]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/GlobalISel/IRTranslator.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / GlobalISel / IRTranslator.cpp
1 //===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the IRTranslator class.
10 //===----------------------------------------------------------------------===//
11
12 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/ADT/SmallSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/FunctionLoweringInfo.h"
23 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
24 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
25 #include "llvm/CodeGen/LowLevelType.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/StackProtector.h"
34 #include "llvm/CodeGen/TargetFrameLowering.h"
35 #include "llvm/CodeGen/TargetLowering.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/Constant.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfo.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/Pass.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CodeGen.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetIntrinsicInfo.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <utility>
75 #include <vector>
76
77 #define DEBUG_TYPE "irtranslator"
78
79 using namespace llvm;
80
81 static cl::opt<bool>
82     EnableCSEInIRTranslator("enable-cse-in-irtranslator",
83                             cl::desc("Should enable CSE in irtranslator"),
84                             cl::Optional, cl::init(false));
85 char IRTranslator::ID = 0;
86
87 INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
88                 false, false)
89 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
90 INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
91 INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
92                 false, false)
93
94 static void reportTranslationError(MachineFunction &MF,
95                                    const TargetPassConfig &TPC,
96                                    OptimizationRemarkEmitter &ORE,
97                                    OptimizationRemarkMissed &R) {
98   MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
99
100   // Print the function name explicitly if we don't have a debug location (which
101   // makes the diagnostic less useful) or if we're going to emit a raw error.
102   if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
103     R << (" (in function: " + MF.getName() + ")").str();
104
105   if (TPC.isGlobalISelAbortEnabled())
106     report_fatal_error(R.getMsg());
107   else
108     ORE.emit(R);
109 }
110
111 IRTranslator::IRTranslator() : MachineFunctionPass(ID) { }
112
113 #ifndef NDEBUG
114 namespace {
115 /// Verify that every instruction created has the same DILocation as the
116 /// instruction being translated.
117 class DILocationVerifier : public GISelChangeObserver {
118   const Instruction *CurrInst = nullptr;
119
120 public:
121   DILocationVerifier() = default;
122   ~DILocationVerifier() = default;
123
124   const Instruction *getCurrentInst() const { return CurrInst; }
125   void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
126
127   void erasingInstr(MachineInstr &MI) override {}
128   void changingInstr(MachineInstr &MI) override {}
129   void changedInstr(MachineInstr &MI) override {}
130
131   void createdInstr(MachineInstr &MI) override {
132     assert(getCurrentInst() && "Inserted instruction without a current MI");
133
134     // Only print the check message if we're actually checking it.
135 #ifndef NDEBUG
136     LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
137                       << " was copied to " << MI);
138 #endif
139     // We allow insts in the entry block to have a debug loc line of 0 because
140     // they could have originated from constants, and we don't want a jumpy
141     // debug experience.
142     assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
143             MI.getDebugLoc().getLine() == 0) &&
144            "Line info was not transferred to all instructions");
145   }
146 };
147 } // namespace
148 #endif // ifndef NDEBUG
149
150
151 void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
152   AU.addRequired<StackProtector>();
153   AU.addRequired<TargetPassConfig>();
154   AU.addRequired<GISelCSEAnalysisWrapperPass>();
155   getSelectionDAGFallbackAnalysisUsage(AU);
156   MachineFunctionPass::getAnalysisUsage(AU);
157 }
158
159 IRTranslator::ValueToVRegInfo::VRegListT &
160 IRTranslator::allocateVRegs(const Value &Val) {
161   assert(!VMap.contains(Val) && "Value already allocated in VMap");
162   auto *Regs = VMap.getVRegs(Val);
163   auto *Offsets = VMap.getOffsets(Val);
164   SmallVector<LLT, 4> SplitTys;
165   computeValueLLTs(*DL, *Val.getType(), SplitTys,
166                    Offsets->empty() ? Offsets : nullptr);
167   for (unsigned i = 0; i < SplitTys.size(); ++i)
168     Regs->push_back(0);
169   return *Regs;
170 }
171
172 ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
173   auto VRegsIt = VMap.findVRegs(Val);
174   if (VRegsIt != VMap.vregs_end())
175     return *VRegsIt->second;
176
177   if (Val.getType()->isVoidTy())
178     return *VMap.getVRegs(Val);
179
180   // Create entry for this type.
181   auto *VRegs = VMap.getVRegs(Val);
182   auto *Offsets = VMap.getOffsets(Val);
183
184   assert(Val.getType()->isSized() &&
185          "Don't know how to create an empty vreg");
186
187   SmallVector<LLT, 4> SplitTys;
188   computeValueLLTs(*DL, *Val.getType(), SplitTys,
189                    Offsets->empty() ? Offsets : nullptr);
190
191   if (!isa<Constant>(Val)) {
192     for (auto Ty : SplitTys)
193       VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
194     return *VRegs;
195   }
196
197   if (Val.getType()->isAggregateType()) {
198     // UndefValue, ConstantAggregateZero
199     auto &C = cast<Constant>(Val);
200     unsigned Idx = 0;
201     while (auto Elt = C.getAggregateElement(Idx++)) {
202       auto EltRegs = getOrCreateVRegs(*Elt);
203       llvm::copy(EltRegs, std::back_inserter(*VRegs));
204     }
205   } else {
206     assert(SplitTys.size() == 1 && "unexpectedly split LLT");
207     VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
208     bool Success = translate(cast<Constant>(Val), VRegs->front());
209     if (!Success) {
210       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
211                                  MF->getFunction().getSubprogram(),
212                                  &MF->getFunction().getEntryBlock());
213       R << "unable to translate constant: " << ore::NV("Type", Val.getType());
214       reportTranslationError(*MF, *TPC, *ORE, R);
215       return *VRegs;
216     }
217   }
218
219   return *VRegs;
220 }
221
222 int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
223   if (FrameIndices.find(&AI) != FrameIndices.end())
224     return FrameIndices[&AI];
225
226   unsigned ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
227   unsigned Size =
228       ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
229
230   // Always allocate at least one byte.
231   Size = std::max(Size, 1u);
232
233   unsigned Alignment = AI.getAlignment();
234   if (!Alignment)
235     Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
236
237   int &FI = FrameIndices[&AI];
238   FI = MF->getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
239   return FI;
240 }
241
242 unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
243   unsigned Alignment = 0;
244   Type *ValTy = nullptr;
245   if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
246     Alignment = SI->getAlignment();
247     ValTy = SI->getValueOperand()->getType();
248   } else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
249     Alignment = LI->getAlignment();
250     ValTy = LI->getType();
251   } else if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
252     // TODO(PR27168): This instruction has no alignment attribute, but unlike
253     // the default alignment for load/store, the default here is to assume
254     // it has NATURAL alignment, not DataLayout-specified alignment.
255     const DataLayout &DL = AI->getModule()->getDataLayout();
256     Alignment = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
257     ValTy = AI->getCompareOperand()->getType();
258   } else if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
259     // TODO(PR27168): This instruction has no alignment attribute, but unlike
260     // the default alignment for load/store, the default here is to assume
261     // it has NATURAL alignment, not DataLayout-specified alignment.
262     const DataLayout &DL = AI->getModule()->getDataLayout();
263     Alignment = DL.getTypeStoreSize(AI->getValOperand()->getType());
264     ValTy = AI->getType();
265   } else {
266     OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
267     R << "unable to translate memop: " << ore::NV("Opcode", &I);
268     reportTranslationError(*MF, *TPC, *ORE, R);
269     return 1;
270   }
271
272   return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
273 }
274
275 MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
276   MachineBasicBlock *&MBB = BBToMBB[&BB];
277   assert(MBB && "BasicBlock was not encountered before");
278   return *MBB;
279 }
280
281 void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
282   assert(NewPred && "new predecessor must be a real MachineBasicBlock");
283   MachinePreds[Edge].push_back(NewPred);
284 }
285
286 bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
287                                      MachineIRBuilder &MIRBuilder) {
288   // Get or create a virtual register for each value.
289   // Unless the value is a Constant => loadimm cst?
290   // or inline constant each time?
291   // Creation of a virtual register needs to have a size.
292   Register Op0 = getOrCreateVReg(*U.getOperand(0));
293   Register Op1 = getOrCreateVReg(*U.getOperand(1));
294   Register Res = getOrCreateVReg(U);
295   uint16_t Flags = 0;
296   if (isa<Instruction>(U)) {
297     const Instruction &I = cast<Instruction>(U);
298     Flags = MachineInstr::copyFlagsFromInstruction(I);
299   }
300
301   MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
302   return true;
303 }
304
305 bool IRTranslator::translateFSub(const User &U, MachineIRBuilder &MIRBuilder) {
306   // -0.0 - X --> G_FNEG
307   if (isa<Constant>(U.getOperand(0)) &&
308       U.getOperand(0) == ConstantFP::getZeroValueForNegation(U.getType())) {
309     Register Op1 = getOrCreateVReg(*U.getOperand(1));
310     Register Res = getOrCreateVReg(U);
311     uint16_t Flags = 0;
312     if (isa<Instruction>(U)) {
313       const Instruction &I = cast<Instruction>(U);
314       Flags = MachineInstr::copyFlagsFromInstruction(I);
315     }
316     // Negate the last operand of the FSUB
317     MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op1}, Flags);
318     return true;
319   }
320   return translateBinaryOp(TargetOpcode::G_FSUB, U, MIRBuilder);
321 }
322
323 bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
324   Register Op0 = getOrCreateVReg(*U.getOperand(0));
325   Register Res = getOrCreateVReg(U);
326   uint16_t Flags = 0;
327   if (isa<Instruction>(U)) {
328     const Instruction &I = cast<Instruction>(U);
329     Flags = MachineInstr::copyFlagsFromInstruction(I);
330   }
331   MIRBuilder.buildInstr(TargetOpcode::G_FNEG, {Res}, {Op0}, Flags);
332   return true;
333 }
334
335 bool IRTranslator::translateCompare(const User &U,
336                                     MachineIRBuilder &MIRBuilder) {
337   const CmpInst *CI = dyn_cast<CmpInst>(&U);
338   Register Op0 = getOrCreateVReg(*U.getOperand(0));
339   Register Op1 = getOrCreateVReg(*U.getOperand(1));
340   Register Res = getOrCreateVReg(U);
341   CmpInst::Predicate Pred =
342       CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
343                                     cast<ConstantExpr>(U).getPredicate());
344   if (CmpInst::isIntPredicate(Pred))
345     MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
346   else if (Pred == CmpInst::FCMP_FALSE)
347     MIRBuilder.buildCopy(
348         Res, getOrCreateVReg(*Constant::getNullValue(CI->getType())));
349   else if (Pred == CmpInst::FCMP_TRUE)
350     MIRBuilder.buildCopy(
351         Res, getOrCreateVReg(*Constant::getAllOnesValue(CI->getType())));
352   else {
353     MIRBuilder.buildInstr(TargetOpcode::G_FCMP, {Res}, {Pred, Op0, Op1},
354                           MachineInstr::copyFlagsFromInstruction(*CI));
355   }
356
357   return true;
358 }
359
360 bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
361   const ReturnInst &RI = cast<ReturnInst>(U);
362   const Value *Ret = RI.getReturnValue();
363   if (Ret && DL->getTypeStoreSize(Ret->getType()) == 0)
364     Ret = nullptr;
365
366   ArrayRef<Register> VRegs;
367   if (Ret)
368     VRegs = getOrCreateVRegs(*Ret);
369
370   Register SwiftErrorVReg = 0;
371   if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
372     SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
373         &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
374   }
375
376   // The target may mess up with the insertion point, but
377   // this is not important as a return is the last instruction
378   // of the block anyway.
