]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/MachineCombiner.cpp
THIS BRANCH IS OBSOLETE, PLEASE READ:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / MachineCombiner.cpp
1 //===---- MachineCombiner.cpp - Instcombining on SSA form machine code ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The machine combiner pass uses machine trace metrics to ensure the combined
10 // instructions do not lengthen the critical path or the resource depth.
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/ProfileSummaryInfo.h"
16 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/MachineSizeOpts.h"
23 #include "llvm/CodeGen/MachineTraceMetrics.h"
24 #include "llvm/CodeGen/Passes.h"
25 #include "llvm/CodeGen/TargetInstrInfo.h"
26 #include "llvm/CodeGen/TargetRegisterInfo.h"
27 #include "llvm/CodeGen/TargetSchedule.h"
28 #include "llvm/CodeGen/TargetSubtargetInfo.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33
34 using namespace llvm;
35
36 #define DEBUG_TYPE "machine-combiner"
37
38 STATISTIC(NumInstCombined, "Number of machineinst combined");
39
40 static cl::opt<unsigned>
41 inc_threshold("machine-combiner-inc-threshold", cl::Hidden,
42               cl::desc("Incremental depth computation will be used for basic "
43                        "blocks with more instructions."), cl::init(500));
44
45 static cl::opt<bool> dump_intrs("machine-combiner-dump-subst-intrs", cl::Hidden,
46                                 cl::desc("Dump all substituted intrs"),
47                                 cl::init(false));
48
49 #ifdef EXPENSIVE_CHECKS
50 static cl::opt<bool> VerifyPatternOrder(
51     "machine-combiner-verify-pattern-order", cl::Hidden,
52     cl::desc(
53         "Verify that the generated patterns are ordered by increasing latency"),
54     cl::init(true));
55 #else
56 static cl::opt<bool> VerifyPatternOrder(
57     "machine-combiner-verify-pattern-order", cl::Hidden,
58     cl::desc(
59         "Verify that the generated patterns are ordered by increasing latency"),
60     cl::init(false));
61 #endif
62
63 namespace {
64 class MachineCombiner : public MachineFunctionPass {
65   const TargetSubtargetInfo *STI;
66   const TargetInstrInfo *TII;
67   const TargetRegisterInfo *TRI;
68   MCSchedModel SchedModel;
69   MachineRegisterInfo *MRI;
70   MachineLoopInfo *MLI; // Current MachineLoopInfo
71   MachineTraceMetrics *Traces;
72   MachineTraceMetrics::Ensemble *MinInstr;
73   MachineBlockFrequencyInfo *MBFI;
74   ProfileSummaryInfo *PSI;
75
76   TargetSchedModel TSchedModel;
77
78   /// True if optimizing for code size.
79   bool OptSize;
80
81 public:
82   static char ID;
83   MachineCombiner() : MachineFunctionPass(ID) {
84     initializeMachineCombinerPass(*PassRegistry::getPassRegistry());
85   }
86   void getAnalysisUsage(AnalysisUsage &AU) const override;
87   bool runOnMachineFunction(MachineFunction &MF) override;
88   StringRef getPassName() const override { return "Machine InstCombiner"; }
89
90 private:
91   bool doSubstitute(unsigned NewSize, unsigned OldSize, bool OptForSize);
92   bool combineInstructions(MachineBasicBlock *);
93   MachineInstr *getOperandDef(const MachineOperand &MO);
94   unsigned getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
95                     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
96                     MachineTraceMetrics::Trace BlockTrace);
97   unsigned getLatency(MachineInstr *Root, MachineInstr *NewRoot,
98                       MachineTraceMetrics::Trace BlockTrace);
99   bool
100   improvesCriticalPathLen(MachineBasicBlock *MBB, MachineInstr *Root,
101                           MachineTraceMetrics::Trace BlockTrace,
102                           SmallVectorImpl<MachineInstr *> &InsInstrs,
