]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/BranchFolding.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / BranchFolding.cpp
1 //===- BranchFolding.cpp - Fold machine code branch instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass forwards branches to unconditional branches to make them branch
10 // directly to the target block.  This pass often results in dead MBB's, which
11 // it then removes.
12 //
13 // Note that this pass must be run after register allocation, it cannot handle
14 // SSA form. It also must handle virtual registers for targets that emit virtual
15 // ISA (e.g. NVPTX).
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "BranchFolding.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/LivePhysRegs.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineModuleInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetOpcodes.h"
43 #include "llvm/CodeGen/TargetPassConfig.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/MC/LaneBitmask.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/BlockFrequency.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <cassert>
60 #include <cstddef>
61 #include <iterator>
62 #include <numeric>
63 #include <vector>
64
65 using namespace llvm;
66
67 #define DEBUG_TYPE "branch-folder"
68
69 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
70 STATISTIC(NumBranchOpts, "Number of branches optimized");
71 STATISTIC(NumTailMerge , "Number of block tails merged");
72 STATISTIC(NumHoist     , "Number of times common instructions are hoisted");
73 STATISTIC(NumTailCalls,  "Number of tail calls optimized");
74
75 static cl::opt<cl::boolOrDefault> FlagEnableTailMerge("enable-tail-merge",
76                               cl::init(cl::BOU_UNSET), cl::Hidden);
77
78 // Throttle for huge numbers of predecessors (compile speed problems)
79 static cl::opt<unsigned>
80 TailMergeThreshold("tail-merge-threshold",
81           cl::desc("Max number of predecessors to consider tail merging"),
82           cl::init(150), cl::Hidden);
83
84 // Heuristic for tail merging (and, inversely, tail duplication).
85 // TODO: This should be replaced with a target query.
86 static cl::opt<unsigned>
87 TailMergeSize("tail-merge-size",
88               cl::desc("Min number of instructions to consider tail merging"),
89               cl::init(3), cl::Hidden);
90
91 namespace {
92
93   /// BranchFolderPass - Wrap branch folder in a machine function pass.
94   class BranchFolderPass : public MachineFunctionPass {
95   public:
96     static char ID;
97
98     explicit BranchFolderPass(): MachineFunctionPass(ID) {}
99
100     bool runOnMachineFunction(MachineFunction &MF) override;
101
102     void getAnalysisUsage(AnalysisUsage &AU) const override {
103       AU.addRequired<MachineBlockFrequencyInfo>();
104       AU.addRequired<MachineBranchProbabilityInfo>();
105       AU.addRequired<TargetPassConfig>();
106       MachineFunctionPass::getAnalysisUsage(AU);
107     }
108   };
109
110 } // end anonymous namespace
111
112 char BranchFolderPass::ID = 0;
113
114 char &llvm::BranchFolderPassID = BranchFolderPass::ID;
115
116 INITIALIZE_PASS(BranchFolderPass, DEBUG_TYPE,
117                 "Control Flow Optimizer", false, false)
118
119 bool BranchFolderPass::runOnMachineFunction(MachineFunction &MF) {
120   if (skipFunction(MF.getFunction()))
121     return false;
122
123   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
124   // TailMerge can create jump into if branches that make CFG irreducible for
125   // HW that requires structurized CFG.
126   bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
127                          PassConfig->getEnableTailMerge();
128   BranchFolder::MBFIWrapper MBBFreqInfo(
129       getAnalysis<MachineBlockFrequencyInfo>());
130   BranchFolder Folder(EnableTailMerge, /*CommonHoist=*/true, MBBFreqInfo,
131                       getAnalysis<MachineBranchProbabilityInfo>());
132   return Folder.OptimizeFunction(MF, MF.getSubtarget().getInstrInfo(),
133                                  MF.getSubtarget().getRegisterInfo(),
134                                  getAnalysisIfAvailable<MachineModuleInfo>());
135 }
136
137 BranchFolder::BranchFolder(bool defaultEnableTailMerge, bool CommonHoist,
138                            MBFIWrapper &FreqInfo,
139                            const MachineBranchProbabilityInfo &ProbInfo,
140                            unsigned MinTailLength)
141     : EnableHoistCommonCode(CommonHoist), MinCommonTailLength(MinTailLength),
142       MBBFreqInfo(FreqInfo), MBPI(ProbInfo) {
143   if (MinCommonTailLength == 0)
144     MinCommonTailLength = TailMergeSize;
145   switch (FlagEnableTailMerge) {
146   case cl::BOU_UNSET: EnableTailMerge = defaultEnableTailMerge; break;
147   case cl::BOU_TRUE: EnableTailMerge = true; break;
148   case cl::BOU_FALSE: EnableTailMerge = false; break;
149   }
150 }
151
152 void BranchFolder::RemoveDeadBlock(MachineBasicBlock *MBB) {
153   assert(MBB->pred_empty() && "MBB must be dead!");
154   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
155
156   MachineFunction *MF = MBB->getParent();
157   // drop all successors.
158   while (!MBB->succ_empty())
159     MBB->removeSuccessor(MBB->succ_end()-1);
160
161   // Avoid matching if this pointer gets reused.
162   TriedMerging.erase(MBB);
163
164   // Remove the block.
165   MF->erase(MBB);
166   EHScopeMembership.erase(MBB);
167   if (MLI)
168     MLI->removeBlock(MBB);
169 }
170
171 bool BranchFolder::OptimizeFunction(MachineFunction &MF,
172                                     const TargetInstrInfo *tii,
173                                     const TargetRegisterInfo *tri,
174                                     MachineModuleInfo *mmi,
175                                     MachineLoopInfo *mli, bool AfterPlacement) {
176   if (!tii) return false;
177
178   TriedMerging.clear();
179
180   MachineRegisterInfo &MRI = MF.getRegInfo();
181   AfterBlockPlacement = AfterPlacement;
182   TII = tii;
183   TRI = tri;
184   MMI = mmi;
185   MLI = mli;
186   this->MRI = &MRI;
187
188   UpdateLiveIns = MRI.tracksLiveness() && TRI->trackLivenessAfterRegAlloc(MF);
189   if (!UpdateLiveIns)
190     MRI.invalidateLiveness();
191
192   // Fix CFG.  The later algorithms expect it to be right.
193   bool MadeChange = false;
194   for (MachineBasicBlock &MBB : MF) {
195     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
196     SmallVector<MachineOperand, 4> Cond;
197     if (!TII->analyzeBranch(MBB, TBB, FBB, Cond, true))
198       MadeChange |= MBB.CorrectExtraCFGEdges(TBB, FBB, !Cond.empty());
199   }
200
201   // Recalculate EH scope membership.
202   EHScopeMembership = getEHScopeMembership(MF);
203
204   bool MadeChangeThisIteration = true;
205   while (MadeChangeThisIteration) {
206     MadeChangeThisIteration    = TailMergeBlocks(MF);
207     // No need to clean up if tail merging does not change anything after the
208     // block placement.
209     if (!AfterBlockPlacement || MadeChangeThisIteration)
210       MadeChangeThisIteration |= OptimizeBranches(MF);
211     if (EnableHoistCommonCode)
212       MadeChangeThisIteration |= HoistCommonCode(MF);
213     MadeChange |= MadeChangeThisIteration;
214   }
215
216   // See if any jump tables have become dead as the code generator
217   // did its thing.
218   MachineJumpTableInfo *JTI = MF.getJumpTableInfo();
219   if (!JTI)
220     return MadeChange;
221
222   // Walk the function to find jump tables that are live.
223   BitVector JTIsLive(JTI->getJumpTables().size());
224   for (const MachineBasicBlock &BB : MF) {
225     for (const MachineInstr &I : BB)
226       for (const MachineOperand &Op : I.operands()) {
227         if (!Op.isJTI()) continue;
228
229         // Remember that this JT is live.
230         JTIsLive.set(Op.getIndex());
231       }
232   }
233
234   // Finally, remove dead jump tables.  This happens when the
235   // indirect jump was unreachable (and thus deleted).
236   for (unsigned i = 0, e = JTIsLive.size(); i != e; ++i)
237     if (!JTIsLive.test(i)) {
238       JTI->RemoveJumpTable(i);
239       MadeChange = true;
240     }
241
242   return MadeChange;
243 }
244
245 //===----------------------------------------------------------------------===//
246 //  Tail Merging of Blocks
247 //===----------------------------------------------------------------------===//
248
249 /// HashMachineInstr - Compute a hash value for MI and its operands.
250 static unsigned HashMachineInstr(const MachineInstr &MI) {
251   unsigned Hash = MI.getOpcode();
252   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
253     const MachineOperand &Op = MI.getOperand(i);
254
255     // Merge in bits from the operand if easy. We can't use MachineOperand's
256     // hash_code here because it's not deterministic and we sort by hash value
257     // later.
258     unsigned OperandHash = 0;
259     switch (Op.getType()) {
260     case MachineOperand::MO_Register:
261       OperandHash = Op.getReg();
262       break;
263     case MachineOperand::MO_Immediate:
264       OperandHash = Op.getImm();
265       break;
266     case MachineOperand::MO_MachineBasicBlock:
267       OperandHash = Op.getMBB()->getNumber();
268       break;
269     case MachineOperand::MO_FrameIndex:
270     case MachineOperand::MO_ConstantPoolIndex:
271     case MachineOperand::MO_JumpTableIndex:
272       OperandHash = Op.getIndex();
273       break;
274     case MachineOperand::MO_GlobalAddress:
275     case MachineOperand::MO_ExternalSymbol:
276       // Global address / external symbol are too hard, don't bother, but do
277       // pull in the offset.
278       OperandHash = Op.getOffset();
279       break;
280     default:
281       break;
282     }
283
284     Hash += ((OperandHash << 3) | Op.getType()) << (i & 31);
285   }
286   return Hash;
287 }
288
289 /// HashEndOfMBB - Hash the last instruction in the MBB.
290 static unsigned HashEndOfMBB(const MachineBasicBlock &MBB) {
291   MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
292   if (I == MBB.end())
293     return 0;
294
295   return HashMachineInstr(*I);
296 }
297
298 ///  Whether MI should be counted as an instruction when calculating common tail.
299 static bool countsAsInstruction(const MachineInstr &MI) {
300   return !(MI.isDebugInstr() || MI.isCFIInstruction());
301 }
302
303 /// ComputeCommonTailLength - Given two machine basic blocks, compute the number
304 /// of instructions they actually have in common together at their end.  Return
305 /// iterators for the first shared instruction in each block.
306 static unsigned ComputeCommonTailLength(MachineBasicBlock *MBB1,
307                                         MachineBasicBlock *MBB2,
308                                         MachineBasicBlock::iterator &I1,
309                                         MachineBasicBlock::iterator &I2) {
310   I1 = MBB1->end();
311   I2 = MBB2->end();
312
313   unsigned TailLen = 0;
314   while (I1 != MBB1->begin() && I2 != MBB2->begin()) {
315     --I1; --I2;
316     // Skip debugging pseudos; necessary to avoid changing the code.
