]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/CriticalAntiDepBreaker.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / CriticalAntiDepBreaker.cpp
1 //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CriticalAntiDepBreaker class, which
10 // implements register anti-dependence breaking along a blocks
11 // critical path during post-RA scheduler.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CriticalAntiDepBreaker.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterClassInfo.h"
27 #include "llvm/CodeGen/ScheduleDAG.h"
28 #include "llvm/CodeGen/TargetInstrInfo.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <cassert>
36 #include <map>
37 #include <utility>
38 #include <vector>
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "post-RA-sched"
43
44 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
45                                                const RegisterClassInfo &RCI)
46     : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
47       TII(MF.getSubtarget().getInstrInfo()),
48       TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
49       Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
50       DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
51
52 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default;
53
54 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
55   const unsigned BBSize = BB->size();
56   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
57     // Clear out the register class data.
58     Classes[i] = nullptr;
59
60     // Initialize the indices to indicate that no registers are live.
61     KillIndices[i] = ~0u;
62     DefIndices[i] = BBSize;
63   }
64
65   // Clear "do not change" set.
66   KeepRegs.reset();
67
68   bool IsReturnBlock = BB->isReturnBlock();
69
70   // Examine the live-in regs of all successors.
71   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
72          SE = BB->succ_end(); SI != SE; ++SI)
73     for (const auto &LI : (*SI)->liveins()) {
74       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
75         unsigned Reg = *AI;
76         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
77         KillIndices[Reg] = BBSize;
78         DefIndices[Reg] = ~0u;
79       }
80     }
81
82   // Mark live-out callee-saved registers. In a return block this is
83   // all callee-saved registers. In non-return this is any
84   // callee-saved register that is not saved in the prolog.
85   const MachineFrameInfo &MFI = MF.getFrameInfo();
86   BitVector Pristine = MFI.getPristineRegs(MF);
87   for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
88        ++I) {
89     unsigned Reg = *I;
90     if (!IsReturnBlock && !Pristine.test(Reg))
91       continue;
92     for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
93       unsigned Reg = *AI;
94       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
95       KillIndices[Reg] = BBSize;
96       DefIndices[Reg] = ~0u;
97     }
98   }
99 }
100
101 void CriticalAntiDepBreaker::FinishBlock() {
102   RegRefs.clear();
103   KeepRegs.reset();
104 }
105
106 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
107                                      unsigned InsertPosIndex) {
108   // Kill instructions can define registers but are really nops, and there might
109   // be a real definition earlier that needs to be paired with uses dominated by
110   // this kill.
111
112   // FIXME: It may be possible to remove the isKill() restriction once PR18663
113   // has been properly fixed. There can be value in processing kills as seen in
114   // the AggressiveAntiDepBreaker class.
115   if (MI.isDebugInstr() || MI.isKill())
116     return;
117   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
118
119   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
120     if (KillIndices[Reg] != ~0u) {
121       // If Reg is currently live, then mark that it can't be renamed as
122       // we don't know the extent of its live-range anymore (now that it
123       // has been scheduled).
124       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
125       KillIndices[Reg] = Count;
126     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
127       // Any register which was defined within the previous scheduling region
128       // may have been rescheduled and its lifetime may overlap with registers
129       // in ways not reflected in our current liveness state. For each such
130       // register, adjust the liveness state to be conservatively correct.
131       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
132
133       // Move the def index to the end of the previous region, to reflect
134       // that the def could theoretically have been scheduled at the end.
135       DefIndices[Reg] = InsertPosIndex;
136     }
137   }
138
139   PrescanInstruction(MI);
140   ScanInstruction(MI, Count);
141 }
142
143 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
144 /// critical path.
145 static const SDep *CriticalPathStep(const SUnit *SU) {
146   const SDep *Next = nullptr;
147   unsigned NextDepth = 0;
148   // Find the predecessor edge with the greatest depth.
149   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
150        P != PE; ++P) {
151     const SUnit *PredSU = P->getSUnit();
152     unsigned PredLatency = P->getLatency();
153     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
154     // In the case of a latency tie, prefer an anti-dependency edge over
155     // other types of edges.
156     if (NextDepth < PredTotalLatency ||
157         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
158       NextDepth = PredTotalLatency;
159       Next = &*P;
160     }
161   }
162   return Next;
163 }
164
165 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
166   // It's not safe to change register allocation for source operands of
167   // instructions that have special allocation requirements. Also assume all
168   // registers used in a call must not be changed (ABI).
169   // FIXME: The issue with predicated instruction is more complex. We are being
170   // conservative here because the kill markers cannot be trusted after
171   // if-conversion:
172   // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
173   // ...
