]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/LiveIntervals.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / LiveIntervals.cpp
1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "LiveRangeCalc.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveVariables.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/SlotIndexes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/MC/LaneBitmask.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BlockFrequency.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <tuple>
54 #include <utility>
55
56 using namespace llvm;
57
58 #define DEBUG_TYPE "regalloc"
59
60 char LiveIntervals::ID = 0;
61 char &llvm::LiveIntervalsID = LiveIntervals::ID;
62 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
63                 "Live Interval Analysis", false, false)
64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
66 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
67 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
68                 "Live Interval Analysis", false, false)
69
70 #ifndef NDEBUG
71 static cl::opt<bool> EnablePrecomputePhysRegs(
72   "precompute-phys-liveness", cl::Hidden,
73   cl::desc("Eagerly compute live intervals for all physreg units."));
74 #else
75 static bool EnablePrecomputePhysRegs = false;
76 #endif // NDEBUG
77
78 namespace llvm {
79
80 cl::opt<bool> UseSegmentSetForPhysRegs(
81     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
82     cl::desc(
83         "Use segment set for the computation of the live ranges of physregs."));
84
85 } // end namespace llvm
86
87 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
88   AU.setPreservesCFG();
89   AU.addRequired<AAResultsWrapperPass>();
90   AU.addPreserved<AAResultsWrapperPass>();
91   AU.addPreserved<LiveVariables>();
92   AU.addPreservedID(MachineLoopInfoID);
93   AU.addRequiredTransitiveID(MachineDominatorsID);
94   AU.addPreservedID(MachineDominatorsID);
95   AU.addPreserved<SlotIndexes>();
96   AU.addRequiredTransitive<SlotIndexes>();
97   MachineFunctionPass::getAnalysisUsage(AU);
98 }
99
100 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
101   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
102 }
103
104 LiveIntervals::~LiveIntervals() {
105   delete LRCalc;
106 }
107
108 void LiveIntervals::releaseMemory() {
109   // Free the live intervals themselves.
110   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
111     delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
112   VirtRegIntervals.clear();
113   RegMaskSlots.clear();
114   RegMaskBits.clear();
115   RegMaskBlocks.clear();
116
117   for (LiveRange *LR : RegUnitRanges)
118     delete LR;
119   RegUnitRanges.clear();
120
121   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
122   VNInfoAllocator.Reset();
123 }
124
125 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
126   MF = &fn;
127   MRI = &MF->getRegInfo();
128   TRI = MF->getSubtarget().getRegisterInfo();
129   TII = MF->getSubtarget().getInstrInfo();
130   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
131   Indexes = &getAnalysis<SlotIndexes>();
132   DomTree = &getAnalysis<MachineDominatorTree>();
133
134   if (!LRCalc)
135     LRCalc = new LiveRangeCalc();
136
137   // Allocate space for all virtual registers.
138   VirtRegIntervals.resize(MRI->getNumVirtRegs());
139
140   computeVirtRegs();
141   computeRegMasks();
142   computeLiveInRegUnits();
143
144   if (EnablePrecomputePhysRegs) {
145     // For stress testing, precompute live ranges of all physical register
146     // units, including reserved registers.
147     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
148       getRegUnit(i);
149   }
150   LLVM_DEBUG(dump());
151   return true;
152 }
153
154 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
155   OS << "********** INTERVALS **********\n";
156
157   // Dump the regunits.
158   for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
159     if (LiveRange *LR = RegUnitRanges[Unit])
160       OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
161
162   // Dump the virtregs.
163   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
164     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
165     if (hasInterval(Reg))
166       OS << getInterval(Reg) << '\n';
167   }
168
169   OS << "RegMasks:";
170   for (SlotIndex Idx : RegMaskSlots)
171     OS << ' ' << Idx;
172   OS << '\n';
173
174   printInstrs(OS);
175 }
176
177 void LiveIntervals::printInstrs(raw_ostream &OS) const {
178   OS << "********** MACHINEINSTRS **********\n";
179   MF->print(OS, Indexes);
180 }
181
182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
183 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
184   printInstrs(dbgs());
185 }
186 #endif
187
188 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
189   float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? huge_valf : 0.0F;
190   return new LiveInterval(reg, Weight);
191 }
192
193 /// Compute the live interval of a virtual register, based on defs and uses.
194 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
195   assert(LRCalc && "LRCalc not initialized.");
196   assert(LI.empty() && "Should only compute empty intervals.");
197   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
198   LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
199   computeDeadValues(LI, nullptr);
200 }
201
202 void LiveIntervals::computeVirtRegs() {
203   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
204     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
205     if (MRI->reg_nodbg_empty(Reg))
206       continue;
207     createAndComputeVirtRegInterval(Reg);
208   }
209 }
210
211 void LiveIntervals::computeRegMasks() {
212   RegMaskBlocks.resize(MF->getNumBlockIDs());
213
214   // Find all instructions with regmask operands.
215   for (const MachineBasicBlock &MBB : *MF) {
216     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
217     RMB.first = RegMaskSlots.size();
218
219     // Some block starts, such as EH funclets, create masks.
220     if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
221       RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
222       RegMaskBits.push_back(Mask);
223     }
224
225     for (const MachineInstr &MI : MBB) {
226       for (const MachineOperand &MO : MI.operands()) {
227         if (!MO.isRegMask())
228           continue;
229         RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
230         RegMaskBits.push_back(MO.getRegMask());
231       }
232     }
233
234     // Some block ends, such as funclet returns, create masks. Put the mask on
235     // the last instruction of the block, because MBB slot index intervals are
236     // half-open.
237     if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
238       assert(!MBB.empty() && "empty return block?");
239       RegMaskSlots.push_back(
240           Indexes->getInstructionIndex(MBB.back()).getRegSlot());
241       RegMaskBits.push_back(Mask);
242     }
243
244     // Compute the number of register mask instructions in this block.
245     RMB.second = RegMaskSlots.size() - RMB.first;
246   }
247 }
248
249 //===----------------------------------------------------------------------===//
250 //                           Register Unit Liveness
251 //===----------------------------------------------------------------------===//
252 //
253 // Fixed interference typically comes from ABI boundaries: Function arguments
254 // and return values are passed in fixed registers, and so are exception
255 // pointers entering landing pads. Certain instructions require values to be
256 // present in specific registers. That is also represented through fixed
257 // interference.
258 //
259
260 /// Compute the live range of a register unit, based on the uses and defs of
261 /// aliasing registers.  The range should be empty, or contain only dead
262 /// phi-defs from ABI blocks.
263 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
264   assert(LRCalc && "LRCalc not initialized.");
265   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
266
267   // The physregs aliasing Unit are the roots and their super-registers.
