                              APInt(64, Record[0])));
2409       else if (CurTy->isX86_FP80Ty()) {
2410         // Bits are not stored the same way as a normal i80 APInt, compensate.
2411         uint64_t Rearrange[2];
2412         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2413         Rearrange[1] = Record[0] >> 48;
2414         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2415                                              APInt(80, Rearrange)));
2416       } else if (CurTy->isFP128Ty())
2417         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2418                                              APInt(128, Record)));
2419       else if (CurTy->isPPC_FP128Ty())
2420         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2421                                              APInt(128, Record)));
2422       else
2423         V = UndefValue::get(CurTy);
2424       break;
2425     }
2426
2427     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2428       if (Record.empty())
2429         return error("Invalid record");
2430
2431       unsigned Size = Record.size();
2432       SmallVector<Constant*, 16> Elts;
2433
2434       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2435         for (unsigned i = 0; i != Size; ++i)
2436           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2437                                                      STy->getElementType(i)));
2438         V = ConstantStruct::get(STy, Elts);
2439       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2440         Type *EltTy = ATy->getElementType();
2441         for (unsigned i = 0; i != Size; ++i)
2442           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2443         V = ConstantArray::get(ATy, Elts);
2444       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2445         Type *EltTy = VTy->getElementType();
2446         for (unsigned i = 0; i != Size; ++i)
2447           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2448         V = ConstantVector::get(Elts);
2449       } else {
2450         V = UndefValue::get(CurTy);
2451       }
2452       break;
2453     }
2454     case bitc::CST_CODE_STRING:    // STRING: [values]
2455     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2456       if (Record.empty())
2457         return error("Invalid record");
2458
2459       SmallString<16> Elts(Record.begin(), Record.end());
2460       V = ConstantDataArray::getString(Context, Elts,
2461                                        BitCode == bitc::CST_CODE_CSTRING);
2462       break;
2463     }
2464     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2465       if (Record.empty())
2466         return error("Invalid record");
2467
2468       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2469       if (EltTy->isIntegerTy(8)) {
2470         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2471         if (isa<VectorType>(CurTy))
2472           V = ConstantDataVector::get(Context, Elts);
2473         else
2474           V = ConstantDataArray::get(Context, Elts);
2475       } else if (EltTy->isIntegerTy(16)) {
2476         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2477         if (isa<VectorType>(CurTy))
2478           V = ConstantDataVector::get(Context, Elts);
2479         else
2480           V = ConstantDataArray::get(Context, Elts);
2481       } else if (EltTy->isIntegerTy(32)) {
2482         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2483         if (isa<VectorType>(CurTy))
2484           V = ConstantDataVector::get(Context, Elts);
2485         else
2486           V = ConstantDataArray::get(Context, Elts);
2487       } else if (EltTy->isIntegerTy(64)) {
2488         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2489         if (isa<VectorType>(CurTy))
2490           V = ConstantDataVector::get(Context, Elts);
2491         else
2492           V = ConstantDataArray::get(Context, Elts);
2493       } else if (EltTy->isHalfTy()) {
2494         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2495         if (isa<VectorType>(CurTy))
2496           V = ConstantDataVector::getFP(Context, Elts);
2497         else
2498           V = ConstantDataArray::getFP(Context, Elts);
2499       } else if (EltTy->isFloatTy()) {
2500         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2501         if (isa<VectorType>(CurTy))
2502           V = ConstantDataVector::getFP(Context, Elts);
2503         else
2504           V = ConstantDataArray::getFP(Context, Elts);
2505       } else if (EltTy->isDoubleTy()) {
2506         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2507         if (isa<VectorType>(CurTy))
2508           V = ConstantDataVector::getFP(Context, Elts);
2509         else
2510           V = ConstantDataArray::getFP(Context, Elts);
2511       } else {
2512         return error("Invalid type for value");
2513       }
2514       break;
2515     }
2516     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2517       if (Record.size() < 2)
2518         return error("Invalid record");
2519       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2520       if (Opc < 0) {
2521         V = UndefValue::get(CurTy);  // Unknown unop.
2522       } else {
2523         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2524         unsigned Flags = 0;
2525         V = ConstantExpr::get(Opc, LHS, Flags);
2526       }
2527       break;
2528     }
2529     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2530       if (Record.size() < 3)
2531         return error("Invalid record");
2532       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2533       if (Opc < 0) {
2534         V = UndefValue::get(CurTy);  // Unknown binop.
2535       } else {
2536         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2537         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2538         unsigned Flags = 0;
2539         if (Record.size() >= 4) {
2540           if (Opc == Instruction::Add ||
2541               Opc == Instruction::Sub ||
2542               Opc == Instruction::Mul ||
2543               Opc == Instruction::Shl) {
2544             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2545               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2546             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2547               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2548           } else if (Opc == Instruction::SDiv ||
2549                      Opc == Instruction::UDiv ||
2550                      Opc == Instruction::LShr ||
2551                      Opc == Instruction::AShr) {
2552             if (Record[3] & (1 << bitc::PEO_EXACT))
2553               Flags |= SDivOperator::IsExact;
2554           }
2555         }
2556         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2557       }
2558       break;
2559     }
2560     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2561       if (Record.size() < 3)
2562         return error("Invalid record");
2563       int Opc = getDecodedCastOpcode(Record[0]);
2564       if (Opc < 0) {
2565         V = UndefValue::get(CurTy);  // Unknown cast.
2566       } else {
2567         Type *OpTy = getTypeByID(Record[1]);
2568         if (!OpTy)
2569           return error("Invalid record");
2570         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2571         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2572         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2573       }
2574       break;
2575     }
2576     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2577     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2578     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2579                                                      // operands]
2580       unsigned OpNum = 0;
2581       Type *PointeeType = nullptr;
2582       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2583           Record.size() % 2)
2584         PointeeType = getTypeByID(Record[OpNum++]);
2585
2586       bool InBounds = false;
2587       Optional<unsigned> InRangeIndex;
2588       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2589         uint64_t Op = Record[OpNum++];
2590         InBounds = Op & 1;
2591         InRangeIndex = Op >> 1;
2592       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2593         InBounds = true;
2594
2595       SmallVector<Constant*, 16> Elts;
2596       Type *Elt0FullTy = nullptr;
2597       while (OpNum != Record.size()) {
2598         if (!Elt0FullTy)
2599           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2600         Type *ElTy = getTypeByID(Record[OpNum++]);
2601         if (!ElTy)
2602           return error("Invalid record");
2603         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2604       }
2605
2606       if (Elts.size() < 1)
2607         return error("Invalid gep with no operands");
2608
2609       Type *ImplicitPointeeType =
2610           getPointerElementFlatType(Elt0FullTy->getScalarType());
2611       if (!PointeeType)
2612         PointeeType = ImplicitPointeeType;
2613       else if (PointeeType != ImplicitPointeeType)
2614         return error("Explicit gep operator type does not match pointee type "
2615                      "of pointer operand");
2616
2617       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2618       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2619                                          InBounds, InRangeIndex);
2620       break;
2621     }
2622     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2623       if (Record.size() < 3)
2624         return error("Invalid record");
2625
2626       Type *SelectorTy = Type::getInt1Ty(Context);
2627
2628       // The selector might be an i1 or an <n x i1>
2629       // Get the type from the ValueList before getting a forward ref.
2630       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2631         if (Value *V = ValueList[Record[0]])
2632           if (SelectorTy != V->getType())
2633             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2634
2635       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2636                                                               SelectorTy),
2637                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2638                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2639       break;
2640     }
2641     case bitc::CST_CODE_CE_EXTRACTELT
2642         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2643       if (Record.size() < 3)
2644         return error("Invalid record");
2645       VectorType *OpTy =
2646         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2647       if (!OpTy)
2648         return error("Invalid record");
2649       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2650       Constant *Op1 = nullptr;
2651       if (Record.size() == 4) {
2652         Type *IdxTy = getTypeByID(Record[2]);
2653         if (!IdxTy)
2654           return error("Invalid record");
2655         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2656       } else // TODO: Remove with llvm 4.0
2657         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2658       if (!Op1)
2659         return error("Invalid record");
2660       V = ConstantExpr::getExtractElement(Op0, Op1);
2661       break;
2662     }
2663     case bitc::CST_CODE_CE_INSERTELT
2664         : { // CE_INSERTELT: [opval, opval, opty, opval]
2665       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2666       if (Record.size() < 3 || !OpTy)
2667         return error("Invalid record");
2668       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2669       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2670                                                   OpTy->getElementType());
2671       Constant *Op2 = nullptr;
2672       if (Record.size() == 4) {
2673         Type *IdxTy = getTypeByID(Record[2]);
2674         if (!IdxTy)
2675           return error("Invalid record");
2676         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2677       } else // TODO: Remove with llvm 4.0
2678         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2679       if (!Op2)
2680         return error("Invalid record");
2681       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2682       break;
2683     }
2684     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2685       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2686       if (Record.size() < 3 || !OpTy)
2687         return error("Invalid record");
2688       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2689       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2690       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2691                                                  OpTy->getNumElements());
2692       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2693       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2694       break;
2695     }
2696     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2697       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2698       VectorType *OpTy =
2699         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2700       if (Record.size() < 4 || !RTy || !OpTy)
2701         return error("Invalid record");
2702       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2703       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2704       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2705                                                  RTy->getNumElements());
2706       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2707       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2708       break;
2709     }
2710     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2711       if (Record.size() < 4)
2712         return error("Invalid record");
2713       Type *OpTy = getTypeByID(Record[0]);
2714       if (!OpTy)
2715         return error("Invalid record");
2716       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2717       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2718
2719       if (OpTy->isFPOrFPVectorTy())
2720         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2721       else
2722         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2723       break;
2724     }
2725     // This maintains backward compatibility, pre-asm dialect keywords.
2726     // FIXME: Remove with the 4.0 release.
2727     case bitc::CST_CODE_INLINEASM_OLD: {
2728       if (Record.size() < 2)
2729         return error("Invalid record");
2730       std::string AsmStr, ConstrStr;
2731       bool HasSideEffects = Record[0] & 1;
2732       bool IsAlignStack = Record[0] >> 1;
2733       unsigned AsmStrSize = Record[1];
2734       if (2+AsmStrSize >= Record.size())
2735         return error("Invalid record");
2736       unsigned ConstStrSize = Record[2+AsmStrSize];
2737       if (3+AsmStrSize+ConstStrSize > Record.size())
2738         return error("Invalid record");
2739
2740       for (unsigned i = 0; i != AsmStrSize; ++i)
2741         AsmStr += (char)Record[2+i];
2742       for (unsigned i = 0; i != ConstStrSize; ++i)
2743         ConstrStr += (char)Record[3+AsmStrSize+i];
2744       UpgradeInlineAsmString(&AsmStr);
2745       V = InlineAsm::get(
2746           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2747           ConstrStr, HasSideEffects, IsAlignStack);
2748       break;
2749     }
2750     // This version adds support for the asm dialect keywords (e.g.,
2751     // inteldialect).
2752     case bitc::CST_CODE_INLINEASM: {
2753       if (Record.size() < 2)
2754         return error("Invalid record");
2755       std::string AsmStr, ConstrStr;
2756       bool HasSideEffects = Record[0] & 1;
2757       bool IsAlignStack = (Record[0] >> 1) & 1;
2758       unsigned AsmDialect = Record[0] >> 2;
2759       unsigned AsmStrSize = Record[1];
2760       if (2+AsmStrSize >= Record.size())
2761         return error("Invalid record");
2762       unsigned ConstStrSize = Record[2+AsmStrSize];
2763       if (3+AsmStrSize+ConstStrSize > Record.size())
2764         return error("Invalid record");
2765
2766       for (unsigned i = 0; i != AsmStrSize; ++i)
2767         AsmStr += (char)Record[2+i];
2768       for (unsigned i = 0; i != ConstStrSize; ++i)
2769         ConstrStr += (char)Record[3+AsmStrSize+i];
2770       UpgradeInlineAsmString(&AsmStr);
2771       V = InlineAsm::get(
2772           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2773           ConstrStr, HasSideEffects, IsAlignStack,
2774           InlineAsm::AsmDialect(AsmDialect));
2775       break;
2776     }
2777     case bitc::CST_CODE_BLOCKADDRESS:{
2778       if (Record.size() < 3)
2779         return error("Invalid record");
2780       Type *FnTy = getTypeByID(Record[0]);
2781       if (!FnTy)
2782         return error("Invalid record");
2783       Function *Fn =
2784         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2785       if (!Fn)
2786         return error("Invalid record");
2787
2788       // If the function is already parsed we can insert the block address right
2789       // away.
2790       BasicBlock *BB;
2791       unsigned BBID = Record[2];
2792       if (!BBID)
2793         // Invalid reference to entry block.
2794         return error("Invalid ID");
2795       if (!Fn->empty()) {
2796         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2797         for (size_t I = 0, E = BBID; I != E; ++I) {
2798           if (BBI == BBE)
2799             return error("Invalid ID");
2800           ++BBI;
2801         }
2802         BB = &*BBI;
2803       } else {
2804         // Otherwise insert a placeholder and remember it so it can be inserted
2805         // when the function is parsed.
2806         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2807         if (FwdBBs.empty())
2808           BasicBlockFwdRefQueue.push_back(Fn);
2809         if (FwdBBs.size() < BBID + 1)
2810           FwdBBs.resize(BBID + 1);
2811         if (!FwdBBs[BBID])
2812           FwdBBs[BBID] = BasicBlock::Create(Context);
2813         BB = FwdBBs[BBID];
2814       }
2815       V = BlockAddress::get(Fn, BB);
2816       break;
2817     }
2818     }
2819
2820     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2821            "Incorrect fully structured type provided for Constant");
2822     ValueList.assignValue(V, NextCstNo, CurFullTy);
2823     ++NextCstNo;
2824   }
2825 }
2826
2827 Error BitcodeReader::parseUseLists() {
2828   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2829     return Err;
2830
2831   // Read all the records.
2832   SmallVector<uint64_t, 64> Record;
2833
2834   while (true) {
2835     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2836     if (!MaybeEntry)
2837       return MaybeEntry.takeError();
2838     BitstreamEntry Entry = MaybeEntry.get();
2839
2840     switch (Entry.Kind) {
2841     case BitstreamEntry::SubBlock: // Handled for us already.
2842     case BitstreamEntry::Error:
2843       return error("Malformed block");
2844     case BitstreamEntry::EndBlock:
2845       return Error::success();
2846     case BitstreamEntry::Record:
2847       // The interesting case.
2848       break;
2849     }
2850
2851     // Read a use list record.
2852     Record.clear();
2853     bool IsBB = false;
2854     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2855     if (!MaybeRecord)
2856       return MaybeRecord.takeError();
2857     switch (MaybeRecord.get()) {
2858     default:  // Default behavior: unknown type.
2859       break;
2860     case bitc::USELIST_CODE_BB:
2861       IsBB = true;
2862       LLVM_FALLTHROUGH;
2863     case bitc::USELIST_CODE_DEFAULT: {
2864       unsigned RecordLength = Record.size();
2865       if (RecordLength < 3)
2866         // Records should have at least an ID and two indexes.
2867         return error("Invalid record");
2868       unsigned ID = Record.back();
2869       Record.pop_back();
2870
2871       Value *V;
2872       if (IsBB) {
2873         assert(ID < FunctionBBs.size() && "Basic block not found");
2874         V = FunctionBBs[ID];
2875       } else
2876         V = ValueList[ID];
2877       unsigned NumUses = 0;
2878       SmallDenseMap<const Use *, unsigned, 16> Order;
2879       for (const Use &U : V->materialized_uses()) {
2880         if (++NumUses > Record.size())
2881           break;
2882         Order[&U] = Record[NumUses - 1];
2883       }
2884       if (Order.size() != Record.size() || NumUses > Record.size())
2885         // Mismatches can happen if the functions are being materialized lazily
2886         // (out-of-order), or a value has been upgraded.
2887         break;
2888
2889       V->sortUseList([&](const Use &L, const Use &R) {
2890         return Order.lookup(&L) < Order.lookup(&R);
2891       });
2892       break;
2893     }
2894     }
2895   }
2896 }
2897
2898 /// When we see the block for metadata, remember where it is and then skip it.
2899 /// This lets us lazily deserialize the metadata.
2900 Error BitcodeReader::rememberAndSkipMetadata() {
2901   // Save the current stream state.
2902   uint64_t CurBit = Stream.GetCurrentBitNo();
2903   DeferredMetadataInfo.push_back(CurBit);
2904
2905   // Skip over the block for now.
2906   if (Error Err = Stream.SkipBlock())
2907     return Err;
2908   return Error::success();
2909 }
2910
2911 Error BitcodeReader::materializeMetadata() {
2912   for (uint64_t BitPos : DeferredMetadataInfo) {
2913     // Move the bit stream to the saved position.
2914     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2915       return JumpFailed;
2916     if (Error Err = MDLoader->parseModuleMetadata())
2917       return Err;
2918   }
2919
2920   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2921   // metadata.
