]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/MachineCombiner.cpp
Fix a memory leak in if_delgroups() introduced in r334118.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / MachineCombiner.cpp
1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The machine combiner pass uses machine trace metrics to ensure the combined
10 // instructions do not lengthen the critical path or the resource depth.
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/CodeGen/MachineDominators.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineFunctionPass.h"
18 #include "llvm/CodeGen/MachineLoopInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/MachineTraceMetrics.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSchedule.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29
30 using namespace llvm;
31
32 #define DEBUG_TYPE "machine-combiner"
33
34 STATISTIC(NumInstCombined, "Number of machineinst combined");
35
36 static cl::opt<unsigned>
37 inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
38               cl::desc("Incremental depth computation will be used for basic "
39                        "blocks with more instructions."), cl::init(500));
40
41 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
42                                 cl::desc("Dump all substituted intrs"),
43                                 cl::init(false));
44
45 #ifdef EXPENSIVE_CHECKS
46 static cl::opt<bool> VerifyPatternOrder(
47     "machine-combiner-verify-pattern-order", cl::Hidden,
48     cl::desc(
49         "Verify that the generated patterns are ordered by increasing latency"),
50     cl::init(true));
51 #else
52 static cl::opt<bool> VerifyPatternOrder(
53     "machine-combiner-verify-pattern-order", cl::Hidden,
54     cl::desc(
55         "Verify that the generated patterns are ordered by increasing latency"),
56     cl::init(false));
57 #endif
58
59 namespace {
60 class MachineCombiner : public MachineFunctionPass {
61   const TargetSubtargetInfo *STI;
62   const TargetInstrInfo *TII;
63   const TargetRegisterInfo *TRI;
64   MCSchedModel SchedModel;
65   MachineRegisterInfo *MRI;
66   MachineLoopInfo *MLI; // Current MachineLoopInfo
67   MachineTraceMetrics *Traces;
68   MachineTraceMetrics::Ensemble *MinInstr;
69
70   TargetSchedModel TSchedModel;
71
72   /// True if optimizing for code size.
73   bool OptSize;
74
75 public:
76   static char ID;
77   MachineCombiner() : MachineFunctionPass(ID) {
78     initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
79   }
80   void getAnalysisUsage(AnalysisUsage &AU) const override;
81   bool runOnMachineFunction(MachineFunction &MF) override;
82   StringRef getPassName() const override { return "Machine InstCombiner"; }
83
84 private:
85   bool doSubstitute(unsigned NewSize, unsigned OldSize);
86   bool combineInstructions(MachineBasicBlock *);
87   MachineInstr *getOperandDef(const MachineOperand &MO);
88   unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
89                     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
90                     MachineTraceMetrics::Trace BlockTrace);
91   unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
92                       MachineTraceMetrics::Trace BlockTrace);
93   bool
94   improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
95                           MachineTraceMetrics::Trace BlockTrace,
96                           SmallVectorImpl<MachineInstr *> &InsInstrs,
97                           SmallVectorImpl<MachineInstr *> &DelInstrs,
98                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
99                           MachineCombinerPattern Pattern, bool SlackIsAccurate);
100   bool preservesResourceLen(MachineBasicBlock *MBB,
101                             MachineTraceMetrics::Trace BlockTrace,
102                             SmallVectorImpl<MachineInstr *> &InsInstrs,
103                             SmallVectorImpl<MachineInstr *> &DelInstrs);
104   void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
105                      SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
106   std::pair<unsigned, unsigned>
107   getLatenciesForInstrSequences(MachineInstr &MI,
108                                 SmallVectorImpl<MachineInstr *> &InsInstrs,
109                                 SmallVectorImpl<MachineInstr *> &DelInstrs,
110                                 MachineTraceMetrics::Trace BlockTrace);
111
112   void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
113                           SmallVector<MachineCombinerPattern, 16> &Patterns);
114 };
115 }
116
117 char MachineCombiner::ID = 0;
118 char &llvm::MachineCombinerID = MachineCombiner::ID;
119
120 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
121                       "Machine InstCombiner", false, false)
122 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
123 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
124 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
125                     false, false)
126
127 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
128   AU.setPreservesCFG();
129   AU.addPreserved<MachineDominatorTree>();
130   AU.addRequired<MachineLoopInfo>();
131   AU.addPreserved<MachineLoopInfo>();
132   AU.addRequired<MachineTraceMetrics>();
133   AU.addPreserved<MachineTraceMetrics>();
134   MachineFunctionPass::getAnalysisUsage(AU);
135 }
136
137 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
138   MachineInstr *DefInstr = nullptr;
139   // We need a virtual register definition.