103                           SmallVectorImpl<MachineInstr *> &DelInstrs,
104                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
105                           MachineCombinerPattern Pattern, bool SlackIsAccurate);
106   bool preservesResourceLen(MachineBasicBlock *MBB,
107                             MachineTraceMetrics::Trace BlockTrace,
108                             SmallVectorImpl<MachineInstr *> &InsInstrs,
109                             SmallVectorImpl<MachineInstr *> &DelInstrs);
110   void instr2instrSC(SmallVectorImpl<MachineInstr *> &Instrs,
111                      SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC);
112   std::pair<unsigned, unsigned>
113   getLatenciesForInstrSequences(MachineInstr &MI,
114                                 SmallVectorImpl<MachineInstr *> &InsInstrs,
115                                 SmallVectorImpl<MachineInstr *> &DelInstrs,
116                                 MachineTraceMetrics::Trace BlockTrace);
117
118   void verifyPatternOrder(MachineBasicBlock *MBB, MachineInstr &Root,
119                           SmallVector<MachineCombinerPattern, 16> &Patterns);
120 };
121 }
122
123 char MachineCombiner::ID = 0;
124 char &llvm::MachineCombinerID = MachineCombiner::ID;
125
126 INITIALIZE_PASS_BEGIN(MachineCombiner, DEBUG_TYPE,
127                       "Machine InstCombiner", false, false)
128 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
129 INITIALIZE_PASS_DEPENDENCY(MachineTraceMetrics)
130 INITIALIZE_PASS_END(MachineCombiner, DEBUG_TYPE, "Machine InstCombiner",
131                     false, false)
132
133 void MachineCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
134   AU.setPreservesCFG();
135   AU.addPreserved<MachineDominatorTree>();
136   AU.addRequired<MachineLoopInfo>();
137   AU.addPreserved<MachineLoopInfo>();
138   AU.addRequired<MachineTraceMetrics>();
139   AU.addPreserved<MachineTraceMetrics>();
140   AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
141   AU.addRequired<ProfileSummaryInfoWrapperPass>();
142   MachineFunctionPass::getAnalysisUsage(AU);
143 }
144
145 MachineInstr *MachineCombiner::getOperandDef(const MachineOperand &MO) {
146   MachineInstr *DefInstr = nullptr;
147   // We need a virtual register definition.
148   if (MO.isReg() && Register::isVirtualRegister(MO.getReg()))
149     DefInstr = MRI->getUniqueVRegDef(MO.getReg());
150   // PHI's have no depth etc.
151   if (DefInstr && DefInstr->isPHI())
152     DefInstr = nullptr;
153   return DefInstr;
154 }
155
156 /// Computes depth of instructions in vector \InsInstr.
157 ///
158 /// \param InsInstrs is a vector of machine instructions
159 /// \param InstrIdxForVirtReg is a dense map of virtual register to index
160 /// of defining machine instruction in \p InsInstrs
161 /// \param BlockTrace is a trace of machine instructions
162 ///
163 /// \returns Depth of last instruction in \InsInstrs ("NewRoot")
164 unsigned
165 MachineCombiner::getDepth(SmallVectorImpl<MachineInstr *> &InsInstrs,
166                           DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
167                           MachineTraceMetrics::Trace BlockTrace) {
168   SmallVector<unsigned, 16> InstrDepth;
169   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
170          "Missing machine model\n");
171
172   // For each instruction in the new sequence compute the depth based on the
173   // operands. Use the trace information when possible. For new operands which
174   // are tracked in the InstrIdxForVirtReg map depth is looked up in InstrDepth
175   for (auto *InstrPtr : InsInstrs) { // for each Use
176     unsigned IDepth = 0;
177     for (const MachineOperand &MO : InstrPtr->operands()) {
178       // Check for virtual register operand.