2922   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2923     NamedMDNode *LinkerOpts =
2924         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2925     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2926       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2927   }
2928
2929   DeferredMetadataInfo.clear();
2930   return Error::success();
2931 }
2932
2933 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2934
2935 /// When we see the block for a function body, remember where it is and then
2936 /// skip it.  This lets us lazily deserialize the functions.
2937 Error BitcodeReader::rememberAndSkipFunctionBody() {
2938   // Get the function we are talking about.
2939   if (FunctionsWithBodies.empty())
2940     return error("Insufficient function protos");
2941
2942   Function *Fn = FunctionsWithBodies.back();
2943   FunctionsWithBodies.pop_back();
2944
2945   // Save the current stream state.
2946   uint64_t CurBit = Stream.GetCurrentBitNo();
2947   assert(
2948       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2949       "Mismatch between VST and scanned function offsets");
2950   DeferredFunctionInfo[Fn] = CurBit;
2951
2952   // Skip over the function block for now.
2953   if (Error Err = Stream.SkipBlock())
2954     return Err;
2955   return Error::success();
2956 }
2957
2958 Error BitcodeReader::globalCleanup() {
2959   // Patch the initializers for globals and aliases up.
2960   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2961     return Err;
2962   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2963     return error("Malformed global initializer set");
2964
2965   // Look for intrinsic functions which need to be upgraded at some point
2966   for (Function &F : *TheModule) {
2967     MDLoader->upgradeDebugIntrinsics(F);
2968     Function *NewFn;
2969     if (UpgradeIntrinsicFunction(&F, NewFn))
2970       UpgradedIntrinsics[&F] = NewFn;
2971     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2972       // Some types could be renamed during loading if several modules are
2973       // loaded in the same LLVMContext (LTO scenario). In this case we should
2974       // remangle intrinsics names as well.
2975       RemangledIntrinsics[&F] = Remangled.getValue();
2976   }
2977
2978   // Look for global variables which need to be renamed.
2979   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2980   for (GlobalVariable &GV : TheModule->globals())
2981     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2982       UpgradedVariables.emplace_back(&GV, Upgraded);
2983   for (auto &Pair : UpgradedVariables) {
2984     Pair.first->eraseFromParent();
2985     TheModule->getGlobalList().push_back(Pair.second);
2986   }
2987
2988   // Force deallocation of memory for these vectors to favor the client that
2989   // want lazy deserialization.
2990   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2991   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2992       IndirectSymbolInits);
2993   return Error::success();
2994 }
2995
2996 /// Support for lazy parsing of function bodies. This is required if we
2997 /// either have an old bitcode file without a VST forward declaration record,
2998 /// or if we have an anonymous function being materialized, since anonymous
2999 /// functions do not have a name and are therefore not in the VST.
3000 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3001   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3002     return JumpFailed;
3003
3004   if (Stream.AtEndOfStream())
3005     return error("Could not find function in stream");
3006
3007   if (!SeenFirstFunctionBody)
3008     return error("Trying to materialize functions before seeing function blocks");
3009
3010   // An old bitcode file with the symbol table at the end would have
3011   // finished the parse greedily.
3012   assert(SeenValueSymbolTable);
3013
3014   SmallVector<uint64_t, 64> Record;
3015
3016   while (true) {
3017     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3018     if (!MaybeEntry)
3019       return MaybeEntry.takeError();
3020     llvm::BitstreamEntry Entry = MaybeEntry.get();
3021
3022     switch (Entry.Kind) {
3023     default:
3024       return error("Expect SubBlock");
3025     case BitstreamEntry::SubBlock:
3026       switch (Entry.ID) {
3027       default:
3028         return error("Expect function block");
3029       case bitc::FUNCTION_BLOCK_ID:
3030         if (Error Err = rememberAndSkipFunctionBody())
3031           return Err;
3032         NextUnreadBit = Stream.GetCurrentBitNo();
3033         return Error::success();
3034       }
3035     }
3036   }
3037 }
3038
3039 bool BitcodeReaderBase::readBlockInfo() {
3040   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3041       Stream.ReadBlockInfoBlock();
3042   if (!MaybeNewBlockInfo)
3043     return true; // FIXME Handle the error.
3044   Optional<BitstreamBlockInfo> NewBlockInfo =
3045       std::move(MaybeNewBlockInfo.get());
3046   if (!NewBlockInfo)
3047     return true;
3048   BlockInfo = std::move(*NewBlockInfo);
3049   return false;
3050 }
3051
3052 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3053   // v1: [selection_kind, name]
3054   // v2: [strtab_offset, strtab_size, selection_kind]
3055   StringRef Name;
3056   std::tie(Name, Record) = readNameFromStrtab(Record);
3057
3058   if (Record.empty())
3059     return error("Invalid record");
3060   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3061   std::string OldFormatName;
3062   if (!UseStrtab) {
3063     if (Record.size() < 2)
3064       return error("Invalid record");
3065     unsigned ComdatNameSize = Record[1];
3066     OldFormatName.reserve(ComdatNameSize);
3067     for (unsigned i = 0; i != ComdatNameSize; ++i)
3068       OldFormatName += (char)Record[2 + i];
3069     Name = OldFormatName;
3070   }
3071   Comdat *C = TheModule->getOrInsertComdat(Name);
3072   C->setSelectionKind(SK);
3073   ComdatList.push_back(C);
3074   return Error::success();
3075 }
3076
3077 static void inferDSOLocal(GlobalValue *GV) {
3078   // infer dso_local from linkage and visibility if it is not encoded.
3079   if (GV->hasLocalLinkage() ||
3080       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3081     GV->setDSOLocal(true);
3082 }
3083
3084 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3085   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3086   // visibility, threadlocal, unnamed_addr, externally_initialized,
3087   // dllstorageclass, comdat, attributes, preemption specifier,
3088   // partition strtab offset, partition strtab size] (name in VST)
3089   // v2: [strtab_offset, strtab_size, v1]
3090   StringRef Name;
3091   std::tie(Name, Record) = readNameFromStrtab(Record);
3092
3093   if (Record.size() < 6)
3094     return error("Invalid record");
3095   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3096   Type *Ty = flattenPointerTypes(FullTy);
3097   if (!Ty)
3098     return error("Invalid record");
3099   bool isConstant = Record[1] & 1;
3100   bool explicitType = Record[1] & 2;
3101   unsigned AddressSpace;
3102   if (explicitType) {
3103     AddressSpace = Record[1] >> 2;
3104   } else {
3105     if (!Ty->isPointerTy())
3106       return error("Invalid type for value");
3107     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3108     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3109   }
3110
3111   uint64_t RawLinkage = Record[3];
3112   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3113   unsigned Alignment;
3114   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3115     return Err;
3116   std::string Section;
3117   if (Record[5]) {
3118     if (Record[5] - 1 >= SectionTable.size())
3119       return error("Invalid ID");
3120     Section = SectionTable[Record[5] - 1];
3121   }
3122   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3123   // Local linkage must have default visibility.
3124   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3125     // FIXME: Change to an error if non-default in 4.0.
3126     Visibility = getDecodedVisibility(Record[6]);
3127
3128   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3129   if (Record.size() > 7)
3130     TLM = getDecodedThreadLocalMode(Record[7]);
3131
3132   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3133   if (Record.size() > 8)
3134     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3135
3136   bool ExternallyInitialized = false;
3137   if (Record.size() > 9)
3138     ExternallyInitialized = Record[9];
3139
3140   GlobalVariable *NewGV =
3141       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3142                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3143   NewGV->setAlignment(Alignment);
3144   if (!Section.empty())
3145     NewGV->setSection(Section);
3146   NewGV->setVisibility(Visibility);
3147   NewGV->setUnnamedAddr(UnnamedAddr);
3148
3149   if (Record.size() > 10)
3150     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3151   else
3152     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3153
3154   FullTy = PointerType::get(FullTy, AddressSpace);
3155   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3156          "Incorrect fully specified type for GlobalVariable");
3157   ValueList.push_back(NewGV, FullTy);
3158
3159   // Remember which value to use for the global initializer.
3160   if (unsigned InitID = Record[2])
3161     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3162
3163   if (Record.size() > 11) {
3164     if (unsigned ComdatID = Record[11]) {
3165       if (ComdatID > ComdatList.size())
3166         return error("Invalid global variable comdat ID");
3167       NewGV->setComdat(ComdatList[ComdatID - 1]);
3168     }
3169   } else if (hasImplicitComdat(RawLinkage)) {
3170     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3171   }
3172
3173   if (Record.size() > 12) {
3174     auto AS = getAttributes(Record[12]).getFnAttributes();
3175     NewGV->setAttributes(AS);
3176   }
3177
3178   if (Record.size() > 13) {
3179     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3180   }
3181   inferDSOLocal(NewGV);
3182
3183   // Check whether we have enough values to read a partition name.
3184   if (Record.size() > 15)
3185     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3186
3187   return Error::success();
3188 }
3189
3190 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3191   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3192   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3193   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3194   // v2: [strtab_offset, strtab_size, v1]
3195   StringRef Name;
3196   std::tie(Name, Record) = readNameFromStrtab(Record);
3197
3198   if (Record.size() < 8)
3199     return error("Invalid record");
3200   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3201   Type *FTy = flattenPointerTypes(FullFTy);
3202   if (!FTy)
3203     return error("Invalid record");
3204   if (isa<PointerType>(FTy))
3205     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3206
3207   if (!isa<FunctionType>(FTy))
3208     return error("Invalid type for value");
3209   auto CC = static_cast<CallingConv::ID>(Record[1]);
3210   if (CC & ~CallingConv::MaxID)
3211     return error("Invalid calling convention ID");
3212
3213   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3214   if (Record.size() > 16)
3215     AddrSpace = Record[16];
3216
3217   Function *Func =
3218       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3219                        AddrSpace, Name, TheModule);
3220
3221   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3222          "Incorrect fully specified type provided for function");
3223   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3224
3225   Func->setCallingConv(CC);
3226   bool isProto = Record[2];
3227   uint64_t RawLinkage = Record[3];
3228   Func->setLinkage(getDecodedLinkage(RawLinkage));
3229   Func->setAttributes(getAttributes(Record[4]));
3230
3231   // Upgrade any old-style byval without a type by propagating the argument's
3232   // pointee type. There should be no opaque pointers where the byval type is
3233   // implicit.
3234   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3235     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3236       continue;
3237
3238     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3239     Func->removeParamAttr(i, Attribute::ByVal);
3240     Func->addParamAttr(i, Attribute::getWithByValType(
3241                               Context, getPointerElementFlatType(PTy)));
3242   }
3243
3244   unsigned Alignment;
3245   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3246     return Err;
3247   Func->setAlignment(Alignment);
3248   if (Record[6]) {
3249     if (Record[6] - 1 >= SectionTable.size())
3250       return error("Invalid ID");
3251     Func->setSection(SectionTable[Record[6] - 1]);
3252   }
3253   // Local linkage must have default visibility.
3254   if (!Func->hasLocalLinkage())
3255     // FIXME: Change to an error if non-default in 4.0.
3256     Func->setVisibility(getDecodedVisibility(Record[7]));
3257   if (Record.size() > 8 && Record[8]) {
3258     if (Record[8] - 1 >= GCTable.size())
3259       return error("Invalid ID");
3260     Func->setGC(GCTable[Record[8] - 1]);
3261   }
3262   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3263   if (Record.size() > 9)
3264     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3265   Func->setUnnamedAddr(UnnamedAddr);
3266   if (Record.size() > 10 && Record[10] != 0)
3267     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3268
3269   if (Record.size() > 11)
3270     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3271   else
3272     upgradeDLLImportExportLinkage(Func, RawLinkage);
3273
3274   if (Record.size() > 12) {
3275     if (unsigned ComdatID = Record[12]) {
3276       if (ComdatID > ComdatList.size())
3277         return error("Invalid function comdat ID");
3278       Func->setComdat(ComdatList[ComdatID - 1]);
3279     }
3280   } else if (hasImplicitComdat(RawLinkage)) {
3281     Func->setComdat(reinterpret_cast<Comdat *>(1));
3282   }
3283
3284   if (Record.size() > 13 && Record[13] != 0)
3285     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3286
3287   if (Record.size() > 14 && Record[14] != 0)
3288     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3289
3290   if (Record.size() > 15) {
3291     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3292   }
3293   inferDSOLocal(Func);
3294
3295   // Record[16] is the address space number.
3296
3297   // Check whether we have enough values to read a partition name.
3298   if (Record.size() > 18)
3299     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3300
3301   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3302   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3303          "Incorrect fully specified type provided for Function");
3304   ValueList.push_back(Func, FullTy);
3305
3306   // If this is a function with a body, remember the prototype we are
3307   // creating now, so that we can match up the body with them later.
3308   if (!isProto) {
3309     Func->setIsMaterializable(true);
3310     FunctionsWithBodies.push_back(Func);
3311     DeferredFunctionInfo[Func] = 0;
3312   }
3313   return Error::success();
3314 }
3315
3316 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3317     unsigned BitCode, ArrayRef<uint64_t> Record) {
3318   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3319   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3320   // dllstorageclass, threadlocal, unnamed_addr,
3321   // preemption specifier] (name in VST)
3322   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3323   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3324   // preemption specifier] (name in VST)
3325   // v2: [strtab_offset, strtab_size, v1]
3326   StringRef Name;
3327   std::tie(Name, Record) = readNameFromStrtab(Record);
3328
3329   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3330   if (Record.size() < (3 + (unsigned)NewRecord))
3331     return error("Invalid record");
3332   unsigned OpNum = 0;
3333   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3334   Type *Ty = flattenPointerTypes(FullTy);
3335   if (!Ty)
3336     return error("Invalid record");
3337
3338   unsigned AddrSpace;
3339   if (!NewRecord) {
3340     auto *PTy = dyn_cast<PointerType>(Ty);
3341     if (!PTy)
3342       return error("Invalid type for value");
3343     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3344     AddrSpace = PTy->getAddressSpace();
3345   } else {
3346     AddrSpace = Record[OpNum++];
3347   }
3348
3349   auto Val = Record[OpNum++];
3350   auto Linkage = Record[OpNum++];
3351   GlobalIndirectSymbol *NewGA;
3352   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3353       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3354     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3355                                 TheModule);
3356   else
3357     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3358                                 nullptr, TheModule);
3359
3360   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3361          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3362   // Old bitcode files didn't have visibility field.
3363   // Local linkage must have default visibility.
3364   if (OpNum != Record.size()) {
3365     auto VisInd = OpNum++;
3366     if (!NewGA->hasLocalLinkage())
3367       // FIXME: Change to an error if non-default in 4.0.
3368       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3369   }
3370   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3371       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3372     if (OpNum != Record.size())
3373       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3374     else
3375       upgradeDLLImportExportLinkage(NewGA, Linkage);
3376     if (OpNum != Record.size())
3377       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3378     if (OpNum != Record.size())
3379       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3380   }
3381   if (OpNum != Record.size())
3382     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3383   inferDSOLocal(NewGA);
3384
3385   // Check whether we have enough values to read a partition name.
3386   if (OpNum + 1 < Record.size()) {
3387     NewGA->setPartition(
3388         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3389     OpNum += 2;
3390   }
3391
3392   FullTy = PointerType::get(FullTy, AddrSpace);
3393   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3394          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3395   ValueList.push_back(NewGA, FullTy);
3396   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3397   return Error::success();
3398 }
3399
3400 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3401                                  bool ShouldLazyLoadMetadata) {
3402   if (ResumeBit) {
3403     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3404       return JumpFailed;
3405   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3406     return Err;
3407
3408   SmallVector<uint64_t, 64> Record;
3409
3410   // Read all the records for this module.
3411   while (true) {
3412     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3413     if (!MaybeEntry)
3414       return MaybeEntry.takeError();
3415     llvm::BitstreamEntry Entry = MaybeEntry.get();
3416
3417     switch (Entry.Kind) {
3418     case BitstreamEntry::Error:
3419       return error("Malformed block");
3420     case BitstreamEntry::EndBlock:
3421       return globalCleanup();
3422
3423     case BitstreamEntry::SubBlock:
3424       switch (Entry.ID) {
3425       default:  // Skip unknown content.
3426         if (Error Err = Stream.SkipBlock())
3427           return Err;
3428         break;
3429       case bitc::BLOCKINFO_BLOCK_ID:
3430         if (readBlockInfo())
3431           return error("Malformed block");
3432         break;
3433       case bitc::PARAMATTR_BLOCK_ID:
3434         if (Error Err = parseAttributeBlock())
3435           return Err;
3436         break;
3437       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3438         if (Error Err = parseAttributeGroupBlock())
3439           return Err;
3440         break;
3441       case bitc::TYPE_BLOCK_ID_NEW:
3442         if (Error Err = parseTypeTable())
3443           return Err;
3444         break;
3445       case bitc::VALUE_SYMTAB_BLOCK_ID:
3446         if (!SeenValueSymbolTable) {
3447           // Either this is an old form VST without function index and an
3448           // associated VST forward declaration record (which would have caused
3449           // the VST to be jumped to and parsed before it was encountered
3450           // normally in the stream), or there were no function blocks to
3451           // trigger an earlier parsing of the VST.