317     while (!countsAsInstruction(*I1)) {
318       if (I1==MBB1->begin()) {
319         while (!countsAsInstruction(*I2)) {
320           if (I2==MBB2->begin()) {
321             // I1==DBG at begin; I2==DBG at begin
322             goto SkipTopCFIAndReturn;
323           }
324           --I2;
325         }
326         ++I2;
327         // I1==DBG at begin; I2==non-DBG, or first of DBGs not at begin
328         goto SkipTopCFIAndReturn;
329       }
330       --I1;
331     }
332     // I1==first (untested) non-DBG preceding known match
333     while (!countsAsInstruction(*I2)) {
334       if (I2==MBB2->begin()) {
335         ++I1;
336         // I1==non-DBG, or first of DBGs not at begin; I2==DBG at begin
337         goto SkipTopCFIAndReturn;
338       }
339       --I2;
340     }
341     // I1, I2==first (untested) non-DBGs preceding known match
342     if (!I1->isIdenticalTo(*I2) ||
343         // FIXME: This check is dubious. It's used to get around a problem where
344         // people incorrectly expect inline asm directives to remain in the same
345         // relative order. This is untenable because normal compiler
346         // optimizations (like this one) may reorder and/or merge these
347         // directives.
348         I1->isInlineAsm()) {
349       ++I1; ++I2;
350       break;
351     }
352     ++TailLen;
353   }
354   // Back past possible debugging pseudos at beginning of block.  This matters
355   // when one block differs from the other only by whether debugging pseudos
356   // are present at the beginning. (This way, the various checks later for
357   // I1==MBB1->begin() work as expected.)
358   if (I1 == MBB1->begin() && I2 != MBB2->begin()) {
359     --I2;
360     while (I2->isDebugInstr()) {
361       if (I2 == MBB2->begin())
362         return TailLen;
363       --I2;
364     }
365     ++I2;
366   }
367   if (I2 == MBB2->begin() && I1 != MBB1->begin()) {
368     --I1;
369     while (I1->isDebugInstr()) {
370       if (I1 == MBB1->begin())
371         return TailLen;
372       --I1;
373     }
374     ++I1;
375   }
376
377 SkipTopCFIAndReturn:
378   // Ensure that I1 and I2 do not point to a CFI_INSTRUCTION. This can happen if
379   // I1 and I2 are non-identical when compared and then one or both of them ends
380   // up pointing to a CFI instruction after being incremented. For example:
381   /*
382     BB1:
383     ...
384     INSTRUCTION_A
385     ADD32ri8  <- last common instruction
386     ...
387     BB2:
388     ...
389     INSTRUCTION_B
390     CFI_INSTRUCTION
391     ADD32ri8  <- last common instruction
392     ...
393   */
394   // When INSTRUCTION_A and INSTRUCTION_B are compared as not equal, after
395   // incrementing the iterators, I1 will point to ADD, however I2 will point to
396   // the CFI instruction. Later on, this leads to BB2 being 'hacked off' at the
397   // wrong place (in ReplaceTailWithBranchTo()) which results in losing this CFI
398   // instruction.
399   while (I1 != MBB1->end() && I1->isCFIInstruction()) {
400     ++I1;
401   }
402
403   while (I2 != MBB2->end() && I2->isCFIInstruction()) {
404     ++I2;
405   }
406
407   return TailLen;
408 }
409
410 void BranchFolder::replaceTailWithBranchTo(MachineBasicBlock::iterator OldInst,
411                                            MachineBasicBlock &NewDest) {
412   if (UpdateLiveIns) {
413     // OldInst should always point to an instruction.
414     MachineBasicBlock &OldMBB = *OldInst->getParent();
415     LiveRegs.clear();
416     LiveRegs.addLiveOuts(OldMBB);
417     // Move backward to the place where will insert the jump.
418     MachineBasicBlock::iterator I = OldMBB.end();
419     do {
420       --I;
421       LiveRegs.stepBackward(*I);
422     } while (I != OldInst);
423
424     // Merging the tails may have switched some undef operand to non-undef ones.
425     // Add IMPLICIT_DEFS into OldMBB as necessary to have a definition of the
426     // register.
427     for (MachineBasicBlock::RegisterMaskPair P : NewDest.liveins()) {
428       // We computed the liveins with computeLiveIn earlier and should only see
429       // full registers:
430       assert(P.LaneMask == LaneBitmask::getAll() &&
431              "Can only handle full register.");
432       MCPhysReg Reg = P.PhysReg;
433       if (!LiveRegs.available(*MRI, Reg))
434         continue;
435       DebugLoc DL;
436       BuildMI(OldMBB, OldInst, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Reg);
437     }
438   }
439
440   TII->ReplaceTailWithBranchTo(OldInst, &NewDest);
441   ++NumTailMerge;
442 }
443
444 MachineBasicBlock *BranchFolder::SplitMBBAt(MachineBasicBlock &CurMBB,
445                                             MachineBasicBlock::iterator BBI1,
446                                             const BasicBlock *BB) {
447   if (!TII->isLegalToSplitMBBAt(CurMBB, BBI1))
448     return nullptr;
449
450   MachineFunction &MF = *CurMBB.getParent();
451
452   // Create the fall-through block.
453   MachineFunction::iterator MBBI = CurMBB.getIterator();
454   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(BB);
455   CurMBB.getParent()->insert(++MBBI, NewMBB);
456
457   // Move all the successors of this block to the specified block.
458   NewMBB->transferSuccessors(&CurMBB);
459
460   // Add an edge from CurMBB to NewMBB for the fall-through.
461   CurMBB.addSuccessor(NewMBB);
462
463   // Splice the code over.
464   NewMBB->splice(NewMBB->end(), &CurMBB, BBI1, CurMBB.end());
465
466   // NewMBB belongs to the same loop as CurMBB.
467   if (MLI)
468     if (MachineLoop *ML = MLI->getLoopFor(&CurMBB))
469       ML->addBasicBlockToLoop(NewMBB, MLI->getBase());
470
471   // NewMBB inherits CurMBB's block frequency.
472   MBBFreqInfo.setBlockFreq(NewMBB, MBBFreqInfo.getBlockFreq(&CurMBB));
473
474   if (UpdateLiveIns)
475     computeAndAddLiveIns(LiveRegs, *NewMBB);
476
477   // Add the new block to the EH scope.
478   const auto &EHScopeI = EHScopeMembership.find(&CurMBB);
479   if (EHScopeI != EHScopeMembership.end()) {
480     auto n = EHScopeI->second;
481     EHScopeMembership[NewMBB] = n;
482   }
483
484   return NewMBB;
485 }
486
487 /// EstimateRuntime - Make a rough estimate for how long it will take to run
488 /// the specified code.
489 static unsigned EstimateRuntime(MachineBasicBlock::iterator I,
490                                 MachineBasicBlock::iterator E) {
491   unsigned Time = 0;
492   for (; I != E; ++I) {
493     if (!countsAsInstruction(*I))
494       continue;
495     if (I->isCall())
496       Time += 10;
497     else if (I->mayLoad() || I->mayStore())
498       Time += 2;
499     else
500       ++Time;
501   }
502   return Time;
503 }
504
505 // CurMBB needs to add an unconditional branch to SuccMBB (we removed these
506 // branches temporarily for tail merging).  In the case where CurMBB ends
507 // with a conditional branch to the next block, optimize by reversing the
508 // test and conditionally branching to SuccMBB instead.
509 static void FixTail(MachineBasicBlock *CurMBB, MachineBasicBlock *SuccBB,
510                     const TargetInstrInfo *TII) {
511   MachineFunction *MF = CurMBB->getParent();
512   MachineFunction::iterator I = std::next(MachineFunction::iterator(CurMBB));
513   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
514   SmallVector<MachineOperand, 4> Cond;
515   DebugLoc dl = CurMBB->findBranchDebugLoc();
516   if (I != MF->end() && !TII->analyzeBranch(*CurMBB, TBB, FBB, Cond, true)) {
517     MachineBasicBlock *NextBB = &*I;
518     if (TBB == NextBB && !Cond.empty() && !FBB) {
519       if (!TII->reverseBranchCondition(Cond)) {
520         TII->removeBranch(*CurMBB);
521         TII->insertBranch(*CurMBB, SuccBB, nullptr, Cond, dl);
522         return;
523       }
524     }
525   }
526   TII->insertBranch(*CurMBB, SuccBB, nullptr,
527                     SmallVector<MachineOperand, 0>(), dl);
528 }
529
530 bool
531 BranchFolder::MergePotentialsElt::operator<(const MergePotentialsElt &o) const {
532   if (getHash() < o.getHash())
533     return true;
534   if (getHash() > o.getHash())
535     return false;
536   if (getBlock()->getNumber() < o.getBlock()->getNumber())
537     return true;
538   if (getBlock()->getNumber() > o.getBlock()->getNumber())
539     return false;
540   // _GLIBCXX_DEBUG checks strict weak ordering, which involves comparing
541   // an object with itself.
542 #ifndef _GLIBCXX_DEBUG
543   llvm_unreachable("Predecessor appears twice");
544 #else
545   return false;
546 #endif
547 }
548
549 BlockFrequency
550 BranchFolder::MBFIWrapper::getBlockFreq(const MachineBasicBlock *MBB) const {
551   auto I = MergedBBFreq.find(MBB);
552
553   if (I != MergedBBFreq.end())
554     return I->second;
555
556   return MBFI.getBlockFreq(MBB);
557 }
558
559 void BranchFolder::MBFIWrapper::setBlockFreq(const MachineBasicBlock *MBB,
560                                              BlockFrequency F) {
561   MergedBBFreq[MBB] = F;
562 }
563
564 raw_ostream &
565 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
566                                           const MachineBasicBlock *MBB) const {
567   return MBFI.printBlockFreq(OS, getBlockFreq(MBB));
568 }
569
570 raw_ostream &
571 BranchFolder::MBFIWrapper::printBlockFreq(raw_ostream &OS,
572                                           const BlockFrequency Freq) const {
573   return MBFI.printBlockFreq(OS, Freq);
574 }
575
576 void BranchFolder::MBFIWrapper::view(const Twine &Name, bool isSimple) {
577   MBFI.view(Name, isSimple);
578 }
579
580 uint64_t
581 BranchFolder::MBFIWrapper::getEntryFreq() const {
582   return MBFI.getEntryFreq();
583 }
584
585 /// CountTerminators - Count the number of terminators in the given
586 /// block and set I to the position of the first non-terminator, if there
587 /// is one, or MBB->end() otherwise.
588 static unsigned CountTerminators(MachineBasicBlock *MBB,
589                                  MachineBasicBlock::iterator &I) {
590   I = MBB->end();
591   unsigned NumTerms = 0;
592   while (true) {
593     if (I == MBB->begin()) {
594       I = MBB->end();
595       break;
596     }
597     --I;
598     if (!I->isTerminator()) break;
599     ++NumTerms;
600   }
601   return NumTerms;
602 }
603
604 /// A no successor, non-return block probably ends in unreachable and is cold.
605 /// Also consider a block that ends in an indirect branch to be a return block,
606 /// since many targets use plain indirect branches to return.
607 static bool blockEndsInUnreachable(const MachineBasicBlock *MBB) {
608   if (!MBB->succ_empty())
609     return false;
610   if (MBB->empty())
611     return true;
612   return !(MBB->back().isReturn() || MBB->back().isIndirectBranch());
613 }
614
615 /// ProfitableToMerge - Check if two machine basic blocks have a common tail
616 /// and decide if it would be profitable to merge those tails.  Return the
617 /// length of the common tail and iterators to the first common instruction
618 /// in each block.
