]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/DIEHash.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / AsmPrinter / DIEHash.cpp
1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for DWARF4 hashing of DIEs.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "DIEHash.h"
14 #include "ByteStreamer.h"
15 #include "DwarfDebug.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/BinaryFormat/Dwarf.h"
19 #include "llvm/CodeGen/AsmPrinter.h"
20 #include "llvm/CodeGen/DIE.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/Endian.h"
23 #include "llvm/Support/MD5.h"
24 #include "llvm/Support/raw_ostream.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "dwarfdebug"
29
30 /// Grabs the string in whichever attribute is passed in and returns
31 /// a reference to it.
32 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
33   // Iterate through all the attributes until we find the one we're
34   // looking for, if we can't find it return an empty string.
35   for (const auto &V : Die.values())
36     if (V.getAttribute() == Attr)
37       return V.getDIEString().getString();
38
39   return StringRef("");
40 }
41
42 /// Adds the string in \p Str to the hash. This also hashes
43 /// a trailing NULL with the string.
44 void DIEHash::addString(StringRef Str) {
45   LLVM_DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
46   Hash.update(Str);
47   Hash.update(makeArrayRef((uint8_t)'\0'));
48 }
49
50 // FIXME: The LEB128 routines are copied and only slightly modified out of
51 // LEB128.h.
52
53 /// Adds the unsigned in \p Value to the hash encoded as a ULEB128.
54 void DIEHash::addULEB128(uint64_t Value) {
55   LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
56   do {
57     uint8_t Byte = Value & 0x7f;
58     Value >>= 7;
59     if (Value != 0)
60       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
61     Hash.update(Byte);
62   } while (Value != 0);
63 }
64
65 void DIEHash::addSLEB128(int64_t Value) {
66   LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
67   bool More;
68   do {
69     uint8_t Byte = Value & 0x7f;
70     Value >>= 7;
71     More = !((((Value == 0) && ((Byte & 0x40) == 0)) ||
72               ((Value == -1) && ((Byte & 0x40) != 0))));
73     if (More)
74       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
75     Hash.update(Byte);
76   } while (More);
77 }
78
79 /// Including \p Parent adds the context of Parent to the hash..
80 void DIEHash::addParentContext(const DIE &Parent) {
81
82   LLVM_DEBUG(dbgs() << "Adding parent context to hash...\n");
83
84   // [7.27.2] For each surrounding type or namespace beginning with the
85   // outermost such construct...
86   SmallVector<const DIE *, 1> Parents;
87   const DIE *Cur = &Parent;
88   while (Cur->getParent()) {
89     Parents.push_back(Cur);
90     Cur = Cur->getParent();
91   }
92   assert(Cur->getTag() == dwarf::DW_TAG_compile_unit ||
93          Cur->getTag() == dwarf::DW_TAG_type_unit);
94
95   // Reverse iterate over our list to go from the outermost construct to the
96   // innermost.
97   for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(),
98                                                       E = Parents.rend();
99        I != E; ++I) {
100     const DIE &Die = **I;
101
102     // ... Append the letter "C" to the sequence...
103     addULEB128('C');
104
105     // ... Followed by the DWARF tag of the construct...
106     addULEB128(Die.getTag());
107
108     // ... Then the name, taken from the DW_AT_name attribute.
109     StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
110     LLVM_DEBUG(dbgs() << "... adding context: " << Name << "\n");
111     if (!Name.empty())
112       addString(Name);
113   }
114 }
115
116 // Collect all of the attributes for a particular DIE in single structure.
117 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
118
119   for (const auto &V : Die.values()) {
120     LLVM_DEBUG(dbgs() << "Attribute: "
121                       << dwarf::AttributeString(V.getAttribute())
122                       << " added.\n");
123     switch (V.getAttribute()) {
124 #define HANDLE_DIE_HASH_ATTR(NAME)                                             \
125   case dwarf::NAME:                                                            \
126     Attrs.NAME = V;                                                            \
127     break;
128 #include "DIEHashAttributes.def"
129     default:
130       break;
131     }
132   }
133 }
134
135 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
136                                        const DIE &Entry, StringRef Name) {
137   // append the letter 'N'
138   addULEB128('N');
139
140   // the DWARF attribute code (DW_AT_type or DW_AT_friend),
141   addULEB128(Attribute);
142
143   // the context of the tag,
144   if (const DIE *Parent = Entry.getParent())
145     addParentContext(*Parent);
146
147   // the letter 'E',
148   addULEB128('E');
149
150   // and the name of the type.
151   addString(Name);
152
153   // Currently DW_TAG_friends are not used by Clang, but if they do become so,
154   // here's the relevant spec text to implement:
155   //
156   // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
157   // the context is omitted and the name to be used is the ABI-specific name
158   // of the subprogram (e.g., the mangled linker name).