179       if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
180         continue;
181       if (!MO.isUse())
182         continue;
183       unsigned DepthOp = 0;
184       unsigned LatencyOp = 0;
185       DenseMap<unsigned, unsigned>::iterator II =
186           InstrIdxForVirtReg.find(MO.getReg());
187       if (II != InstrIdxForVirtReg.end()) {
188         // Operand is new virtual register not in trace
189         assert(II->second < InstrDepth.size() && "Bad Index");
190         MachineInstr *DefInstr = InsInstrs[II->second];
191         assert(DefInstr &&
192                "There must be a definition for a new virtual register");
193         DepthOp = InstrDepth[II->second];
194         int DefIdx = DefInstr->findRegisterDefOperandIdx(MO.getReg());
195         int UseIdx = InstrPtr->findRegisterUseOperandIdx(MO.getReg());
196         LatencyOp = TSchedModel.computeOperandLatency(DefInstr, DefIdx,
197                                                       InstrPtr, UseIdx);
198       } else {
199         MachineInstr *DefInstr = getOperandDef(MO);
200         if (DefInstr) {
201           DepthOp = BlockTrace.getInstrCycles(*DefInstr).Depth;
202           LatencyOp = TSchedModel.computeOperandLatency(
203               DefInstr, DefInstr->findRegisterDefOperandIdx(MO.getReg()),
204               InstrPtr, InstrPtr->findRegisterUseOperandIdx(MO.getReg()));
205         }
206       }
207       IDepth = std::max(IDepth, DepthOp + LatencyOp);
208     }
209     InstrDepth.push_back(IDepth);
210   }
211   unsigned NewRootIdx = InsInstrs.size() - 1;
212   return InstrDepth[NewRootIdx];
213 }
214
215 /// Computes instruction latency as max of latency of defined operands.
216 ///
217 /// \param Root is a machine instruction that could be replaced by NewRoot.
218 /// It is used to compute a more accurate latency information for NewRoot in
219 /// case there is a dependent instruction in the same trace (\p BlockTrace)
220 /// \param NewRoot is the instruction for which the latency is computed
221 /// \param BlockTrace is a trace of machine instructions
222 ///
223 /// \returns Latency of \p NewRoot
224 unsigned MachineCombiner::getLatency(MachineInstr *Root, MachineInstr *NewRoot,
225                                      MachineTraceMetrics::Trace BlockTrace) {
226   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
227          "Missing machine model\n");
228
229   // Check each definition in NewRoot and compute the latency
230   unsigned NewRootLatency = 0;
231
232   for (const MachineOperand &MO : NewRoot->operands()) {
233     // Check for virtual register operand.
234     if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
235       continue;
236     if (!MO.isDef())
237       continue;
238     // Get the first instruction that uses MO
239     MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(MO.getReg());
240     RI++;
241     if (RI == MRI->reg_end())
242       continue;
243     MachineInstr *UseMO = RI->getParent();
244     unsigned LatencyOp = 0;
245     if (UseMO && BlockTrace.isDepInTrace(*Root, *UseMO)) {
246       LatencyOp = TSchedModel.computeOperandLatency(
247           NewRoot, NewRoot->findRegisterDefOperandIdx(MO.getReg()), UseMO,
248           UseMO->findRegisterUseOperandIdx(MO.getReg()));
249     } else {
250       LatencyOp = TSchedModel.computeInstrLatency(NewRoot);
251     }
252     NewRootLatency = std::max(NewRootLatency, LatencyOp);
253   }
254   return NewRootLatency;
255 }
256
257 /// The combiner's goal may differ based on which pattern it is attempting
258 /// to optimize.
259 enum class CombinerObjective {
260   MustReduceDepth, // The data dependency chain must be improved.
261   Default          // The critical path must not be lengthened.
262 };
263
264 static CombinerObjective getCombinerObjective(MachineCombinerPattern P) {
265   // TODO: If C++ ever gets a real enum class, make this part of the
266   // MachineCombinerPattern class.