379   return CLI->lowerReturn(MIRBuilder, Ret, VRegs, SwiftErrorVReg);
380 }
381
382 bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
383   const BranchInst &BrInst = cast<BranchInst>(U);
384   unsigned Succ = 0;
385   if (!BrInst.isUnconditional()) {
386     // We want a G_BRCOND to the true BB followed by an unconditional branch.
387     Register Tst = getOrCreateVReg(*BrInst.getCondition());
388     const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
389     MachineBasicBlock &TrueBB = getMBB(TrueTgt);
390     MIRBuilder.buildBrCond(Tst, TrueBB);
391   }
392
393   const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
394   MachineBasicBlock &TgtBB = getMBB(BrTgt);
395   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
396
397   // If the unconditional target is the layout successor, fallthrough.
398   if (!CurBB.isLayoutSuccessor(&TgtBB))
399     MIRBuilder.buildBr(TgtBB);
400
401   // Link successors.
402   for (const BasicBlock *Succ : successors(&BrInst))
403     CurBB.addSuccessor(&getMBB(*Succ));
404   return true;
405 }
406
407 void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
408                                         MachineBasicBlock *Dst,
409                                         BranchProbability Prob) {
410   if (!FuncInfo.BPI) {
411     Src->addSuccessorWithoutProb(Dst);
412     return;
413   }
414   if (Prob.isUnknown())
415     Prob = getEdgeProbability(Src, Dst);
416   Src->addSuccessor(Dst, Prob);
417 }
418
419 BranchProbability
420 IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
421                                  const MachineBasicBlock *Dst) const {
422   const BasicBlock *SrcBB = Src->getBasicBlock();
423   const BasicBlock *DstBB = Dst->getBasicBlock();
424   if (!FuncInfo.BPI) {
425     // If BPI is not available, set the default probability as 1 / N, where N is
426     // the number of successors.
427     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
428     return BranchProbability(1, SuccSize);
429   }
430   return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
431 }
432
433 bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
434   using namespace SwitchCG;
435   // Extract cases from the switch.
436   const SwitchInst &SI = cast<SwitchInst>(U);
437   BranchProbabilityInfo *BPI = FuncInfo.BPI;
438   CaseClusterVector Clusters;
439   Clusters.reserve(SI.getNumCases());
440   for (auto &I : SI.cases()) {
441     MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
442     assert(Succ && "Could not find successor mbb in mapping");
443     const ConstantInt *CaseVal = I.getCaseValue();
444     BranchProbability Prob =
445         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
446             : BranchProbability(1, SI.getNumCases() + 1);
447     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
448   }
449
450   MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
451
452   // Cluster adjacent cases with the same destination. We do this at all
453   // optimization levels because it's cheap to do and will make codegen faster
454   // if there are many clusters.
455   sortAndRangeify(Clusters);
456
457   MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
458
459   // If there is only the default destination, jump there directly.
460   if (Clusters.empty()) {
461     SwitchMBB->addSuccessor(DefaultMBB);
462     if (DefaultMBB != SwitchMBB->getNextNode())
463       MIB.buildBr(*DefaultMBB);
464     return true;
465   }
466
467   SL->findJumpTables(Clusters, &SI, DefaultMBB);
468
469   LLVM_DEBUG({
470     dbgs() << "Case clusters: ";
471     for (const CaseCluster &C : Clusters) {
472       if (C.Kind == CC_JumpTable)
473         dbgs() << "JT:";
474       if (C.Kind == CC_BitTests)
475         dbgs() << "BT:";
476
477       C.Low->getValue().print(dbgs(), true);
478       if (C.Low != C.High) {
479         dbgs() << '-';
480         C.High->getValue().print(dbgs(), true);
481       }
482       dbgs() << ' ';
483     }
484     dbgs() << '\n';
485   });
486
487   assert(!Clusters.empty());
488   SwitchWorkList WorkList;
489   CaseClusterIt First = Clusters.begin();
490   CaseClusterIt Last = Clusters.end() - 1;
491   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
492   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
493
494   // FIXME: At the moment we don't do any splitting optimizations here like
495   // SelectionDAG does, so this worklist only has one entry.
496   while (!WorkList.empty()) {
497     SwitchWorkListItem W = WorkList.back();
498     WorkList.pop_back();
499     if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
500       return false;
501   }
502   return true;
503 }
504
505 void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
506                                  MachineBasicBlock *MBB) {
507   // Emit the code for the jump table
508   assert(JT.Reg != -1U && "Should lower JT Header first!");
509   MachineIRBuilder MIB(*MBB->getParent());
510   MIB.setMBB(*MBB);
511   MIB.setDebugLoc(CurBuilder->getDebugLoc());
512
513   Type *PtrIRTy = Type::getInt8PtrTy(MF->getFunction().getContext());
514   const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
515
516   auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
517   MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
518 }
519
520 bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
521                                        SwitchCG::JumpTableHeader &JTH,
522                                        MachineBasicBlock *HeaderBB) {
523   MachineIRBuilder MIB(*HeaderBB->getParent());
524   MIB.setMBB(*HeaderBB);
525   MIB.setDebugLoc(CurBuilder->getDebugLoc());
526
527   const Value &SValue = *JTH.SValue;
528   // Subtract the lowest switch case value from the value being switched on.
529   const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
530   Register SwitchOpReg = getOrCreateVReg(SValue);
531   auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
532   auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
533
534   // This value may be smaller or larger than the target's pointer type, and
535   // therefore require extension or truncating.
536   Type *PtrIRTy = SValue.getType()->getPointerTo();
537   const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
538   Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
539
540   JT.Reg = Sub.getReg(0);
541
542   if (JTH.OmitRangeCheck) {
543     if (JT.MBB != HeaderBB->getNextNode())
544       MIB.buildBr(*JT.MBB);
545     return true;
546   }
547
548   // Emit the range check for the jump table, and branch to the default block
549   // for the switch statement if the value being switched on exceeds the
550   // largest case in the switch.
551   auto Cst = getOrCreateVReg(
552       *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
553   Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
554   auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
555
556   auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
557
558   // Avoid emitting unnecessary branches to the next block.
559   if (JT.MBB != HeaderBB->getNextNode())
560     BrCond = MIB.buildBr(*JT.MBB);
561   return true;
562 }
563
564 void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
565                                   MachineBasicBlock *SwitchBB,
566                                   MachineIRBuilder &MIB) {
567   Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
568   Register Cond;
569   DebugLoc OldDbgLoc = MIB.getDebugLoc();
570   MIB.setDebugLoc(CB.DbgLoc);
571   MIB.setMBB(*CB.ThisBB);
572
573   if (CB.PredInfo.NoCmp) {
574     // Branch or fall through to TrueBB.
575     addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
576     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
577                       CB.ThisBB);
578     CB.ThisBB->normalizeSuccProbs();
579     if (CB.TrueBB != CB.ThisBB->getNextNode())
580       MIB.buildBr(*CB.TrueBB);
581     MIB.setDebugLoc(OldDbgLoc);
582     return;
583   }
584
585   const LLT i1Ty = LLT::scalar(1);
586   // Build the compare.
587   if (!CB.CmpMHS) {
588     Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
589     Cond = MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
590   } else {
591     assert(CB.PredInfo.Pred == CmpInst::ICMP_ULE &&
592            "Can only handle ULE ranges");
593
594     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
595     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
596
597     Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
598     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
599       Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
600       Cond =
601           MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, CmpOpReg, CondRHS).getReg(0);
602     } else {
603       const LLT &CmpTy = MRI->getType(CmpOpReg);
604       auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
605       auto Diff = MIB.buildConstant(CmpTy, High - Low);
606       Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
607     }
608   }
609
610   // Update successor info
611   addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
612
613   addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
614                     CB.ThisBB);
615
616   // TrueBB and FalseBB are always different unless the incoming IR is
617   // degenerate. This only happens when running llc on weird IR.
618   if (CB.TrueBB != CB.FalseBB)
619     addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
620   CB.ThisBB->normalizeSuccProbs();
621
622   //  if (SwitchBB->getBasicBlock() != CB.FalseBB->getBasicBlock())
623     addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
624                       CB.ThisBB);
625
626   // If the lhs block is the next block, invert the condition so that we can
627   // fall through to the lhs instead of the rhs block.
628   if (CB.TrueBB == CB.ThisBB->getNextNode()) {
629     std::swap(CB.TrueBB, CB.FalseBB);
630     auto True = MIB.buildConstant(i1Ty, 1);
631     Cond = MIB.buildInstr(TargetOpcode::G_XOR, {i1Ty}, {Cond, True}, None)
632                .getReg(0);
633   }
634
635   MIB.buildBrCond(Cond, *CB.TrueBB);
636   MIB.buildBr(*CB.FalseBB);
637   MIB.setDebugLoc(OldDbgLoc);
638 }
639
640 bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
641                                           MachineBasicBlock *SwitchMBB,
642                                           MachineBasicBlock *CurMBB,
643                                           MachineBasicBlock *DefaultMBB,
644                                           MachineIRBuilder &MIB,
645                                           MachineFunction::iterator BBI,
646                                           BranchProbability UnhandledProbs,
647                                           SwitchCG::CaseClusterIt I,
648                                           MachineBasicBlock *Fallthrough,
649                                           bool FallthroughUnreachable) {
650   using namespace SwitchCG;
651   MachineFunction *CurMF = SwitchMBB->getParent();
652   // FIXME: Optimize away range check based on pivot comparisons.
653   JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
654   SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
655   BranchProbability DefaultProb = W.DefaultProb;
656
657   // The jump block hasn't been inserted yet; insert it here.
658   MachineBasicBlock *JumpMBB = JT->MBB;
659   CurMF->insert(BBI, JumpMBB);
660
661   // Since the jump table block is separate from the switch block, we need
662   // to keep track of it as a machine predecessor to the default block,
663   // otherwise we lose the phi edges.
664   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
665                     CurMBB);
666   addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
667                     JumpMBB);
668
669   auto JumpProb = I->Prob;
670   auto FallthroughProb = UnhandledProbs;
671
672   // If the default statement is a target of the jump table, we evenly
673   // distribute the default probability to successors of CurMBB. Also
674   // update the probability on the edge from JumpMBB to Fallthrough.
675   for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
676                                         SE = JumpMBB->succ_end();
677        SI != SE; ++SI) {
678     if (*SI == DefaultMBB) {
679       JumpProb += DefaultProb / 2;
680       FallthroughProb -= DefaultProb / 2;
681       JumpMBB->setSuccProbability(SI, DefaultProb / 2);
682       JumpMBB->normalizeSuccProbs();
683     } else {
684       // Also record edges from the jump table block to it's successors.