174   // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
175   // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
176   // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
177   //
178   // The first R6 kill is not really a kill since it's killed by a predicated
179   // instruction which may not be executed. The second R6 def may or may not
180   // re-define R6 so it's not safe to change it since the last R6 use cannot be
181   // changed.
182   bool Special =
183       MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);
184
185   // Scan the register operands for this instruction and update
186   // Classes and RegRefs.
187   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
188     MachineOperand &MO = MI.getOperand(i);
189     if (!MO.isReg()) continue;
190     unsigned Reg = MO.getReg();
191     if (Reg == 0) continue;
192     const TargetRegisterClass *NewRC = nullptr;
193
194     if (i < MI.getDesc().getNumOperands())
195       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
196
197     // For now, only allow the register to be changed if its register
198     // class is consistent across all uses.
199     if (!Classes[Reg] && NewRC)
200       Classes[Reg] = NewRC;
201     else if (!NewRC || Classes[Reg] != NewRC)
202       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
203
204     // Now check for aliases.
205     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
206       // If an alias of the reg is used during the live range, give up.
207       // Note that this allows us to skip checking if AntiDepReg
208       // overlaps with any of the aliases, among other things.
209       unsigned AliasReg = *AI;
210       if (Classes[AliasReg]) {
211         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
212         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
213       }
214     }
215
216     // If we're still willing to consider this register, note the reference.
217     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
218       RegRefs.insert(std::make_pair(Reg, &MO));
219
220     // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
221     // it or any of its sub or super regs. We need to use KeepRegs to mark the
222     // reg because not all uses of the same reg within an instruction are
223     // necessarily tagged as tied.
224     // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
225     // def register but not the second (see PR20020 for details).
226     // FIXME: can this check be relaxed to account for undef uses
227     // of a register? In the above 'xor' example, the uses of %eax are undef, so
228     // earlier instructions could still replace %eax even though the 'xor'
229     // itself can't be changed.
230     if (MI.isRegTiedToUseOperand(i) &&
231         Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
232       for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
233            SubRegs.isValid(); ++SubRegs) {
234         KeepRegs.set(*SubRegs);
235       }
236       for (MCSuperRegIterator SuperRegs(Reg, TRI);
237            SuperRegs.isValid(); ++SuperRegs) {
238         KeepRegs.set(*SuperRegs);
239       }
240     }
241
242     if (MO.isUse() && Special) {
243       if (!KeepRegs.test(Reg)) {
244         for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
245              SubRegs.isValid(); ++SubRegs)
246           KeepRegs.set(*SubRegs);
247       }
248     }
249   }
250 }
251
252 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
253   // Update liveness.
254   // Proceeding upwards, registers that are defed but not used in this
255   // instruction are now dead.
256   assert(!MI.isKill() && "Attempting to scan a kill instruction");
257
258   if (!TII->isPredicated(MI)) {
259     // Predicated defs are modeled as read + write, i.e. similar to two
260     // address updates.
261     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
262       MachineOperand &MO = MI.getOperand(i);
263
264       if (MO.isRegMask())
265         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
266           if (MO.clobbersPhysReg(i)) {
267             DefIndices[i] = Count;
268             KillIndices[i] = ~0u;
269             KeepRegs.reset(i);
270             Classes[i] = nullptr;
271             RegRefs.erase(i);
272           }
273
274       if (!MO.isReg()) continue;
275       unsigned Reg = MO.getReg();
276       if (Reg == 0) continue;
277       if (!MO.isDef()) continue;
278
279       // Ignore two-addr defs.
280       if (MI.isRegTiedToUseOperand(i))
281         continue;
282
283       // If we've already marked this reg as unchangeable, don't remove
284       // it or any of its subregs from KeepRegs.
285       bool Keep = KeepRegs.test(Reg);
286
287       // For the reg itself and all subregs: update the def to current;
288       // reset the kill state, any restrictions, and references.
289       for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
290         unsigned SubregReg = *SRI;
291         DefIndices[SubregReg] = Count;
292         KillIndices[SubregReg] = ~0u;
293         Classes[SubregReg] = nullptr;
294         RegRefs.erase(SubregReg);
295         if (!Keep)
296           KeepRegs.reset(SubregReg);
297       }
298       // Conservatively mark super-registers as unusable.
299       for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
300         Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
301     }
302   }
303   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
304     MachineOperand &MO = MI.getOperand(i);
305     if (!MO.isReg()) continue;
306     unsigned Reg = MO.getReg();
307     if (Reg == 0) continue;
308     if (!MO.isUse()) continue;
309
310     const TargetRegisterClass *NewRC = nullptr;
311     if (i < MI.getDesc().getNumOperands())
312       NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
313
314     // For now, only allow the register to be changed if its register
315     // class is consistent across all uses.
