]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/CallLowering.cpp
Merge llvm-project 12.0.1 release and follow-up fixes
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / GlobalISel / CallLowering.cpp
1 //===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements some simple delegations needed for call lowering.
11 ///
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
16 #include "llvm/CodeGen/GlobalISel/Utils.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/MachineOperand.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Target/TargetMachine.h"
26
27 #define DEBUG_TYPE "call-lowering"
28
29 using namespace llvm;
30
31 void CallLowering::anchor() {}
32
33 /// Helper function which updates \p Flags when \p AttrFn returns true.
34 static void
35 addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags,
36                     const std::function<bool(Attribute::AttrKind)> &AttrFn) {
37   if (AttrFn(Attribute::SExt))
38     Flags.setSExt();
39   if (AttrFn(Attribute::ZExt))
40     Flags.setZExt();
41   if (AttrFn(Attribute::InReg))
42     Flags.setInReg();
43   if (AttrFn(Attribute::StructRet))
44     Flags.setSRet();
45   if (AttrFn(Attribute::Nest))
46     Flags.setNest();
47   if (AttrFn(Attribute::ByVal))
48     Flags.setByVal();
49   if (AttrFn(Attribute::Preallocated))
50     Flags.setPreallocated();
51   if (AttrFn(Attribute::InAlloca))
52     Flags.setInAlloca();
53   if (AttrFn(Attribute::Returned))
54     Flags.setReturned();
55   if (AttrFn(Attribute::SwiftSelf))
56     Flags.setSwiftSelf();
57   if (AttrFn(Attribute::SwiftError))
58     Flags.setSwiftError();
59 }
60
61 ISD::ArgFlagsTy CallLowering::getAttributesForArgIdx(const CallBase &Call,
62                                                      unsigned ArgIdx) const {
63   ISD::ArgFlagsTy Flags;
64   addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
65     return Call.paramHasAttr(ArgIdx, Attr);
66   });
67   return Flags;
68 }
69
70 void CallLowering::addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags,
71                                              const AttributeList &Attrs,
72                                              unsigned OpIdx) const {
73   addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
74     return Attrs.hasAttribute(OpIdx, Attr);
75   });
76 }
77
78 bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
79                              ArrayRef<Register> ResRegs,
80                              ArrayRef<ArrayRef<Register>> ArgRegs,
81                              Register SwiftErrorVReg,
82                              std::function<unsigned()> GetCalleeReg) const {
83   CallLoweringInfo Info;
84   const DataLayout &DL = MIRBuilder.getDataLayout();
85   MachineFunction &MF = MIRBuilder.getMF();
86   bool CanBeTailCalled = CB.isTailCall() &&
87                          isInTailCallPosition(CB, MF.getTarget()) &&
88                          (MF.getFunction()
89                               .getFnAttribute("disable-tail-calls")
90                               .getValueAsString() != "true");
91
92   CallingConv::ID CallConv = CB.getCallingConv();
93   Type *RetTy = CB.getType();
94   bool IsVarArg = CB.getFunctionType()->isVarArg();
95
96   SmallVector<BaseArgInfo, 4> SplitArgs;
97   getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
98   Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
99
100   if (!Info.CanLowerReturn) {
101     // Callee requires sret demotion.
102     insertSRetOutgoingArgument(MIRBuilder, CB, Info);
103
104     // The sret demotion isn't compatible with tail-calls, since the sret
105     // argument points into the caller's stack frame.
106     CanBeTailCalled = false;
107   }
108
109   // First step is to marshall all the function's parameters into the correct
110   // physregs and memory locations. Gather the sequence of argument types that
111   // we'll pass to the assigner function.
112   unsigned i = 0;
113   unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
114   for (auto &Arg : CB.args()) {
115     ArgInfo OrigArg{ArgRegs[i], Arg->getType(), getAttributesForArgIdx(CB, i),
116                     i < NumFixedArgs};
117     setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
118
119     // If we have an explicit sret argument that is an Instruction, (i.e., it
120     // might point to function-local memory), we can't meaningfully tail-call.
121     if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
122       CanBeTailCalled = false;
123
124     Info.OrigArgs.push_back(OrigArg);
125     ++i;
126   }
127
128   // Try looking through a bitcast from one function type to another.
129   // Commonly happens with calls to objc_msgSend().