685       addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
686                         JumpMBB);
687     }
688   }
689
690   // Skip the range check if the fallthrough block is unreachable.
691   if (FallthroughUnreachable)
692     JTH->OmitRangeCheck = true;
693
694   if (!JTH->OmitRangeCheck)
695     addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
696   addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
697   CurMBB->normalizeSuccProbs();
698
699   // The jump table header will be inserted in our current block, do the
700   // range check, and fall through to our fallthrough block.
701   JTH->HeaderBB = CurMBB;
702   JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
703
704   // If we're in the right place, emit the jump table header right now.
705   if (CurMBB == SwitchMBB) {
706     if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
707       return false;
708     JTH->Emitted = true;
709   }
710   return true;
711 }
712 bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
713                                             Value *Cond,
714                                             MachineBasicBlock *Fallthrough,
715                                             bool FallthroughUnreachable,
716                                             BranchProbability UnhandledProbs,
717                                             MachineBasicBlock *CurMBB,
718                                             MachineIRBuilder &MIB,
719                                             MachineBasicBlock *SwitchMBB) {
720   using namespace SwitchCG;
721   const Value *RHS, *LHS, *MHS;
722   CmpInst::Predicate Pred;
723   if (I->Low == I->High) {
724     // Check Cond == I->Low.
725     Pred = CmpInst::ICMP_EQ;
726     LHS = Cond;
727     RHS = I->Low;
728     MHS = nullptr;
729   } else {
730     // Check I->Low <= Cond <= I->High.
731     Pred = CmpInst::ICMP_ULE;
732     LHS = I->Low;
733     MHS = Cond;
734     RHS = I->High;
735   }
736
737   // If Fallthrough is unreachable, fold away the comparison.
738   // The false probability is the sum of all unhandled cases.
739   CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
740                CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
741
742   emitSwitchCase(CB, SwitchMBB, MIB);
743   return true;
744 }
745
746 bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
747                                        Value *Cond,
748                                        MachineBasicBlock *SwitchMBB,
749                                        MachineBasicBlock *DefaultMBB,
750                                        MachineIRBuilder &MIB) {
751   using namespace SwitchCG;
752   MachineFunction *CurMF = FuncInfo.MF;
753   MachineBasicBlock *NextMBB = nullptr;
754   MachineFunction::iterator BBI(W.MBB);
755   if (++BBI != FuncInfo.MF->end())
756     NextMBB = &*BBI;
757
758   if (EnableOpts) {
759     // Here, we order cases by probability so the most likely case will be
760     // checked first. However, two clusters can have the same probability in
761     // which case their relative ordering is non-deterministic. So we use Low
762     // as a tie-breaker as clusters are guaranteed to never overlap.
763     llvm::sort(W.FirstCluster, W.LastCluster + 1,
764                [](const CaseCluster &a, const CaseCluster &b) {
765                  return a.Prob != b.Prob
766                             ? a.Prob > b.Prob
767                             : a.Low->getValue().slt(b.Low->getValue());
768                });
769
770     // Rearrange the case blocks so that the last one falls through if possible
771     // without changing the order of probabilities.
772     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
773       --I;
774       if (I->Prob > W.LastCluster->Prob)
775         break;
776       if (I->Kind == CC_Range && I->MBB == NextMBB) {
777         std::swap(*I, *W.LastCluster);
778         break;
779       }
780     }
781   }
782
783   // Compute total probability.
784   BranchProbability DefaultProb = W.DefaultProb;
785   BranchProbability UnhandledProbs = DefaultProb;
786   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
787     UnhandledProbs += I->Prob;
788
789   MachineBasicBlock *CurMBB = W.MBB;
790   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
791     bool FallthroughUnreachable = false;
792     MachineBasicBlock *Fallthrough;
793     if (I == W.LastCluster) {
794       // For the last cluster, fall through to the default destination.
795       Fallthrough = DefaultMBB;
796       FallthroughUnreachable = isa<UnreachableInst>(
797           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
798     } else {
799       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
800       CurMF->insert(BBI, Fallthrough);
801     }
802     UnhandledProbs -= I->Prob;
803
804     switch (I->Kind) {
805     case CC_BitTests: {
806       LLVM_DEBUG(dbgs() << "Switch to bit test optimization unimplemented");
807       return false; // Bit tests currently unimplemented.
808     }
809     case CC_JumpTable: {
810       if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
811                                   UnhandledProbs, I, Fallthrough,
812                                   FallthroughUnreachable)) {
813         LLVM_DEBUG(dbgs() << "Failed to lower jump table");
814         return false;
815       }
816       break;
817     }
818     case CC_Range: {
819       if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
820                                     FallthroughUnreachable, UnhandledProbs,
821                                     CurMBB, MIB, SwitchMBB)) {
822         LLVM_DEBUG(dbgs() << "Failed to lower switch range");
823         return false;
824       }
825       break;
826     }
827     }
828     CurMBB = Fallthrough;
829   }
830
831   return true;
832 }
833
834 bool IRTranslator::translateIndirectBr(const User &U,
835                                        MachineIRBuilder &MIRBuilder) {
836   const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
837
838   const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
839   MIRBuilder.buildBrIndirect(Tgt);
840
841   // Link successors.
842   MachineBasicBlock &CurBB = MIRBuilder.getMBB();
843   for (const BasicBlock *Succ : successors(&BrInst))
844     CurBB.addSuccessor(&getMBB(*Succ));
845
846   return true;
847 }
848
849 static bool isSwiftError(const Value *V) {
850   if (auto Arg = dyn_cast<Argument>(V))
851     return Arg->hasSwiftErrorAttr();
852   if (auto AI = dyn_cast<AllocaInst>(V))
853     return AI->isSwiftError();
854   return false;
855 }
856
857 bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
858   const LoadInst &LI = cast<LoadInst>(U);
859
860   auto Flags = LI.isVolatile() ? MachineMemOperand::MOVolatile
861                                : MachineMemOperand::MONone;
862   Flags |= MachineMemOperand::MOLoad;
863
864   if (DL->getTypeStoreSize(LI.getType()) == 0)
865     return true;
866
867   ArrayRef<Register> Regs = getOrCreateVRegs(LI);
868   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
869   Register Base = getOrCreateVReg(*LI.getPointerOperand());
870
871   Type *OffsetIRTy = DL->getIntPtrType(LI.getPointerOperandType());
872   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
873
874   if (CLI->supportSwiftError() && isSwiftError(LI.getPointerOperand())) {
875     assert(Regs.size() == 1 && "swifterror should be single pointer");
876     Register VReg = SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(),
877                                                     LI.getPointerOperand());
878     MIRBuilder.buildCopy(Regs[0], VReg);
879     return true;
880   }
881
882
883   for (unsigned i = 0; i < Regs.size(); ++i) {
884     Register Addr;
885     MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8);
886
887     MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
888     unsigned BaseAlign = getMemOpAlignment(LI);
889     auto MMO = MF->getMachineMemOperand(
890         Ptr, Flags, (MRI->getType(Regs[i]).getSizeInBits() + 7) / 8,
891         MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
892         LI.getSyncScopeID(), LI.getOrdering());
893     MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
894   }
895
896   return true;
897 }
898
899 bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
900   const StoreInst &SI = cast<StoreInst>(U);
901   auto Flags = SI.isVolatile() ? MachineMemOperand::MOVolatile
902                                : MachineMemOperand::MONone;
903   Flags |= MachineMemOperand::MOStore;
904
905   if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
906     return true;
907
908   ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
909   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
910   Register Base = getOrCreateVReg(*SI.getPointerOperand());
911
912   Type *OffsetIRTy = DL->getIntPtrType(SI.getPointerOperandType());
913   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
914
915   if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
916     assert(Vals.size() == 1 && "swifterror should be single pointer");
917
918     Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
919                                                     SI.getPointerOperand());
920     MIRBuilder.buildCopy(VReg, Vals[0]);
921     return true;
922   }
923
924   for (unsigned i = 0; i < Vals.size(); ++i) {
925     Register Addr;
926     MIRBuilder.materializeGEP(Addr, Base, OffsetTy, Offsets[i] / 8);
927
928     MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
929     unsigned BaseAlign = getMemOpAlignment(SI);
930     auto MMO = MF->getMachineMemOperand(
931         Ptr, Flags, (MRI->getType(Vals[i]).getSizeInBits() + 7) / 8,
932         MinAlign(BaseAlign, Offsets[i] / 8), AAMDNodes(), nullptr,
933         SI.getSyncScopeID(), SI.getOrdering());
934     MIRBuilder.buildStore(Vals[i], Addr, *MMO);
935   }
936   return true;
937 }
938
939 static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
940   const Value *Src = U.getOperand(0);
941   Type *Int32Ty = Type::getInt32Ty(U.getContext());
942
943   // getIndexedOffsetInType is designed for GEPs, so the first index is the
944   // usual array element rather than looking into the actual aggregate.
945   SmallVector<Value *, 1> Indices;
946   Indices.push_back(ConstantInt::get(Int32Ty, 0));
947
948   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
949     for (auto Idx : EVI->indices())
950       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
951   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
952     for (auto Idx : IVI->indices())
953       Indices.push_back(ConstantInt::get(Int32Ty, Idx));
954   } else {
955     for (unsigned i = 1; i < U.getNumOperands(); ++i)
956       Indices.push_back(U.getOperand(i));
957   }
958
959   return 8 * static_cast<uint64_t>(
960                  DL.getIndexedOffsetInType(Src->getType(), Indices));
961 }
962
963 bool IRTranslator::translateExtractValue(const User &U,
964                                          MachineIRBuilder &MIRBuilder) {
965   const Value *Src = U.getOperand(0);
966   uint64_t Offset = getOffsetFromIndices(U, *DL);
967   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
968   ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
969   unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
970   auto &DstRegs = allocateVRegs(U);
971
972   for (unsigned i = 0; i < DstRegs.size(); ++i)
973     DstRegs[i] = SrcRegs[Idx++];
974
975   return true;
976 }
977
978 bool IRTranslator::translateInsertValue(const User &U,
979                                         MachineIRBuilder &MIRBuilder) {
980   const Value *Src = U.getOperand(0);
981   uint64_t Offset = getOffsetFromIndices(U, *DL);
982   auto &DstRegs = allocateVRegs(U);
983   ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
984   ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
985   ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
986   auto InsertedIt = InsertedRegs.begin();
987
988   for (unsigned i = 0; i < DstRegs.size(); ++i) {
989     if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
990       DstRegs[i] = *InsertedIt++;
991     else
992       DstRegs[i] = SrcRegs[i];
993   }
994
995   return true;
996 }
997
998 bool IRTranslator::translateSelect(const User &U,
999                                    MachineIRBuilder &MIRBuilder) {
1000   Register Tst = getOrCreateVReg(*U.getOperand(0));
1001   ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1002   ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1003   ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1004
1005   const SelectInst &SI = cast<SelectInst>(U);
1006   uint16_t Flags = 0;
1007   if (const CmpInst *Cmp = dyn_cast<CmpInst>(SI.getCondition()))
1008     Flags = MachineInstr::copyFlagsFromInstruction(*Cmp);
1009
1010   for (unsigned i = 0; i < ResRegs.size(); ++i) {
1011     MIRBuilder.buildInstr(TargetOpcode::G_SELECT, {ResRegs[i]},
1012                           {Tst, Op0Regs[i], Op1Regs[i]}, Flags);
1013   }
1014
1015   return true;
1016 }
1017
1018 bool IRTranslator::translateBitCast(const User &U,
1019                                     MachineIRBuilder &MIRBuilder) {
1020   // If we're bitcasting to the source type, we can reuse the source vreg.