3452           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3453           if (Error Err = parseValueSymbolTable())
3454             return Err;
3455           SeenValueSymbolTable = true;
3456         } else {
3457           // We must have had a VST forward declaration record, which caused
3458           // the parser to jump to and parse the VST earlier.
3459           assert(VSTOffset > 0);
3460           if (Error Err = Stream.SkipBlock())
3461             return Err;
3462         }
3463         break;
3464       case bitc::CONSTANTS_BLOCK_ID:
3465         if (Error Err = parseConstants())
3466           return Err;
3467         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3468           return Err;
3469         break;
3470       case bitc::METADATA_BLOCK_ID:
3471         if (ShouldLazyLoadMetadata) {
3472           if (Error Err = rememberAndSkipMetadata())
3473             return Err;
3474           break;
3475         }
3476         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3477         if (Error Err = MDLoader->parseModuleMetadata())
3478           return Err;
3479         break;
3480       case bitc::METADATA_KIND_BLOCK_ID:
3481         if (Error Err = MDLoader->parseMetadataKinds())
3482           return Err;
3483         break;
3484       case bitc::FUNCTION_BLOCK_ID:
3485         // If this is the first function body we've seen, reverse the
3486         // FunctionsWithBodies list.
3487         if (!SeenFirstFunctionBody) {
3488           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3489           if (Error Err = globalCleanup())
3490             return Err;
3491           SeenFirstFunctionBody = true;
3492         }
3493
3494         if (VSTOffset > 0) {
3495           // If we have a VST forward declaration record, make sure we
3496           // parse the VST now if we haven't already. It is needed to
3497           // set up the DeferredFunctionInfo vector for lazy reading.
3498           if (!SeenValueSymbolTable) {
3499             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3500               return Err;
3501             SeenValueSymbolTable = true;
3502             // Fall through so that we record the NextUnreadBit below.
3503             // This is necessary in case we have an anonymous function that
3504             // is later materialized. Since it will not have a VST entry we
3505             // need to fall back to the lazy parse to find its offset.
3506           } else {
3507             // If we have a VST forward declaration record, but have already
3508             // parsed the VST (just above, when the first function body was
3509             // encountered here), then we are resuming the parse after
3510             // materializing functions. The ResumeBit points to the
3511             // start of the last function block recorded in the
3512             // DeferredFunctionInfo map. Skip it.
3513             if (Error Err = Stream.SkipBlock())
3514               return Err;
3515             continue;
3516           }
3517         }
3518
3519         // Support older bitcode files that did not have the function
3520         // index in the VST, nor a VST forward declaration record, as
3521         // well as anonymous functions that do not have VST entries.
3522         // Build the DeferredFunctionInfo vector on the fly.
3523         if (Error Err = rememberAndSkipFunctionBody())
3524           return Err;
3525
3526         // Suspend parsing when we reach the function bodies. Subsequent
3527         // materialization calls will resume it when necessary. If the bitcode
3528         // file is old, the symbol table will be at the end instead and will not
3529         // have been seen yet. In this case, just finish the parse now.
3530         if (SeenValueSymbolTable) {
3531           NextUnreadBit = Stream.GetCurrentBitNo();
3532           // After the VST has been parsed, we need to make sure intrinsic name
3533           // are auto-upgraded.
3534           return globalCleanup();
3535         }
3536         break;
3537       case bitc::USELIST_BLOCK_ID:
3538         if (Error Err = parseUseLists())
3539           return Err;
3540         break;
3541       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3542         if (Error Err = parseOperandBundleTags())
3543           return Err;
3544         break;
3545       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3546         if (Error Err = parseSyncScopeNames())
3547           return Err;
3548         break;
3549       }
3550       continue;
3551
3552     case BitstreamEntry::Record:
3553       // The interesting case.
3554       break;
3555     }
3556
3557     // Read a record.
3558     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3559     if (!MaybeBitCode)
3560       return MaybeBitCode.takeError();
3561     switch (unsigned BitCode = MaybeBitCode.get()) {
3562     default: break;  // Default behavior, ignore unknown content.
3563     case bitc::MODULE_CODE_VERSION: {
3564       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3565       if (!VersionOrErr)
3566         return VersionOrErr.takeError();
3567       UseRelativeIDs = *VersionOrErr >= 1;
3568       break;
3569     }
3570     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3571       std::string S;
3572       if (convertToString(Record, 0, S))
3573         return error("Invalid record");
3574       TheModule->setTargetTriple(S);
3575       break;
3576     }
3577     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3578       std::string S;
3579       if (convertToString(Record, 0, S))
3580         return error("Invalid record");
3581       TheModule->setDataLayout(S);
3582       break;
3583     }
3584     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3585       std::string S;
3586       if (convertToString(Record, 0, S))
3587         return error("Invalid record");
3588       TheModule->setModuleInlineAsm(S);
3589       break;
3590     }
3591     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3592       // FIXME: Remove in 4.0.
3593       std::string S;
3594       if (convertToString(Record, 0, S))
3595         return error("Invalid record");
3596       // Ignore value.
3597       break;
3598     }
3599     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3600       std::string S;
3601       if (convertToString(Record, 0, S))
3602         return error("Invalid record");
3603       SectionTable.push_back(S);
3604       break;
3605     }
3606     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3607       std::string S;
3608       if (convertToString(Record, 0, S))
3609         return error("Invalid record");
3610       GCTable.push_back(S);
3611       break;
3612     }
3613     case bitc::MODULE_CODE_COMDAT:
3614       if (Error Err = parseComdatRecord(Record))
3615         return Err;
3616       break;
3617     case bitc::MODULE_CODE_GLOBALVAR:
3618       if (Error Err = parseGlobalVarRecord(Record))
3619         return Err;
3620       break;
3621     case bitc::MODULE_CODE_FUNCTION:
3622       if (Error Err = parseFunctionRecord(Record))
3623         return Err;
3624       break;
3625     case bitc::MODULE_CODE_IFUNC:
3626     case bitc::MODULE_CODE_ALIAS:
3627     case bitc::MODULE_CODE_ALIAS_OLD:
3628       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3629         return Err;
3630       break;
3631     /// MODULE_CODE_VSTOFFSET: [offset]
3632     case bitc::MODULE_CODE_VSTOFFSET:
3633       if (Record.size() < 1)
3634         return error("Invalid record");
3635       // Note that we subtract 1 here because the offset is relative to one word
3636       // before the start of the identification or module block, which was
3637       // historically always the start of the regular bitcode header.
3638       VSTOffset = Record[0] - 1;
3639       break;
3640     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3641     case bitc::MODULE_CODE_SOURCE_FILENAME:
3642       SmallString<128> ValueName;
3643       if (convertToString(Record, 0, ValueName))
3644         return error("Invalid record");
3645       TheModule->setSourceFileName(ValueName);
3646       break;
3647     }
3648     Record.clear();
3649   }
3650 }
3651
3652 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3653                                       bool IsImporting) {
3654   TheModule = M;
3655   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3656                             [&](unsigned ID) { return getTypeByID(ID); });
3657   return parseModule(0, ShouldLazyLoadMetadata);
3658 }
3659
3660 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3661   if (!isa<PointerType>(PtrType))
3662     return error("Load/Store operand is not a pointer type");
3663   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3664
3665   if (ValType && ValType != ElemType)
3666     return error("Explicit load/store type does not match pointee "
3667                  "type of pointer operand");
3668   if (!PointerType::isLoadableOrStorableType(ElemType))
3669     return error("Cannot load/store from pointer");
3670   return Error::success();
3671 }
3672
3673 void BitcodeReader::propagateByValTypes(CallBase *CB,
3674                                         ArrayRef<Type *> ArgsFullTys) {
3675   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3676     if (!CB->paramHasAttr(i, Attribute::ByVal))
3677       continue;
3678
3679     CB->removeParamAttr(i, Attribute::ByVal);
3680     CB->addParamAttr(
3681         i, Attribute::getWithByValType(
3682                Context, getPointerElementFlatType(ArgsFullTys[i])));
3683   }
3684 }
3685
3686 /// Lazily parse the specified function body block.
3687 Error BitcodeReader::parseFunctionBody(Function *F) {
3688   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3689     return Err;
3690
3691   // Unexpected unresolved metadata when parsing function.
3692   if (MDLoader->hasFwdRefs())
3693     return error("Invalid function metadata: incoming forward references");
3694
3695   InstructionList.clear();
3696   unsigned ModuleValueListSize = ValueList.size();
3697   unsigned ModuleMDLoaderSize = MDLoader->size();
3698
3699   // Add all the function arguments to the value table.
3700   unsigned ArgNo = 0;
3701   FunctionType *FullFTy = FunctionTypes[F];
3702   for (Argument &I : F->args()) {
3703     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3704            "Incorrect fully specified type for Function Argument");
3705     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3706   }
3707   unsigned NextValueNo = ValueList.size();
3708   BasicBlock *CurBB = nullptr;
3709   unsigned CurBBNo = 0;
3710
3711   DebugLoc LastLoc;
3712   auto getLastInstruction = [&]() -> Instruction * {
3713     if (CurBB && !CurBB->empty())
3714       return &CurBB->back();
3715     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3716              !FunctionBBs[CurBBNo - 1]->empty())
3717       return &FunctionBBs[CurBBNo - 1]->back();
3718     return nullptr;
3719   };
3720
3721   std::vector<OperandBundleDef> OperandBundles;
3722
3723   // Read all the records.
3724   SmallVector<uint64_t, 64> Record;
3725
3726   while (true) {
3727     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3728     if (!MaybeEntry)
3729       return MaybeEntry.takeError();
3730     llvm::BitstreamEntry Entry = MaybeEntry.get();
3731
3732     switch (Entry.Kind) {
3733     case BitstreamEntry::Error:
3734       return error("Malformed block");
3735     case BitstreamEntry::EndBlock:
3736       goto OutOfRecordLoop;
3737
3738     case BitstreamEntry::SubBlock:
3739       switch (Entry.ID) {
3740       default:  // Skip unknown content.
3741         if (Error Err = Stream.SkipBlock())
3742           return Err;
3743         break;
3744       case bitc::CONSTANTS_BLOCK_ID:
3745         if (Error Err = parseConstants())
3746           return Err;
3747         NextValueNo = ValueList.size();
3748         break;
3749       case bitc::VALUE_SYMTAB_BLOCK_ID:
3750         if (Error Err = parseValueSymbolTable())
3751           return Err;
3752         break;
3753       case bitc::METADATA_ATTACHMENT_ID:
3754         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3755           return Err;
3756         break;
3757       case bitc::METADATA_BLOCK_ID:
3758         assert(DeferredMetadataInfo.empty() &&
3759                "Must read all module-level metadata before function-level");
3760         if (Error Err = MDLoader->parseFunctionMetadata())
3761           return Err;
3762         break;
3763       case bitc::USELIST_BLOCK_ID:
3764         if (Error Err = parseUseLists())
3765           return Err;
3766         break;
3767       }
3768       continue;
3769
3770     case BitstreamEntry::Record:
3771       // The interesting case.
3772       break;
3773     }
3774
3775     // Read a record.
3776     Record.clear();
3777     Instruction *I = nullptr;
3778     Type *FullTy = nullptr;
3779     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3780     if (!MaybeBitCode)
3781       return MaybeBitCode.takeError();
3782     switch (unsigned BitCode = MaybeBitCode.get()) {
3783     default: // Default behavior: reject
3784       return error("Invalid value");
3785     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3786       if (Record.size() < 1 || Record[0] == 0)
3787         return error("Invalid record");
3788       // Create all the basic blocks for the function.
3789       FunctionBBs.resize(Record[0]);
3790
3791       // See if anything took the address of blocks in this function.
3792       auto BBFRI = BasicBlockFwdRefs.find(F);
3793       if (BBFRI == BasicBlockFwdRefs.end()) {
3794         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3795           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3796       } else {
3797         auto &BBRefs = BBFRI->second;
3798         // Check for invalid basic block references.
3799         if (BBRefs.size() > FunctionBBs.size())
3800           return error("Invalid ID");
3801         assert(!BBRefs.empty() && "Unexpected empty array");
3802         assert(!BBRefs.front() && "Invalid reference to entry block");
3803         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3804              ++I)
3805           if (I < RE && BBRefs[I]) {
3806             BBRefs[I]->insertInto(F);
3807             FunctionBBs[I] = BBRefs[I];
3808           } else {
3809             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3810           }
3811
3812         // Erase from the table.
3813         BasicBlockFwdRefs.erase(BBFRI);
3814       }
3815
3816       CurBB = FunctionBBs[0];
3817       continue;
3818     }
3819
3820     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3821       // This record indicates that the last instruction is at the same
3822       // location as the previous instruction with a location.