619 /// MBB1, MBB2      The blocks to check
620 /// MinCommonTailLength  Minimum size of tail block to be merged.
621 /// CommonTailLen   Out parameter to record the size of the shared tail between
622 ///                 MBB1 and MBB2
623 /// I1, I2          Iterator references that will be changed to point to the first
624 ///                 instruction in the common tail shared by MBB1,MBB2
625 /// SuccBB          A common successor of MBB1, MBB2 which are in a canonical form
626 ///                 relative to SuccBB
627 /// PredBB          The layout predecessor of SuccBB, if any.
628 /// EHScopeMembership  map from block to EH scope #.
629 /// AfterPlacement  True if we are merging blocks after layout. Stricter
630 ///                 thresholds apply to prevent undoing tail-duplication.
631 static bool
632 ProfitableToMerge(MachineBasicBlock *MBB1, MachineBasicBlock *MBB2,
633                   unsigned MinCommonTailLength, unsigned &CommonTailLen,
634                   MachineBasicBlock::iterator &I1,
635                   MachineBasicBlock::iterator &I2, MachineBasicBlock *SuccBB,
636                   MachineBasicBlock *PredBB,
637                   DenseMap<const MachineBasicBlock *, int> &EHScopeMembership,
638                   bool AfterPlacement) {
639   // It is never profitable to tail-merge blocks from two different EH scopes.
640   if (!EHScopeMembership.empty()) {
641     auto EHScope1 = EHScopeMembership.find(MBB1);
642     assert(EHScope1 != EHScopeMembership.end());
643     auto EHScope2 = EHScopeMembership.find(MBB2);
644     assert(EHScope2 != EHScopeMembership.end());
645     if (EHScope1->second != EHScope2->second)
646       return false;
647   }
648
649   CommonTailLen = ComputeCommonTailLength(MBB1, MBB2, I1, I2);
650   if (CommonTailLen == 0)
651     return false;
652   LLVM_DEBUG(dbgs() << "Common tail length of " << printMBBReference(*MBB1)
653                     << " and " << printMBBReference(*MBB2) << " is "
654                     << CommonTailLen << '\n');
655
656   // It's almost always profitable to merge any number of non-terminator
657   // instructions with the block that falls through into the common successor.
658   // This is true only for a single successor. For multiple successors, we are
659   // trading a conditional branch for an unconditional one.
660   // TODO: Re-visit successor size for non-layout tail merging.
661   if ((MBB1 == PredBB || MBB2 == PredBB) &&
662       (!AfterPlacement || MBB1->succ_size() == 1)) {
663     MachineBasicBlock::iterator I;
664     unsigned NumTerms = CountTerminators(MBB1 == PredBB ? MBB2 : MBB1, I);
665     if (CommonTailLen > NumTerms)
666       return true;
667   }
668
669   // If these are identical non-return blocks with no successors, merge them.
670   // Such blocks are typically cold calls to noreturn functions like abort, and
671   // are unlikely to become a fallthrough target after machine block placement.
672   // Tail merging these blocks is unlikely to create additional unconditional
673   // branches, and will reduce the size of this cold code.
674   if (I1 == MBB1->begin() && I2 == MBB2->begin() &&
675       blockEndsInUnreachable(MBB1) && blockEndsInUnreachable(MBB2))
676     return true;
677
678   // If one of the blocks can be completely merged and happens to be in
679   // a position where the other could fall through into it, merge any number
680   // of instructions, because it can be done without a branch.
681   // TODO: If the blocks are not adjacent, move one of them so that they are?
682   if (MBB1->isLayoutSuccessor(MBB2) && I2 == MBB2->begin())
683     return true;
684   if (MBB2->isLayoutSuccessor(MBB1) && I1 == MBB1->begin())
685     return true;
686
687   // If both blocks are identical and end in a branch, merge them unless they
688   // both have a fallthrough predecessor and successor.
689   // We can only do this after block placement because it depends on whether
690   // there are fallthroughs, and we don't know until after layout.
691   if (AfterPlacement && I1 == MBB1->begin() && I2 == MBB2->begin()) {
692     auto BothFallThrough = [](MachineBasicBlock *MBB) {
693       if (MBB->succ_size() != 0 && !MBB->canFallThrough())
694         return false;
695       MachineFunction::iterator I(MBB);
696       MachineFunction *MF = MBB->getParent();
697       return (MBB != &*MF->begin()) && std::prev(I)->canFallThrough();
698     };
699     if (!BothFallThrough(MBB1) || !BothFallThrough(MBB2))
700       return true;
701   }
702
703   // If both blocks have an unconditional branch temporarily stripped out,
704   // count that as an additional common instruction for the following
705   // heuristics. This heuristic is only accurate for single-succ blocks, so to
706   // make sure that during layout merging and duplicating don't crash, we check
707   // for that when merging during layout.
708   unsigned EffectiveTailLen = CommonTailLen;
709   if (SuccBB && MBB1 != PredBB && MBB2 != PredBB &&
710       (MBB1->succ_size() == 1 || !AfterPlacement) &&
711       !MBB1->back().isBarrier() &&
712       !MBB2->back().isBarrier())
713     ++EffectiveTailLen;
714
715   // Check if the common tail is long enough to be worthwhile.
716   if (EffectiveTailLen >= MinCommonTailLength)
717     return true;
718
719   // If we are optimizing for code size, 2 instructions in common is enough if
720   // we don't have to split a block.  At worst we will be introducing 1 new
721   // branch instruction, which is likely to be smaller than the 2
722   // instructions that would be deleted in the merge.
723   MachineFunction *MF = MBB1->getParent();
724   return EffectiveTailLen >= 2 && MF->getFunction().hasOptSize() &&
725          (I1 == MBB1->begin() || I2 == MBB2->begin());
726 }
727
728 unsigned BranchFolder::ComputeSameTails(unsigned CurHash,
729                                         unsigned MinCommonTailLength,
730                                         MachineBasicBlock *SuccBB,
731                                         MachineBasicBlock *PredBB) {
732   unsigned maxCommonTailLength = 0U;
733   SameTails.clear();
734   MachineBasicBlock::iterator TrialBBI1, TrialBBI2;
735   MPIterator HighestMPIter = std::prev(MergePotentials.end());
736   for (MPIterator CurMPIter = std::prev(MergePotentials.end()),
737                   B = MergePotentials.begin();
738        CurMPIter != B && CurMPIter->getHash() == CurHash; --CurMPIter) {
739     for (MPIterator I = std::prev(CurMPIter); I->getHash() == CurHash; --I) {
740       unsigned CommonTailLen;
741       if (ProfitableToMerge(CurMPIter->getBlock(), I->getBlock(),
742                             MinCommonTailLength,
743                             CommonTailLen, TrialBBI1, TrialBBI2,
744                             SuccBB, PredBB,
745                             EHScopeMembership,
746                             AfterBlockPlacement)) {
747         if (CommonTailLen > maxCommonTailLength) {
748           SameTails.clear();
749           maxCommonTailLength = CommonTailLen;
750           HighestMPIter = CurMPIter;
751           SameTails.push_back(SameTailElt(CurMPIter, TrialBBI1));
752         }
753         if (HighestMPIter == CurMPIter &&
754             CommonTailLen == maxCommonTailLength)
755           SameTails.push_back(SameTailElt(I, TrialBBI2));
756       }
757       if (I == B)
758         break;
759     }
760   }
761   return maxCommonTailLength;
762 }
763
764 void BranchFolder::RemoveBlocksWithHash(unsigned CurHash,
765                                         MachineBasicBlock *SuccBB,
766                                         MachineBasicBlock *PredBB) {
767   MPIterator CurMPIter, B;
768   for (CurMPIter = std::prev(MergePotentials.end()),
769       B = MergePotentials.begin();
770        CurMPIter->getHash() == CurHash; --CurMPIter) {
771     // Put the unconditional branch back, if we need one.
772     MachineBasicBlock *CurMBB = CurMPIter->getBlock();
773     if (SuccBB && CurMBB != PredBB)
774       FixTail(CurMBB, SuccBB, TII);
775     if (CurMPIter == B)
776       break;
777   }
778   if (CurMPIter->getHash() != CurHash)
779     CurMPIter++;
780   MergePotentials.erase(CurMPIter, MergePotentials.end());
781 }
782
783 bool BranchFolder::CreateCommonTailOnlyBlock(MachineBasicBlock *&PredBB,
784                                              MachineBasicBlock *SuccBB,
785                                              unsigned maxCommonTailLength,
786                                              unsigned &commonTailIndex) {
787   commonTailIndex = 0;
788   unsigned TimeEstimate = ~0U;
789   for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
790     // Use PredBB if possible; that doesn't require a new branch.
791     if (SameTails[i].getBlock() == PredBB) {
792       commonTailIndex = i;
793       break;
794     }
795     // Otherwise, make a (fairly bogus) choice based on estimate of
796     // how long it will take the various blocks to execute.
797     unsigned t = EstimateRuntime(SameTails[i].getBlock()->begin(),
798                                  SameTails[i].getTailStartPos());
799     if (t <= TimeEstimate) {
800       TimeEstimate = t;
801       commonTailIndex = i;
802     }
803   }
804
805   MachineBasicBlock::iterator BBI =
806     SameTails[commonTailIndex].getTailStartPos();
807   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
808
809   LLVM_DEBUG(dbgs() << "\nSplitting " << printMBBReference(*MBB) << ", size "
810                     << maxCommonTailLength);
811
812   // If the split block unconditionally falls-thru to SuccBB, it will be
813   // merged. In control flow terms it should then take SuccBB's name. e.g. If
814   // SuccBB is an inner loop, the common tail is still part of the inner loop.
815   const BasicBlock *BB = (SuccBB && MBB->succ_size() == 1) ?
816     SuccBB->getBasicBlock() : MBB->getBasicBlock();
817   MachineBasicBlock *newMBB = SplitMBBAt(*MBB, BBI, BB);
818   if (!newMBB) {
819     LLVM_DEBUG(dbgs() << "... failed!");
820     return false;
821   }
822
823   SameTails[commonTailIndex].setBlock(newMBB);
824   SameTails[commonTailIndex].setTailStartPos(newMBB->begin());
825
826   // If we split PredBB, newMBB is the new predecessor.
827   if (PredBB == MBB)
828     PredBB = newMBB;
829
830   return true;
831 }
832
833 static void
834 mergeOperations(MachineBasicBlock::iterator MBBIStartPos,
835                 MachineBasicBlock &MBBCommon) {
836   MachineBasicBlock *MBB = MBBIStartPos->getParent();
837   // Note CommonTailLen does not necessarily matches the size of
838   // the common BB nor all its instructions because of debug
839   // instructions differences.