1021   if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1022       getLLTForType(*U.getType(), *DL)) {
1023     Register SrcReg = getOrCreateVReg(*U.getOperand(0));
1024     auto &Regs = *VMap.getVRegs(U);
1025     // If we already assigned a vreg for this bitcast, we can't change that.
1026     // Emit a copy to satisfy the users we already emitted.
1027     if (!Regs.empty())
1028       MIRBuilder.buildCopy(Regs[0], SrcReg);
1029     else {
1030       Regs.push_back(SrcReg);
1031       VMap.getOffsets(U)->push_back(0);
1032     }
1033     return true;
1034   }
1035   return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1036 }
1037
1038 bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1039                                  MachineIRBuilder &MIRBuilder) {
1040   Register Op = getOrCreateVReg(*U.getOperand(0));
1041   Register Res = getOrCreateVReg(U);
1042   MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1043   return true;
1044 }
1045
1046 bool IRTranslator::translateGetElementPtr(const User &U,
1047                                           MachineIRBuilder &MIRBuilder) {
1048   // FIXME: support vector GEPs.
1049   if (U.getType()->isVectorTy())
1050     return false;
1051
1052   Value &Op0 = *U.getOperand(0);
1053   Register BaseReg = getOrCreateVReg(Op0);
1054   Type *PtrIRTy = Op0.getType();
1055   LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1056   Type *OffsetIRTy = DL->getIntPtrType(PtrIRTy);
1057   LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1058
1059   int64_t Offset = 0;
1060   for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1061        GTI != E; ++GTI) {
1062     const Value *Idx = GTI.getOperand();
1063     if (StructType *StTy = GTI.getStructTypeOrNull()) {
1064       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1065       Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1066       continue;
1067     } else {
1068       uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
1069
1070       // If this is a scalar constant or a splat vector of constants,
1071       // handle it quickly.
1072       if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1073         Offset += ElementSize * CI->getSExtValue();
1074         continue;
1075       }
1076
1077       if (Offset != 0) {
1078         Register NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
1079         LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1080         auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1081         MIRBuilder.buildGEP(NewBaseReg, BaseReg, OffsetMIB.getReg(0));
1082
1083         BaseReg = NewBaseReg;
1084         Offset = 0;
1085       }
1086
1087       Register IdxReg = getOrCreateVReg(*Idx);
1088       if (MRI->getType(IdxReg) != OffsetTy) {
1089         Register NewIdxReg = MRI->createGenericVirtualRegister(OffsetTy);
1090         MIRBuilder.buildSExtOrTrunc(NewIdxReg, IdxReg);
1091         IdxReg = NewIdxReg;
1092       }
1093
1094       // N = N + Idx * ElementSize;
1095       // Avoid doing it for ElementSize of 1.
1096       Register GepOffsetReg;
1097       if (ElementSize != 1) {
1098         GepOffsetReg = MRI->createGenericVirtualRegister(OffsetTy);
1099         auto ElementSizeMIB = MIRBuilder.buildConstant(
1100             getLLTForType(*OffsetIRTy, *DL), ElementSize);
1101         MIRBuilder.buildMul(GepOffsetReg, ElementSizeMIB.getReg(0), IdxReg);
1102       } else
1103         GepOffsetReg = IdxReg;
1104
1105       Register NewBaseReg = MRI->createGenericVirtualRegister(PtrTy);
1106       MIRBuilder.buildGEP(NewBaseReg, BaseReg, GepOffsetReg);
1107       BaseReg = NewBaseReg;
1108     }
1109   }
1110
1111   if (Offset != 0) {
1112     auto OffsetMIB =
1113         MIRBuilder.buildConstant(getLLTForType(*OffsetIRTy, *DL), Offset);
1114     MIRBuilder.buildGEP(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0));
1115     return true;
1116   }
1117
1118   MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1119   return true;
1120 }
1121
1122 bool IRTranslator::translateMemfunc(const CallInst &CI,
1123                                     MachineIRBuilder &MIRBuilder,
1124                                     unsigned ID) {
1125
1126   // If the source is undef, then just emit a nop.
1127   if (isa<UndefValue>(CI.getArgOperand(1))) {
1128     switch (ID) {
1129     case Intrinsic::memmove:
1130     case Intrinsic::memcpy:
1131     case Intrinsic::memset:
1132       return true;
1133     default:
1134       break;
1135     }
1136   }
1137
1138   LLT SizeTy = getLLTForType(*CI.getArgOperand(2)->getType(), *DL);
1139   Type *DstTy = CI.getArgOperand(0)->getType();
1140   if (cast<PointerType>(DstTy)->getAddressSpace() != 0 ||
1141       SizeTy.getSizeInBits() != DL->getPointerSizeInBits(0))
1142     return false;
1143
1144   SmallVector<CallLowering::ArgInfo, 8> Args;
1145   for (int i = 0; i < 3; ++i) {
1146     const auto &Arg = CI.getArgOperand(i);
1147     Args.emplace_back(getOrCreateVReg(*Arg), Arg->getType());
1148   }
1149
1150   const char *Callee;
1151   switch (ID) {
1152   case Intrinsic::memmove:
1153   case Intrinsic::memcpy: {
1154     Type *SrcTy = CI.getArgOperand(1)->getType();
1155     if(cast<PointerType>(SrcTy)->getAddressSpace() != 0)
1156       return false;
1157     Callee = ID == Intrinsic::memcpy ? "memcpy" : "memmove";
1158     break;
1159   }
1160   case Intrinsic::memset:
1161     Callee = "memset";
1162     break;
1163   default:
1164     return false;
1165   }
1166
1167   return CLI->lowerCall(MIRBuilder, CI.getCallingConv(),
1168                         MachineOperand::CreateES(Callee),
1169                         CallLowering::ArgInfo({0}, CI.getType()), Args);
1170 }
1171
1172 void IRTranslator::getStackGuard(Register DstReg,
1173                                  MachineIRBuilder &MIRBuilder) {
1174   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1175   MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1176   auto MIB = MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD);
1177   MIB.addDef(DstReg);
1178
1179   auto &TLI = *MF->getSubtarget().getTargetLowering();
1180   Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1181   if (!Global)
1182     return;
1183
1184   MachinePointerInfo MPInfo(Global);
1185   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1186                MachineMemOperand::MODereferenceable;
1187   MachineMemOperand *MemRef =
1188       MF->getMachineMemOperand(MPInfo, Flags, DL->getPointerSizeInBits() / 8,
1189                                DL->getPointerABIAlignment(0));
1190   MIB.setMemRefs({MemRef});
1191 }
1192
1193 bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1194                                               MachineIRBuilder &MIRBuilder) {
1195   ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1196   MIRBuilder.buildInstr(Op)
1197       .addDef(ResRegs[0])
1198       .addDef(ResRegs[1])
1199       .addUse(getOrCreateVReg(*CI.getOperand(0)))
1200       .addUse(getOrCreateVReg(*CI.getOperand(1)));
1201
1202   return true;
1203 }
1204
1205 unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1206   switch (ID) {
1207     default:
1208       break;
1209     case Intrinsic::bswap:
1210       return TargetOpcode::G_BSWAP;
1211     case Intrinsic::ceil:
1212       return TargetOpcode::G_FCEIL;
1213     case Intrinsic::cos:
1214       return TargetOpcode::G_FCOS;
1215     case Intrinsic::ctpop:
1216       return TargetOpcode::G_CTPOP;
1217     case Intrinsic::exp:
1218       return TargetOpcode::G_FEXP;
1219     case Intrinsic::exp2:
1220       return TargetOpcode::G_FEXP2;
1221     case Intrinsic::fabs:
1222       return TargetOpcode::G_FABS;
1223     case Intrinsic::copysign:
1224       return TargetOpcode::G_FCOPYSIGN;
1225     case Intrinsic::minnum:
1226       return TargetOpcode::G_FMINNUM;
1227     case Intrinsic::maxnum:
1228       return TargetOpcode::G_FMAXNUM;
1229     case Intrinsic::minimum:
1230       return TargetOpcode::G_FMINIMUM;
1231     case Intrinsic::maximum:
1232       return TargetOpcode::G_FMAXIMUM;
1233     case Intrinsic::canonicalize:
1234       return TargetOpcode::G_FCANONICALIZE;
1235     case Intrinsic::floor:
1236       return TargetOpcode::G_FFLOOR;
1237     case Intrinsic::fma:
1238       return TargetOpcode::G_FMA;
1239     case Intrinsic::log:
1240       return TargetOpcode::G_FLOG;
1241     case Intrinsic::log2:
1242       return TargetOpcode::G_FLOG2;
1243     case Intrinsic::log10:
1244       return TargetOpcode::G_FLOG10;
1245     case Intrinsic::nearbyint:
1246       return TargetOpcode::G_FNEARBYINT;
1247     case Intrinsic::pow:
1248       return TargetOpcode::G_FPOW;
1249     case Intrinsic::rint:
1250       return TargetOpcode::G_FRINT;
1251     case Intrinsic::round:
1252       return TargetOpcode::G_INTRINSIC_ROUND;
1253     case Intrinsic::sin:
1254       return TargetOpcode::G_FSIN;
1255     case Intrinsic::sqrt:
1256       return TargetOpcode::G_FSQRT;
1257     case Intrinsic::trunc:
1258       return TargetOpcode::G_INTRINSIC_TRUNC;
1259   }
1260   return Intrinsic::not_intrinsic;
1261 }
1262
1263 bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1264                                             Intrinsic::ID ID,
1265                                             MachineIRBuilder &MIRBuilder) {
1266
1267   unsigned Op = getSimpleIntrinsicOpcode(ID);
1268
1269   // Is this a simple intrinsic?
1270   if (Op == Intrinsic::not_intrinsic)
1271     return false;
1272
1273   // Yes. Let's translate it.
1274   SmallVector<llvm::SrcOp, 4> VRegs;
1275   for (auto &Arg : CI.arg_operands())
1276     VRegs.push_back(getOrCreateVReg(*Arg));
1277
1278   MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1279                         MachineInstr::copyFlagsFromInstruction(CI));
1280   return true;
1281 }
1282
1283 bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
1284                                            MachineIRBuilder &MIRBuilder) {
1285
1286   // If this is a simple intrinsic (that is, we just need to add a def of
1287   // a vreg, and uses for each arg operand, then translate it.
1288   if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
1289     return true;
1290
1291   switch (ID) {
1292   default:
1293     break;
1294   case Intrinsic::lifetime_start:
1295   case Intrinsic::lifetime_end: {
1296     // No stack colouring in O0, discard region information.
1297     if (MF->getTarget().getOptLevel() == CodeGenOpt::None)
1298       return true;
1299
1300     unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
1301                                                   : TargetOpcode::LIFETIME_END;
1302
1303     // Get the underlying objects for the location passed on the lifetime
1304     // marker.