316     if (!Classes[Reg] && NewRC)
317       Classes[Reg] = NewRC;
318     else if (!NewRC || Classes[Reg] != NewRC)
319       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
320
321     RegRefs.insert(std::make_pair(Reg, &MO));
322
323     // It wasn't previously live but now it is, this is a kill.
324     // Repeat for all aliases.
325     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
326       unsigned AliasReg = *AI;
327       if (KillIndices[AliasReg] == ~0u) {
328         KillIndices[AliasReg] = Count;
329         DefIndices[AliasReg] = ~0u;
330       }
331     }
332   }
333 }
334
335 // Check all machine operands that reference the antidependent register and must
336 // be replaced by NewReg. Return true if any of their parent instructions may
337 // clobber the new register.
338 //
339 // Note: AntiDepReg may be referenced by a two-address instruction such that
340 // it's use operand is tied to a def operand. We guard against the case in which
341 // the two-address instruction also defines NewReg, as may happen with
342 // pre/postincrement loads. In this case, both the use and def operands are in
343 // RegRefs because the def is inserted by PrescanInstruction and not erased
344 // during ScanInstruction. So checking for an instruction with definitions of
345 // both NewReg and AntiDepReg covers it.
346 bool
347 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
348                                                 RegRefIter RegRefEnd,
349                                                 unsigned NewReg) {
350   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
351     MachineOperand *RefOper = I->second;
352
353     // Don't allow the instruction defining AntiDepReg to earlyclobber its
354     // operands, in case they may be assigned to NewReg. In this case antidep
355     // breaking must fail, but it's too rare to bother optimizing.
356     if (RefOper->isDef() && RefOper->isEarlyClobber())
357       return true;
358
359     // Handle cases in which this instruction defines NewReg.
360     MachineInstr *MI = RefOper->getParent();
361     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
362       const MachineOperand &CheckOper = MI->getOperand(i);
363
364       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
365         return true;
366
367       if (!CheckOper.isReg() || !CheckOper.isDef() ||
368           CheckOper.getReg() != NewReg)
369         continue;
370
371       // Don't allow the instruction to define NewReg and AntiDepReg.
372       // When AntiDepReg is renamed it will be an illegal op.
373       if (RefOper->isDef())
374         return true;
375
376       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
377       // NewReg.
378       if (CheckOper.isEarlyClobber())
379         return true;
380
381       // Don't allow inline asm to define NewReg at all. Who knows what it's
382       // doing with it.
383       if (MI->isInlineAsm())
384         return true;
385     }
386   }
387   return false;
388 }
389
390 unsigned CriticalAntiDepBreaker::
391 findSuitableFreeRegister(RegRefIter RegRefBegin,
392                          RegRefIter RegRefEnd,
393                          unsigned AntiDepReg,
394                          unsigned LastNewReg,
395                          const TargetRegisterClass *RC,
396                          SmallVectorImpl<unsigned> &Forbid) {
397   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
398   for (unsigned i = 0; i != Order.size(); ++i) {
399     unsigned NewReg = Order[i];
400     // Don't replace a register with itself.
401     if (NewReg == AntiDepReg) continue;
402     // Don't replace a register with one that was recently used to repair
403     // an anti-dependence with this AntiDepReg, because that would
404     // re-introduce that anti-dependence.
405     if (NewReg == LastNewReg) continue;
406     // If any instructions that define AntiDepReg also define the NewReg, it's
407     // not suitable.  For example, Instruction with multiple definitions can
408     // result in this condition.
409     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
410     // If NewReg is dead and NewReg's most recent def is not before
411     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
412     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
413            && "Kill and Def maps aren't consistent for AntiDepReg!");
414     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
415            && "Kill and Def maps aren't consistent for NewReg!");
416     if (KillIndices[NewReg] != ~0u ||
417         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
418         KillIndices[AntiDepReg] > DefIndices[NewReg])
419       continue;
420     // If NewReg overlaps any of the forbidden registers, we can't use it.
421     bool Forbidden = false;
422     for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
423            ite = Forbid.end(); it != ite; ++it)
424       if (TRI->regsOverlap(NewReg, *it)) {
425         Forbidden = true;
426         break;
427       }
428     if (Forbidden) continue;
429     return NewReg;
430   }
431
432   // No registers are free and available!