840   unsigned CommonTailLen = 0;
841   for (auto E = MBB->end(); MBBIStartPos != E; ++MBBIStartPos)
842     ++CommonTailLen;
843
844   MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin();
845   MachineBasicBlock::reverse_iterator MBBIE = MBB->rend();
846   MachineBasicBlock::reverse_iterator MBBICommon = MBBCommon.rbegin();
847   MachineBasicBlock::reverse_iterator MBBIECommon = MBBCommon.rend();
848
849   while (CommonTailLen--) {
850     assert(MBBI != MBBIE && "Reached BB end within common tail length!");
851     (void)MBBIE;
852
853     if (!countsAsInstruction(*MBBI)) {
854       ++MBBI;
855       continue;
856     }
857
858     while ((MBBICommon != MBBIECommon) && !countsAsInstruction(*MBBICommon))
859       ++MBBICommon;
860
861     assert(MBBICommon != MBBIECommon &&
862            "Reached BB end within common tail length!");
863     assert(MBBICommon->isIdenticalTo(*MBBI) && "Expected matching MIIs!");
864
865     // Merge MMOs from memory operations in the common block.
866     if (MBBICommon->mayLoad() || MBBICommon->mayStore())
867       MBBICommon->cloneMergedMemRefs(*MBB->getParent(), {&*MBBICommon, &*MBBI});
868     // Drop undef flags if they aren't present in all merged instructions.
869     for (unsigned I = 0, E = MBBICommon->getNumOperands(); I != E; ++I) {
870       MachineOperand &MO = MBBICommon->getOperand(I);
871       if (MO.isReg() && MO.isUndef()) {
872         const MachineOperand &OtherMO = MBBI->getOperand(I);
873         if (!OtherMO.isUndef())
874           MO.setIsUndef(false);
875       }
876     }
877
878     ++MBBI;
879     ++MBBICommon;
880   }
881 }
882
883 void BranchFolder::mergeCommonTails(unsigned commonTailIndex) {
884   MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
885
886   std::vector<MachineBasicBlock::iterator> NextCommonInsts(SameTails.size());
887   for (unsigned int i = 0 ; i != SameTails.size() ; ++i) {
888     if (i != commonTailIndex) {
889       NextCommonInsts[i] = SameTails[i].getTailStartPos();
890       mergeOperations(SameTails[i].getTailStartPos(), *MBB);
891     } else {
892       assert(SameTails[i].getTailStartPos() == MBB->begin() &&
893           "MBB is not a common tail only block");
894     }
895   }
896
897   for (auto &MI : *MBB) {
898     if (!countsAsInstruction(MI))
899       continue;
900     DebugLoc DL = MI.getDebugLoc();
901     for (unsigned int i = 0 ; i < NextCommonInsts.size() ; i++) {
902       if (i == commonTailIndex)
903         continue;
904
905       auto &Pos = NextCommonInsts[i];
906       assert(Pos != SameTails[i].getBlock()->end() &&
907           "Reached BB end within common tail");
908       while (!countsAsInstruction(*Pos)) {
909         ++Pos;
910         assert(Pos != SameTails[i].getBlock()->end() &&
911             "Reached BB end within common tail");
912       }
913       assert(MI.isIdenticalTo(*Pos) && "Expected matching MIIs!");
914       DL = DILocation::getMergedLocation(DL, Pos->getDebugLoc());
915       NextCommonInsts[i] = ++Pos;
916     }
917     MI.setDebugLoc(DL);
918   }
919
920   if (UpdateLiveIns) {
921     LivePhysRegs NewLiveIns(*TRI);
922     computeLiveIns(NewLiveIns, *MBB);
923     LiveRegs.init(*TRI);
924
925     // The flag merging may lead to some register uses no longer using the
926     // <undef> flag, add IMPLICIT_DEFs in the predecessors as necessary.
927     for (MachineBasicBlock *Pred : MBB->predecessors()) {
928       LiveRegs.clear();
929       LiveRegs.addLiveOuts(*Pred);
930       MachineBasicBlock::iterator InsertBefore = Pred->getFirstTerminator();
931       for (unsigned Reg : NewLiveIns) {
932         if (!LiveRegs.available(*MRI, Reg))
933           continue;
934         DebugLoc DL;
935         BuildMI(*Pred, InsertBefore, DL, TII->get(TargetOpcode::IMPLICIT_DEF),
936                 Reg);
937       }
938     }
939
940     MBB->clearLiveIns();
941     addLiveIns(*MBB, NewLiveIns);
942   }
943 }
944
945 // See if any of the blocks in MergePotentials (which all have SuccBB as a
946 // successor, or all have no successor if it is null) can be tail-merged.
947 // If there is a successor, any blocks in MergePotentials that are not
948 // tail-merged and are not immediately before Succ must have an unconditional
949 // branch to Succ added (but the predecessor/successor lists need no
950 // adjustment). The lone predecessor of Succ that falls through into Succ,
951 // if any, is given in PredBB.
952 // MinCommonTailLength - Except for the special cases below, tail-merge if
953 // there are at least this many instructions in common.
954 bool BranchFolder::TryTailMergeBlocks(MachineBasicBlock *SuccBB,
955                                       MachineBasicBlock *PredBB,
956                                       unsigned MinCommonTailLength) {
957   bool MadeChange = false;
958
959   LLVM_DEBUG(
960       dbgs() << "\nTryTailMergeBlocks: ";
961       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i) dbgs()
962       << printMBBReference(*MergePotentials[i].getBlock())
963       << (i == e - 1 ? "" : ", ");
964       dbgs() << "\n"; if (SuccBB) {
965         dbgs() << "  with successor " << printMBBReference(*SuccBB) << '\n';
966         if (PredBB)
967           dbgs() << "  which has fall-through from "
968                  << printMBBReference(*PredBB) << "\n";
969       } dbgs() << "Looking for common tails of at least "
970                << MinCommonTailLength << " instruction"
971                << (MinCommonTailLength == 1 ? "" : "s") << '\n';);
972
973   // Sort by hash value so that blocks with identical end sequences sort
974   // together.
975   array_pod_sort(MergePotentials.begin(), MergePotentials.end());
976
977   // Walk through equivalence sets looking for actual exact matches.
978   while (MergePotentials.size() > 1) {
979     unsigned CurHash = MergePotentials.back().getHash();
980
981     // Build SameTails, identifying the set of blocks with this hash code
982     // and with the maximum number of instructions in common.
983     unsigned maxCommonTailLength = ComputeSameTails(CurHash,
984                                                     MinCommonTailLength,
985                                                     SuccBB, PredBB);
986
987     // If we didn't find any pair that has at least MinCommonTailLength
988     // instructions in common, remove all blocks with this hash code and retry.
989     if (SameTails.empty()) {
990       RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
991       continue;
992     }
993
994     // If one of the blocks is the entire common tail (and not the entry
995     // block, which we can't jump to), we can treat all blocks with this same
996     // tail at once.  Use PredBB if that is one of the possibilities, as that
997     // will not introduce any extra branches.
998     MachineBasicBlock *EntryBB =
999         &MergePotentials.front().getBlock()->getParent()->front();
1000     unsigned commonTailIndex = SameTails.size();
1001     // If there are two blocks, check to see if one can be made to fall through
1002     // into the other.
1003     if (SameTails.size() == 2 &&
1004         SameTails[0].getBlock()->isLayoutSuccessor(SameTails[1].getBlock()) &&
1005         SameTails[1].tailIsWholeBlock())
1006       commonTailIndex = 1;
1007     else if (SameTails.size() == 2 &&
1008              SameTails[1].getBlock()->isLayoutSuccessor(
1009                                                      SameTails[0].getBlock()) &&
1010              SameTails[0].tailIsWholeBlock())
1011       commonTailIndex = 0;
1012     else {
1013       // Otherwise just pick one, favoring the fall-through predecessor if
1014       // there is one.
1015       for (unsigned i = 0, e = SameTails.size(); i != e; ++i) {
1016         MachineBasicBlock *MBB = SameTails[i].getBlock();
1017         if (MBB == EntryBB && SameTails[i].tailIsWholeBlock())
1018           continue;
1019         if (MBB == PredBB) {
1020           commonTailIndex = i;
1021           break;
1022         }
1023         if (SameTails[i].tailIsWholeBlock())
1024           commonTailIndex = i;
1025       }
1026     }
1027
1028     if (commonTailIndex == SameTails.size() ||
1029         (SameTails[commonTailIndex].getBlock() == PredBB &&
1030          !SameTails[commonTailIndex].tailIsWholeBlock())) {
1031       // None of the blocks consist entirely of the common tail.
1032       // Split a block so that one does.
1033       if (!CreateCommonTailOnlyBlock(PredBB, SuccBB,
1034                                      maxCommonTailLength, commonTailIndex)) {
1035         RemoveBlocksWithHash(CurHash, SuccBB, PredBB);
1036         continue;
1037       }
1038     }
1039
1040     MachineBasicBlock *MBB = SameTails[commonTailIndex].getBlock();
1041
1042     // Recompute common tail MBB's edge weights and block frequency.
1043     setCommonTailEdgeWeights(*MBB);
1044
1045     // Merge debug locations, MMOs and undef flags across identical instructions
1046     // for common tail.
1047     mergeCommonTails(commonTailIndex);
1048
1049     // MBB is common tail.  Adjust all other BB's to jump to this one.
1050     // Traversal must be forwards so erases work.
1051     LLVM_DEBUG(dbgs() << "\nUsing common tail in " << printMBBReference(*MBB)
1052                       << " for ");
1053     for (unsigned int i=0, e = SameTails.size(); i != e; ++i) {
1054       if (commonTailIndex == i)
1055         continue;
1056       LLVM_DEBUG(dbgs() << printMBBReference(*SameTails[i].getBlock())
1057                         << (i == e - 1 ? "" : ", "));
1058       // Hack the end off BB i, making it jump to BB commonTailIndex instead.
1059       replaceTailWithBranchTo(SameTails[i].getTailStartPos(), *MBB);
1060       // BB i is no longer a predecessor of SuccBB; remove it from the worklist.
1061       MergePotentials.erase(SameTails[i].getMPIter());
1062     }
1063     LLVM_DEBUG(dbgs() << "\n");
1064     // We leave commonTailIndex in the worklist in case there are other blocks
1065     // that match it with a smaller number of instructions.
1066     MadeChange = true;
1067   }
1068   return MadeChange;
1069 }
1070
1071 bool BranchFolder::TailMergeBlocks(MachineFunction &MF) {
1072   bool MadeChange = false;
1073   if (!EnableTailMerge)
1074     return MadeChange;
1075
1076   // First find blocks with no successors.
1077   // Block placement may create new tail merging opportunities for these blocks.
1078   MergePotentials.clear();
1079   for (MachineBasicBlock &MBB : MF) {
1080     if (MergePotentials.size() == TailMergeThreshold)
1081       break;
1082     if (!TriedMerging.count(&MBB) && MBB.succ_empty())
1083       MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(MBB), &MBB));
1084   }
1085
1086   // If this is a large problem, avoid visiting the same basic blocks
1087   // multiple times.
1088   if (MergePotentials.size() == TailMergeThreshold)
1089     for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1090       TriedMerging.insert(MergePotentials[i].getBlock());
1091
1092   // See if we can do any tail merging on those.
1093   if (MergePotentials.size() >= 2)
1094     MadeChange |= TryTailMergeBlocks(nullptr, nullptr, MinCommonTailLength);
1095
1096   // Look at blocks (IBB) with multiple predecessors (PBB).
1097   // We change each predecessor to a canonical form, by
1098   // (1) temporarily removing any unconditional branch from the predecessor
1099   // to IBB, and
1100   // (2) alter conditional branches so they branch to the other block
1101   // not IBB; this may require adding back an unconditional branch to IBB
1102   // later, where there wasn't one coming in.  E.g.