267   switch (P) {
268   case MachineCombinerPattern::REASSOC_AX_BY:
269   case MachineCombinerPattern::REASSOC_AX_YB:
270   case MachineCombinerPattern::REASSOC_XA_BY:
271   case MachineCombinerPattern::REASSOC_XA_YB:
272   case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
273   case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
274     return CombinerObjective::MustReduceDepth;
275   default:
276     return CombinerObjective::Default;
277   }
278 }
279
280 /// Estimate the latency of the new and original instruction sequence by summing
281 /// up the latencies of the inserted and deleted instructions. This assumes
282 /// that the inserted and deleted instructions are dependent instruction chains,
283 /// which might not hold in all cases.
284 std::pair<unsigned, unsigned> MachineCombiner::getLatenciesForInstrSequences(
285     MachineInstr &MI, SmallVectorImpl<MachineInstr *> &InsInstrs,
286     SmallVectorImpl<MachineInstr *> &DelInstrs,
287     MachineTraceMetrics::Trace BlockTrace) {
288   assert(!InsInstrs.empty() && "Only support sequences that insert instrs.");
289   unsigned NewRootLatency = 0;
290   // NewRoot is the last instruction in the \p InsInstrs vector.
291   MachineInstr *NewRoot = InsInstrs.back();
292   for (unsigned i = 0; i < InsInstrs.size() - 1; i++)
293     NewRootLatency += TSchedModel.computeInstrLatency(InsInstrs[i]);
294   NewRootLatency += getLatency(&MI, NewRoot, BlockTrace);
295
296   unsigned RootLatency = 0;
297   for (auto I : DelInstrs)
298     RootLatency += TSchedModel.computeInstrLatency(I);
299
300   return {NewRootLatency, RootLatency};
301 }
302
303 /// The DAGCombine code sequence ends in MI (Machine Instruction) Root.
304 /// The new code sequence ends in MI NewRoot. A necessary condition for the new
305 /// sequence to replace the old sequence is that it cannot lengthen the critical
306 /// path. The definition of "improve" may be restricted by specifying that the
307 /// new path improves the data dependency chain (MustReduceDepth).
308 bool MachineCombiner::improvesCriticalPathLen(
309     MachineBasicBlock *MBB, MachineInstr *Root,
310     MachineTraceMetrics::Trace BlockTrace,
311     SmallVectorImpl<MachineInstr *> &InsInstrs,
312     SmallVectorImpl<MachineInstr *> &DelInstrs,
313     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg,
314     MachineCombinerPattern Pattern,
315     bool SlackIsAccurate) {
316   assert(TSchedModel.hasInstrSchedModelOrItineraries() &&
317          "Missing machine model\n");
318   // Get depth and latency of NewRoot and Root.
319   unsigned NewRootDepth = getDepth(InsInstrs, InstrIdxForVirtReg, BlockTrace);
320   unsigned RootDepth = BlockTrace.getInstrCycles(*Root).Depth;
321
322   LLVM_DEBUG(dbgs() << "  Dependence data for " << *Root << "\tNewRootDepth: "
323                     << NewRootDepth << "\tRootDepth: " << RootDepth);
324
325   // For a transform such as reassociation, the cost equation is
326   // conservatively calculated so that we must improve the depth (data
327   // dependency cycles) in the critical path to proceed with the transform.
328   // Being conservative also protects against inaccuracies in the underlying
329   // machine trace metrics and CPU models.
330   if (getCombinerObjective(Pattern) == CombinerObjective::MustReduceDepth) {
331     LLVM_DEBUG(dbgs() << "\tIt MustReduceDepth ");
332     LLVM_DEBUG(NewRootDepth < RootDepth
333                    ? dbgs() << "\t  and it does it\n"
334                    : dbgs() << "\t  but it does NOT do it\n");
335     return NewRootDepth < RootDepth;
336   }
337
338   // A more flexible cost calculation for the critical path includes the slack
339   // of the original code sequence. This may allow the transform to proceed
340   // even if the instruction depths (data dependency cycles) become worse.