140   if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
141     DefInstr = MRI->getUniqueVRegDef(MO.getReg());
142   // PHI's have no depth etc.
143   if (DefInstr && DefInstr->isPHI())
144     DefInstr = nullptr;
145   return DefInstr;
146 }
147
148 /// Computes depth of instructions in vector \InsInstr.
149 ///
150 /// \param InsInstrs is a vector of machine instructions
151 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
152 /// of defining machine instruction in \p InsInstrs
153 /// \param BlockTrace is a trace of machine instructions
154 ///
155 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
156 unsigned
157 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
158                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
159                           MachineTraceMetrics::Trace BlockTrace) {
160   SmallVector<unsigned, 16> InstrDepth;
161   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
162          "Missing machine model\n");
163
164   // For each instruction in the new sequence compute the depth based on the
165   // operands. Use the trace information when possible. For new operands which
166   // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
167   for (auto *InstrPtr : InsInstrs) { // for each Use
168     unsigned IDepth = 0;
169     for (const MachineOperand &MO : InstrPtr->operands()) {
170       // Check for virtual register operand.
171       if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
172         continue;
173       if (!MO.isUse())
174         continue;
175       unsigned DepthOp = 0;
176       unsigned LatencyOp = 0;
177       DenseMap<unsigned, unsigned>::iterator II =
178           InstrIdxForVirtReg.find(MO.getReg());
179       if (II != InstrIdxForVirtReg.end()) {
180         // Operand is new virtual register not in trace
181         assert(II->second < InstrDepth.size() && "Bad Index");
182         MachineInstr *DefInstr = InsInstrs[II->second];
183         assert(DefInstr &&
184                "There must be a definition for a new virtual register");
185         DepthOp = InstrDepth[II->second];
186         int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
187         int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
188         LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
189                                                       InstrPtr, UseIdx);
190       } else {
191         MachineInstr *DefInstr = getOperandDef(MO);
192         if (DefInstr) {
193           DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
194           LatencyOp = TSchedModel.computeOperandLatency(
195               DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
196               InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
197         }
198       }
199       IDepth = std::max(IDepth, DepthOp + LatencyOp);
200     }
201     InstrDepth.push_back(IDepth);
202   }
203   unsigned NewRootIdx = InsInstrs.size() - 1;
204   return InstrDepth[NewRootIdx];
205 }
206
207 /// Computes instruction latency as max of latency of defined operands.
208 ///
209 /// \param Root is a machine instruction that could be replaced by NewRoot.
210 /// It is used to compute a more accurate latency information for NewRoot in
211 /// case there is a dependent instruction in the same trace (\p BlockTrace)
212 /// \param NewRoot is the instruction for which the latency is computed
213 /// \param BlockTrace is a trace of machine instructions
214 ///
215 /// \returns Latency of \p NewRoot
216 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
217                                      MachineTraceMetrics::Trace BlockTrace) {
218   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
219          "Missing machine model\n");
220
221   // Check each definition in NewRoot and compute the latency
222   unsigned NewRootLatency = 0;
223
224   for (const MachineOperand &MO : NewRoot->operands()) {
225     // Check for virtual register operand.