268   // Create all values as dead defs before extending to uses. Note that roots
269   // may share super-registers. That's OK because createDeadDefs() is
270   // idempotent. It is very rare for a register unit to have multiple roots, so
271   // uniquing super-registers is probably not worthwhile.
272   bool IsReserved = false;
273   for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
274     bool IsRootReserved = true;
275     for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
276          Super.isValid(); ++Super) {
277       unsigned Reg = *Super;
278       if (!MRI->reg_empty(Reg))
279         LRCalc->createDeadDefs(LR, Reg);
280       // A register unit is considered reserved if all its roots and all their
281       // super registers are reserved.
282       if (!MRI->isReserved(Reg))
283         IsRootReserved = false;
284     }
285     IsReserved |= IsRootReserved;
286   }
287   assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
288          "reserved computation mismatch");
289
290   // Now extend LR to reach all uses.
291   // Ignore uses of reserved registers. We only track defs of those.
292   if (!IsReserved) {
293     for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
294       for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
295            Super.isValid(); ++Super) {
296         unsigned Reg = *Super;
297         if (!MRI->reg_empty(Reg))
298           LRCalc->extendToUses(LR, Reg);
299       }
300     }
301   }
302
303   // Flush the segment set to the segment vector.
304   if (UseSegmentSetForPhysRegs)
305     LR.flushSegmentSet();
306 }
307
308 /// Precompute the live ranges of any register units that are live-in to an ABI
309 /// block somewhere. Register values can appear without a corresponding def when
310 /// entering the entry block or a landing pad.
311 void LiveIntervals::computeLiveInRegUnits() {
312   RegUnitRanges.resize(TRI->getNumRegUnits());
313   LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
314
315   // Keep track of the live range sets allocated.
316   SmallVector<unsigned, 8> NewRanges;
317
318   // Check all basic blocks for live-ins.
319   for (const MachineBasicBlock &MBB : *MF) {
320     // We only care about ABI blocks: Entry + landing pads.
321     if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
322       continue;
323
324     // Create phi-defs at Begin for all live-in registers.
325     SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
326     LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
327     for (const auto &LI : MBB.liveins()) {
328       for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
329         unsigned Unit = *Units;
330         LiveRange *LR = RegUnitRanges[Unit];
331         if (!LR) {
332           // Use segment set to speed-up initial computation of the live range.
333           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
334           NewRanges.push_back(Unit);
335         }
336         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
337         (void)VNI;
338         LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
339       }
340     }
341     LLVM_DEBUG(dbgs() << '\n');
342   }
343   LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
344
345   // Compute the 'normal' part of the ranges.
346   for (unsigned Unit : NewRanges)
347     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
348 }
349
350 static void createSegmentsForValues(LiveRange &LR,
351     iterator_range<LiveInterval::vni_iterator> VNIs) {
352   for (VNInfo *VNI : VNIs) {
353     if (VNI->isUnused())
354       continue;
355     SlotIndex Def = VNI->def;
356     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
357   }
358 }
359
360 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
361                                          ShrinkToUsesWorkList &WorkList,
362                                          unsigned Reg, LaneBitmask LaneMask) {
363   // Keep track of the PHIs that are in use.
364   SmallPtrSet<VNInfo*, 8> UsedPHIs;
365   // Blocks that have already been added to WorkList as live-out.
366   SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
367
368   auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
369         -> const LiveRange& {
370     if (M.none())
371       return I;
372     for (const LiveInterval::SubRange &SR : I.subranges()) {
373       if ((SR.LaneMask & M).any()) {
374         assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
375         return SR;
376       }
377     }
378     llvm_unreachable("Subrange for mask not found");
379   };
380
381   const LiveInterval &LI = getInterval(Reg);
382   const LiveRange &OldRange = getSubRange(LI, LaneMask);
383
384   // Extend intervals to reach all uses in WorkList.
385   while (!WorkList.empty()) {
386     SlotIndex Idx = WorkList.back().first;
387     VNInfo *VNI = WorkList.back().second;
388     WorkList.pop_back();
389     const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
390     SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
391
392     // Extend the live range for VNI to be live at Idx.
393     if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
394       assert(ExtVNI == VNI && "Unexpected existing value number");
395       (void)ExtVNI;
396       // Is this a PHIDef we haven't seen before?
397       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
398           !UsedPHIs.insert(VNI).second)
399         continue;
400       // The PHI is live, make sure the predecessors are live-out.
401       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
402         if (!LiveOut.insert(Pred).second)
403           continue;
404         SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
405         // A predecessor is not required to have a live-out value for a PHI.
406         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
407           WorkList.push_back(std::make_pair(Stop, PVNI));
408       }
409       continue;
410     }
411
412     // VNI is live-in to MBB.
413     LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
414     Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
415
416     // Make sure VNI is live-out from the predecessors.
417     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
418       if (!LiveOut.insert(Pred).second)
419         continue;
420       SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
421       if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
422         assert(OldVNI == VNI && "Wrong value out of predecessor");
423         (void)OldVNI;
424         WorkList.push_back(std::make_pair(Stop, VNI));
425       } else {
426 #ifndef NDEBUG
427         // There was no old VNI. Verify that Stop is jointly dominated
428         // by <undef>s for this live range.
429         assert(LaneMask.any() &&
430                "Missing value out of predecessor for main range");
431         SmallVector<SlotIndex,8> Undefs;
432         LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
433         assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
434                "Missing value out of predecessor for subrange");
435 #endif
436       }
437     }
438   }
439 }
440
441 bool LiveIntervals::shrinkToUses(LiveInterval *li,
442                                  SmallVectorImpl<MachineInstr*> *dead) {
443   LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
444   assert(TargetRegisterInfo::isVirtualRegister(li->reg)
445          && "Can only shrink virtual registers");
446
447   // Shrink subregister live ranges.
448   bool NeedsCleanup = false;
449   for (LiveInterval::SubRange &S : li->subranges()) {
450     shrinkToUses(S, li->reg);
451     if (S.empty())
452       NeedsCleanup = true;
453   }
454   if (NeedsCleanup)
455     li->removeEmptySubRanges();
456
457   // Find all the values used, including PHI kills.
458   ShrinkToUsesWorkList WorkList;
459
460   // Visit all instructions reading li->reg.
461   unsigned Reg = li->reg;
462   for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
463     if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg))
464       continue;
465     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
466     LiveQueryResult LRQ = li->Query(Idx);
467     VNInfo *VNI = LRQ.valueIn();
468     if (!VNI) {
469       // This shouldn't happen: readsVirtualRegister returns true, but there is
470       // no live value. It is likely caused by a target getting <undef> flags
471       // wrong.