1103   //   Bcc IBB
1104   //   fallthrough to QBB
1105   // here becomes
1106   //   Bncc QBB
1107   // with a conceptual B to IBB after that, which never actually exists.
1108   // With those changes, we see whether the predecessors' tails match,
1109   // and merge them if so.  We change things out of canonical form and
1110   // back to the way they were later in the process.  (OptimizeBranches
1111   // would undo some of this, but we can't use it, because we'd get into
1112   // a compile-time infinite loop repeatedly doing and undoing the same
1113   // transformations.)
1114
1115   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1116        I != E; ++I) {
1117     if (I->pred_size() < 2) continue;
1118     SmallPtrSet<MachineBasicBlock *, 8> UniquePreds;
1119     MachineBasicBlock *IBB = &*I;
1120     MachineBasicBlock *PredBB = &*std::prev(I);
1121     MergePotentials.clear();
1122     MachineLoop *ML;
1123
1124     // Bail if merging after placement and IBB is the loop header because
1125     // -- If merging predecessors that belong to the same loop as IBB, the
1126     // common tail of merged predecessors may become the loop top if block
1127     // placement is called again and the predecessors may branch to this common
1128     // tail and require more branches. This can be relaxed if
1129     // MachineBlockPlacement::findBestLoopTop is more flexible.
1130     // --If merging predecessors that do not belong to the same loop as IBB, the
1131     // loop info of IBB's loop and the other loops may be affected. Calling the
1132     // block placement again may make big change to the layout and eliminate the
1133     // reason to do tail merging here.
1134     if (AfterBlockPlacement && MLI) {
1135       ML = MLI->getLoopFor(IBB);
1136       if (ML && IBB == ML->getHeader())
1137         continue;
1138     }
1139
1140     for (MachineBasicBlock *PBB : I->predecessors()) {
1141       if (MergePotentials.size() == TailMergeThreshold)
1142         break;
1143
1144       if (TriedMerging.count(PBB))
1145         continue;
1146
1147       // Skip blocks that loop to themselves, can't tail merge these.
1148       if (PBB == IBB)
1149         continue;
1150
1151       // Visit each predecessor only once.
1152       if (!UniquePreds.insert(PBB).second)
1153         continue;
1154
1155       // Skip blocks which may jump to a landing pad. Can't tail merge these.
1156       if (PBB->hasEHPadSuccessor())
1157         continue;
1158
1159       // After block placement, only consider predecessors that belong to the
1160       // same loop as IBB.  The reason is the same as above when skipping loop
1161       // header.
1162       if (AfterBlockPlacement && MLI)
1163         if (ML != MLI->getLoopFor(PBB))
1164           continue;
1165
1166       MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1167       SmallVector<MachineOperand, 4> Cond;
1168       if (!TII->analyzeBranch(*PBB, TBB, FBB, Cond, true)) {
1169         // Failing case: IBB is the target of a cbr, and we cannot reverse the
1170         // branch.
1171         SmallVector<MachineOperand, 4> NewCond(Cond);
1172         if (!Cond.empty() && TBB == IBB) {
1173           if (TII->reverseBranchCondition(NewCond))
1174             continue;
1175           // This is the QBB case described above
1176           if (!FBB) {
1177             auto Next = ++PBB->getIterator();
1178             if (Next != MF.end())
1179               FBB = &*Next;
1180           }
1181         }
1182
1183         // Remove the unconditional branch at the end, if any.
1184         if (TBB && (Cond.empty() || FBB)) {
1185           DebugLoc dl = PBB->findBranchDebugLoc();
1186           TII->removeBranch(*PBB);
1187           if (!Cond.empty())
1188             // reinsert conditional branch only, for now
1189             TII->insertBranch(*PBB, (TBB == IBB) ? FBB : TBB, nullptr,
1190                               NewCond, dl);
1191         }
1192
1193         MergePotentials.push_back(MergePotentialsElt(HashEndOfMBB(*PBB), PBB));
1194       }
1195     }
1196
1197     // If this is a large problem, avoid visiting the same basic blocks multiple
1198     // times.
1199     if (MergePotentials.size() == TailMergeThreshold)
1200       for (unsigned i = 0, e = MergePotentials.size(); i != e; ++i)
1201         TriedMerging.insert(MergePotentials[i].getBlock());
1202
1203     if (MergePotentials.size() >= 2)
1204       MadeChange |= TryTailMergeBlocks(IBB, PredBB, MinCommonTailLength);
1205
1206     // Reinsert an unconditional branch if needed. The 1 below can occur as a
1207     // result of removing blocks in TryTailMergeBlocks.
1208     PredBB = &*std::prev(I); // this may have been changed in TryTailMergeBlocks
1209     if (MergePotentials.size() == 1 &&
1210         MergePotentials.begin()->getBlock() != PredBB)
1211       FixTail(MergePotentials.begin()->getBlock(), IBB, TII);
1212   }
1213
1214   return MadeChange;
1215 }
1216
1217 void BranchFolder::setCommonTailEdgeWeights(MachineBasicBlock &TailMBB) {
1218   SmallVector<BlockFrequency, 2> EdgeFreqLs(TailMBB.succ_size());
1219   BlockFrequency AccumulatedMBBFreq;
1220
1221   // Aggregate edge frequency of successor edge j:
1222   //  edgeFreq(j) = sum (freq(bb) * edgeProb(bb, j)),
1223   //  where bb is a basic block that is in SameTails.
1224   for (const auto &Src : SameTails) {
1225     const MachineBasicBlock *SrcMBB = Src.getBlock();
1226     BlockFrequency BlockFreq = MBBFreqInfo.getBlockFreq(SrcMBB);
1227     AccumulatedMBBFreq += BlockFreq;
1228
1229     // It is not necessary to recompute edge weights if TailBB has less than two
1230     // successors.
1231     if (TailMBB.succ_size() <= 1)
1232       continue;
1233
1234     auto EdgeFreq = EdgeFreqLs.begin();
1235
1236     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1237          SuccI != SuccE; ++SuccI, ++EdgeFreq)
1238       *EdgeFreq += BlockFreq * MBPI.getEdgeProbability(SrcMBB, *SuccI);
1239   }
1240
1241   MBBFreqInfo.setBlockFreq(&TailMBB, AccumulatedMBBFreq);
1242
1243   if (TailMBB.succ_size() <= 1)
1244     return;
1245
1246   auto SumEdgeFreq =
1247       std::accumulate(EdgeFreqLs.begin(), EdgeFreqLs.end(), BlockFrequency(0))
1248           .getFrequency();
1249   auto EdgeFreq = EdgeFreqLs.begin();
1250
1251   if (SumEdgeFreq > 0) {
1252     for (auto SuccI = TailMBB.succ_begin(), SuccE = TailMBB.succ_end();
1253          SuccI != SuccE; ++SuccI, ++EdgeFreq) {
1254       auto Prob = BranchProbability::getBranchProbability(
1255           EdgeFreq->getFrequency(), SumEdgeFreq);
1256       TailMBB.setSuccProbability(SuccI, Prob);
1257     }
1258   }
1259 }
1260
1261 //===----------------------------------------------------------------------===//
1262 //  Branch Optimization
1263 //===----------------------------------------------------------------------===//
1264
1265 bool BranchFolder::OptimizeBranches(MachineFunction &MF) {
1266   bool MadeChange = false;
1267
1268   // Make sure blocks are numbered in order
1269   MF.RenumberBlocks();
1270   // Renumbering blocks alters EH scope membership, recalculate it.
1271   EHScopeMembership = getEHScopeMembership(MF);
1272
1273   for (MachineFunction::iterator I = std::next(MF.begin()), E = MF.end();
1274        I != E; ) {
1275     MachineBasicBlock *MBB = &*I++;
1276     MadeChange |= OptimizeBlock(MBB);
1277
1278     // If it is dead, remove it.
1279     if (MBB->pred_empty()) {
1280       RemoveDeadBlock(MBB);
1281       MadeChange = true;
1282       ++NumDeadBlocks;
1283     }
1284   }
1285
1286   return MadeChange;
1287 }
1288
1289 // Blocks should be considered empty if they contain only debug info;
1290 // else the debug info would affect codegen.
1291 static bool IsEmptyBlock(MachineBasicBlock *MBB) {
1292   return MBB->getFirstNonDebugInstr() == MBB->end();
1293 }
1294
1295 // Blocks with only debug info and branches should be considered the same
1296 // as blocks with only branches.
1297 static bool IsBranchOnlyBlock(MachineBasicBlock *MBB) {
1298   MachineBasicBlock::iterator I = MBB->getFirstNonDebugInstr();
1299   assert(I != MBB->end() && "empty block!");
1300   return I->isBranch();
1301 }
1302
1303 /// IsBetterFallthrough - Return true if it would be clearly better to
1304 /// fall-through to MBB1 than to fall through into MBB2.  This has to return
1305 /// a strict ordering, returning true for both (MBB1,MBB2) and (MBB2,MBB1) will
1306 /// result in infinite loops.
1307 static bool IsBetterFallthrough(MachineBasicBlock *MBB1,
1308                                 MachineBasicBlock *MBB2) {
1309   // Right now, we use a simple heuristic.  If MBB2 ends with a call, and
1310   // MBB1 doesn't, we prefer to fall through into MBB1.  This allows us to
1311   // optimize branches that branch to either a return block or an assert block
1312   // into a fallthrough to the return.
1313   MachineBasicBlock::iterator MBB1I = MBB1->getLastNonDebugInstr();
1314   MachineBasicBlock::iterator MBB2I = MBB2->getLastNonDebugInstr();
1315   if (MBB1I == MBB1->end() || MBB2I == MBB2->end())
1316     return false;
1317
1318   // If there is a clear successor ordering we make sure that one block
1319   // will fall through to the next
1320   if (MBB1->isSuccessor(MBB2)) return true;
1321   if (MBB2->isSuccessor(MBB1)) return false;
1322
1323   return MBB2I->isCall() && !MBB1I->isCall();
1324 }
1325
1326 /// getBranchDebugLoc - Find and return, if any, the DebugLoc of the branch
1327 /// instructions on the block.
1328 static DebugLoc getBranchDebugLoc(MachineBasicBlock &MBB) {
1329   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1330   if (I != MBB.end() && I->isBranch())
1331     return I->getDebugLoc();
1332   return DebugLoc();
1333 }
1334
1335 static void copyDebugInfoToPredecessor(const TargetInstrInfo *TII,
1336                                        MachineBasicBlock &MBB,
1337                                        MachineBasicBlock &PredMBB) {
1338   auto InsertBefore = PredMBB.getFirstTerminator();
1339   for (MachineInstr &MI : MBB.instrs())
1340     if (MI.isDebugInstr()) {
1341       TII->duplicate(PredMBB, InsertBefore, MI);
1342       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to pred: "
1343                         << MI);
1344     }
1345 }
1346
1347 static void copyDebugInfoToSuccessor(const TargetInstrInfo *TII,
1348                                      MachineBasicBlock &MBB,
1349                                      MachineBasicBlock &SuccMBB) {
1350   auto InsertBefore = SuccMBB.SkipPHIsAndLabels(SuccMBB.begin());
1351   for (MachineInstr &MI : MBB.instrs())
1352     if (MI.isDebugInstr()) {
1353       TII->duplicate(SuccMBB, InsertBefore, MI);
1354       LLVM_DEBUG(dbgs() << "Copied debug entity from empty block to succ: "
1355                         << MI);
1356     }
1357 }
1358
1359 // Try to salvage DBG_VALUE instructions from an otherwise empty block. If such
1360 // a basic block is removed we would lose the debug information unless we have
1361 // copied the information to a predecessor/successor.