226     if (!(MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())))
227       continue;
228     if (!MO.isDef())
229       continue;
230     // Get the first instruction that uses MO
231     MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
232     RI++;
233     if (RI == MRI->reg_end())
234       continue;
235     MachineInstr *UseMO = RI->getParent();
236     unsigned LatencyOp = 0;
237     if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
238       LatencyOp = TSchedModel.computeOperandLatency(
239           NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
240           UseMO->findRegisterUseOperandIdx(MO.getReg()));
241     } else {
242       LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
243     }
244     NewRootLatency = std::max(NewRootLatency, LatencyOp);
245   }
246   return NewRootLatency;
247 }
248
249 /// The combiner's goal may differ based on which pattern it is attempting
250 /// to optimize.
251 enum class CombinerObjective {
252   MustReduceDepth, // The data dependency chain must be improved.
253   Default          // The critical path must not be lengthened.
254 };
255
256 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
257   // TODO: If C++ ever gets a real enum class, make this part of the
258   // MachineCombinerPattern class.
259   switch (P) {
260   case MachineCombinerPattern::REASSOC_AX_BY:
261   case MachineCombinerPattern::REASSOC_AX_YB:
262   case MachineCombinerPattern::REASSOC_XA_BY:
263   case MachineCombinerPattern::REASSOC_XA_YB:
264     return CombinerObjective::MustReduceDepth;
265   default:
266     return CombinerObjective::Default;
267   }
268 }
269
270 /// Estimate the latency of the new and original instruction sequence by summing
271 /// up the latencies of the inserted and deleted instructions. This assumes
272 /// that the inserted and deleted instructions are dependent instruction chains,
273 /// which might not hold in all cases.
274 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
275     MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
276     SmallVectorImpl<MachineInstr *> &DelInstrs,
277     MachineTraceMetrics::Trace BlockTrace) {
278   assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
279   unsigned NewRootLatency = 0;
280   // NewRoot is the last instruction in the \p InsInstrs vector.
281   MachineInstr *NewRoot = InsInstrs.back();
282   for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
283     NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
284   NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
285
286   unsigned RootLatency = 0;
287   for (auto I : DelInstrs)
288     RootLatency += TSchedModel.computeInstrLatency(I);
289
290   return {NewRootLatency, RootLatency};
291 }
292
293 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
294 /// The new code sequence ends in MI NewRoot. A necessary condition for the new
295 /// sequence to replace the old sequence is that it cannot lengthen the critical
296 /// path. The definition of "improve" may be restricted by specifying that the
297 /// new path improves the data dependency chain (MustReduceDepth).
298 bool MachineCombiner::improvesCriticalPathLen(
299     MachineBasicBlock *MBB, MachineInstr *Root,
300     MachineTraceMetrics::Trace BlockTrace,
301     SmallVectorImpl<MachineInstr *> &InsInstrs,
302     SmallVectorImpl<MachineInstr *> &DelInstrs,
303     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
304     MachineCombinerPattern Pattern,
305     bool SlackIsAccurate) {
306   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
307          "Missing machine model\n");
308   // Get depth and latency of NewRoot and Root.
309   unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
310   unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
311
312   LLVM_DEBUG(dbgs() << "  Dependence data for " << *Root << "\tNewRootDepth: "
313                     << NewRootDepth << "\tRootDepth: " << RootDepth);
314
315   // For a transform such as reassociation, the cost equation is
316   // conservatively calculated so that we must improve the depth (data
317   // dependency cycles) in the critical path to proceed with the transform.
318   // Being conservative also protects against inaccuracies in the underlying
319   // machine trace metrics and CPU models.
320   if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
321     LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
322     LLVM_DEBUG(NewRootDepth < RootDepth
323                    ? dbgs() << "\t  and it does it\n"
324                    : dbgs() << "\t  but it does NOT do it\n");
325     return NewRootDepth < RootDepth;
326   }
327
328   // A more flexible cost calculation for the critical path includes the slack
329   // of the original code sequence. This may allow the transform to proceed
330   // even if the instruction depths (data dependency cycles) become worse.