472       LLVM_DEBUG(
473           dbgs() << Idx << '\t' << UseMI
474                  << "Warning: Instr claims to read non-existent value in "
475                  << *li << '\n');
476       continue;
477     }
478     // Special case: An early-clobber tied operand reads and writes the
479     // register one slot early.
480     if (VNInfo *DefVNI = LRQ.valueDefined())
481       Idx = DefVNI->def;
482
483     WorkList.push_back(std::make_pair(Idx, VNI));
484   }
485
486   // Create new live ranges with only minimal live segments per def.
487   LiveRange NewLR;
488   createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
489   extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
490
491   // Move the trimmed segments back.
492   li->segments.swap(NewLR.segments);
493
494   // Handle dead values.
495   bool CanSeparate = computeDeadValues(*li, dead);
496   LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
497   return CanSeparate;
498 }
499
500 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
501                                       SmallVectorImpl<MachineInstr*> *dead) {
502   bool MayHaveSplitComponents = false;
503   for (VNInfo *VNI : LI.valnos) {
504     if (VNI->isUnused())
505       continue;
506     SlotIndex Def = VNI->def;
507     LiveRange::iterator I = LI.FindSegmentContaining(Def);
508     assert(I != LI.end() && "Missing segment for VNI");
509
510     // Is the register live before? Otherwise we may have to add a read-undef
511     // flag for subregister defs.
512     unsigned VReg = LI.reg;
513     if (MRI->shouldTrackSubRegLiveness(VReg)) {
514       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
515         MachineInstr *MI = getInstructionFromIndex(Def);
516         MI->setRegisterDefReadUndef(VReg);
517       }
518     }
519
520     if (I->end != Def.getDeadSlot())
521       continue;
522     if (VNI->isPHIDef()) {
523       // This is a dead PHI. Remove it.
524       VNI->markUnused();
525       LI.removeSegment(I);
526       LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
527       MayHaveSplitComponents = true;
528     } else {
529       // This is a dead def. Make sure the instruction knows.
530       MachineInstr *MI = getInstructionFromIndex(Def);
531       assert(MI && "No instruction defining live value");
532       MI->addRegisterDead(LI.reg, TRI);
533       if (dead && MI->allDefsAreDead()) {
534         LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
535         dead->push_back(MI);
536       }
537     }
538   }
539   return MayHaveSplitComponents;
540 }
541
542 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) {
543   LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
544   assert(TargetRegisterInfo::isVirtualRegister(Reg)
545          && "Can only shrink virtual registers");
546   // Find all the values used, including PHI kills.
547   ShrinkToUsesWorkList WorkList;
548
549   // Visit all instructions reading Reg.
550   SlotIndex LastIdx;
551   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
552     // Skip "undef" uses.
553     if (!MO.readsReg())
554       continue;
555     // Maybe the operand is for a subregister we don't care about.
556     unsigned SubReg = MO.getSubReg();
557     if (SubReg != 0) {
558       LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
559       if ((LaneMask & SR.LaneMask).none())
560         continue;
561     }
562     // We only need to visit each instruction once.
563     MachineInstr *UseMI = MO.getParent();
564     SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
565     if (Idx == LastIdx)
566       continue;
567     LastIdx = Idx;
568
569     LiveQueryResult LRQ = SR.Query(Idx);
570     VNInfo *VNI = LRQ.valueIn();
571     // For Subranges it is possible that only undef values are left in that
572     // part of the subregister, so there is no real liverange at the use
573     if (!VNI)
574       continue;
575
576     // Special case: An early-clobber tied operand reads and writes the
577     // register one slot early.
578     if (VNInfo *DefVNI = LRQ.valueDefined())
579       Idx = DefVNI->def;
580
581     WorkList.push_back(std::make_pair(Idx, VNI));
582   }
583
584   // Create a new live ranges with only minimal live segments per def.
585   LiveRange NewLR;
586   createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
587   extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
588
589   // Move the trimmed ranges back.
590   SR.segments.swap(NewLR.segments);
591
592   // Remove dead PHI value numbers
593   for (VNInfo *VNI : SR.valnos) {
594     if (VNI->isUnused())
595       continue;
596     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
597     assert(Segment != nullptr && "Missing segment for VNI");
598     if (Segment->end != VNI->def.getDeadSlot())
599       continue;
600     if (VNI->isPHIDef()) {
601       // This is a dead PHI. Remove it.
602       LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
603                         << " may separate interval\n");
604       VNI->markUnused();
605       SR.removeSegment(*Segment);
606     }
607   }
608
609   LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
610 }
611
612 void LiveIntervals::extendToIndices(LiveRange &LR,
613                                     ArrayRef<SlotIndex> Indices,
614                                     ArrayRef<SlotIndex> Undefs) {
615   assert(LRCalc && "LRCalc not initialized.");
616   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
617   for (SlotIndex Idx : Indices)
618     LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
619 }
620
621 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
622                                SmallVectorImpl<SlotIndex> *EndPoints) {
623   LiveQueryResult LRQ = LR.Query(Kill);
624   VNInfo *VNI = LRQ.valueOutOrDead();
625   if (!VNI)
626     return;
627
628   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
629   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
630
631   // If VNI isn't live out from KillMBB, the value is trivially pruned.
632   if (LRQ.endPoint() < MBBEnd) {
633     LR.removeSegment(Kill, LRQ.endPoint());
634     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
635     return;
636   }
637
638   // VNI is live out of KillMBB.
639   LR.removeSegment(Kill, MBBEnd);
640   if (EndPoints) EndPoints->push_back(MBBEnd);
641
642   // Find all blocks that are reachable from KillMBB without leaving VNI's live
643   // range. It is possible that KillMBB itself is reachable, so start a DFS
644   // from each successor.
645   using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
646   VisitedTy Visited;
647   for (MachineBasicBlock *Succ : KillMBB->successors()) {
648     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
649          I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
650          I != E;) {
651       MachineBasicBlock *MBB = *I;
652
653       // Check if VNI is live in to MBB.
654       SlotIndex MBBStart, MBBEnd;
655       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
656       LiveQueryResult LRQ = LR.Query(MBBStart);
657       if (LRQ.valueIn() != VNI) {
658         // This block isn't part of the VNI segment. Prune the search.
659         I.skipChildren();
660         continue;
661       }
662
663       // Prune the search if VNI is killed in MBB.
664       if (LRQ.endPoint() < MBBEnd) {
665         LR.removeSegment(MBBStart, LRQ.endPoint());
666         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
667         I.skipChildren();
668         continue;
669       }
670
671       // VNI is live through MBB.