1305     SmallVector<const Value *, 4> Allocas;
1306     GetUnderlyingObjects(CI.getArgOperand(1), Allocas, *DL);
1307
1308     // Iterate over each underlying object, creating lifetime markers for each
1309     // static alloca. Quit if we find a non-static alloca.
1310     for (const Value *V : Allocas) {
1311       const AllocaInst *AI = dyn_cast<AllocaInst>(V);
1312       if (!AI)
1313         continue;
1314
1315       if (!AI->isStaticAlloca())
1316         return true;
1317
1318       MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
1319     }
1320     return true;
1321   }
1322   case Intrinsic::dbg_declare: {
1323     const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
1324     assert(DI.getVariable() && "Missing variable");
1325
1326     const Value *Address = DI.getAddress();
1327     if (!Address || isa<UndefValue>(Address)) {
1328       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1329       return true;
1330     }
1331
1332     assert(DI.getVariable()->isValidLocationForIntrinsic(
1333                MIRBuilder.getDebugLoc()) &&
1334            "Expected inlined-at fields to agree");
1335     auto AI = dyn_cast<AllocaInst>(Address);
1336     if (AI && AI->isStaticAlloca()) {
1337       // Static allocas are tracked at the MF level, no need for DBG_VALUE
1338       // instructions (in fact, they get ignored if they *do* exist).
1339       MF->setVariableDbgInfo(DI.getVariable(), DI.getExpression(),
1340                              getOrCreateFrameIndex(*AI), DI.getDebugLoc());
1341     } else {
1342       // A dbg.declare describes the address of a source variable, so lower it
1343       // into an indirect DBG_VALUE.
1344       MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
1345                                        DI.getVariable(), DI.getExpression());
1346     }
1347     return true;
1348   }
1349   case Intrinsic::dbg_label: {
1350     const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
1351     assert(DI.getLabel() && "Missing label");
1352
1353     assert(DI.getLabel()->isValidLocationForIntrinsic(
1354                MIRBuilder.getDebugLoc()) &&
1355            "Expected inlined-at fields to agree");
1356
1357     MIRBuilder.buildDbgLabel(DI.getLabel());
1358     return true;
1359   }
1360   case Intrinsic::vaend:
1361     // No target I know of cares about va_end. Certainly no in-tree target
1362     // does. Simplest intrinsic ever!
1363     return true;
1364   case Intrinsic::vastart: {
1365     auto &TLI = *MF->getSubtarget().getTargetLowering();
1366     Value *Ptr = CI.getArgOperand(0);
1367     unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
1368
1369     // FIXME: Get alignment
1370     MIRBuilder.buildInstr(TargetOpcode::G_VASTART)
1371         .addUse(getOrCreateVReg(*Ptr))
1372         .addMemOperand(MF->getMachineMemOperand(
1373             MachinePointerInfo(Ptr), MachineMemOperand::MOStore, ListSize, 1));
1374     return true;
1375   }
1376   case Intrinsic::dbg_value: {
1377     // This form of DBG_VALUE is target-independent.
1378     const DbgValueInst &DI = cast<DbgValueInst>(CI);
1379     const Value *V = DI.getValue();
1380     assert(DI.getVariable()->isValidLocationForIntrinsic(
1381                MIRBuilder.getDebugLoc()) &&
1382            "Expected inlined-at fields to agree");
1383     if (!V) {
1384       // Currently the optimizer can produce this; insert an undef to
1385       // help debugging.  Probably the optimizer should not do this.
1386       MIRBuilder.buildIndirectDbgValue(0, DI.getVariable(), DI.getExpression());
1387     } else if (const auto *CI = dyn_cast<Constant>(V)) {
1388       MIRBuilder.buildConstDbgValue(*CI, DI.getVariable(), DI.getExpression());
1389     } else {
1390       Register Reg = getOrCreateVReg(*V);
1391       // FIXME: This does not handle register-indirect values at offset 0. The
1392       // direct/indirect thing shouldn't really be handled by something as
1393       // implicit as reg+noreg vs reg+imm in the first palce, but it seems
1394       // pretty baked in right now.
1395       MIRBuilder.buildDirectDbgValue(Reg, DI.getVariable(), DI.getExpression());
1396     }
1397     return true;
1398   }
1399   case Intrinsic::uadd_with_overflow:
1400     return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
1401   case Intrinsic::sadd_with_overflow:
1402     return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
1403   case Intrinsic::usub_with_overflow:
1404     return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
1405   case Intrinsic::ssub_with_overflow:
1406     return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
1407   case Intrinsic::umul_with_overflow:
1408     return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
1409   case Intrinsic::smul_with_overflow:
1410     return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
1411   case Intrinsic::fmuladd: {
1412     const TargetMachine &TM = MF->getTarget();
1413     const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1414     Register Dst = getOrCreateVReg(CI);
1415     Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
1416     Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
1417     Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
1418     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
1419         TLI.isFMAFasterThanFMulAndFAdd(TLI.getValueType(*DL, CI.getType()))) {
1420       // TODO: Revisit this to see if we should move this part of the
1421       // lowering to the combiner.
1422       MIRBuilder.buildInstr(TargetOpcode::G_FMA, {Dst}, {Op0, Op1, Op2},
1423                             MachineInstr::copyFlagsFromInstruction(CI));
1424     } else {
1425       LLT Ty = getLLTForType(*CI.getType(), *DL);
1426       auto FMul = MIRBuilder.buildInstr(TargetOpcode::G_FMUL, {Ty}, {Op0, Op1},
1427                                         MachineInstr::copyFlagsFromInstruction(CI));
1428       MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Dst}, {FMul, Op2},
1429                             MachineInstr::copyFlagsFromInstruction(CI));
1430     }
1431     return true;
1432   }
1433   case Intrinsic::memcpy:
1434   case Intrinsic::memmove:
1435   case Intrinsic::memset:
1436     return translateMemfunc(CI, MIRBuilder, ID);
1437   case Intrinsic::eh_typeid_for: {
1438     GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
1439     Register Reg = getOrCreateVReg(CI);
1440     unsigned TypeID = MF->getTypeIDFor(GV);
1441     MIRBuilder.buildConstant(Reg, TypeID);
1442     return true;
1443   }
1444   case Intrinsic::objectsize: {
1445     // If we don't know by now, we're never going to know.
1446     const ConstantInt *Min = cast<ConstantInt>(CI.getArgOperand(1));
1447
1448     MIRBuilder.buildConstant(getOrCreateVReg(CI), Min->isZero() ? -1ULL : 0);
1449     return true;
1450   }
1451   case Intrinsic::is_constant:
1452     // If this wasn't constant-folded away by now, then it's not a
1453     // constant.
1454     MIRBuilder.buildConstant(getOrCreateVReg(CI), 0);
1455     return true;
1456   case Intrinsic::stackguard:
1457     getStackGuard(getOrCreateVReg(CI), MIRBuilder);
1458     return true;
1459   case Intrinsic::stackprotector: {
1460     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1461     Register GuardVal = MRI->createGenericVirtualRegister(PtrTy);
1462     getStackGuard(GuardVal, MIRBuilder);
1463
1464     AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
1465     int FI = getOrCreateFrameIndex(*Slot);
1466     MF->getFrameInfo().setStackProtectorIndex(FI);
1467
1468     MIRBuilder.buildStore(
1469         GuardVal, getOrCreateVReg(*Slot),
1470         *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
1471                                   MachineMemOperand::MOStore |
1472                                       MachineMemOperand::MOVolatile,
1473                                   PtrTy.getSizeInBits() / 8, 8));
1474     return true;
1475   }
1476   case Intrinsic::stacksave: {
1477     // Save the stack pointer to the location provided by the intrinsic.
1478     Register Reg = getOrCreateVReg(CI);
1479     Register StackPtr = MF->getSubtarget()
1480                             .getTargetLowering()
1481                             ->getStackPointerRegisterToSaveRestore();
1482
1483     // If the target doesn't specify a stack pointer, then fall back.
1484     if (!StackPtr)
1485       return false;
1486
1487     MIRBuilder.buildCopy(Reg, StackPtr);
1488     return true;
1489   }
1490   case Intrinsic::stackrestore: {
1491     // Restore the stack pointer from the location provided by the intrinsic.
1492     Register Reg = getOrCreateVReg(*CI.getArgOperand(0));
1493     Register StackPtr = MF->getSubtarget()
1494                             .getTargetLowering()
1495                             ->getStackPointerRegisterToSaveRestore();
1496
1497     // If the target doesn't specify a stack pointer, then fall back.
1498     if (!StackPtr)
1499       return false;
1500
1501     MIRBuilder.buildCopy(StackPtr, Reg);
1502     return true;
1503   }
1504   case Intrinsic::cttz:
1505   case Intrinsic::ctlz: {
1506     ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
1507     bool isTrailing = ID == Intrinsic::cttz;
1508     unsigned Opcode = isTrailing
1509                           ? Cst->isZero() ? TargetOpcode::G_CTTZ
1510                                           : TargetOpcode::G_CTTZ_ZERO_UNDEF
1511                           : Cst->isZero() ? TargetOpcode::G_CTLZ
1512                                           : TargetOpcode::G_CTLZ_ZERO_UNDEF;
1513     MIRBuilder.buildInstr(Opcode)
1514         .addDef(getOrCreateVReg(CI))
1515         .addUse(getOrCreateVReg(*CI.getArgOperand(0)));
1516     return true;
1517   }
1518   case Intrinsic::invariant_start: {
1519     LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
1520     Register Undef = MRI->createGenericVirtualRegister(PtrTy);
1521     MIRBuilder.buildUndef(Undef);
1522     return true;
1523   }
1524   case Intrinsic::invariant_end:
1525     return true;
1526   case Intrinsic::assume:
1527   case Intrinsic::var_annotation:
1528   case Intrinsic::sideeffect:
1529     // Discard annotate attributes, assumptions, and artificial side-effects.
1530     return true;
1531   }
1532   return false;
1533 }
1534
1535 bool IRTranslator::translateInlineAsm(const CallInst &CI,
1536                                       MachineIRBuilder &MIRBuilder) {
1537   const InlineAsm &IA = cast<InlineAsm>(*CI.getCalledValue());
1538   if (!IA.getConstraintString().empty())
1539     return false;
1540
1541   unsigned ExtraInfo = 0;
1542   if (IA.hasSideEffects())
1543     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
1544   if (IA.getDialect() == InlineAsm::AD_Intel)
1545     ExtraInfo |= InlineAsm::Extra_AsmDialect;
1546
1547   MIRBuilder.buildInstr(TargetOpcode::INLINEASM)
1548     .addExternalSymbol(IA.getAsmString().c_str())
1549     .addImm(ExtraInfo);
1550
1551   return true;
1552 }
1553
1554 bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
1555   const CallInst &CI = cast<CallInst>(U);
1556   auto TII = MF->getTarget().getIntrinsicInfo();
1557   const Function *F = CI.getCalledFunction();
1558
1559   // FIXME: support Windows dllimport function calls.