331
332   // Account for the latency of the inserted and deleted instructions by
333   unsigned NewRootLatency, RootLatency;
334   std::tie(NewRootLatency, RootLatency) =
335       getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
336
337   unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
338   unsigned NewCycleCount = NewRootDepth + NewRootLatency;
339   unsigned OldCycleCount =
340       RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
341   LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
342                     << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
343                     << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
344                     << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
345                     << "\n\tRootDepth + RootLatency + RootSlack = "
346                     << OldCycleCount;);
347   LLVM_DEBUG(NewCycleCount <= OldCycleCount
348                  ? dbgs() << "\n\t  It IMPROVES PathLen because"
349                  : dbgs() << "\n\t  It DOES NOT improve PathLen because");
350   LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
351                     << ", OldCycleCount = " << OldCycleCount << "\n");
352
353   return NewCycleCount <= OldCycleCount;
354 }
355
356 /// helper routine to convert instructions into SC
357 void MachineCombiner::instr2instrSC(
358     SmallVectorImpl<MachineInstr *> &Instrs,
359     SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
360   for (auto *InstrPtr : Instrs) {
361     unsigned Opc = InstrPtr->getOpcode();
362     unsigned Idx = TII->get(Opc).getSchedClass();
363     const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
364     InstrsSC.push_back(SC);
365   }
366 }
367
368 /// True when the new instructions do not increase resource length
369 bool MachineCombiner::preservesResourceLen(
370     MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
371     SmallVectorImpl<MachineInstr *> &InsInstrs,
372     SmallVectorImpl<MachineInstr *> &DelInstrs) {
373   if (!TSchedModel.hasInstrSchedModel())
374     return true;
375
376   // Compute current resource length
377
378   //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
379   SmallVector <const MachineBasicBlock *, 1> MBBarr;
380   MBBarr.push_back(MBB);
381   unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
382
383   // Deal with SC rather than Instructions.
384   SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
385   SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
386
387   instr2instrSC(InsInstrs, InsInstrsSC);
388   instr2instrSC(DelInstrs, DelInstrsSC);
389
390   ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
391   ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
392
393   // Compute new resource length.
394   unsigned ResLenAfterCombine =
395       BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
396
397   LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
398                     << ResLenBeforeCombine
399                     << " and after: " << ResLenAfterCombine << "\n";);
400   LLVM_DEBUG(
401       ResLenAfterCombine <= ResLenBeforeCombine
402           ? dbgs() << "\t\t  As result it IMPROVES/PRESERVES Resource Length\n"
403           : dbgs() << "\t\t  As result it DOES NOT improve/preserve Resource "
404                       "Length\n");
405
406   return ResLenAfterCombine <= ResLenBeforeCombine;
407 }
408
409 /// \returns true when new instruction sequence should be generated
410 /// independent if it lengthens critical path or not
411 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize) {
412   if (OptSize && (NewSize < OldSize))
413     return true;
414   if (!TSchedModel.hasInstrSchedModelOrItineraries())
415     return true;
416   return false;
417 }
418
419 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
420 /// depths if requested.
421 ///
422 /// \param MBB basic block to insert instructions in
423 /// \param MI current machine instruction
424 /// \param InsInstrs new instructions to insert in \p MBB
425 /// \param DelInstrs instruction to delete from \p MBB
426 /// \param MinInstr is a pointer to the machine trace information
427 /// \param RegUnits set of live registers, needed to compute instruction depths
428 /// \param IncrementalUpdate if true, compute instruction depths incrementally,
429 ///                          otherwise invalidate the trace
430 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
431                                      SmallVector<MachineInstr *, 16> InsInstrs,
432                                      SmallVector<MachineInstr *, 16> DelInstrs,
433                                      MachineTraceMetrics::Ensemble *MinInstr,
434                                      SparseSet<LiveRegUnit> &RegUnits,
435                                      bool IncrementalUpdate) {
436   for (auto *InstrPtr : InsInstrs)
437     MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
438
439   for (auto *InstrPtr : DelInstrs) {
440     InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
441     // Erase all LiveRegs defined by the removed instruction
442     for (auto I = RegUnits.begin(); I != RegUnits.end(); ) {
443       if (I->MI == InstrPtr)
444         I = RegUnits.erase(I);
445       else
446         I++;
447     }
448   }
449
450   if (IncrementalUpdate)
451     for (auto *InstrPtr : InsInstrs)
452       MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
453   else
454     MinInstr->invalidate(MBB);
455
456   NumInstCombined++;
457 }
458
459 // Check that the difference between original and new latency is decreasing for
460 // later patterns. This helps to discover sub-optimal pattern orderings.