341
342   // Account for the latency of the inserted and deleted instructions by
343   unsigned NewRootLatency, RootLatency;
344   std::tie(NewRootLatency, RootLatency) =
345       getLatenciesForInstrSequences(*Root, InsInstrs, DelInstrs, BlockTrace);
346
347   unsigned RootSlack = BlockTrace.getInstrSlack(*Root);
348   unsigned NewCycleCount = NewRootDepth + NewRootLatency;
349   unsigned OldCycleCount =
350       RootDepth + RootLatency + (SlackIsAccurate ? RootSlack : 0);
351   LLVM_DEBUG(dbgs() << "\n\tNewRootLatency: " << NewRootLatency
352                     << "\tRootLatency: " << RootLatency << "\n\tRootSlack: "
353                     << RootSlack << " SlackIsAccurate=" << SlackIsAccurate
354                     << "\n\tNewRootDepth + NewRootLatency = " << NewCycleCount
355                     << "\n\tRootDepth + RootLatency + RootSlack = "
356                     << OldCycleCount;);
357   LLVM_DEBUG(NewCycleCount <= OldCycleCount
358                  ? dbgs() << "\n\t  It IMPROVES PathLen because"
359                  : dbgs() << "\n\t  It DOES NOT improve PathLen because");
360   LLVM_DEBUG(dbgs() << "\n\t\tNewCycleCount = " << NewCycleCount
361                     << ", OldCycleCount = " << OldCycleCount << "\n");
362
363   return NewCycleCount <= OldCycleCount;
364 }
365
366 /// helper routine to convert instructions into SC
367 void MachineCombiner::instr2instrSC(
368     SmallVectorImpl<MachineInstr *> &Instrs,
369     SmallVectorImpl<const MCSchedClassDesc *> &InstrsSC) {
370   for (auto *InstrPtr : Instrs) {
371     unsigned Opc = InstrPtr->getOpcode();
372     unsigned Idx = TII->get(Opc).getSchedClass();
373     const MCSchedClassDesc *SC = SchedModel.getSchedClassDesc(Idx);
374     InstrsSC.push_back(SC);
375   }
376 }
377
378 /// True when the new instructions do not increase resource length
379 bool MachineCombiner::preservesResourceLen(
380     MachineBasicBlock *MBB, MachineTraceMetrics::Trace BlockTrace,
381     SmallVectorImpl<MachineInstr *> &InsInstrs,
382     SmallVectorImpl<MachineInstr *> &DelInstrs) {
383   if (!TSchedModel.hasInstrSchedModel())
384     return true;
385
386   // Compute current resource length
387
388   //ArrayRef<const MachineBasicBlock *> MBBarr(MBB);
389   SmallVector <const MachineBasicBlock *, 1> MBBarr;
390   MBBarr.push_back(MBB);
391   unsigned ResLenBeforeCombine = BlockTrace.getResourceLength(MBBarr);
392
393   // Deal with SC rather than Instructions.
394   SmallVector<const MCSchedClassDesc *, 16> InsInstrsSC;
395   SmallVector<const MCSchedClassDesc *, 16> DelInstrsSC;
396
397   instr2instrSC(InsInstrs, InsInstrsSC);
398   instr2instrSC(DelInstrs, DelInstrsSC);
399
400   ArrayRef<const MCSchedClassDesc *> MSCInsArr = makeArrayRef(InsInstrsSC);
401   ArrayRef<const MCSchedClassDesc *> MSCDelArr = makeArrayRef(DelInstrsSC);
402
403   // Compute new resource length.