433   return 0;
434 }
435
436 unsigned CriticalAntiDepBreaker::
437 BreakAntiDependencies(const std::vector<SUnit> &SUnits,
438                       MachineBasicBlock::iterator Begin,
439                       MachineBasicBlock::iterator End,
440                       unsigned InsertPosIndex,
441                       DbgValueVector &DbgValues) {
442   // The code below assumes that there is at least one instruction,
443   // so just duck out immediately if the block is empty.
444   if (SUnits.empty()) return 0;
445
446   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
447   // This is used for updating debug information.
448   //
449   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
450   DenseMap<MachineInstr *, const SUnit *> MISUnitMap;
451
452   // Find the node at the bottom of the critical path.
453   const SUnit *Max = nullptr;
454   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
455     const SUnit *SU = &SUnits[i];
456     MISUnitMap[SU->getInstr()] = SU;
457     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
458       Max = SU;
459   }
460
461 #ifndef NDEBUG
462   {
463     LLVM_DEBUG(dbgs() << "Critical path has total latency "
464                       << (Max->getDepth() + Max->Latency) << "\n");
465     LLVM_DEBUG(dbgs() << "Available regs:");
466     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
467       if (KillIndices[Reg] == ~0u)
468         LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
469     }
470     LLVM_DEBUG(dbgs() << '\n');
471   }
472 #endif
473
474   // Track progress along the critical path through the SUnit graph as we walk
475   // the instructions.
476   const SUnit *CriticalPathSU = Max;
477   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
478
479   // Consider this pattern:
480   //   A = ...
481   //   ... = A
482   //   A = ...
483   //   ... = A
484   //   A = ...
485   //   ... = A
486   //   A = ...
487   //   ... = A
488   // There are three anti-dependencies here, and without special care,
489   // we'd break all of them using the same register:
490   //   A = ...
491   //   ... = A
492   //   B = ...
493   //   ... = B
494   //   B = ...
495   //   ... = B
496   //   B = ...
497   //   ... = B
498   // because at each anti-dependence, B is the first register that
499   // isn't A which is free.  This re-introduces anti-dependencies
500   // at all but one of the original anti-dependencies that we were
501   // trying to break.  To avoid this, keep track of the most recent
502   // register that each register was replaced with, avoid
503   // using it to repair an anti-dependence on the same register.
504   // This lets us produce this:
505   //   A = ...
506   //   ... = A
507   //   B = ...
508   //   ... = B
509   //   C = ...
510   //   ... = C
511   //   B = ...
512   //   ... = B
513   // This still has an anti-dependence on B, but at least it isn't on the
514   // original critical path.
515   //
516   // TODO: If we tracked more than one register here, we could potentially
517   // fix that remaining critical edge too. This is a little more involved,
518   // because unlike the most recent register, less recent registers should
519   // still be considered, though only if no other registers are available.
520   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
521
522   // Attempt to break anti-dependence edges on the critical path. Walk the
523   // instructions from the bottom up, tracking information about liveness
524   // as we go to help determine which registers are available.
525   unsigned Broken = 0;
526   unsigned Count = InsertPosIndex - 1;
527   for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
528     MachineInstr &MI = *--I;
529     // Kill instructions can define registers but are really nops, and there
530     // might be a real definition earlier that needs to be paired with uses
531     // dominated by this kill.
532
533     // FIXME: It may be possible to remove the isKill() restriction once PR18663
534     // has been properly fixed. There can be value in processing kills as seen
535     // in the AggressiveAntiDepBreaker class.
536     if (MI.isDebugInstr() || MI.isKill())
537       continue;
538
539     // Check if this instruction has a dependence on the critical path that
540     // is an anti-dependence that we may be able to break. If it is, set
541     // AntiDepReg to the non-zero register associated with the anti-dependence.
542     //
543     // We limit our attention to the critical path as a heuristic to avoid
544     // breaking anti-dependence edges that aren't going to significantly
545     // impact the overall schedule. There are a limited number of registers
546     // and we want to save them for the important edges.
547     //
548     // TODO: Instructions with multiple defs could have multiple
549     // anti-dependencies. The current code here only knows how to break one
550     // edge per instruction. Note that we'd have to be able to break all of
551     // the anti-dependencies in an instruction in order to be effective.
552     unsigned AntiDepReg = 0;
553     if (&MI == CriticalPathMI) {
554       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
555         const SUnit *NextSU = Edge->getSUnit();
556
557         // Only consider anti-dependence edges.
558         if (Edge->getKind() == SDep::Anti) {
559           AntiDepReg = Edge->getReg();
560           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
561           if (!MRI.isAllocatable(AntiDepReg))
562             // Don't break anti-dependencies on non-allocatable registers.
563             AntiDepReg = 0;
564           else if (KeepRegs.test(AntiDepReg))
565             // Don't break anti-dependencies if a use down below requires
566             // this exact register.