1362 //
1363 // TODO: This function only handles some simple cases. An alternative would be
1364 // to run a heavier analysis, such as the LiveDebugValues pass, before we do
1365 // branch folding.
1366 static void salvageDebugInfoFromEmptyBlock(const TargetInstrInfo *TII,
1367                                            MachineBasicBlock &MBB) {
1368   assert(IsEmptyBlock(&MBB) && "Expected an empty block (except debug info).");
1369   // If this MBB is the only predecessor of a successor it is legal to copy
1370   // DBG_VALUE instructions to the beginning of the successor.
1371   for (MachineBasicBlock *SuccBB : MBB.successors())
1372     if (SuccBB->pred_size() == 1)
1373       copyDebugInfoToSuccessor(TII, MBB, *SuccBB);
1374   // If this MBB is the only successor of a predecessor it is legal to copy the
1375   // DBG_VALUE instructions to the end of the predecessor (just before the
1376   // terminators, assuming that the terminator isn't affecting the DBG_VALUE).
1377   for (MachineBasicBlock *PredBB : MBB.predecessors())
1378     if (PredBB->succ_size() == 1)
1379       copyDebugInfoToPredecessor(TII, MBB, *PredBB);
1380 }
1381
1382 bool BranchFolder::OptimizeBlock(MachineBasicBlock *MBB) {
1383   bool MadeChange = false;
1384   MachineFunction &MF = *MBB->getParent();
1385 ReoptimizeBlock:
1386
1387   MachineFunction::iterator FallThrough = MBB->getIterator();
1388   ++FallThrough;
1389
1390   // Make sure MBB and FallThrough belong to the same EH scope.
1391   bool SameEHScope = true;
1392   if (!EHScopeMembership.empty() && FallThrough != MF.end()) {
1393     auto MBBEHScope = EHScopeMembership.find(MBB);
1394     assert(MBBEHScope != EHScopeMembership.end());
1395     auto FallThroughEHScope = EHScopeMembership.find(&*FallThrough);
1396     assert(FallThroughEHScope != EHScopeMembership.end());
1397     SameEHScope = MBBEHScope->second == FallThroughEHScope->second;
1398   }
1399
1400   // If this block is empty, make everyone use its fall-through, not the block
1401   // explicitly.  Landing pads should not do this since the landing-pad table
1402   // points to this block.  Blocks with their addresses taken shouldn't be
1403   // optimized away.
1404   if (IsEmptyBlock(MBB) && !MBB->isEHPad() && !MBB->hasAddressTaken() &&
1405       SameEHScope) {
1406     salvageDebugInfoFromEmptyBlock(TII, *MBB);
1407     // Dead block?  Leave for cleanup later.
1408     if (MBB->pred_empty()) return MadeChange;
1409
1410     if (FallThrough == MF.end()) {
1411       // TODO: Simplify preds to not branch here if possible!
1412     } else if (FallThrough->isEHPad()) {
1413       // Don't rewrite to a landing pad fallthough.  That could lead to the case
1414       // where a BB jumps to more than one landing pad.
1415       // TODO: Is it ever worth rewriting predecessors which don't already
1416       // jump to a landing pad, and so can safely jump to the fallthrough?
1417     } else if (MBB->isSuccessor(&*FallThrough)) {
1418       // Rewrite all predecessors of the old block to go to the fallthrough
1419       // instead.
1420       while (!MBB->pred_empty()) {
1421         MachineBasicBlock *Pred = *(MBB->pred_end()-1);
1422         Pred->ReplaceUsesOfBlockWith(MBB, &*FallThrough);
1423       }
1424       // If MBB was the target of a jump table, update jump tables to go to the
1425       // fallthrough instead.
1426       if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1427         MJTI->ReplaceMBBInJumpTables(MBB, &*FallThrough);
1428       MadeChange = true;
1429     }
1430     return MadeChange;
1431   }
1432
1433   // Check to see if we can simplify the terminator of the block before this
1434   // one.
1435   MachineBasicBlock &PrevBB = *std::prev(MachineFunction::iterator(MBB));
1436
1437   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
1438   SmallVector<MachineOperand, 4> PriorCond;
1439   bool PriorUnAnalyzable =
1440       TII->analyzeBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, true);
1441   if (!PriorUnAnalyzable) {
1442     // If the CFG for the prior block has extra edges, remove them.
1443     MadeChange |= PrevBB.CorrectExtraCFGEdges(PriorTBB, PriorFBB,
1444                                               !PriorCond.empty());
1445
1446     // If the previous branch is conditional and both conditions go to the same
1447     // destination, remove the branch, replacing it with an unconditional one or
1448     // a fall-through.
1449     if (PriorTBB && PriorTBB == PriorFBB) {
1450       DebugLoc dl = getBranchDebugLoc(PrevBB);
1451       TII->removeBranch(PrevBB);
1452       PriorCond.clear();
1453       if (PriorTBB != MBB)
1454         TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1455       MadeChange = true;
1456       ++NumBranchOpts;
1457       goto ReoptimizeBlock;
1458     }
1459
1460     // If the previous block unconditionally falls through to this block and
1461     // this block has no other predecessors, move the contents of this block
1462     // into the prior block. This doesn't usually happen when SimplifyCFG
1463     // has been used, but it can happen if tail merging splits a fall-through
1464     // predecessor of a block.
1465     // This has to check PrevBB->succ_size() because EH edges are ignored by
1466     // AnalyzeBranch.
1467     if (PriorCond.empty() && !PriorTBB && MBB->pred_size() == 1 &&
1468         PrevBB.succ_size() == 1 &&
1469         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1470       LLVM_DEBUG(dbgs() << "\nMerging into block: " << PrevBB
1471                         << "From MBB: " << *MBB);
1472       // Remove redundant DBG_VALUEs first.
1473       if (PrevBB.begin() != PrevBB.end()) {
1474         MachineBasicBlock::iterator PrevBBIter = PrevBB.end();
1475         --PrevBBIter;
1476         MachineBasicBlock::iterator MBBIter = MBB->begin();
1477         // Check if DBG_VALUE at the end of PrevBB is identical to the
1478         // DBG_VALUE at the beginning of MBB.
1479         while (PrevBBIter != PrevBB.begin() && MBBIter != MBB->end()
1480                && PrevBBIter->isDebugInstr() && MBBIter->isDebugInstr()) {
1481           if (!MBBIter->isIdenticalTo(*PrevBBIter))
1482             break;
1483           MachineInstr &DuplicateDbg = *MBBIter;
1484           ++MBBIter; -- PrevBBIter;
1485           DuplicateDbg.eraseFromParent();
1486         }
1487       }
1488       PrevBB.splice(PrevBB.end(), MBB, MBB->begin(), MBB->end());
1489       PrevBB.removeSuccessor(PrevBB.succ_begin());
1490       assert(PrevBB.succ_empty());
1491       PrevBB.transferSuccessors(MBB);
1492       MadeChange = true;
1493       return MadeChange;
1494     }
1495
1496     // If the previous branch *only* branches to *this* block (conditional or
1497     // not) remove the branch.
1498     if (PriorTBB == MBB && !PriorFBB) {
1499       TII->removeBranch(PrevBB);
1500       MadeChange = true;
1501       ++NumBranchOpts;
1502       goto ReoptimizeBlock;
1503     }
1504
1505     // If the prior block branches somewhere else on the condition and here if
1506     // the condition is false, remove the uncond second branch.
1507     if (PriorFBB == MBB) {
1508       DebugLoc dl = getBranchDebugLoc(PrevBB);
1509       TII->removeBranch(PrevBB);
1510       TII->insertBranch(PrevBB, PriorTBB, nullptr, PriorCond, dl);
1511       MadeChange = true;
1512       ++NumBranchOpts;
1513       goto ReoptimizeBlock;
1514     }
1515
1516     // If the prior block branches here on true and somewhere else on false, and
1517     // if the branch condition is reversible, reverse the branch to create a
1518     // fall-through.
1519     if (PriorTBB == MBB) {
1520       SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1521       if (!TII->reverseBranchCondition(NewPriorCond)) {
1522         DebugLoc dl = getBranchDebugLoc(PrevBB);
1523         TII->removeBranch(PrevBB);
1524         TII->insertBranch(PrevBB, PriorFBB, nullptr, NewPriorCond, dl);
1525         MadeChange = true;
1526         ++NumBranchOpts;
1527         goto ReoptimizeBlock;
1528       }
1529     }
1530
1531     // If this block has no successors (e.g. it is a return block or ends with
1532     // a call to a no-return function like abort or __cxa_throw) and if the pred
1533     // falls through into this block, and if it would otherwise fall through
1534     // into the block after this, move this block to the end of the function.
1535     //
1536     // We consider it more likely that execution will stay in the function (e.g.
1537     // due to loops) than it is to exit it.  This asserts in loops etc, moving
1538     // the assert condition out of the loop body.
1539     if (MBB->succ_empty() && !PriorCond.empty() && !PriorFBB &&
1540         MachineFunction::iterator(PriorTBB) == FallThrough &&
1541         !MBB->canFallThrough()) {
1542       bool DoTransform = true;
1543
1544       // We have to be careful that the succs of PredBB aren't both no-successor
1545       // blocks.  If neither have successors and if PredBB is the second from
1546       // last block in the function, we'd just keep swapping the two blocks for
1547       // last.  Only do the swap if one is clearly better to fall through than
1548       // the other.
1549       if (FallThrough == --MF.end() &&
1550           !IsBetterFallthrough(PriorTBB, MBB))
1551         DoTransform = false;
1552
1553       if (DoTransform) {
1554         // Reverse the branch so we will fall through on the previous true cond.
1555         SmallVector<MachineOperand, 4> NewPriorCond(PriorCond);
1556         if (!TII->reverseBranchCondition(NewPriorCond)) {
1557           LLVM_DEBUG(dbgs() << "\nMoving MBB: " << *MBB
1558                             << "To make fallthrough to: " << *PriorTBB << "\n");
1559
1560           DebugLoc dl = getBranchDebugLoc(PrevBB);
1561           TII->removeBranch(PrevBB);
1562           TII->insertBranch(PrevBB, MBB, nullptr, NewPriorCond, dl);
1563
1564           // Move this block to the end of the function.
1565           MBB->moveAfter(&MF.back());
1566           MadeChange = true;
1567           ++NumBranchOpts;
1568           return MadeChange;
1569         }
1570       }
1571     }
1572   }
1573
1574   if (!IsEmptyBlock(MBB) && MBB->pred_size() == 1 &&
1575       MF.getFunction().hasOptSize()) {
1576     // Changing "Jcc foo; foo: jmp bar;" into "Jcc bar;" might change the branch
1577     // direction, thereby defeating careful block placement and regressing
1578     // performance. Therefore, only consider this for optsize functions.