461 void MachineCombiner::verifyPatternOrder(
462     MachineBasicBlock *MBB, MachineInstr &Root,
463     SmallVector<MachineCombinerPattern, 16> &Patterns) {
464   long PrevLatencyDiff = std::numeric_limits<long>::max();
465   (void)PrevLatencyDiff; // Variable is used in assert only.
466   for (auto P : Patterns) {
467     SmallVector<MachineInstr *, 16> InsInstrs;
468     SmallVector<MachineInstr *, 16> DelInstrs;
469     DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
470     TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
471                                     InstrIdxForVirtReg);
472     // Found pattern, but did not generate alternative sequence.
473     // This can happen e.g. when an immediate could not be materialized
474     // in a single instruction.
475     if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
476       continue;
477
478     unsigned NewRootLatency, RootLatency;
479     std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
480         Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB));
481     long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
482     assert(CurrentLatencyDiff <= PrevLatencyDiff &&
483            "Current pattern is better than previous pattern.");
484     PrevLatencyDiff = CurrentLatencyDiff;
485   }
486 }
487
488 /// Substitute a slow code sequence with a faster one by
489 /// evaluating instruction combining pattern.
490 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
491 /// combining based on machine trace metrics. Only combine a sequence of
492 /// instructions  when this neither lengthens the critical path nor increases
493 /// resource pressure. When optimizing for codesize always combine when the new
494 /// sequence is shorter.
495 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
496   bool Changed = false;
497   LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
498
499   bool IncrementalUpdate = false;
500   auto BlockIter = MBB->begin();
501   decltype(BlockIter) LastUpdate;
502   // Check if the block is in a loop.
503   const MachineLoop *ML = MLI->getLoopFor(MBB);
504   if (!MinInstr)
505     MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
506
507   SparseSet<LiveRegUnit> RegUnits;
508   RegUnits.setUniverse(TRI->getNumRegUnits());
509
510   while (BlockIter != MBB->end()) {
511     auto &MI = *BlockIter++;
512     SmallVector<MachineCombinerPattern, 16> Patterns;
513     // The motivating example is:
514     //
515     //     MUL  Other        MUL_op1 MUL_op2  Other
516     //      \    /               \      |    /
517     //      ADD/SUB      =>        MADD/MSUB
518     //      (=Root)                (=NewRoot)
519
520     // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
521     // usually beneficial for code size it unfortunately can hurt performance
522     // when the ADD is on the critical path, but the MUL is not. With the
523     // substitution the MUL becomes part of the critical path (in form of the
524     // MADD) and can lengthen it on architectures where the MADD latency is
525     // longer than the ADD latency.
526     //
527     // For each instruction we check if it can be the root of a combiner
528     // pattern. Then for each pattern the new code sequence in form of MI is
529     // generated and evaluated. When the efficiency criteria (don't lengthen
530     // critical path, don't use more resources) is met the new sequence gets
531     // hooked up into the basic block before the old sequence is removed.
532     //
533     // The algorithm does not try to evaluate all patterns and pick the best.
534     // This is only an artificial restriction though. In practice there is
535     // mostly one pattern, and getMachineCombinerPatterns() can order patterns
536     // based on an internal cost heuristic. If
537     // machine-combiner-verify-pattern-order is enabled, all patterns are
538     // checked to ensure later patterns do not provide better latency savings.