3823       I = getLastInstruction();
3824
3825       if (!I)
3826         return error("Invalid record");
3827       I->setDebugLoc(LastLoc);
3828       I = nullptr;
3829       continue;
3830
3831     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3832       I = getLastInstruction();
3833       if (!I || Record.size() < 4)
3834         return error("Invalid record");
3835
3836       unsigned Line = Record[0], Col = Record[1];
3837       unsigned ScopeID = Record[2], IAID = Record[3];
3838       bool isImplicitCode = Record.size() == 5 && Record[4];
3839
3840       MDNode *Scope = nullptr, *IA = nullptr;
3841       if (ScopeID) {
3842         Scope = dyn_cast_or_null<MDNode>(
3843             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3844         if (!Scope)
3845           return error("Invalid record");
3846       }
3847       if (IAID) {
3848         IA = dyn_cast_or_null<MDNode>(
3849             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3850         if (!IA)
3851           return error("Invalid record");
3852       }
3853       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3854       I->setDebugLoc(LastLoc);
3855       I = nullptr;
3856       continue;
3857     }
3858     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3859       unsigned OpNum = 0;
3860       Value *LHS;
3861       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3862           OpNum+1 > Record.size())
3863         return error("Invalid record");
3864
3865       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3866       if (Opc == -1)
3867         return error("Invalid record");
3868       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3869       InstructionList.push_back(I);
3870       if (OpNum < Record.size()) {
3871         if (isa<FPMathOperator>(I)) {
3872           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3873           if (FMF.any())
3874             I->setFastMathFlags(FMF);
3875         }
3876       }
3877       break;
3878     }
3879     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3880       unsigned OpNum = 0;
3881       Value *LHS, *RHS;
3882       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3883           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3884           OpNum+1 > Record.size())
3885         return error("Invalid record");
3886
3887       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3888       if (Opc == -1)
3889         return error("Invalid record");
3890       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3891       InstructionList.push_back(I);
3892       if (OpNum < Record.size()) {
3893         if (Opc == Instruction::Add ||
3894             Opc == Instruction::Sub ||
3895             Opc == Instruction::Mul ||
3896             Opc == Instruction::Shl) {
3897           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3898             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3899           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3900             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3901         } else if (Opc == Instruction::SDiv ||
3902                    Opc == Instruction::UDiv ||
3903                    Opc == Instruction::LShr ||
3904                    Opc == Instruction::AShr) {
3905           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3906             cast<BinaryOperator>(I)->setIsExact(true);
3907         } else if (isa<FPMathOperator>(I)) {
3908           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3909           if (FMF.any())
3910             I->setFastMathFlags(FMF);
3911         }
3912
3913       }
3914       break;
3915     }
3916     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3917       unsigned OpNum = 0;
3918       Value *Op;
3919       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3920           OpNum+2 != Record.size())
3921         return error("Invalid record");
3922
3923       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3924       Type *ResTy = flattenPointerTypes(FullTy);
3925       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3926       if (Opc == -1 || !ResTy)
3927         return error("Invalid record");
3928       Instruction *Temp = nullptr;
3929       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3930         if (Temp) {
3931           InstructionList.push_back(Temp);
3932           CurBB->getInstList().push_back(Temp);
3933         }
3934       } else {
3935         auto CastOp = (Instruction::CastOps)Opc;
3936         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3937           return error("Invalid cast");
3938         I = CastInst::Create(CastOp, Op, ResTy);
3939       }
3940       InstructionList.push_back(I);
3941       break;
3942     }
3943     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3944     case bitc::FUNC_CODE_INST_GEP_OLD:
3945     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3946       unsigned OpNum = 0;
3947
3948       Type *Ty;
3949       bool InBounds;
3950
3951       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3952         InBounds = Record[OpNum++];
3953         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3954         Ty = flattenPointerTypes(FullTy);
3955       } else {
3956         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3957         Ty = nullptr;
3958       }
3959
3960       Value *BasePtr;
3961       Type *FullBaseTy = nullptr;
3962       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
3963         return error("Invalid record");
3964
3965       if (!Ty) {
3966         std::tie(FullTy, Ty) =
3967             getPointerElementTypes(FullBaseTy->getScalarType());
3968       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
3969         return error(
3970             "Explicit gep type does not match pointee type of pointer operand");
3971
3972       SmallVector<Value*, 16> GEPIdx;
3973       while (OpNum != Record.size()) {
3974         Value *Op;
3975         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3976           return error("Invalid record");
3977         GEPIdx.push_back(Op);
3978       }
3979
3980       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3981       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
3982
3983       InstructionList.push_back(I);
3984       if (InBounds)
3985         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3986       break;
3987     }
3988
3989     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3990                                        // EXTRACTVAL: [opty, opval, n x indices]
3991       unsigned OpNum = 0;
3992       Value *Agg;
3993       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
3994         return error("Invalid record");
3995
3996       unsigned RecSize = Record.size();
3997       if (OpNum == RecSize)
3998         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3999
4000       SmallVector<unsigned, 4> EXTRACTVALIdx;
4001       for (; OpNum != RecSize; ++OpNum) {
4002         bool IsArray = FullTy->isArrayTy();
4003         bool IsStruct = FullTy->isStructTy();
4004         uint64_t Index = Record[OpNum];
4005
4006         if (!IsStruct && !IsArray)
4007           return error("EXTRACTVAL: Invalid type");
4008         if ((unsigned)Index != Index)
4009           return error("Invalid value");
4010         if (IsStruct && Index >= FullTy->getStructNumElements())
4011           return error("EXTRACTVAL: Invalid struct index");
4012         if (IsArray && Index >= FullTy->getArrayNumElements())
4013           return error("EXTRACTVAL: Invalid array index");
4014         EXTRACTVALIdx.push_back((unsigned)Index);
4015
4016         if (IsStruct)
4017           FullTy = FullTy->getStructElementType(Index);
4018         else
4019           FullTy = FullTy->getArrayElementType();
4020       }
4021
4022       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4023       InstructionList.push_back(I);
4024       break;
4025     }
4026
4027     case bitc::FUNC_CODE_INST_INSERTVAL: {
4028                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4029       unsigned OpNum = 0;
4030       Value *Agg;
4031       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4032         return error("Invalid record");
4033       Value *Val;
4034       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4035         return error("Invalid record");
4036
4037       unsigned RecSize = Record.size();
4038       if (OpNum == RecSize)
4039         return error("INSERTVAL: Invalid instruction with 0 indices");
4040
4041       SmallVector<unsigned, 4> INSERTVALIdx;
4042       Type *CurTy = Agg->getType();
4043       for (; OpNum != RecSize; ++OpNum) {
4044         bool IsArray = CurTy->isArrayTy();
4045         bool IsStruct = CurTy->isStructTy();
4046         uint64_t Index = Record[OpNum];
4047
4048         if (!IsStruct && !IsArray)
4049           return error("INSERTVAL: Invalid type");
4050         if ((unsigned)Index != Index)
4051           return error("Invalid value");
4052         if (IsStruct && Index >= CurTy->getStructNumElements())
4053           return error("INSERTVAL: Invalid struct index");
4054         if (IsArray && Index >= CurTy->getArrayNumElements())
4055           return error("INSERTVAL: Invalid array index");
4056
4057         INSERTVALIdx.push_back((unsigned)Index);
4058         if (IsStruct)
4059           CurTy = CurTy->getStructElementType(Index);
4060         else
4061           CurTy = CurTy->getArrayElementType();
4062       }
4063
4064       if (CurTy != Val->getType())
4065         return error("Inserted value type doesn't match aggregate type");
4066
4067       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4068       InstructionList.push_back(I);
4069       break;
4070     }
4071
4072     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4073       // obsolete form of select
4074       // handles select i1 ... in old bitcode
4075       unsigned OpNum = 0;
4076       Value *TrueVal, *FalseVal, *Cond;
4077       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4078           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4079           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4080         return error("Invalid record");
4081
4082       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4083       InstructionList.push_back(I);
4084       break;
4085     }
4086
4087     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4088       // new form of select
4089       // handles select i1 or select [N x i1]
4090       unsigned OpNum = 0;
4091       Value *TrueVal, *FalseVal, *Cond;
4092       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4093           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4094           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4095         return error("Invalid record");
4096
4097       // select condition can be either i1 or [N x i1]
4098       if (VectorType* vector_type =
4099           dyn_cast<VectorType>(Cond->getType())) {
4100         // expect <n x i1>
4101         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4102           return error("Invalid type for value");
4103       } else {
4104         // expect i1
4105         if (Cond->getType() != Type::getInt1Ty(Context))
4106           return error("Invalid type for value");
4107       }
4108
4109       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4110       InstructionList.push_back(I);
4111       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4112         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4113         if (FMF.any())
4114           I->setFastMathFlags(FMF);
4115       }
4116       break;
4117     }
4118
4119     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4120       unsigned OpNum = 0;
4121       Value *Vec, *Idx;
4122       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4123           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4124         return error("Invalid record");
4125       if (!Vec->getType()->isVectorTy())
4126         return error("Invalid type for value");
4127       I = ExtractElementInst::Create(Vec, Idx);
4128       FullTy = FullTy->getVectorElementType();
4129       InstructionList.push_back(I);
4130       break;
4131     }
4132
4133     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4134       unsigned OpNum = 0;
4135       Value *Vec, *Elt, *Idx;
4136       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4137         return error("Invalid record");
4138       if (!Vec->getType()->isVectorTy())
4139         return error("Invalid type for value");
4140       if (popValue(Record, OpNum, NextValueNo,
4141                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4142           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4143         return error("Invalid record");
4144       I = InsertElementInst::Create(Vec, Elt, Idx);
4145       InstructionList.push_back(I);
4146       break;
4147     }
4148
4149     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4150       unsigned OpNum = 0;
4151       Value *Vec1, *Vec2, *Mask;
4152       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4153           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4154         return error("Invalid record");
4155
4156       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4157         return error("Invalid record");
4158       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4159         return error("Invalid type for value");
4160       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4161       FullTy = VectorType::get(FullTy->getVectorElementType(),
4162                                Mask->getType()->getVectorNumElements());
4163       InstructionList.push_back(I);
4164       break;
4165     }
4166
4167     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4168       // Old form of ICmp/FCmp returning bool
4169       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4170       // both legal on vectors but had different behaviour.
4171     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4172       // FCmp/ICmp returning bool or vector of bool
4173
4174       unsigned OpNum = 0;
4175       Value *LHS, *RHS;
4176       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4177           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4178         return error("Invalid record");
4179
4180       if (OpNum >= Record.size())
4181         return error(
4182             "Invalid record: operand number exceeded available operands");
4183
4184       unsigned PredVal = Record[OpNum];
4185       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4186       FastMathFlags FMF;
4187       if (IsFP && Record.size() > OpNum+1)
4188         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4189
4190       if (OpNum+1 != Record.size())
4191         return error("Invalid record");
4192
4193       if (LHS->getType()->isFPOrFPVectorTy())
4194         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4195       else
4196         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4197
4198       if (FMF.any())
4199         I->setFastMathFlags(FMF);
4200       InstructionList.push_back(I);
4201       break;
4202     }
4203
4204     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4205       {
4206         unsigned Size = Record.size();
4207         if (Size == 0) {
4208           I = ReturnInst::Create(Context);
4209           InstructionList.push_back(I);
4210           break;
4211         }
4212
4213         unsigned OpNum = 0;
4214         Value *Op = nullptr;
4215         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4216           return error("Invalid record");
4217         if (OpNum != Record.size())
4218           return error("Invalid record");
4219
4220         I = ReturnInst::Create(Context, Op);
4221         InstructionList.push_back(I);
4222         break;
4223       }
4224     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4225       if (Record.size() != 1 && Record.size() != 3)
4226         return error("Invalid record");
4227       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4228       if (!TrueDest)
4229         return error("Invalid record");
4230
4231       if (Record.size() == 1) {
4232         I = BranchInst::Create(TrueDest);
4233         InstructionList.push_back(I);
4234       }
4235       else {
4236         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4237         Value *Cond = getValue(Record, 2, NextValueNo,
4238                                Type::getInt1Ty(Context));
4239         if (!FalseDest || !Cond)
4240           return error("Invalid record");
4241         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4242         InstructionList.push_back(I);
4243       }
4244       break;
4245     }
4246     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4247       if (Record.size() != 1 && Record.size() != 2)
4248         return error("Invalid record");
4249       unsigned Idx = 0;
4250       Value *CleanupPad =
4251           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4252       if (!CleanupPad)
4253         return error("Invalid record");
4254       BasicBlock *UnwindDest = nullptr;
4255       if (Record.size() == 2) {
4256         UnwindDest = getBasicBlock(Record[Idx++]);
4257         if (!UnwindDest)
4258           return error("Invalid record");
4259       }
4260
4261       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4262       InstructionList.push_back(I);
4263       break;
4264     }
4265     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4266       if (Record.size() != 2)
4267         return error("Invalid record");
4268       unsigned Idx = 0;
4269       Value *CatchPad =
4270           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4271       if (!CatchPad)
4272         return error("Invalid record");
4273       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4274       if (!BB)
4275         return error("Invalid record");
4276
4277       I = CatchReturnInst::Create(CatchPad, BB);
4278       InstructionList.push_back(I);
4279       break;
4280     }
4281     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4282       // We must have, at minimum, the outer scope and the number of arguments.
4283       if (Record.size() < 2)
4284         return error("Invalid record");
4285
4286       unsigned Idx = 0;
4287
4288       Value *ParentPad =
4289           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4290
4291       unsigned NumHandlers = Record[Idx++];
4292
4293       SmallVector<BasicBlock *, 2> Handlers;
4294       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4295         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4296         if (!BB)
4297           return error("Invalid record");
4298         Handlers.push_back(BB);
4299       }
4300
4301       BasicBlock *UnwindDest = nullptr;
4302       if (Idx + 1 == Record.size()) {
4303         UnwindDest = getBasicBlock(Record[Idx++]);
4304         if (!UnwindDest)
4305           return error("Invalid record");
4306       }
4307
4308       if (Record.size() != Idx)
4309         return error("Invalid record");
4310
4311       auto *CatchSwitch =
4312           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4313       for (BasicBlock *Handler : Handlers)
4314         CatchSwitch->addHandler(Handler);
4315       I = CatchSwitch;
4316       InstructionList.push_back(I);
4317       break;
4318     }
4319     case bitc::FUNC_CODE_INST_CATCHPAD:
4320     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4321       // We must have, at minimum, the outer scope and the number of arguments.
4322       if (Record.size() < 2)
4323         return error("Invalid record");
4324
4325       unsigned Idx = 0;
4326
4327       Value *ParentPad =
4328           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4329
4330       unsigned NumArgOperands = Record[Idx++];
4331
4332       SmallVector<Value *, 2> Args;
4333       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4334         Value *Val;
4335         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4336           return error("Invalid record");
4337         Args.push_back(Val);
4338       }
4339
4340       if (Record.size() != Idx)
4341         return error("Invalid record");
4342
4343       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4344         I = CleanupPadInst::Create(ParentPad, Args);
4345       else
4346         I = CatchPadInst::Create(ParentPad, Args);
4347       InstructionList.push_back(I);
4348       break;
4349     }
4350     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4351       // Check magic
4352       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4353         // "New" SwitchInst format with case ranges. The changes to write this
4354         // format were reverted but we still recognize bitcode that uses it.
4355         // Hopefully someday we will have support for case ranges and can use
4356         // this format again.
4357
4358         Type *OpTy = getTypeByID(Record[1]);
4359         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4360
4361         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4362         BasicBlock *Default = getBasicBlock(Record[3]);
4363         if (!OpTy || !Cond || !Default)
4364           return error("Invalid record");
4365
4366         unsigned NumCases = Record[4];
4367
4368         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4369         InstructionList.push_back(SI);
4370
4371         unsigned CurIdx = 5;
4372         for (unsigned i = 0; i != NumCases; ++i) {
4373           SmallVector<ConstantInt*, 1> CaseVals;
4374           unsigned NumItems = Record[CurIdx++];
4375           for (unsigned ci = 0; ci != NumItems; ++ci) {
4376             bool isSingleNumber = Record[CurIdx++];
4377
4378             APInt Low;
4379             unsigned ActiveWords = 1;
4380             if (ValueBitWidth > 64)
4381               ActiveWords = Record[CurIdx++];
4382             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4383                                 ValueBitWidth);
4384             CurIdx += ActiveWords;
4385
4386             if (!isSingleNumber) {
4387               ActiveWords = 1;
4388               if (ValueBitWidth > 64)
4389                 ActiveWords = Record[CurIdx++];
4390               APInt High = readWideAPInt(
4391                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4392               CurIdx += ActiveWords;
4393
4394               // FIXME: It is not clear whether values in the range should be
4395               // compared as signed or unsigned values. The partially
4396               // implemented changes that used this format in the past used
4397               // unsigned comparisons.
4398               for ( ; Low.ule(High); ++Low)
4399                 CaseVals.push_back(ConstantInt::get(Context, Low));
4400             } else
4401               CaseVals.push_back(ConstantInt::get(Context, Low));
4402           }
4403           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4404           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4405                  cve = CaseVals.end(); cvi != cve; ++cvi)
4406             SI->addCase(*cvi, DestBB);
4407         }
4408         I = SI;
4409         break;
4410       }
4411
4412       // Old SwitchInst format without case ranges.
4413
4414       if (Record.size() < 3 || (Record.size() & 1) == 0)
4415         return error("Invalid record");
4416       Type *OpTy = getTypeByID(Record[0]);
4417       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4418       BasicBlock *Default = getBasicBlock(Record[2]);
4419       if (!OpTy || !Cond || !Default)
4420         return error("Invalid record");
4421       unsigned NumCases = (Record.size()-3)/2;
4422       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4423       InstructionList.push_back(SI);
4424       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4425         ConstantInt *CaseVal =
4426           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4427         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4428         if (!CaseVal || !DestBB) {
4429           delete SI;
4430           return error("Invalid record");
4431         }
4432         SI->addCase(CaseVal, DestBB);
4433       }
4434       I = SI;
4435       break;
4436     }
4437     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4438       if (Record.size() < 2)
4439         return error("Invalid record");
4440       Type *OpTy = getTypeByID(Record[0]);
4441       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4442       if (!OpTy || !Address)
4443         return error("Invalid record");
4444       unsigned NumDests = Record.size()-2;
4445       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4446       InstructionList.push_back(IBI);
4447       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4448         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4449           IBI->addDestination(DestBB);
4450         } else {
4451           delete IBI;
4452           return error("Invalid record");
4453         }
4454       }
4455       I = IBI;
4456       break;
4457     }
4458
4459     case bitc::FUNC_CODE_INST_INVOKE: {
4460       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4461       if (Record.size() < 4)
4462         return error("Invalid record");
4463       unsigned OpNum = 0;
4464       AttributeList PAL = getAttributes(Record[OpNum++]);
4465       unsigned CCInfo = Record[OpNum++];
4466       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4467       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4468
4469       FunctionType *FTy = nullptr;
4470       FunctionType *FullFTy = nullptr;
4471       if ((CCInfo >> 13) & 1) {
4472         FullFTy =
4473             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4474         if (!FullFTy)
4475           return error("Explicit invoke type is not a function type");
4476         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4477       }
4478
4479       Value *Callee;
4480       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4481         return error("Invalid record");
4482
4483       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4484       if (!CalleeTy)
4485         return error("Callee is not a pointer");
4486       if (!FTy) {
4487         FullFTy =
4488             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4489         if (!FullFTy)
4490           return error("Callee is not of pointer to function type");
4491         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4492       } else if (getPointerElementFlatType(FullTy) != FTy)
4493         return error("Explicit invoke type does not match pointee type of "
4494                      "callee operand");
4495       if (Record.size() < FTy->getNumParams() + OpNum)
4496         return error("Insufficient operands to call");
4497
4498       SmallVector<Value*, 16> Ops;
4499       SmallVector<Type *, 16> ArgsFullTys;
4500       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4501         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4502                                FTy->getParamType(i)));
4503         ArgsFullTys.push_back(FullFTy->getParamType(i));
4504         if (!Ops.back())
4505           return error("Invalid record");
4506       }
4507
4508       if (!FTy->isVarArg()) {
4509         if (Record.size() != OpNum)
4510           return error("Invalid record");
4511       } else {
4512         // Read type/value pairs for varargs params.
4513         while (OpNum != Record.size()) {
4514           Value *Op;
4515           Type *FullTy;
4516           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4517             return error("Invalid record");
4518           Ops.push_back(Op);
4519           ArgsFullTys.push_back(FullTy);
4520         }
4521       }
4522
4523       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4524                              OperandBundles);
4525       FullTy = FullFTy->getReturnType();
4526       OperandBundles.clear();
4527       InstructionList.push_back(I);
4528       cast<InvokeInst>(I)->setCallingConv(
4529           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4530       cast<InvokeInst>(I)->setAttributes(PAL);
4531       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4532
4533       break;
4534     }
4535     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4536       unsigned Idx = 0;
4537       Value *Val = nullptr;
4538       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4539         return error("Invalid record");
4540       I = ResumeInst::Create(Val);
4541       InstructionList.push_back(I);
4542       break;
4543     }
4544     case bitc::FUNC_CODE_INST_CALLBR: {
4545       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4546       unsigned OpNum = 0;
4547       AttributeList PAL = getAttributes(Record[OpNum++]);
4548       unsigned CCInfo = Record[OpNum++];
4549
4550       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4551       unsigned NumIndirectDests = Record[OpNum++];
4552       SmallVector<BasicBlock *, 16> IndirectDests;
4553       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4554         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4555
4556       FunctionType *FTy = nullptr;
4557       FunctionType *FullFTy = nullptr;
4558       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4559         FullFTy =
4560             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4561         if (!FullFTy)
4562           return error("Explicit call type is not a function type");
4563         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4564       }
4565
4566       Value *Callee;
4567       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4568         return error("Invalid record");
4569
4570       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4571       if (!OpTy)
4572         return error("Callee is not a pointer type");
4573       if (!FTy) {
4574         FullFTy =
4575             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4576         if (!FullFTy)
4577           return error("Callee is not of pointer to function type");
4578         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4579       } else if (getPointerElementFlatType(FullTy) != FTy)
4580         return error("Explicit call type does not match pointee type of "
4581                      "callee operand");
4582       if (Record.size() < FTy->getNumParams() + OpNum)
4583         return error("Insufficient operands to call");
4584
4585       SmallVector<Value*, 16> Args;
4586       // Read the fixed params.