1579     MachineInstr &TailCall = *MBB->getFirstNonDebugInstr();
1580     if (TII->isUnconditionalTailCall(TailCall)) {
1581       MachineBasicBlock *Pred = *MBB->pred_begin();
1582       MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1583       SmallVector<MachineOperand, 4> PredCond;
1584       bool PredAnalyzable =
1585           !TII->analyzeBranch(*Pred, PredTBB, PredFBB, PredCond, true);
1586
1587       if (PredAnalyzable && !PredCond.empty() && PredTBB == MBB &&
1588           PredTBB != PredFBB) {
1589         // The predecessor has a conditional branch to this block which consists
1590         // of only a tail call. Try to fold the tail call into the conditional
1591         // branch.
1592         if (TII->canMakeTailCallConditional(PredCond, TailCall)) {
1593           // TODO: It would be nice if analyzeBranch() could provide a pointer
1594           // to the branch instruction so replaceBranchWithTailCall() doesn't
1595           // have to search for it.
1596           TII->replaceBranchWithTailCall(*Pred, PredCond, TailCall);
1597           ++NumTailCalls;
1598           Pred->removeSuccessor(MBB);
1599           MadeChange = true;
1600           return MadeChange;
1601         }
1602       }
1603       // If the predecessor is falling through to this block, we could reverse
1604       // the branch condition and fold the tail call into that. However, after
1605       // that we might have to re-arrange the CFG to fall through to the other
1606       // block and there is a high risk of regressing code size rather than
1607       // improving it.
1608     }
1609   }
1610
1611   // Analyze the branch in the current block.
1612   MachineBasicBlock *CurTBB = nullptr, *CurFBB = nullptr;
1613   SmallVector<MachineOperand, 4> CurCond;
1614   bool CurUnAnalyzable =
1615       TII->analyzeBranch(*MBB, CurTBB, CurFBB, CurCond, true);
1616   if (!CurUnAnalyzable) {
1617     // If the CFG for the prior block has extra edges, remove them.
1618     MadeChange |= MBB->CorrectExtraCFGEdges(CurTBB, CurFBB, !CurCond.empty());
1619
1620     // If this is a two-way branch, and the FBB branches to this block, reverse
1621     // the condition so the single-basic-block loop is faster.  Instead of:
1622     //    Loop: xxx; jcc Out; jmp Loop
1623     // we want:
1624     //    Loop: xxx; jncc Loop; jmp Out
1625     if (CurTBB && CurFBB && CurFBB == MBB && CurTBB != MBB) {
1626       SmallVector<MachineOperand, 4> NewCond(CurCond);
1627       if (!TII->reverseBranchCondition(NewCond)) {
1628         DebugLoc dl = getBranchDebugLoc(*MBB);
1629         TII->removeBranch(*MBB);
1630         TII->insertBranch(*MBB, CurFBB, CurTBB, NewCond, dl);
1631         MadeChange = true;
1632         ++NumBranchOpts;
1633         goto ReoptimizeBlock;
1634       }
1635     }
1636
1637     // If this branch is the only thing in its block, see if we can forward
1638     // other blocks across it.
1639     if (CurTBB && CurCond.empty() && !CurFBB &&
1640         IsBranchOnlyBlock(MBB) && CurTBB != MBB &&
1641         !MBB->hasAddressTaken() && !MBB->isEHPad()) {
1642       DebugLoc dl = getBranchDebugLoc(*MBB);
1643       // This block may contain just an unconditional branch.  Because there can
1644       // be 'non-branch terminators' in the block, try removing the branch and
1645       // then seeing if the block is empty.
1646       TII->removeBranch(*MBB);
1647       // If the only things remaining in the block are debug info, remove these
1648       // as well, so this will behave the same as an empty block in non-debug
1649       // mode.
1650       if (IsEmptyBlock(MBB)) {
1651         // Make the block empty, losing the debug info (we could probably
1652         // improve this in some cases.)
1653         MBB->erase(MBB->begin(), MBB->end());
1654       }
1655       // If this block is just an unconditional branch to CurTBB, we can
1656       // usually completely eliminate the block.  The only case we cannot
1657       // completely eliminate the block is when the block before this one
1658       // falls through into MBB and we can't understand the prior block's branch
1659       // condition.
1660       if (MBB->empty()) {
1661         bool PredHasNoFallThrough = !PrevBB.canFallThrough();
1662         if (PredHasNoFallThrough || !PriorUnAnalyzable ||
1663             !PrevBB.isSuccessor(MBB)) {
1664           // If the prior block falls through into us, turn it into an
1665           // explicit branch to us to make updates simpler.
1666           if (!PredHasNoFallThrough && PrevBB.isSuccessor(MBB) &&
1667               PriorTBB != MBB && PriorFBB != MBB) {
1668             if (!PriorTBB) {
1669               assert(PriorCond.empty() && !PriorFBB &&
1670                      "Bad branch analysis");
1671               PriorTBB = MBB;
1672             } else {
1673               assert(!PriorFBB && "Machine CFG out of date!");
1674               PriorFBB = MBB;
1675             }
1676             DebugLoc pdl = getBranchDebugLoc(PrevBB);
1677             TII->removeBranch(PrevBB);
1678             TII->insertBranch(PrevBB, PriorTBB, PriorFBB, PriorCond, pdl);
1679           }
1680
1681           // Iterate through all the predecessors, revectoring each in-turn.
1682           size_t PI = 0;
1683           bool DidChange = false;
1684           bool HasBranchToSelf = false;
1685           while(PI != MBB->pred_size()) {
1686             MachineBasicBlock *PMBB = *(MBB->pred_begin() + PI);
1687             if (PMBB == MBB) {
1688               // If this block has an uncond branch to itself, leave it.
1689               ++PI;
1690               HasBranchToSelf = true;
1691             } else {
1692               DidChange = true;
1693               PMBB->ReplaceUsesOfBlockWith(MBB, CurTBB);
1694               // If this change resulted in PMBB ending in a conditional
1695               // branch where both conditions go to the same destination,
1696               // change this to an unconditional branch (and fix the CFG).
1697               MachineBasicBlock *NewCurTBB = nullptr, *NewCurFBB = nullptr;
1698               SmallVector<MachineOperand, 4> NewCurCond;
1699               bool NewCurUnAnalyzable = TII->analyzeBranch(
1700                   *PMBB, NewCurTBB, NewCurFBB, NewCurCond, true);
1701               if (!NewCurUnAnalyzable && NewCurTBB && NewCurTBB == NewCurFBB) {
1702                 DebugLoc pdl = getBranchDebugLoc(*PMBB);
1703                 TII->removeBranch(*PMBB);
1704                 NewCurCond.clear();
1705                 TII->insertBranch(*PMBB, NewCurTBB, nullptr, NewCurCond, pdl);
1706                 MadeChange = true;
1707                 ++NumBranchOpts;
1708                 PMBB->CorrectExtraCFGEdges(NewCurTBB, nullptr, false);
1709               }
1710             }
1711           }
1712
1713           // Change any jumptables to go to the new MBB.
1714           if (MachineJumpTableInfo *MJTI = MF.getJumpTableInfo())
1715             MJTI->ReplaceMBBInJumpTables(MBB, CurTBB);
1716           if (DidChange) {
1717             ++NumBranchOpts;
1718             MadeChange = true;
1719             if (!HasBranchToSelf) return MadeChange;
1720           }
1721         }
1722       }
1723
1724       // Add the branch back if the block is more than just an uncond branch.
1725       TII->insertBranch(*MBB, CurTBB, nullptr, CurCond, dl);
1726     }
1727   }
1728
1729   // If the prior block doesn't fall through into this block, and if this
1730   // block doesn't fall through into some other block, see if we can find a
1731   // place to move this block where a fall-through will happen.
1732   if (!PrevBB.canFallThrough()) {
1733     // Now we know that there was no fall-through into this block, check to
1734     // see if it has a fall-through into its successor.
1735     bool CurFallsThru = MBB->canFallThrough();
1736
1737     if (!MBB->isEHPad()) {
1738       // Check all the predecessors of this block.  If one of them has no fall
1739       // throughs, move this block right after it.
1740       for (MachineBasicBlock *PredBB : MBB->predecessors()) {
1741         // Analyze the branch at the end of the pred.
1742         MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
1743         SmallVector<MachineOperand, 4> PredCond;
1744         if (PredBB != MBB && !PredBB->canFallThrough() &&
1745             !TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true) &&
1746             (!CurFallsThru || !CurTBB || !CurFBB) &&
1747             (!CurFallsThru || MBB->getNumber() >= PredBB->getNumber())) {
1748           // If the current block doesn't fall through, just move it.
1749           // If the current block can fall through and does not end with a
1750           // conditional branch, we need to append an unconditional jump to
1751           // the (current) next block.  To avoid a possible compile-time
1752           // infinite loop, move blocks only backward in this case.
1753           // Also, if there are already 2 branches here, we cannot add a third;
1754           // this means we have the case
1755           // Bcc next
1756           // B elsewhere
1757           // next:
1758           if (CurFallsThru) {
1759             MachineBasicBlock *NextBB = &*std::next(MBB->getIterator());
1760             CurCond.clear();
1761             TII->insertBranch(*MBB, NextBB, nullptr, CurCond, DebugLoc());
1762           }
1763           MBB->moveAfter(PredBB);
1764           MadeChange = true;
1765           goto ReoptimizeBlock;
1766         }
1767       }
1768     }
1769
1770     if (!CurFallsThru) {
1771       // Check all successors to see if we can move this block before it.
1772       for (MachineBasicBlock *SuccBB : MBB->successors()) {
1773         // Analyze the branch at the end of the block before the succ.
1774         MachineFunction::iterator SuccPrev = --SuccBB->getIterator();
1775
1776         // If this block doesn't already fall-through to that successor, and if
1777         // the succ doesn't already have a block that can fall through into it,
1778         // and if the successor isn't an EH destination, we can arrange for the
1779         // fallthrough to happen.
1780         if (SuccBB != MBB && &*SuccPrev != MBB &&
1781             !SuccPrev->canFallThrough() && !CurUnAnalyzable &&
1782             !SuccBB->isEHPad()) {
1783           MBB->moveBefore(SuccBB);
1784           MadeChange = true;
1785           goto ReoptimizeBlock;
1786         }
1787       }
1788
1789       // Okay, there is no really great place to put this block.  If, however,
1790       // the block before this one would be a fall-through if this block were
1791       // removed, move this block to the end of the function. There is no real
1792       // advantage in "falling through" to an EH block, so we don't want to
1793       // perform this transformation for that case.
1794       //
1795       // Also, Windows EH introduced the possibility of an arbitrary number of
1796       // successors to a given block.  The analyzeBranch call does not consider
1797       // exception handling and so we can get in a state where a block
1798       // containing a call is followed by multiple EH blocks that would be
1799       // rotated infinitely at the end of the function if the transformation
1800       // below were performed for EH "FallThrough" blocks.  Therefore, even if
1801       // that appears not to be happening anymore, we should assume that it is
1802       // possible and not remove the "!FallThrough()->isEHPad" condition below.