539
540     if (!TII->getMachineCombinerPatterns(MI, Patterns))
541       continue;
542
543     if (VerifyPatternOrder)
544       verifyPatternOrder(MBB, MI, Patterns);
545
546     for (auto P : Patterns) {
547       SmallVector<MachineInstr *, 16> InsInstrs;
548       SmallVector<MachineInstr *, 16> DelInstrs;
549       DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
550       TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
551                                       InstrIdxForVirtReg);
552       unsigned NewInstCount = InsInstrs.size();
553       unsigned OldInstCount = DelInstrs.size();
554       // Found pattern, but did not generate alternative sequence.
555       // This can happen e.g. when an immediate could not be materialized
556       // in a single instruction.
557       if (!NewInstCount)
558         continue;
559
560       LLVM_DEBUG(if (dump_intrs) {
561         dbgs() << "\tFor the Pattern (" << (int)P
562                << ") these instructions could be removed\n";
563         for (auto const *InstrPtr : DelInstrs)
564           InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
565                           /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
566         dbgs() << "\tThese instructions could replace the removed ones\n";
567         for (auto const *InstrPtr : InsInstrs)
568           InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
569                           /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
570       });
571
572       bool SubstituteAlways = false;
573       if (ML && TII->isThroughputPattern(P))
574         SubstituteAlways = true;
575
576       if (IncrementalUpdate) {
577         // Update depths since the last incremental update.
578         MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
579         LastUpdate = BlockIter;
580       }
581
582       // Substitute when we optimize for codesize and the new sequence has
583       // fewer instructions OR
584       // the new sequence neither lengthens the critical path nor increases
585       // resource pressure.
586       if (SubstituteAlways || doSubstitute(NewInstCount, OldInstCount)) {
587         insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
588                                  RegUnits, IncrementalUpdate);
589         // Eagerly stop after the first pattern fires.
590         Changed = true;
591         break;
592       } else {
593         // For big basic blocks, we only compute the full trace the first time
594         // we hit this. We do not invalidate the trace, but instead update the
595         // instruction depths incrementally.
596         // NOTE: Only the instruction depths up to MI are accurate. All other
597         // trace information is not updated.
598         MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
599         Traces->verifyAnalysis();
600         if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
601                                     InstrIdxForVirtReg, P,
602                                     !IncrementalUpdate) &&
603             preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
604           if (MBB->size() > inc_threshold) {
605             // Use incremental depth updates for basic blocks above treshold
606             IncrementalUpdate = true;
607             LastUpdate = BlockIter;
608           }
609
610           insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
611                                    RegUnits, IncrementalUpdate);
612
613           // Eagerly stop after the first pattern fires.
614           Changed = true;
615           break;
616         }
617         // Cleanup instructions of the alternative code sequence. There is no
618         // use for them.
619         MachineFunction *MF = MBB->getParent();
620         for (auto *InstrPtr : InsInstrs)
621           MF->DeleteMachineInstr(InstrPtr);
622       }
623       InstrIdxForVirtReg.clear();
624     }
625   }
626
627   if (Changed && IncrementalUpdate)
628     Traces->invalidate(MBB);
629   return Changed;
630 }
631
632 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
633   STI = &MF.getSubtarget();
634   TII = STI->getInstrInfo();
635   TRI = STI->getRegisterInfo();
636   SchedModel = STI->getSchedModel();
637   TSchedModel.init(STI);
638   MRI = &MF.getRegInfo();
639   MLI = &getAnalysis<MachineLoopInfo>();
640   Traces = &getAnalysis<MachineTraceMetrics>();
641   MinInstr = nullptr;
642   OptSize = MF.getFunction().hasOptSize();
643
644   LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
645   if (!TII->useMachineCombiner()) {
646     LLVM_DEBUG(
647         dbgs()
648         << "  Skipping pass: Target does not support machine combiner\n");
649     return false;
650   }
651
652   bool Changed = false;
653
654   // Try to combine instructions.
655   for (auto &MBB : MF)
656     Changed |= combineInstructions(&MBB);
657
658   return Changed;
659 }