4587       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4588         if (FTy->getParamType(i)->isLabelTy())
4589           Args.push_back(getBasicBlock(Record[OpNum]));
4590         else
4591           Args.push_back(getValue(Record, OpNum, NextValueNo,
4592                                   FTy->getParamType(i)));
4593         if (!Args.back())
4594           return error("Invalid record");
4595       }
4596
4597       // Read type/value pairs for varargs params.
4598       if (!FTy->isVarArg()) {
4599         if (OpNum != Record.size())
4600           return error("Invalid record");
4601       } else {
4602         while (OpNum != Record.size()) {
4603           Value *Op;
4604           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4605             return error("Invalid record");
4606           Args.push_back(Op);
4607         }
4608       }
4609
4610       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4611                              OperandBundles);
4612       FullTy = FullFTy->getReturnType();
4613       OperandBundles.clear();
4614       InstructionList.push_back(I);
4615       cast<CallBrInst>(I)->setCallingConv(
4616           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4617       cast<CallBrInst>(I)->setAttributes(PAL);
4618       break;
4619     }
4620     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4621       I = new UnreachableInst(Context);
4622       InstructionList.push_back(I);
4623       break;
4624     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4625       if (Record.size() < 1 || ((Record.size()-1)&1))
4626         return error("Invalid record");
4627       FullTy = getFullyStructuredTypeByID(Record[0]);
4628       Type *Ty = flattenPointerTypes(FullTy);
4629       if (!Ty)
4630         return error("Invalid record");
4631
4632       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4633       InstructionList.push_back(PN);
4634
4635       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4636         Value *V;
4637         // With the new function encoding, it is possible that operands have
4638         // negative IDs (for forward references).  Use a signed VBR
4639         // representation to keep the encoding small.
4640         if (UseRelativeIDs)
4641           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4642         else
4643           V = getValue(Record, 1+i, NextValueNo, Ty);
4644         BasicBlock *BB = getBasicBlock(Record[2+i]);
4645         if (!V || !BB)
4646           return error("Invalid record");
4647         PN->addIncoming(V, BB);
4648       }
4649       I = PN;
4650       break;
4651     }
4652
4653     case bitc::FUNC_CODE_INST_LANDINGPAD:
4654     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4655       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4656       unsigned Idx = 0;
4657       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4658         if (Record.size() < 3)
4659           return error("Invalid record");
4660       } else {
4661         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4662         if (Record.size() < 4)
4663           return error("Invalid record");
4664       }
4665       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4666       Type *Ty = flattenPointerTypes(FullTy);
4667       if (!Ty)
4668         return error("Invalid record");
4669       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4670         Value *PersFn = nullptr;
4671         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4672           return error("Invalid record");
4673
4674         if (!F->hasPersonalityFn())
4675           F->setPersonalityFn(cast<Constant>(PersFn));
4676         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4677           return error("Personality function mismatch");
4678       }
4679
4680       bool IsCleanup = !!Record[Idx++];
4681       unsigned NumClauses = Record[Idx++];
4682       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4683       LP->setCleanup(IsCleanup);
4684       for (unsigned J = 0; J != NumClauses; ++J) {
4685         LandingPadInst::ClauseType CT =
4686           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4687         Value *Val;
4688
4689         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4690           delete LP;
4691           return error("Invalid record");
4692         }
4693
4694         assert((CT != LandingPadInst::Catch ||
4695                 !isa<ArrayType>(Val->getType())) &&
4696                "Catch clause has a invalid type!");
4697         assert((CT != LandingPadInst::Filter ||
4698                 isa<ArrayType>(Val->getType())) &&
4699                "Filter clause has invalid type!");
4700         LP->addClause(cast<Constant>(Val));
4701       }
4702
4703       I = LP;
4704       InstructionList.push_back(I);
4705       break;
4706     }
4707
4708     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4709       if (Record.size() != 4)
4710         return error("Invalid record");
4711       uint64_t AlignRecord = Record[3];
4712       const uint64_t InAllocaMask = uint64_t(1) << 5;
4713       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4714       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4715       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4716                                 SwiftErrorMask;
4717       bool InAlloca = AlignRecord & InAllocaMask;
4718       bool SwiftError = AlignRecord & SwiftErrorMask;
4719       FullTy = getFullyStructuredTypeByID(Record[0]);
4720       Type *Ty = flattenPointerTypes(FullTy);
4721       if ((AlignRecord & ExplicitTypeMask) == 0) {
4722         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4723         if (!PTy)
4724           return error("Old-style alloca with a non-pointer type");
4725         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4726       }
4727       Type *OpTy = getTypeByID(Record[1]);
4728       Value *Size = getFnValueByID(Record[2], OpTy);
4729       unsigned Align;
4730       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4731         return Err;
4732       }
4733       if (!Ty || !Size)
4734         return error("Invalid record");
4735
4736       // FIXME: Make this an optional field.
4737       const DataLayout &DL = TheModule->getDataLayout();
4738       unsigned AS = DL.getAllocaAddrSpace();
4739
4740       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4741       AI->setUsedWithInAlloca(InAlloca);
4742       AI->setSwiftError(SwiftError);
4743       I = AI;
4744       FullTy = PointerType::get(FullTy, AS);
4745       InstructionList.push_back(I);
4746       break;
4747     }
4748     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4749       unsigned OpNum = 0;
4750       Value *Op;
4751       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4752           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4753         return error("Invalid record");
4754
4755       if (!isa<PointerType>(Op->getType()))
4756         return error("Load operand is not a pointer type");
4757
4758       Type *Ty = nullptr;
4759       if (OpNum + 3 == Record.size()) {
4760         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4761         Ty = flattenPointerTypes(FullTy);
4762       } else
4763         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4764
4765       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4766         return Err;
4767
4768       unsigned Align;
4769       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4770         return Err;
4771       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4772       InstructionList.push_back(I);
4773       break;
4774     }
4775     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4776        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4777       unsigned OpNum = 0;
4778       Value *Op;
4779       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4780           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4781         return error("Invalid record");
4782
4783       if (!isa<PointerType>(Op->getType()))
4784         return error("Load operand is not a pointer type");
4785
4786       Type *Ty = nullptr;
4787       if (OpNum + 5 == Record.size()) {
4788         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4789         Ty = flattenPointerTypes(FullTy);
4790       } else
4791         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4792
4793       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4794         return Err;
4795
4796       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4797       if (Ordering == AtomicOrdering::NotAtomic ||
4798           Ordering == AtomicOrdering::Release ||
4799           Ordering == AtomicOrdering::AcquireRelease)
4800         return error("Invalid record");
4801       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4802         return error("Invalid record");
4803       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4804
4805       unsigned Align;
4806       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4807         return Err;
4808       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4809       InstructionList.push_back(I);
4810       break;
4811     }
4812     case bitc::FUNC_CODE_INST_STORE:
4813     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4814       unsigned OpNum = 0;
4815       Value *Val, *Ptr;
4816       Type *FullTy;
4817       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4818           (BitCode == bitc::FUNC_CODE_INST_STORE
4819                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4820                : popValue(Record, OpNum, NextValueNo,
4821                           getPointerElementFlatType(FullTy), Val)) ||
4822           OpNum + 2 != Record.size())
4823         return error("Invalid record");
4824
4825       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4826         return Err;
4827       unsigned Align;
4828       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4829         return Err;
4830       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4831       InstructionList.push_back(I);
4832       break;
4833     }
4834     case bitc::FUNC_CODE_INST_STOREATOMIC:
4835     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4836       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4837       unsigned OpNum = 0;
4838       Value *Val, *Ptr;
4839       Type *FullTy;
4840       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4841           !isa<PointerType>(Ptr->getType()) ||
4842           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4843                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4844                : popValue(Record, OpNum, NextValueNo,
4845                           getPointerElementFlatType(FullTy), Val)) ||
4846           OpNum + 4 != Record.size())
4847         return error("Invalid record");
4848
4849       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4850         return Err;
4851       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4852       if (Ordering == AtomicOrdering::NotAtomic ||
4853           Ordering == AtomicOrdering::Acquire ||
4854           Ordering == AtomicOrdering::AcquireRelease)
4855         return error("Invalid record");
4856       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4857       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4858         return error("Invalid record");
4859
4860       unsigned Align;
4861       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4862         return Err;
4863       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4864       InstructionList.push_back(I);
4865       break;
4866     }
4867     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4868     case bitc::FUNC_CODE_INST_CMPXCHG: {
4869       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4870       //          failureordering?, isweak?]
4871       unsigned OpNum = 0;
4872       Value *Ptr, *Cmp, *New;
4873       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4874         return error("Invalid record");
4875
4876       if (!isa<PointerType>(Ptr->getType()))
4877         return error("Cmpxchg operand is not a pointer type");
4878
4879       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4880         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4881           return error("Invalid record");
4882       } else if (popValue(Record, OpNum, NextValueNo,
4883                           getPointerElementFlatType(FullTy), Cmp))
4884         return error("Invalid record");
4885       else
4886         FullTy = cast<PointerType>(FullTy)->getElementType();
4887
4888       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4889           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4890         return error("Invalid record");
4891
4892       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4893       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4894           SuccessOrdering == AtomicOrdering::Unordered)
4895         return error("Invalid record");
4896       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4897
4898       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4899         return Err;
4900       AtomicOrdering FailureOrdering;
4901       if (Record.size() < 7)
4902         FailureOrdering =
4903             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4904       else
4905         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4906
4907       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4908                                 SSID);
4909       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4910       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4911
4912       if (Record.size() < 8) {
4913         // Before weak cmpxchgs existed, the instruction simply returned the
4914         // value loaded from memory, so bitcode files from that era will be
4915         // expecting the first component of a modern cmpxchg.
4916         CurBB->getInstList().push_back(I);
4917         I = ExtractValueInst::Create(I, 0);
4918         FullTy = cast<StructType>(FullTy)->getElementType(0);
4919       } else {
4920         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4921       }
4922
4923       InstructionList.push_back(I);
4924       break;
4925     }
4926     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4927       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4928       unsigned OpNum = 0;
4929       Value *Ptr, *Val;
4930       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4931           !isa<PointerType>(Ptr->getType()) ||
4932           popValue(Record, OpNum, NextValueNo,
4933                    getPointerElementFlatType(FullTy), Val) ||
4934           OpNum + 4 != Record.size())
4935         return error("Invalid record");
4936       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4937       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4938           Operation > AtomicRMWInst::LAST_BINOP)
4939         return error("Invalid record");
4940       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4941       if (Ordering == AtomicOrdering::NotAtomic ||
4942           Ordering == AtomicOrdering::Unordered)
4943         return error("Invalid record");
4944       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4945       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4946       FullTy = getPointerElementFlatType(FullTy);
4947       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4948       InstructionList.push_back(I);
4949       break;
4950     }
4951     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4952       if (2 != Record.size())
4953         return error("Invalid record");
4954       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4955       if (Ordering == AtomicOrdering::NotAtomic ||
4956           Ordering == AtomicOrdering::Unordered ||
4957           Ordering == AtomicOrdering::Monotonic)
4958         return error("Invalid record");
4959       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4960       I = new FenceInst(Context, Ordering, SSID);
4961       InstructionList.push_back(I);
4962       break;
4963     }
4964     case bitc::FUNC_CODE_INST_CALL: {
4965       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4966       if (Record.size() < 3)
4967         return error("Invalid record");
4968
4969       unsigned OpNum = 0;
4970       AttributeList PAL = getAttributes(Record[OpNum++]);
4971       unsigned CCInfo = Record[OpNum++];
4972
4973       FastMathFlags FMF;
4974       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4975         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4976         if (!FMF.any())
4977           return error("Fast math flags indicator set for call with no FMF");
4978       }
4979
4980       FunctionType *FTy = nullptr;
4981       FunctionType *FullFTy = nullptr;
4982       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4983         FullFTy =
4984             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4985         if (!FullFTy)
4986           return error("Explicit call type is not a function type");
4987         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4988       }
4989
4990       Value *Callee;
4991       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4992         return error("Invalid record");
4993
4994       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4995       if (!OpTy)
4996         return error("Callee is not a pointer type");
4997       if (!FTy) {
4998         FullFTy =
4999             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5000         if (!FullFTy)
5001           return error("Callee is not of pointer to function type");
5002         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5003       } else if (getPointerElementFlatType(FullTy) != FTy)
5004         return error("Explicit call type does not match pointee type of "
5005                      "callee operand");
5006       if (Record.size() < FTy->getNumParams() + OpNum)
5007         return error("Insufficient operands to call");
5008
5009       SmallVector<Value*, 16> Args;
5010       SmallVector<Type*, 16> ArgsFullTys;
5011       // Read the fixed params.
5012       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5013         if (FTy->getParamType(i)->isLabelTy())
5014           Args.push_back(getBasicBlock(Record[OpNum]));
5015         else
5016           Args.push_back(getValue(Record, OpNum, NextValueNo,
5017                                   FTy->getParamType(i)));
5018         ArgsFullTys.push_back(FullFTy->getParamType(i));
5019         if (!Args.back())
5020           return error("Invalid record");
5021       }
5022
5023       // Read type/value pairs for varargs params.
5024       if (!FTy->isVarArg()) {
5025         if (OpNum != Record.size())
5026           return error("Invalid record");
5027       } else {
5028         while (OpNum != Record.size()) {
5029           Value *Op;
5030           Type *FullTy;
5031           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5032             return error("Invalid record");
5033           Args.push_back(Op);
5034           ArgsFullTys.push_back(FullTy);
5035         }
5036       }
5037
5038       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5039       FullTy = FullFTy->getReturnType();
5040       OperandBundles.clear();
5041       InstructionList.push_back(I);
5042       cast<CallInst>(I)->setCallingConv(
5043           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5044       CallInst::TailCallKind TCK = CallInst::TCK_None;
5045       if (CCInfo & 1 << bitc::CALL_TAIL)
5046         TCK = CallInst::TCK_Tail;
5047       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5048         TCK = CallInst::TCK_MustTail;
5049       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5050         TCK = CallInst::TCK_NoTail;
5051       cast<CallInst>(I)->setTailCallKind(TCK);
5052       cast<CallInst>(I)->setAttributes(PAL);
5053       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5054       if (FMF.any()) {
5055         if (!isa<FPMathOperator>(I))
5056           return error("Fast-math-flags specified for call without "
5057                        "floating-point scalar or vector return type");
5058         I->setFastMathFlags(FMF);
5059       }
5060       break;
5061     }
5062     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5063       if (Record.size() < 3)
5064         return error("Invalid record");
5065       Type *OpTy = getTypeByID(Record[0]);
5066       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5067       FullTy = getFullyStructuredTypeByID(Record[2]);
5068       Type *ResTy = flattenPointerTypes(FullTy);
5069       if (!OpTy || !Op || !ResTy)
5070         return error("Invalid record");
5071       I = new VAArgInst(Op, ResTy);
5072       InstructionList.push_back(I);
5073       break;
5074     }
5075
5076     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5077       // A call or an invoke can be optionally prefixed with some variable
5078       // number of operand bundle blocks.  These blocks are read into
5079       // OperandBundles and consumed at the next call or invoke instruction.
5080
5081       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5082         return error("Invalid record");
5083
5084       std::vector<Value *> Inputs;
5085
5086       unsigned OpNum = 1;
5087       while (OpNum != Record.size()) {
5088         Value *Op;
5089         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5090           return error("Invalid record");
5091         Inputs.push_back(Op);
5092       }
5093
5094       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5095       continue;
5096     }
5097     }
5098
5099     // Add instruction to end of current BB.  If there is no current BB, reject
5100     // this file.
5101     if (!CurBB) {
5102       I->deleteValue();
5103       return error("Invalid instruction with no BB");
5104     }
5105     if (!OperandBundles.empty()) {
5106       I->deleteValue();
5107       return error("Operand bundles found with no consumer");
5108     }
5109     CurBB->getInstList().push_back(I);
5110
5111     // If this was a terminator instruction, move to the next block.
5112     if (I->isTerminator()) {
5113       ++CurBBNo;
5114       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5115     }
5116
5117     // Non-void values get registered in the value table for future use.