159 }
160
161 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
162                                         unsigned DieNumber) {
163   // a) If T is in the list of [previously hashed types], use the letter
164   // 'R' as the marker
165   addULEB128('R');
166
167   addULEB128(Attribute);
168
169   // and use the unsigned LEB128 encoding of [the index of T in the
170   // list] as the attribute value;
171   addULEB128(DieNumber);
172 }
173
174 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
175                            const DIE &Entry) {
176   assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
177                                         "tags. Add support here when there's "
178                                         "a use case");
179   // Step 5
180   // If the tag in Step 3 is one of [the below tags]
181   if ((Tag == dwarf::DW_TAG_pointer_type ||
182        Tag == dwarf::DW_TAG_reference_type ||
183        Tag == dwarf::DW_TAG_rvalue_reference_type ||
184        Tag == dwarf::DW_TAG_ptr_to_member_type) &&
185       // and the referenced type (via the [below attributes])
186       // FIXME: This seems overly restrictive, and causes hash mismatches
187       // there's a decl/def difference in the containing type of a
188       // ptr_to_member_type, but it's what DWARF says, for some reason.
189       Attribute == dwarf::DW_AT_type) {
190     // ... has a DW_AT_name attribute,
191     StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
192     if (!Name.empty()) {
193       hashShallowTypeReference(Attribute, Entry, Name);
194       return;
195     }
196   }
197
198   unsigned &DieNumber = Numbering[&Entry];
199   if (DieNumber) {
200     hashRepeatedTypeReference(Attribute, DieNumber);
201     return;
202   }
203
204   // otherwise, b) use the letter 'T' as the marker, ...
205   addULEB128('T');
206
207   addULEB128(Attribute);
208
209   // ... process the type T recursively by performing Steps 2 through 7, and
210   // use the result as the attribute value.
211   DieNumber = Numbering.size();
212   computeHash(Entry);
213 }
214
215 // Hash all of the values in a block like set of values. This assumes that
216 // all of the data is going to be added as integers.
217 void DIEHash::hashBlockData(const DIE::const_value_range &Values) {
218   for (const auto &V : Values)
219     Hash.update((uint64_t)V.getDIEInteger().getValue());
220 }
221
222 // Hash the contents of a loclistptr class.
223 void DIEHash::hashLocList(const DIELocList &LocList) {
224   HashingByteStreamer Streamer(*this);
225   DwarfDebug &DD = *AP->getDwarfDebug();
226   const DebugLocStream &Locs = DD.getDebugLocs();
227   for (const auto &Entry : Locs.getEntries(Locs.getList(LocList.getValue())))
228     DD.emitDebugLocEntry(Streamer, Entry, nullptr);
229 }
230
231 // Hash an individual attribute \param Attr based on the type of attribute and
232 // the form.
233 void DIEHash::hashAttribute(const DIEValue &Value, dwarf::Tag Tag) {
234   dwarf::Attribute Attribute = Value.getAttribute();
235
236   // Other attribute values use the letter 'A' as the marker, and the value
237   // consists of the form code (encoded as an unsigned LEB128 value) followed by
238   // the encoding of the value according to the form code. To ensure
239   // reproducibility of the signature, the set of forms used in the signature
240   // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag,
241   // DW_FORM_string, and DW_FORM_block.
242
243   switch (Value.getType()) {
244   case DIEValue::isNone:
245     llvm_unreachable("Expected valid DIEValue");
246
247     // 7.27 Step 3
248     // ... An attribute that refers to another type entry T is processed as
249     // follows:
250   case DIEValue::isEntry:
251     hashDIEEntry(Attribute, Tag, Value.getDIEEntry().getEntry());
252     break;
253   case DIEValue::isInteger: {
254     addULEB128('A');
255     addULEB128(Attribute);
256     switch (Value.getForm()) {
257     case dwarf::DW_FORM_data1:
258     case dwarf::DW_FORM_data2:
259     case dwarf::DW_FORM_data4:
260     case dwarf::DW_FORM_data8:
261     case dwarf::DW_FORM_udata:
262     case dwarf::DW_FORM_sdata:
263       addULEB128(dwarf::DW_FORM_sdata);
264       addSLEB128((int64_t)Value.getDIEInteger().getValue());
265       break;
266     // DW_FORM_flag_present is just flag with a value of one. We still give it a
267     // value so just use the value.