130   const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
131   if (const Function *F = dyn_cast<Function>(CalleeV))
132     Info.Callee = MachineOperand::CreateGA(F, 0);
133   else
134     Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
135
136   Info.OrigRet = ArgInfo{ResRegs, RetTy, ISD::ArgFlagsTy{}};
137   if (!Info.OrigRet.Ty->isVoidTy())
138     setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
139
140   Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
141   Info.CallConv = CallConv;
142   Info.SwiftErrorVReg = SwiftErrorVReg;
143   Info.IsMustTailCall = CB.isMustTailCall();
144   Info.IsTailCall = CanBeTailCalled;
145   Info.IsVarArg = IsVarArg;
146   return lowerCall(MIRBuilder, Info);
147 }
148
149 template <typename FuncInfoTy>
150 void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
151                                const DataLayout &DL,
152                                const FuncInfoTy &FuncInfo) const {
153   auto &Flags = Arg.Flags[0];
154   const AttributeList &Attrs = FuncInfo.getAttributes();
155   addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
156
157   if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
158     Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();
159
160     auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
161     Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));
162
163     // For ByVal, alignment should be passed from FE.  BE will guess if
164     // this info is not there but there are cases it cannot get right.
165     Align FrameAlign;
166     if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 2))
167       FrameAlign = *ParamAlign;
168     else
169       FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
170     Flags.setByValAlign(FrameAlign);
171   }
172   Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
173 }
174
175 template void
176 CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
177                                     const DataLayout &DL,
178                                     const Function &FuncInfo) const;
179
180 template void
181 CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
182                                     const DataLayout &DL,
183                                     const CallBase &FuncInfo) const;
184
185 Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy,
186                                 MachineIRBuilder &MIRBuilder) const {
187   assert(SrcRegs.size() > 1 && "Nothing to pack");
188
189   const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
190   MachineRegisterInfo *MRI = MIRBuilder.getMRI();
191
192   LLT PackedLLT = getLLTForType(*PackedTy, DL);
193
194   SmallVector<LLT, 8> LLTs;
195   SmallVector<uint64_t, 8> Offsets;
196   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
197   assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch");
198
199   Register Dst = MRI->createGenericVirtualRegister(PackedLLT);
200   MIRBuilder.buildUndef(Dst);
201   for (unsigned i = 0; i < SrcRegs.size(); ++i) {
202     Register NewDst = MRI->createGenericVirtualRegister(PackedLLT);
203     MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]);
204     Dst = NewDst;
205   }
206
207   return Dst;
208 }
209
210 void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
211                               Type *PackedTy,
212                               MachineIRBuilder &MIRBuilder) const {
213   assert(DstRegs.size() > 1 && "Nothing to unpack");
214
215   const DataLayout &DL = MIRBuilder.getDataLayout();
216
217   SmallVector<LLT, 8> LLTs;
218   SmallVector<uint64_t, 8> Offsets;
219   computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
220   assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");
221
222   for (unsigned i = 0; i < DstRegs.size(); ++i)
223     MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
224 }
225
226 bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
227                                      SmallVectorImpl<ArgInfo> &Args,
228                                      ValueHandler &Handler) const {
229   MachineFunction &MF = MIRBuilder.getMF();
230   const Function &F = MF.getFunction();
231   SmallVector<CCValAssign, 16> ArgLocs;
232   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
233   return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler);
234 }
235
236 bool CallLowering::handleAssignments(CCState &CCInfo,
237                                      SmallVectorImpl<CCValAssign> &ArgLocs,
238                                      MachineIRBuilder &MIRBuilder,
239                                      SmallVectorImpl<ArgInfo> &Args,
240                                      ValueHandler &Handler) const {
241   MachineFunction &MF = MIRBuilder.getMF();
242   const Function &F = MF.getFunction();
243   const DataLayout &DL = F.getParent()->getDataLayout();
244
245   unsigned NumArgs = Args.size();
246   for (unsigned i = 0; i != NumArgs; ++i) {
247     EVT CurVT = EVT::getEVT(Args[i].Ty);
248     if (CurVT.isSimple() &&
249         !Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(),
250                            CCValAssign::Full, Args[i], Args[i].Flags[0],
251                            CCInfo))
252       continue;
253
254     MVT NewVT = TLI->getRegisterTypeForCallingConv(
255         F.getContext(), F.getCallingConv(), EVT(CurVT));
256
257     // If we need to split the type over multiple regs, check it's a scenario
258     // we currently support.