5118     if (I && !I->getType()->isVoidTy()) {
5119       if (!FullTy) {
5120         FullTy = I->getType();
5121         assert(
5122             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5123             !isa<ArrayType>(FullTy) &&
5124             (!isa<VectorType>(FullTy) ||
5125              FullTy->getVectorElementType()->isFloatingPointTy() ||
5126              FullTy->getVectorElementType()->isIntegerTy()) &&
5127             "Structured types must be assigned with corresponding non-opaque "
5128             "pointer type");
5129       }
5130
5131       assert(I->getType() == flattenPointerTypes(FullTy) &&
5132              "Incorrect fully structured type provided for Instruction");
5133       ValueList.assignValue(I, NextValueNo++, FullTy);
5134     }
5135   }
5136
5137 OutOfRecordLoop:
5138
5139   if (!OperandBundles.empty())
5140     return error("Operand bundles found with no consumer");
5141
5142   // Check the function list for unresolved values.
5143   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5144     if (!A->getParent()) {
5145       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5146       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5147         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5148           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5149           delete A;
5150         }
5151       }
5152       return error("Never resolved value found in function");
5153     }
5154   }
5155
5156   // Unexpected unresolved metadata about to be dropped.
5157   if (MDLoader->hasFwdRefs())
5158     return error("Invalid function metadata: outgoing forward refs");
5159
5160   // Trim the value list down to the size it was before we parsed this function.
5161   ValueList.shrinkTo(ModuleValueListSize);
5162   MDLoader->shrinkTo(ModuleMDLoaderSize);
5163   std::vector<BasicBlock*>().swap(FunctionBBs);
5164   return Error::success();
5165 }
5166
5167 /// Find the function body in the bitcode stream
5168 Error BitcodeReader::findFunctionInStream(
5169     Function *F,
5170     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5171   while (DeferredFunctionInfoIterator->second == 0) {
5172     // This is the fallback handling for the old format bitcode that
5173     // didn't contain the function index in the VST, or when we have
5174     // an anonymous function which would not have a VST entry.
5175     // Assert that we have one of those two cases.
5176     assert(VSTOffset == 0 || !F->hasName());
5177     // Parse the next body in the stream and set its position in the
5178     // DeferredFunctionInfo map.
5179     if (Error Err = rememberAndSkipFunctionBodies())
5180       return Err;
5181   }
5182   return Error::success();
5183 }
5184
5185 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5186   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5187     return SyncScope::ID(Val);
5188   if (Val >= SSIDs.size())
5189     return SyncScope::System; // Map unknown synchronization scopes to system.
5190   return SSIDs[Val];
5191 }
5192
5193 //===----------------------------------------------------------------------===//
5194 // GVMaterializer implementation
5195 //===----------------------------------------------------------------------===//
5196
5197 Error BitcodeReader::materialize(GlobalValue *GV) {
5198   Function *F = dyn_cast<Function>(GV);
5199   // If it's not a function or is already material, ignore the request.
5200   if (!F || !F->isMaterializable())
5201     return Error::success();
5202
5203   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5204   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5205   // If its position is recorded as 0, its body is somewhere in the stream
5206   // but we haven't seen it yet.
5207   if (DFII->second == 0)
5208     if (Error Err = findFunctionInStream(F, DFII))
5209       return Err;
5210
5211   // Materialize metadata before parsing any function bodies.
5212   if (Error Err = materializeMetadata())
5213     return Err;
5214
5215   // Move the bit stream to the saved position of the deferred function body.
5216   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5217     return JumpFailed;
5218   if (Error Err = parseFunctionBody(F))
5219     return Err;
5220   F->setIsMaterializable(false);
5221
5222   if (StripDebugInfo)
5223     stripDebugInfo(*F);
5224
5225   // Upgrade any old intrinsic calls in the function.
5226   for (auto &I : UpgradedIntrinsics) {
5227     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5228          UI != UE;) {
5229       User *U = *UI;
5230       ++UI;
5231       if (CallInst *CI = dyn_cast<CallInst>(U))
5232         UpgradeIntrinsicCall(CI, I.second);
5233     }
5234   }
5235
5236   // Update calls to the remangled intrinsics
5237   for (auto &I : RemangledIntrinsics)
5238     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5239          UI != UE;)
5240       // Don't expect any other users than call sites
5241       CallSite(*UI++).setCalledFunction(I.second);
5242
5243   // Finish fn->subprogram upgrade for materialized functions.
5244   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5245     F->setSubprogram(SP);
5246
5247   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5248   if (!MDLoader->isStrippingTBAA()) {
5249     for (auto &I : instructions(F)) {
5250       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5251       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5252         continue;
5253       MDLoader->setStripTBAA(true);
5254       stripTBAA(F->getParent());
5255     }
5256   }
5257
5258   // Bring in any functions that this function forward-referenced via
5259   // blockaddresses.
5260   return materializeForwardReferencedFunctions();
5261 }
5262
5263 Error BitcodeReader::materializeModule() {
5264   if (Error Err = materializeMetadata())
5265     return Err;
5266
5267   // Promise to materialize all forward references.
5268   WillMaterializeAllForwardRefs = true;
5269
5270   // Iterate over the module, deserializing any functions that are still on
5271   // disk.
5272   for (Function &F : *TheModule) {
5273     if (Error Err = materialize(&F))
5274       return Err;
5275   }
5276   // At this point, if there are any function bodies, parse the rest of
5277   // the bits in the module past the last function block we have recorded
5278   // through either lazy scanning or the VST.
5279   if (LastFunctionBlockBit || NextUnreadBit)
5280     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5281                                     ? LastFunctionBlockBit
5282                                     : NextUnreadBit))
5283       return Err;
5284
5285   // Check that all block address forward references got resolved (as we
5286   // promised above).
5287   if (!BasicBlockFwdRefs.empty())
5288     return error("Never resolved function from blockaddress");
5289
5290   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5291   // delete the old functions to clean up. We can't do this unless the entire
5292   // module is materialized because there could always be another function body
5293   // with calls to the old function.
5294   for (auto &I : UpgradedIntrinsics) {
5295     for (auto *U : I.first->users()) {
5296       if (CallInst *CI = dyn_cast<CallInst>(U))
5297         UpgradeIntrinsicCall(CI, I.second);
5298     }
5299     if (!I.first->use_empty())
5300       I.first->replaceAllUsesWith(I.second);
5301     I.first->eraseFromParent();
5302   }
5303   UpgradedIntrinsics.clear();
5304   // Do the same for remangled intrinsics
5305   for (auto &I : RemangledIntrinsics) {
5306     I.first->replaceAllUsesWith(I.second);
5307     I.first->eraseFromParent();
5308   }
5309   RemangledIntrinsics.clear();
5310
5311   UpgradeDebugInfo(*TheModule);
5312
5313   UpgradeModuleFlags(*TheModule);
5314
5315   UpgradeRetainReleaseMarker(*TheModule);
5316
5317   return Error::success();
5318 }
5319
5320 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5321   return IdentifiedStructTypes;
5322 }
5323
5324 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5325     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5326     StringRef ModulePath, unsigned ModuleId)
5327     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5328       ModulePath(ModulePath), ModuleId(ModuleId) {}
5329
5330 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5331   TheIndex.addModule(ModulePath, ModuleId);
5332 }
5333
5334 ModuleSummaryIndex::ModuleInfo *
5335 ModuleSummaryIndexBitcodeReader::getThisModule() {
5336   return TheIndex.getModule(ModulePath);
5337 }
5338
5339 std::pair<ValueInfo, GlobalValue::GUID>
5340 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5341   auto VGI = ValueIdToValueInfoMap[ValueId];
5342   assert(VGI.first);
5343   return VGI;
5344 }
5345
5346 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5347     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5348     StringRef SourceFileName) {
5349   std::string GlobalId =
5350       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5351   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5352   auto OriginalNameID = ValueGUID;
5353   if (GlobalValue::isLocalLinkage(Linkage))
5354     OriginalNameID = GlobalValue::getGUID(ValueName);
5355   if (PrintSummaryGUIDs)
5356     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5357            << ValueName << "\n";
5358
5359   // UseStrtab is false for legacy summary formats and value names are
5360   // created on stack. In that case we save the name in a string saver in
5361   // the index so that the value name can be recorded.
5362   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5363       TheIndex.getOrInsertValueInfo(
5364           ValueGUID,
5365           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5366       OriginalNameID);
5367 }
5368
5369 // Specialized value symbol table parser used when reading module index
5370 // blocks where we don't actually create global values. The parsed information
5371 // is saved in the bitcode reader for use when later parsing summaries.
5372 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5373     uint64_t Offset,
5374     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5375   // With a strtab the VST is not required to parse the summary.
5376   if (UseStrtab)
5377     return Error::success();
5378
5379   assert(Offset > 0 && "Expected non-zero VST offset");
5380   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5381   if (!MaybeCurrentBit)
5382     return MaybeCurrentBit.takeError();
5383   uint64_t CurrentBit = MaybeCurrentBit.get();
5384
5385   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5386     return Err;
5387
5388   SmallVector<uint64_t, 64> Record;
5389
5390   // Read all the records for this value table.
5391   SmallString<128> ValueName;
5392
5393   while (true) {
5394     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5395     if (!MaybeEntry)
5396       return MaybeEntry.takeError();
5397     BitstreamEntry Entry = MaybeEntry.get();
5398
5399     switch (Entry.Kind) {
5400     case BitstreamEntry::SubBlock: // Handled for us already.
5401     case BitstreamEntry::Error:
5402       return error("Malformed block");
5403     case BitstreamEntry::EndBlock:
5404       // Done parsing VST, jump back to wherever we came from.
5405       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5406         return JumpFailed;
5407       return Error::success();
5408     case BitstreamEntry::Record:
5409       // The interesting case.
5410       break;
5411     }
5412
5413     // Read a record.
5414     Record.clear();
5415     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5416     if (!MaybeRecord)
5417       return MaybeRecord.takeError();
5418     switch (MaybeRecord.get()) {
5419     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5420       break;
5421     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5422       if (convertToString(Record, 1, ValueName))
5423         return error("Invalid record");
5424       unsigned ValueID = Record[0];
5425       assert(!SourceFileName.empty());
5426       auto VLI = ValueIdToLinkageMap.find(ValueID);
5427       assert(VLI != ValueIdToLinkageMap.end() &&
5428              "No linkage found for VST entry?");
5429       auto Linkage = VLI->second;
5430       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5431       ValueName.clear();
5432       break;
5433     }
5434     case bitc::VST_CODE_FNENTRY: {
5435       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5436       if (convertToString(Record, 2, ValueName))
5437         return error("Invalid record");
5438       unsigned ValueID = Record[0];
5439       assert(!SourceFileName.empty());
5440       auto VLI = ValueIdToLinkageMap.find(ValueID);
5441       assert(VLI != ValueIdToLinkageMap.end() &&
5442              "No linkage found for VST entry?");
5443       auto Linkage = VLI->second;
5444       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5445       ValueName.clear();
5446       break;
5447     }
5448     case bitc::VST_CODE_COMBINED_ENTRY: {
5449       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5450       unsigned ValueID = Record[0];
5451       GlobalValue::GUID RefGUID = Record[1];
5452       // The "original name", which is the second value of the pair will be
5453       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5454       ValueIdToValueInfoMap[ValueID] =
5455           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5456       break;
5457     }
5458     }
5459   }
5460 }
5461
5462 // Parse just the blocks needed for building the index out of the module.
5463 // At the end of this routine the module Index is populated with a map
5464 // from global value id to GlobalValueSummary objects.
5465 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5466   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5467     return Err;
5468
5469   SmallVector<uint64_t, 64> Record;
5470   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5471   unsigned ValueId = 0;
5472
5473   // Read the index for this module.
5474   while (true) {
5475     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5476     if (!MaybeEntry)
5477       return MaybeEntry.takeError();
5478     llvm::BitstreamEntry Entry = MaybeEntry.get();
5479
5480     switch (Entry.Kind) {
5481     case BitstreamEntry::Error:
5482       return error("Malformed block");
5483     case BitstreamEntry::EndBlock:
5484       return Error::success();
5485
5486     case BitstreamEntry::SubBlock:
5487       switch (Entry.ID) {
5488       default: // Skip unknown content.
5489         if (Error Err = Stream.SkipBlock())
5490           return Err;
5491         break;
5492       case bitc::BLOCKINFO_BLOCK_ID:
5493         // Need to parse these to get abbrev ids (e.g. for VST)
5494         if (readBlockInfo())
5495           return error("Malformed block");
5496         break;
5497       case bitc::VALUE_SYMTAB_BLOCK_ID:
5498         // Should have been parsed earlier via VSTOffset, unless there
5499         // is no summary section.
5500         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5501                 !SeenGlobalValSummary) &&
5502                "Expected early VST parse via VSTOffset record");
5503         if (Error Err = Stream.SkipBlock())
5504           return Err;
5505         break;
5506       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5507       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5508         // Add the module if it is a per-module index (has a source file name).
5509         if (!SourceFileName.empty())
5510           addThisModule();
5511         assert(!SeenValueSymbolTable &&
5512                "Already read VST when parsing summary block?");
5513         // We might not have a VST if there were no values in the
5514         // summary. An empty summary block generated when we are
5515         // performing ThinLTO compiles so we don't later invoke
5516         // the regular LTO process on them.
5517         if (VSTOffset > 0) {
5518           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5519             return Err;
5520           SeenValueSymbolTable = true;
5521         }
5522         SeenGlobalValSummary = true;
5523         if (Error Err = parseEntireSummary(Entry.ID))
5524           return Err;
5525         break;
5526       case bitc::MODULE_STRTAB_BLOCK_ID:
5527         if (Error Err = parseModuleStringTable())
5528           return Err;
5529         break;
5530       }
5531       continue;
5532
5533     case BitstreamEntry::Record: {
5534         Record.clear();
5535         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5536         if (!MaybeBitCode)
5537           return MaybeBitCode.takeError();
5538         switch (MaybeBitCode.get()) {
5539         default:
5540           break; // Default behavior, ignore unknown content.
5541         case bitc::MODULE_CODE_VERSION: {
5542           if (Error Err = parseVersionRecord(Record).takeError())
5543             return Err;
5544           break;
5545         }
5546         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5547         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5548           SmallString<128> ValueName;
5549           if (convertToString(Record, 0, ValueName))
5550             return error("Invalid record");
5551           SourceFileName = ValueName.c_str();
5552           break;
5553         }
5554         /// MODULE_CODE_HASH: [5*i32]
5555         case bitc::MODULE_CODE_HASH: {
5556           if (Record.size() != 5)
5557             return error("Invalid hash length " + Twine(Record.size()).str());
5558           auto &Hash = getThisModule()->second.second;
5559           int Pos = 0;
5560           for (auto &Val : Record) {
5561             assert(!(Val >> 32) && "Unexpected high bits set");
5562             Hash[Pos++] = Val;
5563           }
5564           break;
5565         }
5566         /// MODULE_CODE_VSTOFFSET: [offset]
5567         case bitc::MODULE_CODE_VSTOFFSET:
5568           if (Record.size() < 1)
5569             return error("Invalid record");
5570           // Note that we subtract 1 here because the offset is relative to one
5571           // word before the start of the identification or module block, which
5572           // was historically always the start of the regular bitcode header.