672       LR.removeSegment(MBBStart, MBBEnd);
673       if (EndPoints) EndPoints->push_back(MBBEnd);
674       ++I;
675     }
676   }
677 }
678
679 //===----------------------------------------------------------------------===//
680 // Register allocator hooks.
681 //
682
683 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
684   // Keep track of regunit ranges.
685   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
686   // Keep track of subregister ranges.
687   SmallVector<std::pair<const LiveInterval::SubRange*,
688                         LiveRange::const_iterator>, 4> SRs;
689
690   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
691     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
692     if (MRI->reg_nodbg_empty(Reg))
693       continue;
694     const LiveInterval &LI = getInterval(Reg);
695     if (LI.empty())
696       continue;
697
698     // Find the regunit intervals for the assigned register. They may overlap
699     // the virtual register live range, cancelling any kills.
700     RU.clear();
701     for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid();
702          ++Unit) {
703       const LiveRange &RURange = getRegUnit(*Unit);
704       if (RURange.empty())
705         continue;
706       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
707     }
708
709     if (MRI->subRegLivenessEnabled()) {
710       SRs.clear();
711       for (const LiveInterval::SubRange &SR : LI.subranges()) {
712         SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
713       }
714     }
715
716     // Every instruction that kills Reg corresponds to a segment range end
717     // point.
718     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
719          ++RI) {
720       // A block index indicates an MBB edge.
721       if (RI->end.isBlock())
722         continue;
723       MachineInstr *MI = getInstructionFromIndex(RI->end);
724       if (!MI)
725         continue;
726
727       // Check if any of the regunits are live beyond the end of RI. That could
728       // happen when a physreg is defined as a copy of a virtreg:
729       //
730       //   %eax = COPY %5
731       //   FOO %5             <--- MI, cancel kill because %eax is live.
732       //   BAR killed %eax
733       //
734       // There should be no kill flag on FOO when %5 is rewritten as %eax.
735       for (auto &RUP : RU) {
736         const LiveRange &RURange = *RUP.first;
737         LiveRange::const_iterator &I = RUP.second;
738         if (I == RURange.end())
739           continue;
740         I = RURange.advanceTo(I, RI->end);
741         if (I == RURange.end() || I->start >= RI->end)
742           continue;
743         // I is overlapping RI.
744         goto CancelKill;
745       }
746
747       if (MRI->subRegLivenessEnabled()) {
748         // When reading a partial undefined value we must not add a kill flag.
749         // The regalloc might have used the undef lane for something else.
750         // Example:
751         //     %1 = ...                  ; R32: %1
752         //     %2:high16 = ...           ; R64: %2
753         //        = read killed %2        ; R64: %2
754         //        = read %1              ; R32: %1
755         // The <kill> flag is correct for %2, but the register allocator may
756         // assign R0L to %1, and R0 to %2 because the low 32bits of R0
757         // are actually never written by %2. After assignment the <kill>
758         // flag at the read instruction is invalid.
759         LaneBitmask DefinedLanesMask;
760         if (!SRs.empty()) {
761           // Compute a mask of lanes that are defined.
762           DefinedLanesMask = LaneBitmask::getNone();
763           for (auto &SRP : SRs) {
764             const LiveInterval::SubRange &SR = *SRP.first;
765             LiveRange::const_iterator &I = SRP.second;
766             if (I == SR.end())
767               continue;
768             I = SR.advanceTo(I, RI->end);
769             if (I == SR.end() || I->start >= RI->end)
770               continue;
771             // I is overlapping RI
772             DefinedLanesMask |= SR.LaneMask;
773           }
774         } else
775           DefinedLanesMask = LaneBitmask::getAll();
776
777         bool IsFullWrite = false;
778         for (const MachineOperand &MO : MI->operands()) {
779           if (!MO.isReg() || MO.getReg() != Reg)
780             continue;
781           if (MO.isUse()) {
782             // Reading any undefined lanes?
783             LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
784             if ((UseMask & ~DefinedLanesMask).any())
785               goto CancelKill;
786           } else if (MO.getSubReg() == 0) {
787             // Writing to the full register?
788             assert(MO.isDef());
789             IsFullWrite = true;
790           }
791         }
792
793         // If an instruction writes to a subregister, a new segment starts in
794         // the LiveInterval. But as this is only overriding part of the register
795         // adding kill-flags is not correct here after registers have been
796         // assigned.
797         if (!IsFullWrite) {
798           // Next segment has to be adjacent in the subregister write case.
799           LiveRange::const_iterator N = std::next(RI);
800           if (N != LI.end() && N->start == RI->end)
801             goto CancelKill;
802         }
803       }
804
805       MI->addRegisterKilled(Reg, nullptr);
806       continue;
807 CancelKill:
808       MI->clearRegisterKills(Reg, nullptr);
809     }
810   }
811 }
812
813 MachineBasicBlock*
814 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
815   // A local live range must be fully contained inside the block, meaning it is
816   // defined and killed at instructions, not at block boundaries. It is not
817   // live in or out of any block.
818   //
819   // It is technically possible to have a PHI-defined live range identical to a
820   // single block, but we are going to return false in that case.
821
822   SlotIndex Start = LI.beginIndex();
823   if (Start.isBlock())
824     return nullptr;
825
826   SlotIndex Stop = LI.endIndex();
827   if (Stop.isBlock())
828     return nullptr;
829
830   // getMBBFromIndex doesn't need to search the MBB table when both indexes
831   // belong to proper instructions.
832   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
833   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
834   return MBB1 == MBB2 ? MBB1 : nullptr;
835 }
836
837 bool
838 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
839   for (const VNInfo *PHI : LI.valnos) {
840     if (PHI->isUnused() || !PHI->isPHIDef())
841       continue;
842     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
843     // Conservatively return true instead of scanning huge predecessor lists.
844     if (PHIMBB->pred_size() > 100)
845       return true;
846     for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
847       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
848         return true;
849   }
850   return false;
851 }
852
853 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
854                                     const MachineBlockFrequencyInfo *MBFI,
855                                     const MachineInstr &MI) {
856   return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
857 }
858
859 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
860                                     const MachineBlockFrequencyInfo *MBFI,
861                                     const MachineBasicBlock *MBB) {
862   BlockFrequency Freq = MBFI->getBlockFreq(MBB);
863   const float Scale = 1.0f / MBFI->getEntryFreq();
864   return (isDef + isUse) * (Freq.getFrequency() * Scale);
865 }
866
867 LiveRange::Segment
868 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) {
869   LiveInterval& Interval = createEmptyInterval(reg);
870   VNInfo *VN = Interval.getNextValue(
871       SlotIndex(getInstructionIndex(startInst).getRegSlot()),
872       getVNInfoAllocator());
873   LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
874                        getMBBEndIdx(startInst.getParent()), VN);
875   Interval.addSegment(S);
876
877   return S;
878 }
879
880 //===----------------------------------------------------------------------===//
881 //                          Register mask functions
882 //===----------------------------------------------------------------------===//
883
884 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
885                                              BitVector &UsableRegs) {
886   if (LI.empty())
887     return false;
888   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
889
890   // Use a smaller arrays for local live ranges.