259     unsigned NumParts = TLI->getNumRegistersForCallingConv(
260         F.getContext(), F.getCallingConv(), CurVT);
261
262     if (NumParts == 1) {
263       // Try to use the register type if we couldn't assign the VT.
264       if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
265                             Args[i].Flags[0], CCInfo))
266         return false;
267       continue;
268     }
269
270     assert(NumParts > 1);
271     // For now only handle exact splits.
272     if (NewVT.getSizeInBits() * NumParts != CurVT.getSizeInBits())
273       return false;
274
275     // For incoming arguments (physregs to vregs), we could have values in
276     // physregs (or memlocs) which we want to extract and copy to vregs.
277     // During this, we might have to deal with the LLT being split across
278     // multiple regs, so we have to record this information for later.
279     //
280     // If we have outgoing args, then we have the opposite case. We have a
281     // vreg with an LLT which we want to assign to a physical location, and
282     // we might have to record that the value has to be split later.
283     if (Handler.isIncomingArgumentHandler()) {
284       // We're handling an incoming arg which is split over multiple regs.
285       // E.g. passing an s128 on AArch64.
286       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
287       Args[i].OrigRegs.push_back(Args[i].Regs[0]);
288       Args[i].Regs.clear();
289       Args[i].Flags.clear();
290       LLT NewLLT = getLLTForMVT(NewVT);
291       // For each split register, create and assign a vreg that will store
292       // the incoming component of the larger value. These will later be
293       // merged to form the final vreg.
294       for (unsigned Part = 0; Part < NumParts; ++Part) {
295         Register Reg =
296             MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT);
297         ISD::ArgFlagsTy Flags = OrigFlags;
298         if (Part == 0) {
299           Flags.setSplit();
300         } else {
301           Flags.setOrigAlign(Align(1));
302           if (Part == NumParts - 1)
303             Flags.setSplitEnd();
304         }
305         Args[i].Regs.push_back(Reg);
306         Args[i].Flags.push_back(Flags);
307         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
308                               Args[i].Flags[Part], CCInfo)) {
309           // Still couldn't assign this smaller part type for some reason.
310           return false;
311         }
312       }
313     } else {
314       // This type is passed via multiple registers in the calling convention.
315       // We need to extract the individual parts.
316       Register LargeReg = Args[i].Regs[0];
317       LLT SmallTy = LLT::scalar(NewVT.getSizeInBits());
318       auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg);
319       assert(Unmerge->getNumOperands() == NumParts + 1);
320       ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
321       // We're going to replace the regs and flags with the split ones.
322       Args[i].Regs.clear();
323       Args[i].Flags.clear();
324       for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
325         ISD::ArgFlagsTy Flags = OrigFlags;
326         if (PartIdx == 0) {
327           Flags.setSplit();
328         } else {
329           Flags.setOrigAlign(Align(1));
330           if (PartIdx == NumParts - 1)
331             Flags.setSplitEnd();
332         }
333         Args[i].Regs.push_back(Unmerge.getReg(PartIdx));
334         Args[i].Flags.push_back(Flags);
335         if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full,
336                               Args[i], Args[i].Flags[PartIdx], CCInfo))
337           return false;
338       }
339     }
340   }
341
342   for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
343     assert(j < ArgLocs.size() && "Skipped too many arg locs");
344
345     CCValAssign &VA = ArgLocs[j];
346     assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
347
348     if (VA.needsCustom()) {
349       unsigned NumArgRegs =
350           Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
351       if (!NumArgRegs)
352         return false;
353       j += NumArgRegs;
354       continue;
355     }
356
357     // FIXME: Pack registers if we have more than one.
358     Register ArgReg = Args[i].Regs[0];
359
360     EVT OrigVT = EVT::getEVT(Args[i].Ty);
361     EVT VAVT = VA.getValVT();
362     const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
363
364     // Expected to be multiple regs for a single incoming arg.
365     // There should be Regs.size() ArgLocs per argument.
366     unsigned NumArgRegs = Args[i].Regs.size();
367
368     assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
369            "Too many regs for number of args");
370     for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
371       // There should be Regs.size() ArgLocs per argument.
372       VA = ArgLocs[j + Part];
373       if (VA.isMemLoc()) {
374         // Don't currently support loading/storing a type that needs to be split
375         // to the stack. Should be easy, just not implemented yet.