567             AntiDepReg = 0;
568           else {
569             // If the SUnit has other dependencies on the SUnit that it
570             // anti-depends on, don't bother breaking the anti-dependency
571             // since those edges would prevent such units from being
572             // scheduled past each other regardless.
573             //
574             // Also, if there are dependencies on other SUnits with the
575             // same register as the anti-dependency, don't attempt to
576             // break it.
577             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
578                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
579               if (P->getSUnit() == NextSU ?
580                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
581                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
582                 AntiDepReg = 0;
583                 break;
584               }
585           }
586         }
587         CriticalPathSU = NextSU;
588         CriticalPathMI = CriticalPathSU->getInstr();
589       } else {
590         // We've reached the end of the critical path.
591         CriticalPathSU = nullptr;
592         CriticalPathMI = nullptr;
593       }
594     }
595
596     PrescanInstruction(MI);
597
598     SmallVector<unsigned, 2> ForbidRegs;
599
600     // If MI's defs have a special allocation requirement, don't allow
601     // any def registers to be changed. Also assume all registers
602     // defined in a call must not be changed (ABI).
603     if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
604       // If this instruction's defs have special allocation requirement, don't
605       // break this anti-dependency.
606       AntiDepReg = 0;
607     else if (AntiDepReg) {
608       // If this instruction has a use of AntiDepReg, breaking it
609       // is invalid.  If the instruction defines other registers,
610       // save a list of them so that we don't pick a new register
611       // that overlaps any of them.
612       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
613         MachineOperand &MO = MI.getOperand(i);
614         if (!MO.isReg()) continue;
615         unsigned Reg = MO.getReg();
616         if (Reg == 0) continue;
617         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
618           AntiDepReg = 0;
619           break;
620         }
621         if (MO.isDef() && Reg != AntiDepReg)
622           ForbidRegs.push_back(Reg);
623       }
624     }
625
626     // Determine AntiDepReg's register class, if it is live and is
627     // consistently used within a single class.
628     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
629                                                     : nullptr;
630     assert((AntiDepReg == 0 || RC != nullptr) &&
631            "Register should be live if it's causing an anti-dependence!");
632     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
633       AntiDepReg = 0;
634
635     // Look for a suitable register to use to break the anti-dependence.
636     //
637     // TODO: Instead of picking the first free register, consider which might
638     // be the best.
639     if (AntiDepReg != 0) {
640       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
641                 std::multimap<unsigned, MachineOperand *>::iterator>
642         Range = RegRefs.equal_range(AntiDepReg);
643       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
644                                                      AntiDepReg,
645                                                      LastNewReg[AntiDepReg],
646                                                      RC, ForbidRegs)) {
647         LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on "
648                           << printReg(AntiDepReg, TRI) << " with "
649                           << RegRefs.count(AntiDepReg) << " references"
650                           << " using " << printReg(NewReg, TRI) << "!\n");
651
652         // Update the references to the old register to refer to the new
653         // register.
654         for (std::multimap<unsigned, MachineOperand *>::iterator
655              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
656           Q->second->setReg(NewReg);
657           // If the SU for the instruction being updated has debug information
658           // related to the anti-dependency register, make sure to update that
659           // as well.
660           const SUnit *SU = MISUnitMap[Q->second->getParent()];
661           if (!SU) continue;
662           UpdateDbgValues(DbgValues, Q->second->getParent(),
663                           AntiDepReg, NewReg);
664         }
665
666         // We just went back in time and modified history; the
667         // liveness information for the anti-dependence reg is now
668         // inconsistent. Set the state as if it were dead.
669         Classes[NewReg] = Classes[AntiDepReg];
670         DefIndices[NewReg] = DefIndices[AntiDepReg];
671         KillIndices[NewReg] = KillIndices[AntiDepReg];
672         assert(((KillIndices[NewReg] == ~0u) !=
673                 (DefIndices[NewReg] == ~0u)) &&
674              "Kill and Def maps aren't consistent for NewReg!");
675
676         Classes[AntiDepReg] = nullptr;
677         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
678         KillIndices[AntiDepReg] = ~0u;
679         assert(((KillIndices[AntiDepReg] == ~0u) !=
680                 (DefIndices[AntiDepReg] == ~0u)) &&
681              "Kill and Def maps aren't consistent for AntiDepReg!");
682
683         RegRefs.erase(AntiDepReg);
684         LastNewReg[AntiDepReg] = NewReg;
685         ++Broken;
686       }
687     }
688
689     ScanInstruction(MI, Count);
690   }
691
692   return Broken;
693 }