891   ArrayRef<SlotIndex> Slots;
892   ArrayRef<const uint32_t*> Bits;
893   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
894     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
895     Bits = getRegMaskBitsInBlock(MBB->getNumber());
896   } else {
897     Slots = getRegMaskSlots();
898     Bits = getRegMaskBits();
899   }
900
901   // We are going to enumerate all the register mask slots contained in LI.
902   // Start with a binary search of RegMaskSlots to find a starting point.
903   ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
904   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
905
906   // No slots in range, LI begins after the last call.
907   if (SlotI == SlotE)
908     return false;
909
910   bool Found = false;
911   while (true) {
912     assert(*SlotI >= LiveI->start);
913     // Loop over all slots overlapping this segment.
914     while (*SlotI < LiveI->end) {
915       // *SlotI overlaps LI. Collect mask bits.
916       if (!Found) {
917         // This is the first overlap. Initialize UsableRegs to all ones.
918         UsableRegs.clear();
919         UsableRegs.resize(TRI->getNumRegs(), true);
920         Found = true;
921       }
922       // Remove usable registers clobbered by this mask.
923       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
924       if (++SlotI == SlotE)
925         return Found;
926     }
927     // *SlotI is beyond the current LI segment.
928     LiveI = LI.advanceTo(LiveI, *SlotI);
929     if (LiveI == LiveE)
930       return Found;
931     // Advance SlotI until it overlaps.
932     while (*SlotI < LiveI->start)
933       if (++SlotI == SlotE)
934         return Found;
935   }
936 }
937
938 //===----------------------------------------------------------------------===//
939 //                         IntervalUpdate class.
940 //===----------------------------------------------------------------------===//
941
942 /// Toolkit used by handleMove to trim or extend live intervals.
943 class LiveIntervals::HMEditor {
944 private:
945   LiveIntervals& LIS;
946   const MachineRegisterInfo& MRI;
947   const TargetRegisterInfo& TRI;
948   SlotIndex OldIdx;
949   SlotIndex NewIdx;
950   SmallPtrSet<LiveRange*, 8> Updated;
951   bool UpdateFlags;
952
953 public:
954   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
955            const TargetRegisterInfo& TRI,
956            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
957     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
958       UpdateFlags(UpdateFlags) {}
959
960   // FIXME: UpdateFlags is a workaround that creates live intervals for all
961   // physregs, even those that aren't needed for regalloc, in order to update
962   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
963   // flags, and postRA passes will use a live register utility instead.
964   LiveRange *getRegUnitLI(unsigned Unit) {
965     if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
966       return &LIS.getRegUnit(Unit);
967     return LIS.getCachedRegUnit(Unit);
968   }
969
970   /// Update all live ranges touched by MI, assuming a move from OldIdx to
971   /// NewIdx.
972   void updateAllRanges(MachineInstr *MI) {
973     LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
974                       << *MI);
975     bool hasRegMask = false;
976     for (MachineOperand &MO : MI->operands()) {
977       if (MO.isRegMask())
978         hasRegMask = true;
979       if (!MO.isReg())
980         continue;
981       if (MO.isUse()) {
982         if (!MO.readsReg())
983           continue;
984         // Aggressively clear all kill flags.
985         // They are reinserted by VirtRegRewriter.
986         MO.setIsKill(false);
987       }
988
989       unsigned Reg = MO.getReg();
990       if (!Reg)
991         continue;
992       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
993         LiveInterval &LI = LIS.getInterval(Reg);
994         if (LI.hasSubRanges()) {
995           unsigned SubReg = MO.getSubReg();
996           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
997                                         : MRI.getMaxLaneMaskForVReg(Reg);
998           for (LiveInterval::SubRange &S : LI.subranges()) {
999             if ((S.LaneMask & LaneMask).none())
1000               continue;
1001             updateRange(S, Reg, S.LaneMask);
1002           }
1003         }
1004         updateRange(LI, Reg, LaneBitmask::getNone());
1005         continue;
1006       }
1007
1008       // For physregs, only update the regunits that actually have a
1009       // precomputed live range.
1010       for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
1011         if (LiveRange *LR = getRegUnitLI(*Units))
1012           updateRange(*LR, *Units, LaneBitmask::getNone());
1013     }
1014     if (hasRegMask)
1015       updateRegMaskSlots();
1016   }
1017
1018 private:
1019   /// Update a single live range, assuming an instruction has been moved from
1020   /// OldIdx to NewIdx.
1021   void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1022     if (!Updated.insert(&LR).second)
1023       return;
1024     LLVM_DEBUG({
1025       dbgs() << "     ";
1026       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1027         dbgs() << printReg(Reg);
1028         if (LaneMask.any())
1029           dbgs() << " L" << PrintLaneMask(LaneMask);
1030       } else {
1031         dbgs() << printRegUnit(Reg, &TRI);
1032       }
1033       dbgs() << ":\t" << LR << '\n';
1034     });
1035     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1036       handleMoveDown(LR);
1037     else
1038       handleMoveUp(LR, Reg, LaneMask);
1039     LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1040     LR.verify();
1041   }
1042
1043   /// Update LR to reflect an instruction has been moved downwards from OldIdx
1044   /// to NewIdx (OldIdx < NewIdx).
1045   void handleMoveDown(LiveRange &LR) {
1046     LiveRange::iterator E = LR.end();
1047     // Segment going into OldIdx.
1048     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1049
1050     // No value live before or after OldIdx? Nothing to do.
1051     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1052       return;
1053
1054     LiveRange::iterator OldIdxOut;
1055     // Do we have a value live-in to OldIdx?
1056     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1057       // If the live-in value already extends to NewIdx, there is nothing to do.
1058       if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1059         return;
1060       // Aggressively remove all kill flags from the old kill point.
1061       // Kill flags shouldn't be used while live intervals exist, they will be
1062       // reinserted by VirtRegRewriter.
1063       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1064         for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1065           if (MO->isReg() && MO->isUse())
1066             MO->setIsKill(false);
1067
1068       // Is there a def before NewIdx which is not OldIdx?
1069       LiveRange::iterator Next = std::next(OldIdxIn);
1070       if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1071           SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1072         // If we are here then OldIdx was just a use but not a def. We only have
1073         // to ensure liveness extends to NewIdx.