376         if (NumArgRegs > 1) {
377           LLVM_DEBUG(
378             dbgs()
379             << "Load/store a split arg to/from the stack not implemented yet\n");
380           return false;
381         }
382
383         // FIXME: Use correct address space for pointer size
384         EVT LocVT = VA.getValVT();
385         unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize()
386                                               : LocVT.getStoreSize();
387         unsigned Offset = VA.getLocMemOffset();
388         MachinePointerInfo MPO;
389         Register StackAddr = Handler.getStackAddress(MemSize, Offset, MPO);
390         Handler.assignValueToAddress(Args[i], StackAddr,
391                                      MemSize, MPO, VA);
392         continue;
393       }
394
395       assert(VA.isRegLoc() && "custom loc should have been handled already");
396
397       // GlobalISel does not currently work for scalable vectors.
398       if (OrigVT.getFixedSizeInBits() >= VAVT.getFixedSizeInBits() ||
399           !Handler.isIncomingArgumentHandler()) {
400         // This is an argument that might have been split. There should be
401         // Regs.size() ArgLocs per argument.
402
403         // Insert the argument copies. If VAVT < OrigVT, we'll insert the merge
404         // to the original register after handling all of the parts.
405         Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
406         continue;
407       }
408
409       // This ArgLoc covers multiple pieces, so we need to split it.
410       const LLT VATy(VAVT.getSimpleVT());
411       Register NewReg =
412         MIRBuilder.getMRI()->createGenericVirtualRegister(VATy);
413       Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
414       // If it's a vector type, we either need to truncate the elements
415       // or do an unmerge to get the lower block of elements.
416       if (VATy.isVector() &&
417           VATy.getNumElements() > OrigVT.getVectorNumElements()) {
418         // Just handle the case where the VA type is 2 * original type.
419         if (VATy.getNumElements() != OrigVT.getVectorNumElements() * 2) {
420           LLVM_DEBUG(dbgs()
421                      << "Incoming promoted vector arg has too many elts");
422           return false;
423         }
424         auto Unmerge = MIRBuilder.buildUnmerge({OrigTy, OrigTy}, {NewReg});
425         MIRBuilder.buildCopy(ArgReg, Unmerge.getReg(0));
426       } else {
427         MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0);
428       }
429     }
430
431     // Now that all pieces have been handled, re-pack any arguments into any
432     // wider, original registers.
433     if (Handler.isIncomingArgumentHandler()) {
434       if (VAVT.getFixedSizeInBits() < OrigVT.getFixedSizeInBits()) {
435         assert(NumArgRegs >= 2);
436
437         // Merge the split registers into the expected larger result vreg
438         // of the original call.
439         MIRBuilder.buildMerge(Args[i].OrigRegs[0], Args[i].Regs);
440       }
441     }
442
443     j += NumArgRegs - 1;
444   }
445
446   return true;
447 }
448
449 void CallLowering::insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy,
450                                    ArrayRef<Register> VRegs, Register DemoteReg,
451                                    int FI) const {
452   MachineFunction &MF = MIRBuilder.getMF();
453   MachineRegisterInfo &MRI = MF.getRegInfo();
454   const DataLayout &DL = MF.getDataLayout();
455
456   SmallVector<EVT, 4> SplitVTs;
457   SmallVector<uint64_t, 4> Offsets;
458   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
459
460   assert(VRegs.size() == SplitVTs.size());
461
462   unsigned NumValues = SplitVTs.size();
463   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
464   Type *RetPtrTy = RetTy->getPointerTo(DL.getAllocaAddrSpace());
465   LLT OffsetLLTy = getLLTForType(*DL.getIntPtrType(RetPtrTy), DL);
466
467   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(MF, FI);
468
469   for (unsigned I = 0; I < NumValues; ++I) {
470     Register Addr;
471     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
472     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
473                                         MRI.getType(VRegs[I]).getSizeInBytes(),
474                                         commonAlignment(BaseAlign, Offsets[I]));
475     MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
476   }
477 }
478
479 void CallLowering::insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy,
480                                     ArrayRef<Register> VRegs,
481                                     Register DemoteReg) const {
482   MachineFunction &MF = MIRBuilder.getMF();
483   MachineRegisterInfo &MRI = MF.getRegInfo();
484   const DataLayout &DL = MF.getDataLayout();
485
486   SmallVector<EVT, 4> SplitVTs;
487   SmallVector<uint64_t, 4> Offsets;
488   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
489
490   assert(VRegs.size() == SplitVTs.size());
491
492   unsigned NumValues = SplitVTs.size();
493   Align BaseAlign = DL.getPrefTypeAlign(RetTy);
494   unsigned AS = DL.getAllocaAddrSpace();
495   LLT OffsetLLTy =
496       getLLTForType(*DL.getIntPtrType(RetTy->getPointerTo(AS)), DL);
497
498   MachinePointerInfo PtrInfo(AS);
499
500   for (unsigned I = 0; I < NumValues; ++I) {
501     Register Addr;
502     MIRBuilder.materializePtrAdd(Addr, DemoteReg, OffsetLLTy, Offsets[I]);
503     auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
504                                         MRI.getType(VRegs[I]).getSizeInBytes(),
505                                         commonAlignment(BaseAlign, Offsets[I]));
506     MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
507   }
508 }
509
510 void CallLowering::insertSRetIncomingArgument(
511     const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
512     MachineRegisterInfo &MRI, const DataLayout &DL) const {
513   unsigned AS = DL.getAllocaAddrSpace();
514   DemoteReg = MRI.createGenericVirtualRegister(
515       LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
516
517   Type *PtrTy = PointerType::get(F.getReturnType(), AS);
518
519   SmallVector<EVT, 1> ValueVTs;
520   ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
521
522   // NOTE: Assume that a pointer won't get split into more than one VT.