268     case dwarf::DW_FORM_flag_present:
269     case dwarf::DW_FORM_flag:
270       addULEB128(dwarf::DW_FORM_flag);
271       addULEB128((int64_t)Value.getDIEInteger().getValue());
272       break;
273     default:
274       llvm_unreachable("Unknown integer form!");
275     }
276     break;
277   }
278   case DIEValue::isString:
279     addULEB128('A');
280     addULEB128(Attribute);
281     addULEB128(dwarf::DW_FORM_string);
282     addString(Value.getDIEString().getString());
283     break;
284   case DIEValue::isInlineString:
285     addULEB128('A');
286     addULEB128(Attribute);
287     addULEB128(dwarf::DW_FORM_string);
288     addString(Value.getDIEInlineString().getString());
289     break;
290   case DIEValue::isBlock:
291   case DIEValue::isLoc:
292   case DIEValue::isLocList:
293     addULEB128('A');
294     addULEB128(Attribute);
295     addULEB128(dwarf::DW_FORM_block);
296     if (Value.getType() == DIEValue::isBlock) {
297       addULEB128(Value.getDIEBlock().ComputeSize(AP));
298       hashBlockData(Value.getDIEBlock().values());
299     } else if (Value.getType() == DIEValue::isLoc) {
300       addULEB128(Value.getDIELoc().ComputeSize(AP));
301       hashBlockData(Value.getDIELoc().values());
302     } else {
303       // We could add the block length, but that would take
304       // a bit of work and not add a lot of uniqueness
305       // to the hash in some way we could test.
306       hashLocList(Value.getDIELocList());
307     }
308     break;
309     // FIXME: It's uncertain whether or not we should handle this at the moment.
310   case DIEValue::isExpr:
311   case DIEValue::isLabel:
312   case DIEValue::isBaseTypeRef:
313   case DIEValue::isDelta:
314     llvm_unreachable("Add support for additional value types.");
315   }
316 }
317
318 // Go through the attributes from \param Attrs in the order specified in 7.27.4
319 // and hash them.
320 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
321 #define HANDLE_DIE_HASH_ATTR(NAME)                                             \
322   {                                                                            \
323     if (Attrs.NAME)                                                           \
324       hashAttribute(Attrs.NAME, Tag);                                         \
325   }
326 #include "DIEHashAttributes.def"
327   // FIXME: Add the extended attributes.
328 }
329
330 // Add all of the attributes for \param Die to the hash.
331 void DIEHash::addAttributes(const DIE &Die) {
332   DIEAttrs Attrs = {};
333   collectAttributes(Die, Attrs);
334   hashAttributes(Attrs, Die.getTag());
335 }
336
337 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
338   // 7.27 Step 7
339   // ... append the letter 'S',
340   addULEB128('S');
341
342   // the tag of C,
343   addULEB128(Die.getTag());
344
345   // and the name.
346   addString(Name);
347 }
348
349 // Compute the hash of a DIE. This is based on the type signature computation
350 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
351 // flattened description of the DIE.
352 void DIEHash::computeHash(const DIE &Die) {
353   // Append the letter 'D', followed by the DWARF tag of the DIE.
354   addULEB128('D');
355   addULEB128(Die.getTag());
356
357   // Add each of the attributes of the DIE.
358   addAttributes(Die);
359
360   // Then hash each of the children of the DIE.
361   for (auto &C : Die.children()) {
362     // 7.27 Step 7
363     // If C is a nested type entry or a member function entry, ...
364     if (isType(C.getTag()) || C.getTag() == dwarf::DW_TAG_subprogram) {
365       StringRef Name = getDIEStringAttr(C, dwarf::DW_AT_name);
366       // ... and has a DW_AT_name attribute
367       if (!Name.empty()) {
368         hashNestedType(C, Name);
369         continue;
370       }
371     }
372     computeHash(C);
373   }
374
375   // Following the last (or if there are no children), append a zero byte.
376   Hash.update(makeArrayRef((uint8_t)'\0'));
377 }
378
379 /// This is based on the type signature computation given in section 7.27 of the
380 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
381 /// with the inclusion of the full CU and all top level CU entities.
382 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
383 uint64_t DIEHash::computeCUSignature(StringRef DWOName, const DIE &Die) {
384   Numbering.clear();
385   Numbering[&Die] = 1;
386
387   if (!DWOName.empty())
388     Hash.update(DWOName);
389   // Hash the DIE.
390   computeHash(Die);
391
392   // Now return the result.
393   MD5::MD5Result Result;
394   Hash.final(Result);
395
396   // ... take the least significant 8 bytes and return those. Our MD5
397   // implementation always returns its results in little endian, so we actually
398   // need the "high" word.
399   return Result.high();
400 }
401
402 /// This is based on the type signature computation given in section 7.27 of the
403 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
404 /// with the inclusion of additional forms not specifically called out in the
405 /// standard.
406 uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
407   Numbering.clear();
408   Numbering[&Die] = 1;
409
410   if (const DIE *Parent = Die.getParent())
411     addParentContext(*Parent);
412
413   // Hash the DIE.
414   computeHash(Die);
415
416   // Now return the result.
417   MD5::MD5Result Result;
418   Hash.final(Result);
419
420   // ... take the least significant 8 bytes and return those. Our MD5
421   // implementation always returns its results in little endian, so we actually
422   // need the "high" word.
423   return Result.high();
424 }