1803       MachineBasicBlock *PrevTBB = nullptr, *PrevFBB = nullptr;
1804       SmallVector<MachineOperand, 4> PrevCond;
1805       if (FallThrough != MF.end() &&
1806           !FallThrough->isEHPad() &&
1807           !TII->analyzeBranch(PrevBB, PrevTBB, PrevFBB, PrevCond, true) &&
1808           PrevBB.isSuccessor(&*FallThrough)) {
1809         MBB->moveAfter(&MF.back());
1810         MadeChange = true;
1811         return MadeChange;
1812       }
1813     }
1814   }
1815
1816   return MadeChange;
1817 }
1818
1819 //===----------------------------------------------------------------------===//
1820 //  Hoist Common Code
1821 //===----------------------------------------------------------------------===//
1822
1823 bool BranchFolder::HoistCommonCode(MachineFunction &MF) {
1824   bool MadeChange = false;
1825   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ) {
1826     MachineBasicBlock *MBB = &*I++;
1827     MadeChange |= HoistCommonCodeInSuccs(MBB);
1828   }
1829
1830   return MadeChange;
1831 }
1832
1833 /// findFalseBlock - BB has a fallthrough. Find its 'false' successor given
1834 /// its 'true' successor.
1835 static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB,
1836                                          MachineBasicBlock *TrueBB) {
1837   for (MachineBasicBlock *SuccBB : BB->successors())
1838     if (SuccBB != TrueBB)
1839       return SuccBB;
1840   return nullptr;
1841 }
1842
1843 template <class Container>
1844 static void addRegAndItsAliases(unsigned Reg, const TargetRegisterInfo *TRI,
1845                                 Container &Set) {
1846   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1847     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
1848       Set.insert(*AI);
1849   } else {
1850     Set.insert(Reg);
1851   }
1852 }
1853
1854 /// findHoistingInsertPosAndDeps - Find the location to move common instructions
1855 /// in successors to. The location is usually just before the terminator,
1856 /// however if the terminator is a conditional branch and its previous
1857 /// instruction is the flag setting instruction, the previous instruction is
1858 /// the preferred location. This function also gathers uses and defs of the
1859 /// instructions from the insertion point to the end of the block. The data is
1860 /// used by HoistCommonCodeInSuccs to ensure safety.
1861 static
1862 MachineBasicBlock::iterator findHoistingInsertPosAndDeps(MachineBasicBlock *MBB,
1863                                                   const TargetInstrInfo *TII,
1864                                                   const TargetRegisterInfo *TRI,
1865                                                   SmallSet<unsigned,4> &Uses,
1866                                                   SmallSet<unsigned,4> &Defs) {
1867   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1868   if (!TII->isUnpredicatedTerminator(*Loc))
1869     return MBB->end();
1870
1871   for (const MachineOperand &MO : Loc->operands()) {
1872     if (!MO.isReg())
1873       continue;
1874     unsigned Reg = MO.getReg();
1875     if (!Reg)
1876       continue;
1877     if (MO.isUse()) {
1878       addRegAndItsAliases(Reg, TRI, Uses);
1879     } else {
1880       if (!MO.isDead())
1881         // Don't try to hoist code in the rare case the terminator defines a
1882         // register that is later used.
1883         return MBB->end();
1884
1885       // If the terminator defines a register, make sure we don't hoist
1886       // the instruction whose def might be clobbered by the terminator.
1887       addRegAndItsAliases(Reg, TRI, Defs);
1888     }
1889   }
1890
1891   if (Uses.empty())
1892     return Loc;
1893   // If the terminator is the only instruction in the block and Uses is not
1894   // empty (or we would have returned above), we can still safely hoist
1895   // instructions just before the terminator as long as the Defs/Uses are not
1896   // violated (which is checked in HoistCommonCodeInSuccs).
1897   if (Loc == MBB->begin())
1898     return Loc;
1899
1900   // The terminator is probably a conditional branch, try not to separate the
1901   // branch from condition setting instruction.
1902   MachineBasicBlock::iterator PI =
1903     skipDebugInstructionsBackward(std::prev(Loc), MBB->begin());
1904
1905   bool IsDef = false;
1906   for (const MachineOperand &MO : PI->operands()) {
1907     // If PI has a regmask operand, it is probably a call. Separate away.
1908     if (MO.isRegMask())
1909       return Loc;
1910     if (!MO.isReg() || MO.isUse())
1911       continue;
1912     unsigned Reg = MO.getReg();
1913     if (!Reg)
1914       continue;
1915     if (Uses.count(Reg)) {
1916       IsDef = true;
1917       break;
1918     }
1919   }
1920   if (!IsDef)
1921     // The condition setting instruction is not just before the conditional
1922     // branch.
1923     return Loc;
1924
1925   // Be conservative, don't insert instruction above something that may have
1926   // side-effects. And since it's potentially bad to separate flag setting
1927   // instruction from the conditional branch, just abort the optimization
1928   // completely.
1929   // Also avoid moving code above predicated instruction since it's hard to
1930   // reason about register liveness with predicated instruction.
1931   bool DontMoveAcrossStore = true;
1932   if (!PI->isSafeToMove(nullptr, DontMoveAcrossStore) || TII->isPredicated(*PI))
1933     return MBB->end();
1934
1935   // Find out what registers are live. Note this routine is ignoring other live
1936   // registers which are only used by instructions in successor blocks.
1937   for (const MachineOperand &MO : PI->operands()) {
1938     if (!MO.isReg())
1939       continue;
1940     unsigned Reg = MO.getReg();
1941     if (!Reg)
1942       continue;
1943     if (MO.isUse()) {
1944       addRegAndItsAliases(Reg, TRI, Uses);
1945     } else {
1946       if (Uses.erase(Reg)) {
1947         if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1948           for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
1949             Uses.erase(*SubRegs); // Use sub-registers to be conservative
1950         }
1951       }
1952       addRegAndItsAliases(Reg, TRI, Defs);
1953     }
1954   }
1955
1956   return PI;
1957 }
1958
1959 bool BranchFolder::HoistCommonCodeInSuccs(MachineBasicBlock *MBB) {
1960   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1961   SmallVector<MachineOperand, 4> Cond;
1962   if (TII->analyzeBranch(*MBB, TBB, FBB, Cond, true) || !TBB || Cond.empty())
1963     return false;
1964
1965   if (!FBB) FBB = findFalseBlock(MBB, TBB);
1966   if (!FBB)
1967     // Malformed bcc? True and false blocks are the same?
1968     return false;
1969
1970   // Restrict the optimization to cases where MBB is the only predecessor,
1971   // it is an obvious win.
1972   if (TBB->pred_size() > 1 || FBB->pred_size() > 1)
1973     return false;
1974
1975   // Find a suitable position to hoist the common instructions to. Also figure
1976   // out which registers are used or defined by instructions from the insertion
1977   // point to the end of the block.
1978   SmallSet<unsigned, 4> Uses, Defs;
1979   MachineBasicBlock::iterator Loc =
1980     findHoistingInsertPosAndDeps(MBB, TII, TRI, Uses, Defs);
1981   if (Loc == MBB->end())
1982     return false;
1983
1984   bool HasDups = false;
1985   SmallSet<unsigned, 4> ActiveDefsSet, AllDefsSet;
1986   MachineBasicBlock::iterator TIB = TBB->begin();
1987   MachineBasicBlock::iterator FIB = FBB->begin();
1988   MachineBasicBlock::iterator TIE = TBB->end();
1989   MachineBasicBlock::iterator FIE = FBB->end();
1990   while (TIB != TIE && FIB != FIE) {
1991     // Skip dbg_value instructions. These do not count.
1992     TIB = skipDebugInstructionsForward(TIB, TIE);
1993     FIB = skipDebugInstructionsForward(FIB, FIE);
1994     if (TIB == TIE || FIB == FIE)
1995       break;
1996
1997     if (!TIB->isIdenticalTo(*FIB, MachineInstr::CheckKillDead))
1998       break;
1999
2000     if (TII->isPredicated(*TIB))
2001       // Hard to reason about register liveness with predicated instruction.
2002       break;
2003
2004     bool IsSafe = true;
2005     for (MachineOperand &MO : TIB->operands()) {
2006       // Don't attempt to hoist instructions with register masks.
2007       if (MO.isRegMask()) {
2008         IsSafe = false;
2009         break;
2010       }
2011       if (!MO.isReg())
2012         continue;
2013       unsigned Reg = MO.getReg();
2014       if (!Reg)
2015         continue;
2016       if (MO.isDef()) {
2017         if (Uses.count(Reg)) {
2018           // Avoid clobbering a register that's used by the instruction at
2019           // the point of insertion.
2020           IsSafe = false;
2021           break;
2022         }
2023
2024         if (Defs.count(Reg) && !MO.isDead()) {
2025           // Don't hoist the instruction if the def would be clobber by the
2026           // instruction at the point insertion. FIXME: This is overly
2027           // conservative. It should be possible to hoist the instructions
2028           // in BB2 in the following example:
2029           // BB1:
2030           // r1, eflag = op1 r2, r3
2031           // brcc eflag
2032           //
2033           // BB2:
2034           // r1 = op2, ...
2035           //    = op3, killed r1
2036           IsSafe = false;
2037           break;
2038         }
2039       } else if (!ActiveDefsSet.count(Reg)) {
2040         if (Defs.count(Reg)) {
2041           // Use is defined by the instruction at the point of insertion.
2042           IsSafe = false;
2043           break;
2044         }
2045
2046         if (MO.isKill() && Uses.count(Reg))
2047           // Kills a register that's read by the instruction at the point of
2048           // insertion. Remove the kill marker.
2049           MO.setIsKill(false);
2050       }
2051     }
2052     if (!IsSafe)
2053       break;
2054
2055     bool DontMoveAcrossStore = true;
2056     if (!TIB->isSafeToMove(nullptr, DontMoveAcrossStore))
2057       break;
2058
2059     // Remove kills from ActiveDefsSet, these registers had short live ranges.
2060     for (const MachineOperand &MO : TIB->operands()) {
2061       if (!MO.isReg() || !MO.isUse() || !MO.isKill())
2062         continue;
2063       unsigned Reg = MO.getReg();
2064       if (!Reg)
2065         continue;
2066       if (!AllDefsSet.count(Reg)) {
2067         continue;
2068       }
2069       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
2070         for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
2071           ActiveDefsSet.erase(*AI);
2072       } else {
2073         ActiveDefsSet.erase(Reg);
2074       }
2075     }
2076
2077     // Track local defs so we can update liveins.
2078     for (const MachineOperand &MO : TIB->operands()) {
2079       if (!MO.isReg() || !MO.isDef() || MO.isDead())
2080         continue;
2081       unsigned Reg = MO.getReg();
2082       if (!Reg || TargetRegisterInfo::isVirtualRegister(Reg))
2083         continue;
2084       addRegAndItsAliases(Reg, TRI, ActiveDefsSet);
2085       addRegAndItsAliases(Reg, TRI, AllDefsSet);
2086     }
2087
2088     HasDups = true;
2089     ++TIB;
2090     ++FIB;
2091   }
2092
2093   if (!HasDups)
2094     return false;
2095
2096   MBB->splice(Loc, TBB, TBB->begin(), TIB);
2097   FBB->erase(FBB->begin(), FIB);
2098
2099   if (UpdateLiveIns) {
2100     recomputeLiveIns(*TBB);
2101     recomputeLiveIns(*FBB);
2102   }
2103
2104   ++NumHoist;
2105   return true;
2106 }