1074         LiveRange::iterator NewIdxIn =
1075           LR.advanceTo(Next, NewIdx.getBaseIndex());
1076         // Extend the segment before NewIdx if necessary.
1077         if (NewIdxIn == E ||
1078             !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1079           LiveRange::iterator Prev = std::prev(NewIdxIn);
1080           Prev->end = NewIdx.getRegSlot();
1081         }
1082         // Extend OldIdxIn.
1083         OldIdxIn->end = Next->start;
1084         return;
1085       }
1086
1087       // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1088       // invalid by overlapping ranges.
1089       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1090       OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1091       // If this was not a kill, then there was no def and we're done.
1092       if (!isKill)
1093         return;
1094
1095       // Did we have a Def at OldIdx?
1096       OldIdxOut = Next;
1097       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1098         return;
1099     } else {
1100       OldIdxOut = OldIdxIn;
1101     }
1102
1103     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1104     // to the segment starting there.
1105     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1106            "No def?");
1107     VNInfo *OldIdxVNI = OldIdxOut->valno;
1108     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1109
1110     // If the defined value extends beyond NewIdx, just move the beginning
1111     // of the segment to NewIdx.
1112     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1113     if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1114       OldIdxVNI->def = NewIdxDef;
1115       OldIdxOut->start = OldIdxVNI->def;
1116       return;
1117     }
1118
1119     // If we are here then we have a Definition at OldIdx which ends before
1120     // NewIdx.
1121
1122     // Is there an existing Def at NewIdx?
1123     LiveRange::iterator AfterNewIdx
1124       = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1125     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1126     if (!OldIdxDefIsDead &&
1127         SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1128       // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1129       VNInfo *DefVNI;
1130       if (OldIdxOut != LR.begin() &&
1131           !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1132                                      OldIdxOut->start)) {
1133         // There is no gap between OldIdxOut and its predecessor anymore,
1134         // merge them.
1135         LiveRange::iterator IPrev = std::prev(OldIdxOut);
1136         DefVNI = OldIdxVNI;
1137         IPrev->end = OldIdxOut->end;
1138       } else {
1139         // The value is live in to OldIdx
1140         LiveRange::iterator INext = std::next(OldIdxOut);
1141         assert(INext != E && "Must have following segment");
1142         // We merge OldIdxOut and its successor. As we're dealing with subreg
1143         // reordering, there is always a successor to OldIdxOut in the same BB
1144         // We don't need INext->valno anymore and will reuse for the new segment
1145         // we create later.
1146         DefVNI = OldIdxVNI;
1147         INext->start = OldIdxOut->end;
1148         INext->valno->def = INext->start;
1149       }
1150       // If NewIdx is behind the last segment, extend that and append a new one.
1151       if (AfterNewIdx == E) {
1152         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1153         // one position.
1154         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1155         // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1156         std::copy(std::next(OldIdxOut), E, OldIdxOut);
1157         // The last segment is undefined now, reuse it for a dead def.
1158         LiveRange::iterator NewSegment = std::prev(E);
1159         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1160                                          DefVNI);
1161         DefVNI->def = NewIdxDef;
1162
1163         LiveRange::iterator Prev = std::prev(NewSegment);
1164         Prev->end = NewIdxDef;
1165       } else {
1166         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1167         // one position.
1168         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1169         // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1170         std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1171         LiveRange::iterator Prev = std::prev(AfterNewIdx);
1172         // We have two cases:
1173         if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1174           // Case 1: NewIdx is inside a liverange. Split this liverange at
1175           // NewIdxDef into the segment "Prev" followed by "NewSegment".
1176           LiveRange::iterator NewSegment = AfterNewIdx;
1177           *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1178           Prev->valno->def = NewIdxDef;
1179
1180           *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1181           DefVNI->def = Prev->start;
1182         } else {
1183           // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1184           // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1185           *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1186           DefVNI->def = NewIdxDef;
1187           assert(DefVNI != AfterNewIdx->valno);
1188         }
1189       }
1190       return;
1191     }
1192
1193     if (AfterNewIdx != E &&
1194         SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1195       // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1196       // that value.
1197       assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1198       LR.removeValNo(OldIdxVNI);
1199     } else {
1200       // There was no existing def at NewIdx. We need to create a dead def
1201       // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1202       // a new segment at the place where we want to construct the dead def.
1203       //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1204       // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1205       assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1206       std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1207       // We can reuse OldIdxVNI now.
1208       LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1209       VNInfo *NewSegmentVNI = OldIdxVNI;
1210       NewSegmentVNI->def = NewIdxDef;
1211       *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1212                                        NewSegmentVNI);
1213     }
1214   }
1215
1216   /// Update LR to reflect an instruction has been moved upwards from OldIdx
1217   /// to NewIdx (NewIdx < OldIdx).
1218   void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1219     LiveRange::iterator E = LR.end();
1220     // Segment going into OldIdx.
1221     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1222
1223     // No value live before or after OldIdx? Nothing to do.
1224     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1225       return;
1226
1227     LiveRange::iterator OldIdxOut;
1228     // Do we have a value live-in to OldIdx?
1229     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1230       // If the live-in value isn't killed here, then we have no Def at
1231       // OldIdx, moreover the value must be live at NewIdx so there is nothing
1232       // to do.
1233       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1234       if (!isKill)
1235         return;
1236
1237       // At this point we have to move OldIdxIn->end back to the nearest
1238       // previous use or (dead-)def but no further than NewIdx.
1239       SlotIndex DefBeforeOldIdx
1240         = std::max(OldIdxIn->start.getDeadSlot(),
1241                    NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1242       OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1243
1244       // Did we have a Def at OldIdx? If not we are done now.
1245       OldIdxOut = std::next(OldIdxIn);
1246       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1247         return;
1248     } else {
1249       OldIdxOut = OldIdxIn;
1250       OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1251     }
1252
1253     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1254     // to the segment starting there.
1255     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1256            "No def?");
1257     VNInfo *OldIdxVNI = OldIdxOut->valno;
1258     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1259     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1260
1261     // Is there an existing def at NewIdx?
1262     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1263     LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1264     if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1265       assert(NewIdxOut->valno != OldIdxVNI &&
1266              "Same value defined more than once?");
1267       // If OldIdx was a dead def remove it.
1268       if (!OldIdxDefIsDead) {
1269         // Remove segment starting at NewIdx and move begin of OldIdxOut to
1270         // NewIdx so it can take its place.
1271         OldIdxVNI->def = NewIdxDef;
1272         OldIdxOut->start = NewIdxDef;
1273         LR.removeValNo(NewIdxOut->valno);
1274       } else {
1275         // Simply remove the dead def at OldIdx.