404   unsigned ResLenAfterCombine =
405       BlockTrace.getResourceLength(MBBarr, MSCInsArr, MSCDelArr);
406
407   LLVM_DEBUG(dbgs() << "\t\tResource length before replacement: "
408                     << ResLenBeforeCombine
409                     << " and after: " << ResLenAfterCombine << "\n";);
410   LLVM_DEBUG(
411       ResLenAfterCombine <=
412       ResLenBeforeCombine + TII->getExtendResourceLenLimit()
413           ? dbgs() << "\t\t  As result it IMPROVES/PRESERVES Resource Length\n"
414           : dbgs() << "\t\t  As result it DOES NOT improve/preserve Resource "
415                       "Length\n");
416
417   return ResLenAfterCombine <=
418          ResLenBeforeCombine + TII->getExtendResourceLenLimit();
419 }
420
421 /// \returns true when new instruction sequence should be generated
422 /// independent if it lengthens critical path or not
423 bool MachineCombiner::doSubstitute(unsigned NewSize, unsigned OldSize,
424                                    bool OptForSize) {
425   if (OptForSize && (NewSize < OldSize))
426     return true;
427   if (!TSchedModel.hasInstrSchedModelOrItineraries())
428     return true;
429   return false;
430 }
431
432 /// Inserts InsInstrs and deletes DelInstrs. Incrementally updates instruction
433 /// depths if requested.
434 ///
435 /// \param MBB basic block to insert instructions in
436 /// \param MI current machine instruction
437 /// \param InsInstrs new instructions to insert in \p MBB
438 /// \param DelInstrs instruction to delete from \p MBB
439 /// \param MinInstr is a pointer to the machine trace information
440 /// \param RegUnits set of live registers, needed to compute instruction depths
441 /// \param IncrementalUpdate if true, compute instruction depths incrementally,
442 ///                          otherwise invalidate the trace
443 static void insertDeleteInstructions(MachineBasicBlock *MBB, MachineInstr &MI,
444                                      SmallVector<MachineInstr *, 16> InsInstrs,
445                                      SmallVector<MachineInstr *, 16> DelInstrs,
446                                      MachineTraceMetrics::Ensemble *MinInstr,
447                                      SparseSet<LiveRegUnit> &RegUnits,
448                                      bool IncrementalUpdate) {
449   for (auto *InstrPtr : InsInstrs)
450     MBB->insert((MachineBasicBlock::iterator)&MI, InstrPtr);
451
452   for (auto *InstrPtr : DelInstrs) {
453     InstrPtr->eraseFromParentAndMarkDBGValuesForRemoval();
454     // Erase all LiveRegs defined by the removed instruction
455     for (auto I = RegUnits.begin(); I != RegUnits.end(); ) {
456       if (I->MI == InstrPtr)
457         I = RegUnits.erase(I);
458       else
459         I++;
460     }
461   }
462
463   if (IncrementalUpdate)
464     for (auto *InstrPtr : InsInstrs)
465       MinInstr->updateDepth(MBB, *InstrPtr, RegUnits);
466   else
467     MinInstr->invalidate(MBB);
468
469   NumInstCombined++;
470 }
471
472 // Check that the difference between original and new latency is decreasing for
473 // later patterns. This helps to discover sub-optimal pattern orderings.
474 void MachineCombiner::verifyPatternOrder(
475     MachineBasicBlock *MBB, MachineInstr &Root,
476     SmallVector<MachineCombinerPattern, 16> &Patterns) {
477   long PrevLatencyDiff = std::numeric_limits<long>::max();
478   (void)PrevLatencyDiff; // Variable is used in assert only.
479   for (auto P : Patterns) {
480     SmallVector<MachineInstr *, 16> InsInstrs;
481     SmallVector<MachineInstr *, 16> DelInstrs;
482     DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
483     TII->genAlternativeCodeSequence(Root, P, InsInstrs, DelInstrs,
484                                     InstrIdxForVirtReg);
485     // Found pattern, but did not generate alternative sequence.
486     // This can happen e.g. when an immediate could not be materialized
487     // in a single instruction.
488     if (InsInstrs.empty() || !TSchedModel.hasInstrSchedModelOrItineraries())
489       continue;
490
491     unsigned NewRootLatency, RootLatency;
492     std::tie(NewRootLatency, RootLatency) = getLatenciesForInstrSequences(
493         Root, InsInstrs, DelInstrs, MinInstr->getTrace(MBB));
494     long CurrentLatencyDiff = ((long)RootLatency) - ((long)NewRootLatency);
495     assert(CurrentLatencyDiff <= PrevLatencyDiff &&
496            "Current pattern is better than previous pattern.");
497     PrevLatencyDiff = CurrentLatencyDiff;
498   }
499 }
500
501 /// Substitute a slow code sequence with a faster one by
502 /// evaluating instruction combining pattern.