5573           VSTOffset = Record[0] - 1;
5574           break;
5575         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5576         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5577         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5578         // v2: [strtab offset, strtab size, v1]
5579         case bitc::MODULE_CODE_GLOBALVAR:
5580         case bitc::MODULE_CODE_FUNCTION:
5581         case bitc::MODULE_CODE_ALIAS: {
5582           StringRef Name;
5583           ArrayRef<uint64_t> GVRecord;
5584           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5585           if (GVRecord.size() <= 3)
5586             return error("Invalid record");
5587           uint64_t RawLinkage = GVRecord[3];
5588           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5589           if (!UseStrtab) {
5590             ValueIdToLinkageMap[ValueId++] = Linkage;
5591             break;
5592           }
5593
5594           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5595           break;
5596         }
5597         }
5598       }
5599       continue;
5600     }
5601   }
5602 }
5603
5604 std::vector<ValueInfo>
5605 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5606   std::vector<ValueInfo> Ret;
5607   Ret.reserve(Record.size());
5608   for (uint64_t RefValueId : Record)
5609     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5610   return Ret;
5611 }
5612
5613 std::vector<FunctionSummary::EdgeTy>
5614 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5615                                               bool IsOldProfileFormat,
5616                                               bool HasProfile, bool HasRelBF) {
5617   std::vector<FunctionSummary::EdgeTy> Ret;
5618   Ret.reserve(Record.size());
5619   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5620     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5621     uint64_t RelBF = 0;
5622     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5623     if (IsOldProfileFormat) {
5624       I += 1; // Skip old callsitecount field
5625       if (HasProfile)
5626         I += 1; // Skip old profilecount field
5627     } else if (HasProfile)
5628       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5629     else if (HasRelBF)
5630       RelBF = Record[++I];
5631     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5632   }
5633   return Ret;
5634 }
5635
5636 static void
5637 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5638                                        WholeProgramDevirtResolution &Wpd) {
5639   uint64_t ArgNum = Record[Slot++];
5640   WholeProgramDevirtResolution::ByArg &B =
5641       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5642   Slot += ArgNum;
5643
5644   B.TheKind =
5645       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5646   B.Info = Record[Slot++];
5647   B.Byte = Record[Slot++];
5648   B.Bit = Record[Slot++];
5649 }
5650
5651 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5652                                               StringRef Strtab, size_t &Slot,
5653                                               TypeIdSummary &TypeId) {
5654   uint64_t Id = Record[Slot++];
5655   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5656
5657   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5658   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5659                         static_cast<size_t>(Record[Slot + 1])};
5660   Slot += 2;
5661
5662   uint64_t ResByArgNum = Record[Slot++];
5663   for (uint64_t I = 0; I != ResByArgNum; ++I)
5664     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5665 }
5666
5667 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5668                                      StringRef Strtab,
5669                                      ModuleSummaryIndex &TheIndex) {
5670   size_t Slot = 0;
5671   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5672       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5673   Slot += 2;
5674
5675   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5676   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5677   TypeId.TTRes.AlignLog2 = Record[Slot++];
5678   TypeId.TTRes.SizeM1 = Record[Slot++];
5679   TypeId.TTRes.BitMask = Record[Slot++];
5680   TypeId.TTRes.InlineBits = Record[Slot++];
5681
5682   while (Slot < Record.size())
5683     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5684 }
5685
5686 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5687     ArrayRef<uint64_t> Record, size_t &Slot,
5688     TypeIdCompatibleVtableInfo &TypeId) {
5689   uint64_t Offset = Record[Slot++];
5690   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5691   TypeId.push_back({Offset, Callee});
5692 }
5693
5694 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5695     ArrayRef<uint64_t> Record) {
5696   size_t Slot = 0;
5697   TypeIdCompatibleVtableInfo &TypeId =
5698       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5699           {Strtab.data() + Record[Slot],
5700            static_cast<size_t>(Record[Slot + 1])});
5701   Slot += 2;
5702
5703   while (Slot < Record.size())
5704     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5705 }
5706
5707 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5708                            unsigned WOCnt) {
5709   // Readonly and writeonly refs are in the end of the refs list.
5710   assert(ROCnt + WOCnt <= Refs.size());
5711   unsigned FirstWORef = Refs.size() - WOCnt;
5712   unsigned RefNo = FirstWORef - ROCnt;
5713   for (; RefNo < FirstWORef; ++RefNo)
5714     Refs[RefNo].setReadOnly();
5715   for (; RefNo < Refs.size(); ++RefNo)
5716     Refs[RefNo].setWriteOnly();
5717 }
5718
5719 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5720 // objects in the index.
5721 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5722   if (Error Err = Stream.EnterSubBlock(ID))
5723     return Err;
5724   SmallVector<uint64_t, 64> Record;
5725
5726   // Parse version
5727   {
5728     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5729     if (!MaybeEntry)
5730       return MaybeEntry.takeError();
5731     BitstreamEntry Entry = MaybeEntry.get();
5732
5733     if (Entry.Kind != BitstreamEntry::Record)
5734       return error("Invalid Summary Block: record for version expected");
5735     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5736     if (!MaybeRecord)
5737       return MaybeRecord.takeError();
5738     if (MaybeRecord.get() != bitc::FS_VERSION)
5739       return error("Invalid Summary Block: version expected");
5740   }
5741   const uint64_t Version = Record[0];
5742   const bool IsOldProfileFormat = Version == 1;
5743   if (Version < 1 || Version > 7)
5744     return error("Invalid summary version " + Twine(Version) +
5745                  ". Version should be in the range [1-7].");
5746   Record.clear();
5747
5748   // Keep around the last seen summary to be used when we see an optional
5749   // "OriginalName" attachement.
5750   GlobalValueSummary *LastSeenSummary = nullptr;
5751   GlobalValue::GUID LastSeenGUID = 0;
5752
5753   // We can expect to see any number of type ID information records before
5754   // each function summary records; these variables store the information
5755   // collected so far so that it can be used to create the summary object.
5756   std::vector<GlobalValue::GUID> PendingTypeTests;
5757   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5758       PendingTypeCheckedLoadVCalls;
5759   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5760       PendingTypeCheckedLoadConstVCalls;
5761
5762   while (true) {
5763     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5764     if (!MaybeEntry)
5765       return MaybeEntry.takeError();
5766     BitstreamEntry Entry = MaybeEntry.get();
5767
5768     switch (Entry.Kind) {
5769     case BitstreamEntry::SubBlock: // Handled for us already.
5770     case BitstreamEntry::Error:
5771       return error("Malformed block");
5772     case BitstreamEntry::EndBlock:
5773       return Error::success();
5774     case BitstreamEntry::Record:
5775       // The interesting case.
5776       break;
5777     }
5778
5779     // Read a record. The record format depends on whether this
5780     // is a per-module index or a combined index file. In the per-module
5781     // case the records contain the associated value's ID for correlation
5782     // with VST entries. In the combined index the correlation is done
5783     // via the bitcode offset of the summary records (which were saved
5784     // in the combined index VST entries). The records also contain
5785     // information used for ThinLTO renaming and importing.
5786     Record.clear();
5787     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5788     if (!MaybeBitCode)
5789       return MaybeBitCode.takeError();
5790     switch (unsigned BitCode = MaybeBitCode.get()) {
5791     default: // Default behavior: ignore.
5792       break;
5793     case bitc::FS_FLAGS: {  // [flags]
5794       uint64_t Flags = Record[0];
5795       // Scan flags.
5796       assert(Flags <= 0x1f && "Unexpected bits in flag");
5797
5798       // 1 bit: WithGlobalValueDeadStripping flag.
5799       // Set on combined index only.
5800       if (Flags & 0x1)
5801         TheIndex.setWithGlobalValueDeadStripping();
5802       // 1 bit: SkipModuleByDistributedBackend flag.
5803       // Set on combined index only.
5804       if (Flags & 0x2)
5805         TheIndex.setSkipModuleByDistributedBackend();
5806       // 1 bit: HasSyntheticEntryCounts flag.
5807       // Set on combined index only.
5808       if (Flags & 0x4)
5809         TheIndex.setHasSyntheticEntryCounts();
5810       // 1 bit: DisableSplitLTOUnit flag.
5811       // Set on per module indexes. It is up to the client to validate
5812       // the consistency of this flag across modules being linked.
5813       if (Flags & 0x8)
5814         TheIndex.setEnableSplitLTOUnit();
5815       // 1 bit: PartiallySplitLTOUnits flag.
5816       // Set on combined index only.
5817       if (Flags & 0x10)
5818         TheIndex.setPartiallySplitLTOUnits();
5819       break;
5820     }
5821     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5822       uint64_t ValueID = Record[0];
5823       GlobalValue::GUID RefGUID = Record[1];
5824       ValueIdToValueInfoMap[ValueID] =
5825           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5826       break;
5827     }
5828     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5829     //                numrefs x valueid, n x (valueid)]
5830     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5831     //                        numrefs x valueid,
5832     //                        n x (valueid, hotness)]
5833     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5834     //                      numrefs x valueid,
5835     //                      n x (valueid, relblockfreq)]
5836     case bitc::FS_PERMODULE:
5837     case bitc::FS_PERMODULE_RELBF:
5838     case bitc::FS_PERMODULE_PROFILE: {
5839       unsigned ValueID = Record[0];
5840       uint64_t RawFlags = Record[1];
5841       unsigned InstCount = Record[2];
5842       uint64_t RawFunFlags = 0;
5843       unsigned NumRefs = Record[3];
5844       unsigned NumRORefs = 0, NumWORefs = 0;
5845       int RefListStartIndex = 4;
5846       if (Version >= 4) {
5847         RawFunFlags = Record[3];
5848         NumRefs = Record[4];
5849         RefListStartIndex = 5;
5850         if (Version >= 5) {
5851           NumRORefs = Record[5];
5852           RefListStartIndex = 6;
5853           if (Version >= 7) {
5854             NumWORefs = Record[6];
5855             RefListStartIndex = 7;
5856           }
5857         }
5858       }
5859
5860       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5861       // The module path string ref set in the summary must be owned by the
5862       // index's module string table. Since we don't have a module path
5863       // string table section in the per-module index, we create a single
5864       // module path string table entry with an empty (0) ID to take
5865       // ownership.
5866       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5867       assert(Record.size() >= RefListStartIndex + NumRefs &&
5868              "Record size inconsistent with number of references");
5869       std::vector<ValueInfo> Refs = makeRefList(
5870           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5871       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5872       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5873       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5874           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5875           IsOldProfileFormat, HasProfile, HasRelBF);
5876       setSpecialRefs(Refs, NumRORefs, NumWORefs);
5877       auto FS = llvm::make_unique<FunctionSummary>(
5878           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5879           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5880           std::move(PendingTypeTestAssumeVCalls),
5881           std::move(PendingTypeCheckedLoadVCalls),
5882           std::move(PendingTypeTestAssumeConstVCalls),
5883           std::move(PendingTypeCheckedLoadConstVCalls));
5884       PendingTypeTests.clear();
5885       PendingTypeTestAssumeVCalls.clear();
5886       PendingTypeCheckedLoadVCalls.clear();
5887       PendingTypeTestAssumeConstVCalls.clear();
5888       PendingTypeCheckedLoadConstVCalls.clear();
5889       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5890       FS->setModulePath(getThisModule()->first());
5891       FS->setOriginalName(VIAndOriginalGUID.second);
5892       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5893       break;
5894     }
5895     // FS_ALIAS: [valueid, flags, valueid]
5896     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5897     // they expect all aliasee summaries to be available.
5898     case bitc::FS_ALIAS: {
5899       unsigned ValueID = Record[0];
5900       uint64_t RawFlags = Record[1];
5901       unsigned AliaseeID = Record[2];
5902       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5903       auto AS = llvm::make_unique<AliasSummary>(Flags);
5904       // The module path string ref set in the summary must be owned by the
5905       // index's module string table. Since we don't have a module path
5906       // string table section in the per-module index, we create a single
5907       // module path string table entry with an empty (0) ID to take
5908       // ownership.
5909       AS->setModulePath(getThisModule()->first());
5910
5911       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5912       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5913       if (!AliaseeInModule)
5914         return error("Alias expects aliasee summary to be parsed");
5915       AS->setAliasee(AliaseeVI, AliaseeInModule);
5916
5917       auto GUID = getValueInfoFromValueId(ValueID);
5918       AS->setOriginalName(GUID.second);
5919       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5920       break;
5921     }
5922     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5923     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5924       unsigned ValueID = Record[0];
5925       uint64_t RawFlags = Record[1];
5926       unsigned RefArrayStart = 2;
5927       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
5928                                       /* WriteOnly */ false);
5929       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5930       if (Version >= 5) {
5931         GVF = getDecodedGVarFlags(Record[2]);
5932         RefArrayStart = 3;
5933       }
5934       std::vector<ValueInfo> Refs =
5935           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5936       auto FS =
5937           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5938       FS->setModulePath(getThisModule()->first());
5939       auto GUID = getValueInfoFromValueId(ValueID);
5940       FS->setOriginalName(GUID.second);
5941       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5942       break;
5943     }
5944     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
5945     //                        numrefs, numrefs x valueid,
5946     //                        n x (valueid, offset)]
5947     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
5948       unsigned ValueID = Record[0];
5949       uint64_t RawFlags = Record[1];
5950       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
5951       unsigned NumRefs = Record[3];
5952       unsigned RefListStartIndex = 4;
5953       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
5954       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5955       std::vector<ValueInfo> Refs = makeRefList(
5956           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5957       VTableFuncList VTableFuncs;
5958       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
5959         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5960         uint64_t Offset = Record[++I];
5961         VTableFuncs.push_back({Callee, Offset});
5962       }
5963       auto VS =
5964           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5965       VS->setModulePath(getThisModule()->first());
5966       VS->setVTableFuncs(VTableFuncs);
5967       auto GUID = getValueInfoFromValueId(ValueID);
5968       VS->setOriginalName(GUID.second);
5969       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
5970       break;
5971     }
5972     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5973     //               numrefs x valueid, n x (valueid)]
5974     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5975     //                       numrefs x valueid, n x (valueid, hotness)]
5976     case bitc::FS_COMBINED:
5977     case bitc::FS_COMBINED_PROFILE: {
5978       unsigned ValueID = Record[0];
5979       uint64_t ModuleId = Record[1];
5980       uint64_t RawFlags = Record[2];
5981       unsigned InstCount = Record[3];
5982       uint64_t RawFunFlags = 0;
5983       uint64_t EntryCount = 0;
5984       unsigned NumRefs = Record[4];
5985       unsigned NumRORefs = 0, NumWORefs = 0;
5986       int RefListStartIndex = 5;
5987
5988       if (Version >= 4) {
5989         RawFunFlags = Record[4];
5990         RefListStartIndex = 6;
5991         size_t NumRefsIndex = 5;
5992         if (Version >= 5) {
5993           unsigned NumRORefsOffset = 1;
5994           RefListStartIndex = 7;
5995           if (Version >= 6) {
5996             NumRefsIndex = 6;
5997             EntryCount = Record[5];
5998             RefListStartIndex = 8;
5999             if (Version >= 7) {
6000               RefListStartIndex = 9;
6001               NumWORefs = Record[8];
6002               NumRORefsOffset = 2;
6003             }
6004           }
6005           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6006         }
6007         NumRefs = Record[NumRefsIndex];
6008       }
6009
6010       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6011       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6012       assert(Record.size() >= RefListStartIndex + NumRefs &&
6013              "Record size inconsistent with number of references");
6014       std::vector<ValueInfo> Refs = makeRefList(
6015           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6016       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6017       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6018           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6019           IsOldProfileFormat, HasProfile, false);
6020       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6021       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6022       auto FS = llvm::make_unique<FunctionSummary>(
6023           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6024           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6025           std::move(PendingTypeTestAssumeVCalls),
6026           std::move(PendingTypeCheckedLoadVCalls),
6027           std::move(PendingTypeTestAssumeConstVCalls),
6028           std::move(PendingTypeCheckedLoadConstVCalls));
6029       PendingTypeTests.clear();
6030       PendingTypeTestAssumeVCalls.clear();
6031       PendingTypeCheckedLoadVCalls.clear();
6032       PendingTypeTestAssumeConstVCalls.clear();
6033       PendingTypeCheckedLoadConstVCalls.clear();
6034       LastSeenSummary = FS.get();
6035       LastSeenGUID = VI.getGUID();
6036       FS->setModulePath(ModuleIdMap[ModuleId]);
6037       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6038       break;
6039     }
6040     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6041     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6042     // they expect all aliasee summaries to be available.
6043     case bitc::FS_COMBINED_ALIAS: {
6044       unsigned ValueID = Record[0];
6045       uint64_t ModuleId = Record[1];
6046       uint64_t RawFlags = Record[2];
6047       unsigned AliaseeValueId = Record[3];
6048       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6049       auto AS = llvm::make_unique<AliasSummary>(Flags);
6050       LastSeenSummary = AS.get();
6051       AS->setModulePath(ModuleIdMap[ModuleId]);
6052
6053       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6054       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6055       AS->setAliasee(AliaseeVI, AliaseeInModule);
6056
6057       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6058       LastSeenGUID = VI.getGUID();
6059       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6060       break;
6061     }
6062     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6063     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6064       unsigned ValueID = Record[0];
6065       uint64_t ModuleId = Record[1];
6066       uint64_t RawFlags = Record[2];
6067       unsigned RefArrayStart = 3;
6068       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6069                                       /* WriteOnly */ false);
6070       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6071       if (Version >= 5) {
6072         GVF = getDecodedGVarFlags(Record[3]);
6073         RefArrayStart = 4;
6074       }
6075       std::vector<ValueInfo> Refs =
6076           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6077       auto FS =
6078           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6079       LastSeenSummary = FS.get();
6080       FS->setModulePath(ModuleIdMap[ModuleId]);
6081       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6082       LastSeenGUID = VI.getGUID();
6083       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6084       break;
6085     }
6086     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6087     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6088       uint64_t OriginalName = Record[0];
6089       if (!LastSeenSummary)
6090         return error("Name attachment that does not follow a combined record");
6091       LastSeenSummary->setOriginalName(OriginalName);
6092       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6093       // Reset the LastSeenSummary
6094       LastSeenSummary = nullptr;
6095       LastSeenGUID = 0;
6096       break;
6097     }
6098     case bitc::FS_TYPE_TESTS:
6099       assert(PendingTypeTests.empty());
6100       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6101                               Record.end());
6102       break;
6103
6104     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6105       assert(PendingTypeTestAssumeVCalls.empty());
6106       for (unsigned I = 0; I != Record.size(); I += 2)
6107         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6108       break;
6109
6110     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6111       assert(PendingTypeCheckedLoadVCalls.empty());
6112       for (unsigned I = 0; I != Record.size(); I += 2)
6113         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6114       break;
6115
6116     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6117       PendingTypeTestAssumeConstVCalls.push_back(
6118           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6119       break;
6120
6121     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6122       PendingTypeCheckedLoadConstVCalls.push_back(
6123           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6124       break;
6125
6126     case bitc::FS_CFI_FUNCTION_DEFS: {
6127       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6128       for (unsigned I = 0; I != Record.size(); I += 2)
6129         CfiFunctionDefs.insert(
6130             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6131       break;
6132     }
6133
6134     case bitc::FS_CFI_FUNCTION_DECLS: {
6135       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6136       for (unsigned I = 0; I != Record.size(); I += 2)
6137         CfiFunctionDecls.insert(
6138             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6139       break;
6140     }
6141
6142     case bitc::FS_TYPE_ID:
6143       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6144       break;
6145
6146     case bitc::FS_TYPE_ID_METADATA:
6147       parseTypeIdCompatibleVtableSummaryRecord(Record);
6148       break;
6149     }
6150   }
6151   llvm_unreachable("Exit infinite loop");
6152 }
6153
6154 // Parse the  module string table block into the Index.