1276         LR.removeValNo(OldIdxVNI);
1277       }
1278     } else {
1279       // Previously nothing was live after NewIdx, so all we have to do now is
1280       // move the begin of OldIdxOut to NewIdx.
1281       if (!OldIdxDefIsDead) {
1282         // Do we have any intermediate Defs between OldIdx and NewIdx?
1283         if (OldIdxIn != E &&
1284             SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1285           // OldIdx is not a dead def and NewIdx is before predecessor start.
1286           LiveRange::iterator NewIdxIn = NewIdxOut;
1287           assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1288           const SlotIndex SplitPos = NewIdxDef;
1289           OldIdxVNI = OldIdxIn->valno;
1290
1291           // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1292           OldIdxOut->valno->def = OldIdxIn->start;
1293           *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1294                                           OldIdxOut->valno);
1295           // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1296           // We Slide [NewIdxIn, OldIdxIn) down one position.
1297           //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1298           // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1299           std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1300           // NewIdxIn is now considered undef so we can reuse it for the moved
1301           // value.
1302           LiveRange::iterator NewSegment = NewIdxIn;
1303           LiveRange::iterator Next = std::next(NewSegment);
1304           if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1305             // There is no gap between NewSegment and its predecessor.
1306             *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1307                                              Next->valno);
1308             *Next = LiveRange::Segment(SplitPos, Next->end, OldIdxVNI);
1309             Next->valno->def = SplitPos;
1310           } else {
1311             // There is a gap between NewSegment and its predecessor
1312             // Value becomes live in.
1313             *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1314             NewSegment->valno->def = SplitPos;
1315           }
1316         } else {
1317           // Leave the end point of a live def.
1318           OldIdxOut->start = NewIdxDef;
1319           OldIdxVNI->def = NewIdxDef;
1320           if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1321             OldIdxIn->end = NewIdx.getRegSlot();
1322         }
1323       } else if (OldIdxIn != E
1324           && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1325           && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1326         // OldIdxVNI is a dead def that has been moved into the middle of
1327         // another value in LR. That can happen when LR is a whole register,
1328         // but the dead def is a write to a subreg that is dead at NewIdx.
1329         // The dead def may have been moved across other values
1330         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1331         // down one position.
1332         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1333         // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1334         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1335         // Modify the segment at NewIdxOut and the following segment to meet at
1336         // the point of the dead def, with the following segment getting
1337         // OldIdxVNI as its value number.
1338         *NewIdxOut = LiveRange::Segment(
1339             NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1340         *(NewIdxOut + 1) = LiveRange::Segment(
1341             NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1342         OldIdxVNI->def = NewIdxDef;
1343         // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1344         for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1345           Idx->valno = OldIdxVNI;
1346         // Aggressively remove all dead flags from the former dead definition.
1347         // Kill/dead flags shouldn't be used while live intervals exist; they
1348         // will be reinserted by VirtRegRewriter.
1349         if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1350           for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1351             if (MO->isReg() && !MO->isUse())
1352               MO->setIsDead(false);
1353       } else {
1354         // OldIdxVNI is a dead def. It may have been moved across other values
1355         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1356         // down one position.
1357         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1358         // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1359         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1360         // OldIdxVNI can be reused now to build a new dead def segment.
1361         LiveRange::iterator NewSegment = NewIdxOut;
1362         VNInfo *NewSegmentVNI = OldIdxVNI;
1363         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1364                                          NewSegmentVNI);
1365         NewSegmentVNI->def = NewIdxDef;
1366       }
1367     }
1368   }
1369
1370   void updateRegMaskSlots() {
1371     SmallVectorImpl<SlotIndex>::iterator RI =
1372         llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1373     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1374            "No RegMask at OldIdx.");
1375     *RI = NewIdx.getRegSlot();
1376     assert((RI == LIS.RegMaskSlots.begin() ||
1377             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1378            "Cannot move regmask instruction above another call");
1379     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1380             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1381            "Cannot move regmask instruction below another call");
1382   }
1383
1384   // Return the last use of reg between NewIdx and OldIdx.
1385   SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg,
1386                               LaneBitmask LaneMask) {
1387     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1388       SlotIndex LastUse = Before;
1389       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1390         if (MO.isUndef())
1391           continue;
1392         unsigned SubReg = MO.getSubReg();
1393         if (SubReg != 0 && LaneMask.any()
1394             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1395           continue;
1396
1397         const MachineInstr &MI = *MO.getParent();
1398         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1399         if (InstSlot > LastUse && InstSlot < OldIdx)
1400           LastUse = InstSlot.getRegSlot();
1401       }
1402       return LastUse;
1403     }
1404
1405     // This is a regunit interval, so scanning the use list could be very
1406     // expensive. Scan upwards from OldIdx instead.
1407     assert(Before < OldIdx && "Expected upwards move");
1408     SlotIndexes *Indexes = LIS.getSlotIndexes();
1409     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1410
1411     // OldIdx may not correspond to an instruction any longer, so set MII to
1412     // point to the next instruction after OldIdx, or MBB->end().
1413     MachineBasicBlock::iterator MII = MBB->end();
1414     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1415                            Indexes->getNextNonNullIndex(OldIdx)))
1416       if (MI->getParent() == MBB)
1417         MII = MI;
1418
1419     MachineBasicBlock::iterator Begin = MBB->begin();
1420     while (MII != Begin) {
1421       if ((--MII)->isDebugInstr())
1422         continue;
1423       SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1424
1425       // Stop searching when Before is reached.
1426       if (!SlotIndex::isEarlierInstr(Before, Idx))
1427         return Before;
1428
1429       // Check if MII uses Reg.
1430       for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1431         if (MO->isReg() && !MO->isUndef() &&
1432             TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1433             TRI.hasRegUnit(MO->getReg(), Reg))
1434           return Idx.getRegSlot();
1435     }
1436     // Didn't reach Before. It must be the first instruction in the block.
1437     return Before;
1438   }
1439 };
1440
1441 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1442   assert(!MI.isBundled() && "Can't handle bundled instructions yet.");
1443   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1444   Indexes->removeMachineInstrFromMaps(MI);
1445   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1446   assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1447          OldIndex < getMBBEndIdx(MI.getParent()) &&
1448          "Cannot handle moves across basic block boundaries.");
1449
1450   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1451   HME.updateAllRanges(&MI);
1452 }
1453
1454 void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI,
1455                                          MachineInstr &BundleStart,
1456                                          bool UpdateFlags) {
1457   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1458   SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1459   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1460   HME.updateAllRanges(&MI);
1461 }
1462
1463 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1464                                         const MachineBasicBlock::iterator End,
1465                                         const SlotIndex endIdx,
1466                                         LiveRange &LR, const unsigned Reg,
1467                                         LaneBitmask LaneMask) {
1468   LiveInterval::iterator LII = LR.find(endIdx);
1469   SlotIndex lastUseIdx;
1470   if (LII == LR.begin()) {
1471     // This happens when the function is called for a subregister that only
1472     // occurs _after_ the range that is to be repaired.