523   assert(ValueVTs.size() == 1);
524
525   ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()));
526   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
527   DemoteArg.Flags[0].setSRet();
528   SplitArgs.insert(SplitArgs.begin(), DemoteArg);
529 }
530
531 void CallLowering::insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder,
532                                               const CallBase &CB,
533                                               CallLoweringInfo &Info) const {
534   const DataLayout &DL = MIRBuilder.getDataLayout();
535   Type *RetTy = CB.getType();
536   unsigned AS = DL.getAllocaAddrSpace();
537   LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
538
539   int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
540       DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
541
542   Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
543   ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy, AS));
544   setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
545   DemoteArg.Flags[0].setSRet();
546
547   Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
548   Info.DemoteStackIndex = FI;
549   Info.DemoteRegister = DemoteReg;
550 }
551
552 bool CallLowering::checkReturn(CCState &CCInfo,
553                                SmallVectorImpl<BaseArgInfo> &Outs,
554                                CCAssignFn *Fn) const {
555   for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
556     MVT VT = MVT::getVT(Outs[I].Ty);
557     if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], CCInfo))
558       return false;
559   }
560   return true;
561 }
562
563 void CallLowering::getReturnInfo(CallingConv::ID CallConv, Type *RetTy,
564                                  AttributeList Attrs,
565                                  SmallVectorImpl<BaseArgInfo> &Outs,
566                                  const DataLayout &DL) const {
567   LLVMContext &Context = RetTy->getContext();
568   ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
569
570   SmallVector<EVT, 4> SplitVTs;
571   ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
572   addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
573
574   for (EVT VT : SplitVTs) {
575     unsigned NumParts =
576         TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
577     MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
578     Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
579
580     for (unsigned I = 0; I < NumParts; ++I) {
581       Outs.emplace_back(PartTy, Flags);
582     }
583   }
584 }
585
586 bool CallLowering::checkReturnTypeForCallConv(MachineFunction &MF) const {
587   const auto &F = MF.getFunction();
588   Type *ReturnType = F.getReturnType();
589   CallingConv::ID CallConv = F.getCallingConv();
590
591   SmallVector<BaseArgInfo, 4> SplitArgs;
592   getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
593                 MF.getDataLayout());
594   return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
595 }
596
597 bool CallLowering::analyzeArgInfo(CCState &CCState,
598                                   SmallVectorImpl<ArgInfo> &Args,
599                                   CCAssignFn &AssignFnFixed,
600                                   CCAssignFn &AssignFnVarArg) const {
601   for (unsigned i = 0, e = Args.size(); i < e; ++i) {
602     MVT VT = MVT::getVT(Args[i].Ty);
603     CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
604     if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
605       // Bail out on anything we can't handle.
606       LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
607                         << " (arg number = " << i << "\n");
608       return false;
609     }
610   }
611   return true;
612 }
613
614 bool CallLowering::parametersInCSRMatch(
615     const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
616     const SmallVectorImpl<CCValAssign> &OutLocs,
617     const SmallVectorImpl<ArgInfo> &OutArgs) const {
618   for (unsigned i = 0; i < OutLocs.size(); ++i) {
619     auto &ArgLoc = OutLocs[i];
620     // If it's not a register, it's fine.