1560   if (F && F->hasDLLImportStorageClass())
1561     return false;
1562
1563   if (CI.isInlineAsm())
1564     return translateInlineAsm(CI, MIRBuilder);
1565
1566   Intrinsic::ID ID = Intrinsic::not_intrinsic;
1567   if (F && F->isIntrinsic()) {
1568     ID = F->getIntrinsicID();
1569     if (TII && ID == Intrinsic::not_intrinsic)
1570       ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
1571   }
1572
1573   if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic) {
1574     ArrayRef<Register> Res = getOrCreateVRegs(CI);
1575
1576     SmallVector<ArrayRef<Register>, 8> Args;
1577     Register SwiftInVReg = 0;
1578     Register SwiftErrorVReg = 0;
1579     for (auto &Arg: CI.arg_operands()) {
1580       if (CLI->supportSwiftError() && isSwiftError(Arg)) {
1581         assert(SwiftInVReg == 0 && "Expected only one swift error argument");
1582         LLT Ty = getLLTForType(*Arg->getType(), *DL);
1583         SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
1584         MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
1585                                               &CI, &MIRBuilder.getMBB(), Arg));
1586         Args.emplace_back(makeArrayRef(SwiftInVReg));
1587         SwiftErrorVReg =
1588             SwiftError.getOrCreateVRegDefAt(&CI, &MIRBuilder.getMBB(), Arg);
1589         continue;
1590       }
1591       Args.push_back(getOrCreateVRegs(*Arg));
1592     }
1593
1594     MF->getFrameInfo().setHasCalls(true);
1595     bool Success =
1596         CLI->lowerCall(MIRBuilder, &CI, Res, Args, SwiftErrorVReg,
1597                        [&]() { return getOrCreateVReg(*CI.getCalledValue()); });
1598
1599     return Success;
1600   }
1601
1602   assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
1603
1604   if (translateKnownIntrinsic(CI, ID, MIRBuilder))
1605     return true;
1606
1607   ArrayRef<Register> ResultRegs;
1608   if (!CI.getType()->isVoidTy())
1609     ResultRegs = getOrCreateVRegs(CI);
1610
1611   // Ignore the callsite attributes. Backend code is most likely not expecting
1612   // an intrinsic to sometimes have side effects and sometimes not.
1613   MachineInstrBuilder MIB =
1614       MIRBuilder.buildIntrinsic(ID, ResultRegs, !F->doesNotAccessMemory());
1615   if (isa<FPMathOperator>(CI))
1616     MIB->copyIRFlags(CI);
1617
1618   for (auto &Arg : CI.arg_operands()) {
1619     // Some intrinsics take metadata parameters. Reject them.
1620     if (isa<MetadataAsValue>(Arg))
1621       return false;
1622     ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg);
1623     if (VRegs.size() > 1)
1624       return false;
1625     MIB.addUse(VRegs[0]);
1626   }
1627
1628   // Add a MachineMemOperand if it is a target mem intrinsic.
1629   const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
1630   TargetLowering::IntrinsicInfo Info;
1631   // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
1632   if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
1633     unsigned Align = Info.align;
1634     if (Align == 0)
1635       Align = DL->getABITypeAlignment(Info.memVT.getTypeForEVT(F->getContext()));
1636
1637     uint64_t Size = Info.memVT.getStoreSize();
1638     MIB.addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Info.ptrVal),
1639                                                Info.flags, Size, Align));
1640   }
1641
1642   return true;
1643 }
1644
1645 bool IRTranslator::translateInvoke(const User &U,
1646                                    MachineIRBuilder &MIRBuilder) {
1647   const InvokeInst &I = cast<InvokeInst>(U);
1648   MCContext &Context = MF->getContext();
1649
1650   const BasicBlock *ReturnBB = I.getSuccessor(0);
1651   const BasicBlock *EHPadBB = I.getSuccessor(1);
1652
1653   const Value *Callee = I.getCalledValue();
1654   const Function *Fn = dyn_cast<Function>(Callee);
1655   if (isa<InlineAsm>(Callee))
1656     return false;
1657
1658   // FIXME: support invoking patchpoint and statepoint intrinsics.
1659   if (Fn && Fn->isIntrinsic())
1660     return false;
1661
1662   // FIXME: support whatever these are.
1663   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
1664     return false;
1665
1666   // FIXME: support Windows exception handling.
1667   if (!isa<LandingPadInst>(EHPadBB->front()))
1668     return false;
1669
1670   // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
1671   // the region covered by the try.
1672   MCSymbol *BeginSymbol = Context.createTempSymbol();
1673   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
1674
1675   ArrayRef<Register> Res;
1676   if (!I.getType()->isVoidTy())
1677     Res = getOrCreateVRegs(I);
1678   SmallVector<ArrayRef<Register>, 8> Args;
1679   Register SwiftErrorVReg = 0;
1680   Register SwiftInVReg = 0;
1681   for (auto &Arg : I.arg_operands()) {
1682     if (CLI->supportSwiftError() && isSwiftError(Arg)) {
1683       assert(SwiftInVReg == 0 && "Expected only one swift error argument");
1684       LLT Ty = getLLTForType(*Arg->getType(), *DL);
1685       SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
1686       MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
1687                                             &I, &MIRBuilder.getMBB(), Arg));
1688       Args.push_back(makeArrayRef(SwiftInVReg));
1689       SwiftErrorVReg =
1690           SwiftError.getOrCreateVRegDefAt(&I, &MIRBuilder.getMBB(), Arg);
1691       continue;
1692     }
1693
1694     Args.push_back(getOrCreateVRegs(*Arg));
1695   }
1696
1697   if (!CLI->lowerCall(MIRBuilder, &I, Res, Args, SwiftErrorVReg,
1698                       [&]() { return getOrCreateVReg(*I.getCalledValue()); }))
1699     return false;
1700
1701   MCSymbol *EndSymbol = Context.createTempSymbol();
1702   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
1703
1704   // FIXME: track probabilities.
1705   MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
1706                     &ReturnMBB = getMBB(*ReturnBB);
1707   MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
1708   MIRBuilder.getMBB().addSuccessor(&ReturnMBB);
1709   MIRBuilder.getMBB().addSuccessor(&EHPadMBB);
1710   MIRBuilder.buildBr(ReturnMBB);
1711
1712   return true;
1713 }
1714
1715 bool IRTranslator::translateCallBr(const User &U,
1716                                    MachineIRBuilder &MIRBuilder) {
1717   // FIXME: Implement this.
1718   return false;
1719 }
1720
1721 bool IRTranslator::translateLandingPad(const User &U,
1722                                        MachineIRBuilder &MIRBuilder) {
1723   const LandingPadInst &LP = cast<LandingPadInst>(U);
1724
1725   MachineBasicBlock &MBB = MIRBuilder.getMBB();
1726
1727   MBB.setIsEHPad();
1728
1729   // If there aren't registers to copy the values into (e.g., during SjLj
1730   // exceptions), then don't bother.
1731   auto &TLI = *MF->getSubtarget().getTargetLowering();
1732   const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
1733   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
1734       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
1735     return true;
1736
1737   // If landingpad's return type is token type, we don't create DAG nodes
1738   // for its exception pointer and selector value. The extraction of exception
1739   // pointer or selector value from token type landingpads is not currently
1740   // supported.
1741   if (LP.getType()->isTokenTy())
1742     return true;
1743
1744   // Add a label to mark the beginning of the landing pad.  Deletion of the
1745   // landing pad can thus be detected via the MachineModuleInfo.
1746   MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
1747     .addSym(MF->addLandingPad(&MBB));
1748
1749   LLT Ty = getLLTForType(*LP.getType(), *DL);
1750   Register Undef = MRI->createGenericVirtualRegister(Ty);
1751   MIRBuilder.buildUndef(Undef);
1752
1753   SmallVector<LLT, 2> Tys;
1754   for (Type *Ty : cast<StructType>(LP.getType())->elements())
1755     Tys.push_back(getLLTForType(*Ty, *DL));
1756   assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
1757
1758   // Mark exception register as live in.
1759   Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
1760   if (!ExceptionReg)
1761     return false;
1762
1763   MBB.addLiveIn(ExceptionReg);
1764   ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
1765   MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
1766
1767   Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
1768   if (!SelectorReg)
1769     return false;
1770
1771   MBB.addLiveIn(SelectorReg);
1772   Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
1773   MIRBuilder.buildCopy(PtrVReg, SelectorReg);
1774   MIRBuilder.buildCast(ResRegs[1], PtrVReg);
1775
1776   return true;
1777 }
1778
1779 bool IRTranslator::translateAlloca(const User &U,
1780                                    MachineIRBuilder &MIRBuilder) {
1781   auto &AI = cast<AllocaInst>(U);
1782
1783   if (AI.isSwiftError())
1784     return true;
1785
1786   if (AI.isStaticAlloca()) {
1787     Register Res = getOrCreateVReg(AI);
1788     int FI = getOrCreateFrameIndex(AI);
1789     MIRBuilder.buildFrameIndex(Res, FI);
1790     return true;
1791   }
1792
1793   // FIXME: support stack probing for Windows.
1794   if (MF->getTarget().getTargetTriple().isOSWindows())
1795     return false;
1796
1797   // Now we're in the harder dynamic case.
1798   Type *Ty = AI.getAllocatedType();
1799   unsigned Align =
1800       std::max((unsigned)DL->getPrefTypeAlignment(Ty), AI.getAlignment());
1801
1802   Register NumElts = getOrCreateVReg(*AI.getArraySize());
1803
1804   Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
1805   LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
1806   if (MRI->getType(NumElts) != IntPtrTy) {
1807     Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
1808     MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
1809     NumElts = ExtElts;
1810   }
1811
1812   Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
1813   Register TySize =
1814       getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, -DL->getTypeAllocSize(Ty)));
1815   MIRBuilder.buildMul(AllocSize, NumElts, TySize);
1816
1817   LLT PtrTy = getLLTForType(*AI.getType(), *DL);
1818   auto &TLI = *MF->getSubtarget().getTargetLowering();
1819   Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
1820
1821   Register SPTmp = MRI->createGenericVirtualRegister(PtrTy);
1822   MIRBuilder.buildCopy(SPTmp, SPReg);
1823
1824   Register AllocTmp = MRI->createGenericVirtualRegister(PtrTy);
1825   MIRBuilder.buildGEP(AllocTmp, SPTmp, AllocSize);
1826
1827   // Handle alignment. We have to realign if the allocation granule was smaller
1828   // than stack alignment, or the specific alloca requires more than stack
1829   // alignment.
1830   unsigned StackAlign =
1831       MF->getSubtarget().getFrameLowering()->getStackAlignment();
1832   Align = std::max(Align, StackAlign);
1833   if (Align > StackAlign || DL->getTypeAllocSize(Ty) % StackAlign != 0) {
1834     // Round the size of the allocation up to the stack alignment size
1835     // by add SA-1 to the size. This doesn't overflow because we're computing
1836     // an address inside an alloca.