1473     return;
1474   }
1475   if (LII != LR.end() && LII->start < endIdx)
1476     lastUseIdx = LII->end;
1477   else
1478     --LII;
1479
1480   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1481     --I;
1482     MachineInstr &MI = *I;
1483     if (MI.isDebugInstr())
1484       continue;
1485
1486     SlotIndex instrIdx = getInstructionIndex(MI);
1487     bool isStartValid = getInstructionFromIndex(LII->start);
1488     bool isEndValid = getInstructionFromIndex(LII->end);
1489
1490     // FIXME: This doesn't currently handle early-clobber or multiple removed
1491     // defs inside of the region to repair.
1492     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
1493                                     OE = MI.operands_end();
1494          OI != OE; ++OI) {
1495       const MachineOperand &MO = *OI;
1496       if (!MO.isReg() || MO.getReg() != Reg)
1497         continue;
1498
1499       unsigned SubReg = MO.getSubReg();
1500       LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1501       if ((Mask & LaneMask).none())
1502         continue;
1503
1504       if (MO.isDef()) {
1505         if (!isStartValid) {
1506           if (LII->end.isDead()) {
1507             SlotIndex prevStart;
1508             if (LII != LR.begin())
1509               prevStart = std::prev(LII)->start;
1510
1511             // FIXME: This could be more efficient if there was a
1512             // removeSegment method that returned an iterator.
1513             LR.removeSegment(*LII, true);
1514             if (prevStart.isValid())
1515               LII = LR.find(prevStart);
1516             else
1517               LII = LR.begin();
1518           } else {
1519             LII->start = instrIdx.getRegSlot();
1520             LII->valno->def = instrIdx.getRegSlot();
1521             if (MO.getSubReg() && !MO.isUndef())
1522               lastUseIdx = instrIdx.getRegSlot();
1523             else
1524               lastUseIdx = SlotIndex();
1525             continue;
1526           }
1527         }
1528
1529         if (!lastUseIdx.isValid()) {
1530           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1531           LiveRange::Segment S(instrIdx.getRegSlot(),
1532                                instrIdx.getDeadSlot(), VNI);
1533           LII = LR.addSegment(S);
1534         } else if (LII->start != instrIdx.getRegSlot()) {
1535           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1536           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1537           LII = LR.addSegment(S);
1538         }
1539
1540         if (MO.getSubReg() && !MO.isUndef())
1541           lastUseIdx = instrIdx.getRegSlot();
1542         else
1543           lastUseIdx = SlotIndex();
1544       } else if (MO.isUse()) {
1545         // FIXME: This should probably be handled outside of this branch,
1546         // either as part of the def case (for defs inside of the region) or
1547         // after the loop over the region.
1548         if (!isEndValid && !LII->end.isBlock())
1549           LII->end = instrIdx.getRegSlot();
1550         if (!lastUseIdx.isValid())
1551           lastUseIdx = instrIdx.getRegSlot();
1552       }
1553     }
1554   }
1555 }
1556
1557 void
1558 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1559                                       MachineBasicBlock::iterator Begin,
1560                                       MachineBasicBlock::iterator End,
1561                                       ArrayRef<unsigned> OrigRegs) {
1562   // Find anchor points, which are at the beginning/end of blocks or at
1563   // instructions that already have indexes.
1564   while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
1565     --Begin;
1566   while (End != MBB->end() && !Indexes->hasIndex(*End))
1567     ++End;
1568
1569   SlotIndex endIdx;
1570   if (End == MBB->end())
1571     endIdx = getMBBEndIdx(MBB).getPrevSlot();
1572   else
1573     endIdx = getInstructionIndex(*End);
1574
1575   Indexes->repairIndexesInRange(MBB, Begin, End);
1576
1577   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1578     --I;
1579     MachineInstr &MI = *I;
1580     if (MI.isDebugInstr())
1581       continue;
1582     for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1583                                           MOE = MI.operands_end();
1584          MOI != MOE; ++MOI) {
1585       if (MOI->isReg() &&
1586           TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1587           !hasInterval(MOI->getReg())) {
1588         createAndComputeVirtRegInterval(MOI->getReg());
1589       }
1590     }
1591   }
1592
1593   for (unsigned Reg : OrigRegs) {
1594     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1595       continue;
1596
1597     LiveInterval &LI = getInterval(Reg);
1598     // FIXME: Should we support undefs that gain defs?
1599     if (!LI.hasAtLeastOneValue())
1600       continue;
1601
1602     for (LiveInterval::SubRange &S : LI.subranges())
1603       repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
1604
1605     repairOldRegInRange(Begin, End, endIdx, LI, Reg);
1606   }
1607 }
1608
1609 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
1610   for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1611     if (LiveRange *LR = getCachedRegUnit(*Unit))
1612       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1613         LR->removeValNo(VNI);
1614   }
1615 }
1616
1617 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1618   // LI may not have the main range computed yet, but its subranges may
1619   // be present.
1620   VNInfo *VNI = LI.getVNInfoAt(Pos);
1621   if (VNI != nullptr) {
1622     assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1623     LI.removeValNo(VNI);
1624   }
1625
1626   // Also remove the value defined in subranges.
1627   for (LiveInterval::SubRange &S : LI.subranges()) {
1628     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1629       if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1630         S.removeValNo(SVNI);
1631   }
1632   LI.removeEmptySubRanges();
1633 }
1634
1635 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1636     SmallVectorImpl<LiveInterval*> &SplitLIs) {
1637   ConnectedVNInfoEqClasses ConEQ(*this);
1638   unsigned NumComp = ConEQ.Classify(LI);
1639   if (NumComp <= 1)
1640     return;
1641   LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1642   unsigned Reg = LI.reg;
1643   const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1644   for (unsigned I = 1; I < NumComp; ++I) {
1645     unsigned NewVReg = MRI->createVirtualRegister(RegClass);
1646     LiveInterval &NewLI = createEmptyInterval(NewVReg);
1647     SplitLIs.push_back(&NewLI);
1648   }
1649   ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1650 }
1651
1652 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1653   assert(LRCalc && "LRCalc not initialized.");
1654   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1655   LRCalc->constructMainRangeFromSubranges(LI);
1656 }