503 /// The prototype of such a pattern is MUl + ADD -> MADD. Performs instruction
504 /// combining based on machine trace metrics. Only combine a sequence of
505 /// instructions  when this neither lengthens the critical path nor increases
506 /// resource pressure. When optimizing for codesize always combine when the new
507 /// sequence is shorter.
508 bool MachineCombiner::combineInstructions(MachineBasicBlock *MBB) {
509   bool Changed = false;
510   LLVM_DEBUG(dbgs() << "Combining MBB " << MBB->getName() << "\n");
511
512   bool IncrementalUpdate = false;
513   auto BlockIter = MBB->begin();
514   decltype(BlockIter) LastUpdate;
515   // Check if the block is in a loop.
516   const MachineLoop *ML = MLI->getLoopFor(MBB);
517   if (!MinInstr)
518     MinInstr = Traces->getEnsemble(MachineTraceMetrics::TS_MinInstrCount);
519
520   SparseSet<LiveRegUnit> RegUnits;
521   RegUnits.setUniverse(TRI->getNumRegUnits());
522
523   bool OptForSize = OptSize || llvm::shouldOptimizeForSize(MBB, PSI, MBFI);
524
525   while (BlockIter != MBB->end()) {
526     auto &MI = *BlockIter++;
527     SmallVector<MachineCombinerPattern, 16> Patterns;
528     // The motivating example is:
529     //
530     //     MUL  Other        MUL_op1 MUL_op2  Other
531     //      \    /               \      |    /
532     //      ADD/SUB      =>        MADD/MSUB
533     //      (=Root)                (=NewRoot)
534
535     // The DAGCombine code always replaced MUL + ADD/SUB by MADD. While this is
536     // usually beneficial for code size it unfortunately can hurt performance
537     // when the ADD is on the critical path, but the MUL is not. With the
538     // substitution the MUL becomes part of the critical path (in form of the
539     // MADD) and can lengthen it on architectures where the MADD latency is
540     // longer than the ADD latency.
541     //
542     // For each instruction we check if it can be the root of a combiner
543     // pattern. Then for each pattern the new code sequence in form of MI is
544     // generated and evaluated. When the efficiency criteria (don't lengthen
545     // critical path, don't use more resources) is met the new sequence gets
546     // hooked up into the basic block before the old sequence is removed.
547     //
548     // The algorithm does not try to evaluate all patterns and pick the best.
549     // This is only an artificial restriction though. In practice there is
550     // mostly one pattern, and getMachineCombinerPatterns() can order patterns
551     // based on an internal cost heuristic. If
552     // machine-combiner-verify-pattern-order is enabled, all patterns are
553     // checked to ensure later patterns do not provide better latency savings.
554
555     if (!TII->getMachineCombinerPatterns(MI, Patterns))
556       continue;
557
558     if (VerifyPatternOrder)
559       verifyPatternOrder(MBB, MI, Patterns);
560
561     for (auto P : Patterns) {
562       SmallVector<MachineInstr *, 16> InsInstrs;
563       SmallVector<MachineInstr *, 16> DelInstrs;
564       DenseMap<unsigned, unsigned> InstrIdxForVirtReg;
565       TII->genAlternativeCodeSequence(MI, P, InsInstrs, DelInstrs,
566                                       InstrIdxForVirtReg);
567       unsigned NewInstCount = InsInstrs.size();
568       unsigned OldInstCount = DelInstrs.size();
569       // Found pattern, but did not generate alternative sequence.
570       // This can happen e.g. when an immediate could not be materialized
571       // in a single instruction.