1837     Register AlignedAlloc = MRI->createGenericVirtualRegister(PtrTy);
1838     MIRBuilder.buildPtrMask(AlignedAlloc, AllocTmp, Log2_32(Align));
1839     AllocTmp = AlignedAlloc;
1840   }
1841
1842   MIRBuilder.buildCopy(SPReg, AllocTmp);
1843   MIRBuilder.buildCopy(getOrCreateVReg(AI), AllocTmp);
1844
1845   MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, &AI);
1846   assert(MF->getFrameInfo().hasVarSizedObjects());
1847   return true;
1848 }
1849
1850 bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
1851   // FIXME: We may need more info about the type. Because of how LLT works,
1852   // we're completely discarding the i64/double distinction here (amongst
1853   // others). Fortunately the ABIs I know of where that matters don't use va_arg
1854   // anyway but that's not guaranteed.
1855   MIRBuilder.buildInstr(TargetOpcode::G_VAARG)
1856     .addDef(getOrCreateVReg(U))
1857     .addUse(getOrCreateVReg(*U.getOperand(0)))
1858     .addImm(DL->getABITypeAlignment(U.getType()));
1859   return true;
1860 }
1861
1862 bool IRTranslator::translateInsertElement(const User &U,
1863                                           MachineIRBuilder &MIRBuilder) {
1864   // If it is a <1 x Ty> vector, use the scalar as it is
1865   // not a legal vector type in LLT.
1866   if (U.getType()->getVectorNumElements() == 1) {
1867     Register Elt = getOrCreateVReg(*U.getOperand(1));
1868     auto &Regs = *VMap.getVRegs(U);
1869     if (Regs.empty()) {
1870       Regs.push_back(Elt);
1871       VMap.getOffsets(U)->push_back(0);
1872     } else {
1873       MIRBuilder.buildCopy(Regs[0], Elt);
1874     }
1875     return true;
1876   }
1877
1878   Register Res = getOrCreateVReg(U);
1879   Register Val = getOrCreateVReg(*U.getOperand(0));
1880   Register Elt = getOrCreateVReg(*U.getOperand(1));
1881   Register Idx = getOrCreateVReg(*U.getOperand(2));
1882   MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
1883   return true;
1884 }
1885
1886 bool IRTranslator::translateExtractElement(const User &U,
1887                                            MachineIRBuilder &MIRBuilder) {
1888   // If it is a <1 x Ty> vector, use the scalar as it is
1889   // not a legal vector type in LLT.
1890   if (U.getOperand(0)->getType()->getVectorNumElements() == 1) {
1891     Register Elt = getOrCreateVReg(*U.getOperand(0));
1892     auto &Regs = *VMap.getVRegs(U);
1893     if (Regs.empty()) {
1894       Regs.push_back(Elt);
1895       VMap.getOffsets(U)->push_back(0);
1896     } else {
1897       MIRBuilder.buildCopy(Regs[0], Elt);
1898     }
1899     return true;
1900   }
1901   Register Res = getOrCreateVReg(U);
1902   Register Val = getOrCreateVReg(*U.getOperand(0));
1903   const auto &TLI = *MF->getSubtarget().getTargetLowering();
1904   unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
1905   Register Idx;
1906   if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
1907     if (CI->getBitWidth() != PreferredVecIdxWidth) {
1908       APInt NewIdx = CI->getValue().sextOrTrunc(PreferredVecIdxWidth);
1909       auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
1910       Idx = getOrCreateVReg(*NewIdxCI);
1911     }
1912   }
1913   if (!Idx)
1914     Idx = getOrCreateVReg(*U.getOperand(1));
1915   if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
1916     const LLT &VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
1917     Idx = MIRBuilder.buildSExtOrTrunc(VecIdxTy, Idx)->getOperand(0).getReg();
1918   }
1919   MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
1920   return true;
1921 }
1922
1923 bool IRTranslator::translateShuffleVector(const User &U,
1924                                           MachineIRBuilder &MIRBuilder) {
1925   MIRBuilder.buildInstr(TargetOpcode::G_SHUFFLE_VECTOR)
1926       .addDef(getOrCreateVReg(U))
1927       .addUse(getOrCreateVReg(*U.getOperand(0)))
1928       .addUse(getOrCreateVReg(*U.getOperand(1)))
1929       .addUse(getOrCreateVReg(*U.getOperand(2)));
1930   return true;
1931 }
1932
1933 bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
1934   const PHINode &PI = cast<PHINode>(U);
1935
1936   SmallVector<MachineInstr *, 4> Insts;
1937   for (auto Reg : getOrCreateVRegs(PI)) {
1938     auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
1939     Insts.push_back(MIB.getInstr());
1940   }
1941
1942   PendingPHIs.emplace_back(&PI, std::move(Insts));
1943   return true;
1944 }
1945
1946 bool IRTranslator::translateAtomicCmpXchg(const User &U,
1947                                           MachineIRBuilder &MIRBuilder) {
1948   const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
1949
1950   if (I.isWeak())
1951     return false;
1952
1953   auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
1954                               : MachineMemOperand::MONone;
1955   Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1956
1957   Type *ResType = I.getType();
1958   Type *ValType = ResType->Type::getStructElementType(0);
1959
1960   auto Res = getOrCreateVRegs(I);
1961   Register OldValRes = Res[0];
1962   Register SuccessRes = Res[1];
1963   Register Addr = getOrCreateVReg(*I.getPointerOperand());
1964   Register Cmp = getOrCreateVReg(*I.getCompareOperand());
1965   Register NewVal = getOrCreateVReg(*I.getNewValOperand());
1966
1967   MIRBuilder.buildAtomicCmpXchgWithSuccess(
1968       OldValRes, SuccessRes, Addr, Cmp, NewVal,
1969       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
1970                                 Flags, DL->getTypeStoreSize(ValType),
1971                                 getMemOpAlignment(I), AAMDNodes(), nullptr,
1972                                 I.getSyncScopeID(), I.getSuccessOrdering(),
1973                                 I.getFailureOrdering()));
1974   return true;
1975 }
1976
1977 bool IRTranslator::translateAtomicRMW(const User &U,
1978                                       MachineIRBuilder &MIRBuilder) {
1979   const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
1980
1981   auto Flags = I.isVolatile() ? MachineMemOperand::MOVolatile
1982                               : MachineMemOperand::MONone;
1983   Flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1984
1985   Type *ResType = I.getType();
1986
1987   Register Res = getOrCreateVReg(I);
1988   Register Addr = getOrCreateVReg(*I.getPointerOperand());
1989   Register Val = getOrCreateVReg(*I.getValOperand());
1990
1991   unsigned Opcode = 0;
1992   switch (I.getOperation()) {
1993   default:
1994     llvm_unreachable("Unknown atomicrmw op");
1995     return false;
1996   case AtomicRMWInst::Xchg:
1997     Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
1998     break;
1999   case AtomicRMWInst::Add:
2000     Opcode = TargetOpcode::G_ATOMICRMW_ADD;
2001     break;
2002   case AtomicRMWInst::Sub:
2003     Opcode = TargetOpcode::G_ATOMICRMW_SUB;
2004     break;
2005   case AtomicRMWInst::And:
2006     Opcode = TargetOpcode::G_ATOMICRMW_AND;
2007     break;
2008   case AtomicRMWInst::Nand:
2009     Opcode = TargetOpcode::G_ATOMICRMW_NAND;
2010     break;
2011   case AtomicRMWInst::Or:
2012     Opcode = TargetOpcode::G_ATOMICRMW_OR;
2013     break;
2014   case AtomicRMWInst::Xor:
2015     Opcode = TargetOpcode::G_ATOMICRMW_XOR;
2016     break;
2017   case AtomicRMWInst::Max:
2018     Opcode = TargetOpcode::G_ATOMICRMW_MAX;
2019     break;
2020   case AtomicRMWInst::Min:
2021     Opcode = TargetOpcode::G_ATOMICRMW_MIN;
2022     break;
2023   case AtomicRMWInst::UMax:
2024     Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
2025     break;
2026   case AtomicRMWInst::UMin:
2027     Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
2028     break;
2029   }
2030
2031   MIRBuilder.buildAtomicRMW(
2032       Opcode, Res, Addr, Val,
2033       *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
2034                                 Flags, DL->getTypeStoreSize(ResType),
2035                                 getMemOpAlignment(I), AAMDNodes(), nullptr,
2036                                 I.getSyncScopeID(), I.getOrdering()));
2037   return true;
2038 }
2039
2040 bool IRTranslator::translateFence(const User &U,
2041                                   MachineIRBuilder &MIRBuilder) {
2042   const FenceInst &Fence = cast<FenceInst>(U);
2043   MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
2044                         Fence.getSyncScopeID());
2045   return true;
2046 }
2047
2048 void IRTranslator::finishPendingPhis() {
2049 #ifndef NDEBUG
2050   DILocationVerifier Verifier;
2051   GISelObserverWrapper WrapperObserver(&Verifier);
2052   RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2053 #endif // ifndef NDEBUG
2054   for (auto &Phi : PendingPHIs) {
2055     const PHINode *PI = Phi.first;
2056     ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
2057     MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
2058     EntryBuilder->setDebugLoc(PI->getDebugLoc());
2059 #ifndef NDEBUG
2060     Verifier.setCurrentInst(PI);
2061 #endif // ifndef NDEBUG
2062
2063     SmallSet<const MachineBasicBlock *, 16> SeenPreds;
2064     for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
2065       auto IRPred = PI->getIncomingBlock(i);
2066       ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
2067       for (auto Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
2068         if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
2069           continue;
2070         SeenPreds.insert(Pred);
2071         for (unsigned j = 0; j < ValRegs.size(); ++j) {
2072           MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
2073           MIB.addUse(ValRegs[j]);
2074           MIB.addMBB(Pred);
2075         }
2076       }
2077     }
2078   }
2079 }
2080
2081 bool IRTranslator::valueIsSplit(const Value &V,
2082                                 SmallVectorImpl<uint64_t> *Offsets) {
2083   SmallVector<LLT, 4> SplitTys;
2084   if (Offsets && !Offsets->empty())
2085     Offsets->clear();
2086   computeValueLLTs(*DL, *V.getType(), SplitTys, Offsets);
2087   return SplitTys.size() > 1;
2088 }
2089
2090 bool IRTranslator::translate(const Instruction &Inst) {
2091   CurBuilder->setDebugLoc(Inst.getDebugLoc());
2092   // We only emit constants into the entry block from here. To prevent jumpy
2093   // debug behaviour set the line to 0.
2094   if (const DebugLoc &DL = Inst.getDebugLoc())
2095     EntryBuilder->setDebugLoc(
2096         DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
2097   else
2098     EntryBuilder->setDebugLoc(DebugLoc());
2099
2100   switch (Inst.getOpcode()) {
2101 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2102   case Instruction::OPCODE:                                                    \
2103     return translate##OPCODE(Inst, *CurBuilder.get());
2104 #include "llvm/IR/Instruction.def"
2105   default:
2106     return false;
2107   }
2108 }
2109
2110 bool IRTranslator::translate(const Constant &C, Register Reg) {
2111   if (auto CI = dyn_cast<ConstantInt>(&C))
2112     EntryBuilder->buildConstant(Reg, *CI);
2113   else if (auto CF = dyn_cast<ConstantFP>(&C))
2114     EntryBuilder->buildFConstant(Reg, *CF);
2115   else if (isa<UndefValue>(C))
2116     EntryBuilder->buildUndef(Reg);
2117   else if (isa<ConstantPointerNull>(C)) {
2118     // As we are trying to build a constant val of 0 into a pointer,
2119     // insert a cast to make them correct with respect to types.