6155 // This populates the ModulePathStringTable map in the index.
6156 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6157   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6158     return Err;
6159
6160   SmallVector<uint64_t, 64> Record;
6161
6162   SmallString<128> ModulePath;
6163   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6164
6165   while (true) {
6166     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6167     if (!MaybeEntry)
6168       return MaybeEntry.takeError();
6169     BitstreamEntry Entry = MaybeEntry.get();
6170
6171     switch (Entry.Kind) {
6172     case BitstreamEntry::SubBlock: // Handled for us already.
6173     case BitstreamEntry::Error:
6174       return error("Malformed block");
6175     case BitstreamEntry::EndBlock:
6176       return Error::success();
6177     case BitstreamEntry::Record:
6178       // The interesting case.
6179       break;
6180     }
6181
6182     Record.clear();
6183     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6184     if (!MaybeRecord)
6185       return MaybeRecord.takeError();
6186     switch (MaybeRecord.get()) {
6187     default: // Default behavior: ignore.
6188       break;
6189     case bitc::MST_CODE_ENTRY: {
6190       // MST_ENTRY: [modid, namechar x N]
6191       uint64_t ModuleId = Record[0];
6192
6193       if (convertToString(Record, 1, ModulePath))
6194         return error("Invalid record");
6195
6196       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6197       ModuleIdMap[ModuleId] = LastSeenModule->first();
6198
6199       ModulePath.clear();
6200       break;
6201     }
6202     /// MST_CODE_HASH: [5*i32]
6203     case bitc::MST_CODE_HASH: {
6204       if (Record.size() != 5)
6205         return error("Invalid hash length " + Twine(Record.size()).str());
6206       if (!LastSeenModule)
6207         return error("Invalid hash that does not follow a module path");
6208       int Pos = 0;
6209       for (auto &Val : Record) {
6210         assert(!(Val >> 32) && "Unexpected high bits set");
6211         LastSeenModule->second.second[Pos++] = Val;
6212       }
6213       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6214       LastSeenModule = nullptr;
6215       break;
6216     }
6217     }
6218   }
6219   llvm_unreachable("Exit infinite loop");
6220 }
6221
6222 namespace {
6223
6224 // FIXME: This class is only here to support the transition to llvm::Error. It
6225 // will be removed once this transition is complete. Clients should prefer to
6226 // deal with the Error value directly, rather than converting to error_code.
6227 class BitcodeErrorCategoryType : public std::error_category {
6228   const char *name() const noexcept override {
6229     return "llvm.bitcode";
6230   }
6231
6232   std::string message(int IE) const override {
6233     BitcodeError E = static_cast<BitcodeError>(IE);
6234     switch (E) {
6235     case BitcodeError::CorruptedBitcode:
6236       return "Corrupted bitcode";
6237     }
6238     llvm_unreachable("Unknown error type!");
6239   }
6240 };
6241
6242 } // end anonymous namespace
6243
6244 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6245
6246 const std::error_category &llvm::BitcodeErrorCategory() {
6247   return *ErrorCategory;
6248 }
6249
6250 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6251                                             unsigned Block, unsigned RecordID) {
6252   if (Error Err = Stream.EnterSubBlock(Block))
6253     return std::move(Err);
6254
6255   StringRef Strtab;
6256   while (true) {
6257     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6258     if (!MaybeEntry)
6259       return MaybeEntry.takeError();
6260     llvm::BitstreamEntry Entry = MaybeEntry.get();
6261
6262     switch (Entry.Kind) {
6263     case BitstreamEntry::EndBlock:
6264       return Strtab;
6265
6266     case BitstreamEntry::Error:
6267       return error("Malformed block");
6268
6269     case BitstreamEntry::SubBlock:
6270       if (Error Err = Stream.SkipBlock())
6271         return std::move(Err);
6272       break;
6273
6274     case BitstreamEntry::Record:
6275       StringRef Blob;
6276       SmallVector<uint64_t, 1> Record;
6277       Expected<unsigned> MaybeRecord =
6278           Stream.readRecord(Entry.ID, Record, &Blob);
6279       if (!MaybeRecord)
6280         return MaybeRecord.takeError();
6281       if (MaybeRecord.get() == RecordID)
6282         Strtab = Blob;
6283       break;
6284     }
6285   }
6286 }
6287
6288 //===----------------------------------------------------------------------===//
6289 // External interface
6290 //===----------------------------------------------------------------------===//
6291
6292 Expected<std::vector<BitcodeModule>>
6293 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6294   auto FOrErr = getBitcodeFileContents(Buffer);
6295   if (!FOrErr)
6296     return FOrErr.takeError();
6297   return std::move(FOrErr->Mods);
6298 }
6299
6300 Expected<BitcodeFileContents>
6301 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6302   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6303   if (!StreamOrErr)
6304     return StreamOrErr.takeError();
6305   BitstreamCursor &Stream = *StreamOrErr;
6306
6307   BitcodeFileContents F;
6308   while (true) {
6309     uint64_t BCBegin = Stream.getCurrentByteNo();
6310
6311     // We may be consuming bitcode from a client that leaves garbage at the end
6312     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6313     // the end that there cannot possibly be another module, stop looking.
6314     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6315       return F;
6316
6317     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6318     if (!MaybeEntry)
6319       return MaybeEntry.takeError();
6320     llvm::BitstreamEntry Entry = MaybeEntry.get();
6321
6322     switch (Entry.Kind) {
6323     case BitstreamEntry::EndBlock:
6324     case BitstreamEntry::Error:
6325       return error("Malformed block");
6326
6327     case BitstreamEntry::SubBlock: {
6328       uint64_t IdentificationBit = -1ull;
6329       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6330         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6331         if (Error Err = Stream.SkipBlock())
6332           return std::move(Err);
6333
6334         {
6335           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6336           if (!MaybeEntry)
6337             return MaybeEntry.takeError();
6338           Entry = MaybeEntry.get();
6339         }
6340
6341         if (Entry.Kind != BitstreamEntry::SubBlock ||
6342             Entry.ID != bitc::MODULE_BLOCK_ID)
6343           return error("Malformed block");
6344       }
6345
6346       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6347         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6348         if (Error Err = Stream.SkipBlock())
6349           return std::move(Err);
6350
6351         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6352                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6353                           Buffer.getBufferIdentifier(), IdentificationBit,
6354                           ModuleBit});
6355         continue;
6356       }
6357
6358       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6359         Expected<StringRef> Strtab =
6360             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6361         if (!Strtab)
6362           return Strtab.takeError();
6363         // This string table is used by every preceding bitcode module that does
6364         // not have its own string table. A bitcode file may have multiple
6365         // string tables if it was created by binary concatenation, for example
6366         // with "llvm-cat -b".
6367         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6368           if (!I->Strtab.empty())
6369             break;
6370           I->Strtab = *Strtab;
6371         }
6372         // Similarly, the string table is used by every preceding symbol table;
6373         // normally there will be just one unless the bitcode file was created
6374         // by binary concatenation.
6375         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6376           F.StrtabForSymtab = *Strtab;
6377         continue;
6378       }
6379
6380       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6381         Expected<StringRef> SymtabOrErr =
6382             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6383         if (!SymtabOrErr)
6384           return SymtabOrErr.takeError();
6385
6386         // We can expect the bitcode file to have multiple symbol tables if it
6387         // was created by binary concatenation. In that case we silently
6388         // ignore any subsequent symbol tables, which is fine because this is a
6389         // low level function. The client is expected to notice that the number
6390         // of modules in the symbol table does not match the number of modules
6391         // in the input file and regenerate the symbol table.
6392         if (F.Symtab.empty())
6393           F.Symtab = *SymtabOrErr;
6394         continue;
6395       }
6396
6397       if (Error Err = Stream.SkipBlock())
6398         return std::move(Err);
6399       continue;
6400     }
6401     case BitstreamEntry::Record:
6402       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6403         continue;
6404       else
6405         return StreamFailed.takeError();
6406     }
6407   }
6408 }
6409
6410 /// Get a lazy one-at-time loading module from bitcode.
6411 ///
6412 /// This isn't always used in a lazy context.  In particular, it's also used by
6413 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6414 /// in forward-referenced functions from block address references.
6415 ///
6416 /// \param[in] MaterializeAll Set to \c true if we should materialize
6417 /// everything.
6418 Expected<std::unique_ptr<Module>>
6419 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6420                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6421   BitstreamCursor Stream(Buffer);
6422
6423   std::string ProducerIdentification;
6424   if (IdentificationBit != -1ull) {
6425     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6426       return std::move(JumpFailed);
6427     Expected<std::string> ProducerIdentificationOrErr =
6428         readIdentificationBlock(Stream);
6429     if (!ProducerIdentificationOrErr)
6430       return ProducerIdentificationOrErr.takeError();
6431
6432     ProducerIdentification = *ProducerIdentificationOrErr;
6433   }
6434
6435   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6436     return std::move(JumpFailed);
6437   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6438                               Context);
6439
6440   std::unique_ptr<Module> M =
6441       llvm::make_unique<Module>(ModuleIdentifier, Context);
6442   M->setMaterializer(R);
6443
6444   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6445   if (Error Err =
6446           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6447     return std::move(Err);
6448
6449   if (MaterializeAll) {
6450     // Read in the entire module, and destroy the BitcodeReader.
6451     if (Error Err = M->materializeAll())
6452       return std::move(Err);
6453   } else {
6454     // Resolve forward references from blockaddresses.
6455     if (Error Err = R->materializeForwardReferencedFunctions())
6456       return std::move(Err);
6457   }
6458   return std::move(M);
6459 }
6460
6461 Expected<std::unique_ptr<Module>>
6462 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6463                              bool IsImporting) {
6464   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6465 }
6466
6467 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6468 // We don't use ModuleIdentifier here because the client may need to control the
6469 // module path used in the combined summary (e.g. when reading summaries for
6470 // regular LTO modules).
6471 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6472                                  StringRef ModulePath, uint64_t ModuleId) {
6473   BitstreamCursor Stream(Buffer);
6474   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6475     return JumpFailed;
6476
6477   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6478                                     ModulePath, ModuleId);
6479   return R.parseModule();
6480 }
6481
6482 // Parse the specified bitcode buffer, returning the function info index.
6483 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6484   BitstreamCursor Stream(Buffer);
6485   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6486     return std::move(JumpFailed);
6487
6488   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6489   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6490                                     ModuleIdentifier, 0);
6491
6492   if (Error Err = R.parseModule())
6493     return std::move(Err);
6494
6495   return std::move(Index);
6496 }
6497
6498 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6499                                                 unsigned ID) {
6500   if (Error Err = Stream.EnterSubBlock(ID))
6501     return std::move(Err);
6502   SmallVector<uint64_t, 64> Record;
6503
6504   while (true) {
6505     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6506     if (!MaybeEntry)
6507       return MaybeEntry.takeError();
6508     BitstreamEntry Entry = MaybeEntry.get();
6509
6510     switch (Entry.Kind) {
6511     case BitstreamEntry::SubBlock: // Handled for us already.
6512     case BitstreamEntry::Error:
6513       return error("Malformed block");
6514     case BitstreamEntry::EndBlock:
6515       // If no flags record found, conservatively return true to mimic
6516       // behavior before this flag was added.
6517       return true;
6518     case BitstreamEntry::Record:
6519       // The interesting case.
6520       break;
6521     }
6522
6523     // Look for the FS_FLAGS record.
6524     Record.clear();
6525     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6526     if (!MaybeBitCode)
6527       return MaybeBitCode.takeError();
6528     switch (MaybeBitCode.get()) {
6529     default: // Default behavior: ignore.
6530       break;
6531     case bitc::FS_FLAGS: { // [flags]
6532       uint64_t Flags = Record[0];
6533       // Scan flags.
6534       assert(Flags <= 0x1f && "Unexpected bits in flag");
6535
6536       return Flags & 0x8;
6537     }
6538     }
6539   }
6540   llvm_unreachable("Exit infinite loop");
6541 }
6542
6543 // Check if the given bitcode buffer contains a global value summary block.
6544 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6545   BitstreamCursor Stream(Buffer);
6546   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6547     return std::move(JumpFailed);
6548
6549   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6550     return std::move(Err);
6551
6552   while (true) {
6553     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6554     if (!MaybeEntry)
6555       return MaybeEntry.takeError();
6556     llvm::BitstreamEntry Entry = MaybeEntry.get();
6557
6558     switch (Entry.Kind) {
6559     case BitstreamEntry::Error:
6560       return error("Malformed block");
6561     case BitstreamEntry::EndBlock:
6562       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6563                             /*EnableSplitLTOUnit=*/false};
6564
6565     case BitstreamEntry::SubBlock:
6566       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6567         Expected<bool> EnableSplitLTOUnit =
6568             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6569         if (!EnableSplitLTOUnit)
6570           return EnableSplitLTOUnit.takeError();
6571         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6572                               *EnableSplitLTOUnit};
6573       }
6574
6575       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6576         Expected<bool> EnableSplitLTOUnit =
6577             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6578         if (!EnableSplitLTOUnit)
6579           return EnableSplitLTOUnit.takeError();
6580         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6581                               *EnableSplitLTOUnit};
6582       }
6583
6584       // Ignore other sub-blocks.
6585       if (Error Err = Stream.SkipBlock())
6586         return std::move(Err);
6587       continue;
6588
6589     case BitstreamEntry::Record:
6590       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6591         continue;
6592       else
6593         return StreamFailed.takeError();
6594     }
6595   }
6596 }
6597
6598 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6599   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6600   if (!MsOrErr)
6601     return MsOrErr.takeError();
6602
6603   if (MsOrErr->size() != 1)
6604     return error("Expected a single module");
6605
6606   return (*MsOrErr)[0];
6607 }
6608
6609 Expected<std::unique_ptr<Module>>
6610 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6611                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6612   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6613   if (!BM)
6614     return BM.takeError();
6615
6616   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6617 }
6618
6619 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6620     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6621     bool ShouldLazyLoadMetadata, bool IsImporting) {
6622   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6623                                      IsImporting);
6624   if (MOrErr)
6625     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6626   return MOrErr;
6627 }
6628
6629 Expected<std::unique_ptr<Module>>
6630 BitcodeModule::parseModule(LLVMContext &Context) {
6631   return getModuleImpl(Context, true, false, false);
6632   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6633   // written.  We must defer until the Module has been fully materialized.
6634 }
6635
6636 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6637                                                          LLVMContext &Context) {
6638   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6639   if (!BM)
6640     return BM.takeError();
6641
6642   return BM->parseModule(Context);
6643 }
6644
6645 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6646   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6647   if (!StreamOrErr)
6648     return StreamOrErr.takeError();
6649
6650   return readTriple(*StreamOrErr);
6651 }
6652
6653 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6654   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6655   if (!StreamOrErr)
6656     return StreamOrErr.takeError();
6657
6658   return hasObjCCategory(*StreamOrErr);
6659 }
6660
6661 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6662   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6663   if (!StreamOrErr)
6664     return StreamOrErr.takeError();
6665
6666   return readIdentificationCode(*StreamOrErr);
6667 }
6668
6669 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6670                                    ModuleSummaryIndex &CombinedIndex,
6671                                    uint64_t ModuleId) {
6672   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6673   if (!BM)
6674     return BM.takeError();
6675
6676   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6677 }
6678
6679 Expected<std::unique_ptr<ModuleSummaryIndex>>
6680 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6681   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6682   if (!BM)
6683     return BM.takeError();
6684
6685   return BM->getSummary();
6686 }
6687
6688 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6689   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6690   if (!BM)
6691     return BM.takeError();
6692
6693   return BM->getLTOInfo();
6694 }
6695
6696 Expected<std::unique_ptr<ModuleSummaryIndex>>
6697 llvm::getModuleSummaryIndexForFile(StringRef Path,
6698                                    bool IgnoreEmptyThinLTOIndexFile) {
6699   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6700       MemoryBuffer::getFileOrSTDIN(Path);
6701   if (!FileOrErr)
6702     return errorCodeToError(FileOrErr.getError());
6703   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6704     return nullptr;
6705   return getModuleSummaryIndex(**FileOrErr);
6706 }