621     if (!ArgLoc.isRegLoc())
622       continue;
623
624     MCRegister PhysReg = ArgLoc.getLocReg();
625
626     // Only look at callee-saved registers.
627     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
628       continue;
629
630     LLVM_DEBUG(
631         dbgs()
632         << "... Call has an argument passed in a callee-saved register.\n");
633
634     // Check if it was copied from.
635     const ArgInfo &OutInfo = OutArgs[i];
636
637     if (OutInfo.Regs.size() > 1) {
638       LLVM_DEBUG(
639           dbgs() << "... Cannot handle arguments in multiple registers.\n");
640       return false;
641     }
642
643     // Check if we copy the register, walking through copies from virtual
644     // registers. Note that getDefIgnoringCopies does not ignore copies from
645     // physical registers.
646     MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
647     if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
648       LLVM_DEBUG(
649           dbgs()
650           << "... Parameter was not copied into a VReg, cannot tail call.\n");
651       return false;
652     }
653
654     // Got a copy. Verify that it's the same as the register we want.
655     Register CopyRHS = RegDef->getOperand(1).getReg();
656     if (CopyRHS != PhysReg) {
657       LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
658                            "VReg, cannot tail call.\n");
659       return false;
660     }
661   }
662
663   return true;
664 }
665
666 bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
667                                      MachineFunction &MF,
668                                      SmallVectorImpl<ArgInfo> &InArgs,
669                                      CCAssignFn &CalleeAssignFnFixed,
670                                      CCAssignFn &CalleeAssignFnVarArg,
671                                      CCAssignFn &CallerAssignFnFixed,
672                                      CCAssignFn &CallerAssignFnVarArg) const {
673   const Function &F = MF.getFunction();
674   CallingConv::ID CalleeCC = Info.CallConv;
675   CallingConv::ID CallerCC = F.getCallingConv();
676
677   if (CallerCC == CalleeCC)
678     return true;
679
680   SmallVector<CCValAssign, 16> ArgLocs1;
681   CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
682   if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
683                       CalleeAssignFnVarArg))
684     return false;
685
686   SmallVector<CCValAssign, 16> ArgLocs2;
687   CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
688   if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
689                       CalleeAssignFnVarArg))
690     return false;
691
692   // We need the argument locations to match up exactly. If there's more in
693   // one than the other, then we are done.
694   if (ArgLocs1.size() != ArgLocs2.size())
695     return false;
696
697   // Make sure that each location is passed in exactly the same way.
698   for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
699     const CCValAssign &Loc1 = ArgLocs1[i];
700     const CCValAssign &Loc2 = ArgLocs2[i];
701
702     // We need both of them to be the same. So if one is a register and one
703     // isn't, we're done.
704     if (Loc1.isRegLoc() != Loc2.isRegLoc())
705       return false;
706
707     if (Loc1.isRegLoc()) {
708       // If they don't have the same register location, we're done.
709       if (Loc1.getLocReg() != Loc2.getLocReg())
710         return false;
711
712       // They matched, so we can move to the next ArgLoc.
713       continue;
714     }
715
716     // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
717     if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
718       return false;
719   }
720
721   return true;
722 }
723
724 Register CallLowering::ValueHandler::extendRegister(Register ValReg,
725                                                     CCValAssign &VA,
726                                                     unsigned MaxSizeBits) {
727   LLT LocTy{VA.getLocVT()};
728   LLT ValTy = MRI.getType(ValReg);
729   if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
730     return ValReg;
731
732   if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
733     if (MaxSizeBits <= ValTy.getSizeInBits())
734       return ValReg;
735     LocTy = LLT::scalar(MaxSizeBits);
736   }
737
738   switch (VA.getLocInfo()) {
739   default: break;
740   case CCValAssign::Full:
741   case CCValAssign::BCvt:
742     // FIXME: bitconverting between vector types may or may not be a
743     // nop in big-endian situations.
744     return ValReg;
745   case CCValAssign::AExt: {
746     auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
747     return MIB.getReg(0);
748   }
749   case CCValAssign::SExt: {
750     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
751     MIRBuilder.buildSExt(NewReg, ValReg);
752     return NewReg;
753   }
754   case CCValAssign::ZExt: {
755     Register NewReg = MRI.createGenericVirtualRegister(LocTy);
756     MIRBuilder.buildZExt(NewReg, ValReg);
757     return NewReg;
758   }
759   }
760   llvm_unreachable("unable to extend register");
761 }
762
763 void CallLowering::ValueHandler::anchor() {}