2120     unsigned NullSize = DL->getTypeSizeInBits(C.getType());
2121     auto *ZeroTy = Type::getIntNTy(C.getContext(), NullSize);
2122     auto *ZeroVal = ConstantInt::get(ZeroTy, 0);
2123     Register ZeroReg = getOrCreateVReg(*ZeroVal);
2124     EntryBuilder->buildCast(Reg, ZeroReg);
2125   } else if (auto GV = dyn_cast<GlobalValue>(&C))
2126     EntryBuilder->buildGlobalValue(Reg, GV);
2127   else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
2128     if (!CAZ->getType()->isVectorTy())
2129       return false;
2130     // Return the scalar if it is a <1 x Ty> vector.
2131     if (CAZ->getNumElements() == 1)
2132       return translate(*CAZ->getElementValue(0u), Reg);
2133     SmallVector<Register, 4> Ops;
2134     for (unsigned i = 0; i < CAZ->getNumElements(); ++i) {
2135       Constant &Elt = *CAZ->getElementValue(i);
2136       Ops.push_back(getOrCreateVReg(Elt));
2137     }
2138     EntryBuilder->buildBuildVector(Reg, Ops);
2139   } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
2140     // Return the scalar if it is a <1 x Ty> vector.
2141     if (CV->getNumElements() == 1)
2142       return translate(*CV->getElementAsConstant(0), Reg);
2143     SmallVector<Register, 4> Ops;
2144     for (unsigned i = 0; i < CV->getNumElements(); ++i) {
2145       Constant &Elt = *CV->getElementAsConstant(i);
2146       Ops.push_back(getOrCreateVReg(Elt));
2147     }
2148     EntryBuilder->buildBuildVector(Reg, Ops);
2149   } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
2150     switch(CE->getOpcode()) {
2151 #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
2152   case Instruction::OPCODE:                                                    \
2153     return translate##OPCODE(*CE, *EntryBuilder.get());
2154 #include "llvm/IR/Instruction.def"
2155     default:
2156       return false;
2157     }
2158   } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
2159     if (CV->getNumOperands() == 1)
2160       return translate(*CV->getOperand(0), Reg);
2161     SmallVector<Register, 4> Ops;
2162     for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
2163       Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
2164     }
2165     EntryBuilder->buildBuildVector(Reg, Ops);
2166   } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
2167     EntryBuilder->buildBlockAddress(Reg, BA);
2168   } else
2169     return false;
2170
2171   return true;
2172 }
2173
2174 void IRTranslator::finalizeBasicBlock() {
2175   for (auto &JTCase : SL->JTCases) {
2176     // Emit header first, if it wasn't already emitted.
2177     if (!JTCase.first.Emitted)
2178       emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
2179
2180     emitJumpTable(JTCase.second, JTCase.second.MBB);
2181   }
2182   SL->JTCases.clear();
2183 }
2184
2185 void IRTranslator::finalizeFunction() {
2186   // Release the memory used by the different maps we
2187   // needed during the translation.
2188   PendingPHIs.clear();
2189   VMap.reset();
2190   FrameIndices.clear();
2191   MachinePreds.clear();
2192   // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
2193   // to avoid accessing free’d memory (in runOnMachineFunction) and to avoid
2194   // destroying it twice (in ~IRTranslator() and ~LLVMContext())
2195   EntryBuilder.reset();
2196   CurBuilder.reset();
2197   FuncInfo.clear();
2198 }
2199
2200 bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
2201   MF = &CurMF;
2202   const Function &F = MF->getFunction();
2203   if (F.empty())
2204     return false;
2205   GISelCSEAnalysisWrapper &Wrapper =
2206       getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
2207   // Set the CSEConfig and run the analysis.
2208   GISelCSEInfo *CSEInfo = nullptr;
2209   TPC = &getAnalysis<TargetPassConfig>();
2210   bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
2211                        ? EnableCSEInIRTranslator
2212                        : TPC->isGISelCSEEnabled();
2213
2214   if (EnableCSE) {
2215     EntryBuilder = make_unique<CSEMIRBuilder>(CurMF);
2216     CSEInfo = &Wrapper.get(TPC->getCSEConfig());
2217     EntryBuilder->setCSEInfo(CSEInfo);
2218     CurBuilder = make_unique<CSEMIRBuilder>(CurMF);
2219     CurBuilder->setCSEInfo(CSEInfo);
2220   } else {
2221     EntryBuilder = make_unique<MachineIRBuilder>();
2222     CurBuilder = make_unique<MachineIRBuilder>();
2223   }
2224   CLI = MF->getSubtarget().getCallLowering();
2225   CurBuilder->setMF(*MF);
2226   EntryBuilder->setMF(*MF);
2227   MRI = &MF->getRegInfo();
2228   DL = &F.getParent()->getDataLayout();
2229   ORE = llvm::make_unique<OptimizationRemarkEmitter>(&F);
2230   FuncInfo.MF = MF;
2231   FuncInfo.BPI = nullptr;
2232   const auto &TLI = *MF->getSubtarget().getTargetLowering();
2233   const TargetMachine &TM = MF->getTarget();
2234   SL = make_unique<GISelSwitchLowering>(this, FuncInfo);
2235   SL->init(TLI, TM, *DL);
2236
2237   EnableOpts = TM.getOptLevel() != CodeGenOpt::None && !skipFunction(F);
2238
2239   assert(PendingPHIs.empty() && "stale PHIs");
2240
2241   if (!DL->isLittleEndian()) {
2242     // Currently we don't properly handle big endian code.
2243     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2244                                F.getSubprogram(), &F.getEntryBlock());
2245     R << "unable to translate in big endian mode";
2246     reportTranslationError(*MF, *TPC, *ORE, R);
2247   }
2248
2249   // Release the per-function state when we return, whether we succeeded or not.
2250   auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
2251
2252   // Setup a separate basic-block for the arguments and constants
2253   MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
2254   MF->push_back(EntryBB);
2255   EntryBuilder->setMBB(*EntryBB);
2256
2257   DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
2258   SwiftError.setFunction(CurMF);
2259   SwiftError.createEntriesInEntryBlock(DbgLoc);
2260
2261   // Create all blocks, in IR order, to preserve the layout.
2262   for (const BasicBlock &BB: F) {
2263     auto *&MBB = BBToMBB[&BB];
2264
2265     MBB = MF->CreateMachineBasicBlock(&BB);
2266     MF->push_back(MBB);
2267
2268     if (BB.hasAddressTaken())
2269       MBB->setHasAddressTaken();
2270   }
2271
2272   // Make our arguments/constants entry block fallthrough to the IR entry block.
2273   EntryBB->addSuccessor(&getMBB(F.front()));
2274
2275   // Lower the actual args into this basic block.
2276   SmallVector<ArrayRef<Register>, 8> VRegArgs;
2277   for (const Argument &Arg: F.args()) {
2278     if (DL->getTypeStoreSize(Arg.getType()) == 0)
2279       continue; // Don't handle zero sized types.
2280     ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
2281     VRegArgs.push_back(VRegs);
2282
2283     if (Arg.hasSwiftErrorAttr()) {
2284       assert(VRegs.size() == 1 && "Too many vregs for Swift error");
2285       SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
2286     }
2287   }
2288
2289   // We don't currently support translating swifterror or swiftself functions.
2290   for (auto &Arg : F.args()) {
2291     if (Arg.hasSwiftSelfAttr()) {
2292       OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2293                                  F.getSubprogram(), &F.getEntryBlock());
2294       R << "unable to lower arguments due to swiftself: "
2295         << ore::NV("Prototype", F.getType());
2296       reportTranslationError(*MF, *TPC, *ORE, R);
2297       return false;
2298     }
2299   }
2300
2301   if (!CLI->lowerFormalArguments(*EntryBuilder.get(), F, VRegArgs)) {
2302     OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2303                                F.getSubprogram(), &F.getEntryBlock());
2304     R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
2305     reportTranslationError(*MF, *TPC, *ORE, R);
2306     return false;
2307   }
2308
2309   // Need to visit defs before uses when translating instructions.
2310   GISelObserverWrapper WrapperObserver;
2311   if (EnableCSE && CSEInfo)
2312     WrapperObserver.addObserver(CSEInfo);
2313   {
2314     ReversePostOrderTraversal<const Function *> RPOT(&F);
2315 #ifndef NDEBUG
2316     DILocationVerifier Verifier;
2317     WrapperObserver.addObserver(&Verifier);
2318 #endif // ifndef NDEBUG
2319     RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
2320     for (const BasicBlock *BB : RPOT) {
2321       MachineBasicBlock &MBB = getMBB(*BB);
2322       // Set the insertion point of all the following translations to
2323       // the end of this basic block.
2324       CurBuilder->setMBB(MBB);
2325
2326       for (const Instruction &Inst : *BB) {
2327 #ifndef NDEBUG
2328         Verifier.setCurrentInst(&Inst);
2329 #endif // ifndef NDEBUG
2330         if (translate(Inst))
2331           continue;
2332
2333         OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
2334                                    Inst.getDebugLoc(), BB);
2335         R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
2336
2337         if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
2338           std::string InstStrStorage;
2339           raw_string_ostream InstStr(InstStrStorage);
2340           InstStr << Inst;
2341
2342           R << ": '" << InstStr.str() << "'";
2343         }
2344
2345         reportTranslationError(*MF, *TPC, *ORE, R);
2346         return false;
2347       }
2348
2349       finalizeBasicBlock();
2350     }
2351 #ifndef NDEBUG
2352     WrapperObserver.removeObserver(&Verifier);
2353 #endif
2354   }
2355
2356   finishPendingPhis();
2357
2358   SwiftError.propagateVRegs();
2359
2360   // Merge the argument lowering and constants block with its single
2361   // successor, the LLVM-IR entry block.  We want the basic block to
2362   // be maximal.
2363   assert(EntryBB->succ_size() == 1 &&
2364          "Custom BB used for lowering should have only one successor");
2365   // Get the successor of the current entry block.
2366   MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
2367   assert(NewEntryBB.pred_size() == 1 &&
2368          "LLVM-IR entry block has a predecessor!?");
2369   // Move all the instruction from the current entry block to the
2370   // new entry block.
2371   NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
2372                     EntryBB->end());
2373
2374   // Update the live-in information for the new entry block.
2375   for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
2376     NewEntryBB.addLiveIn(LiveIn);
2377   NewEntryBB.sortUniqueLiveIns();
2378
2379   // Get rid of the now empty basic block.
2380   EntryBB->removeSuccessor(&NewEntryBB);
2381   MF->remove(EntryBB);
2382   MF->DeleteMachineBasicBlock(EntryBB);
2383
2384   assert(&MF->front() == &NewEntryBB &&
2385          "New entry wasn't next in the list of basic block!");
2386
2387   // Initialize stack protector information.
2388   StackProtector &SP = getAnalysis<StackProtector>();
2389   SP.copyToMachineFrameInfo(MF->getFrameInfo());
2390
2391   return false;
2392 }