572       if (!NewInstCount)
573         continue;
574
575       LLVM_DEBUG(if (dump_intrs) {
576         dbgs() << "\tFor the Pattern (" << (int)P
577                << ") these instructions could be removed\n";
578         for (auto const *InstrPtr : DelInstrs)
579           InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
580                           /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
581         dbgs() << "\tThese instructions could replace the removed ones\n";
582         for (auto const *InstrPtr : InsInstrs)
583           InstrPtr->print(dbgs(), /*IsStandalone*/false, /*SkipOpers*/false,
584                           /*SkipDebugLoc*/false, /*AddNewLine*/true, TII);
585       });
586
587       bool SubstituteAlways = false;
588       if (ML && TII->isThroughputPattern(P))
589         SubstituteAlways = true;
590
591       if (IncrementalUpdate) {
592         // Update depths since the last incremental update.
593         MinInstr->updateDepths(LastUpdate, BlockIter, RegUnits);
594         LastUpdate = BlockIter;
595       }
596
597       // Substitute when we optimize for codesize and the new sequence has
598       // fewer instructions OR
599       // the new sequence neither lengthens the critical path nor increases
600       // resource pressure.
601       if (SubstituteAlways ||
602           doSubstitute(NewInstCount, OldInstCount, OptForSize)) {
603         insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
604                                  RegUnits, IncrementalUpdate);
605         // Eagerly stop after the first pattern fires.
606         Changed = true;
607         break;
608       } else {
609         // For big basic blocks, we only compute the full trace the first time
610         // we hit this. We do not invalidate the trace, but instead update the
611         // instruction depths incrementally.
612         // NOTE: Only the instruction depths up to MI are accurate. All other
613         // trace information is not updated.
614         MachineTraceMetrics::Trace BlockTrace = MinInstr->getTrace(MBB);
615         Traces->verifyAnalysis();
616         if (improvesCriticalPathLen(MBB, &MI, BlockTrace, InsInstrs, DelInstrs,
617                                     InstrIdxForVirtReg, P,
618                                     !IncrementalUpdate) &&
619             preservesResourceLen(MBB, BlockTrace, InsInstrs, DelInstrs)) {
620           if (MBB->size() > inc_threshold) {
621             // Use incremental depth updates for basic blocks above treshold
622             IncrementalUpdate = true;
623             LastUpdate = BlockIter;
624           }
625
626           insertDeleteInstructions(MBB, MI, InsInstrs, DelInstrs, MinInstr,
627                                    RegUnits, IncrementalUpdate);
628
629           // Eagerly stop after the first pattern fires.
630           Changed = true;
631           break;
632         }
633         // Cleanup instructions of the alternative code sequence. There is no
634         // use for them.
635         MachineFunction *MF = MBB->getParent();
636         for (auto *InstrPtr : InsInstrs)
637           MF->DeleteMachineInstr(InstrPtr);
638       }
639       InstrIdxForVirtReg.clear();
640     }
641   }
642
643   if (Changed && IncrementalUpdate)
644     Traces->invalidate(MBB);
645   return Changed;
646 }
647
648 bool MachineCombiner::runOnMachineFunction(MachineFunction &MF) {
649   STI = &MF.getSubtarget();
650   TII = STI->getInstrInfo();
651   TRI = STI->getRegisterInfo();
652   SchedModel = STI->getSchedModel();
653   TSchedModel.init(STI);
654   MRI = &MF.getRegInfo();
655   MLI = &getAnalysis<MachineLoopInfo>();
656   Traces = &getAnalysis<MachineTraceMetrics>();
657   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
658   MBFI = (PSI && PSI->hasProfileSummary()) ?
659          &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
660          nullptr;
661   MinInstr = nullptr;
662   OptSize = MF.getFunction().hasOptSize();
663
664   LLVM_DEBUG(dbgs() << getPassName() << ": " << MF.getName() << '\n');
665   if (!TII->useMachineCombiner()) {
666     LLVM_DEBUG(
667         dbgs()
668         << "  Skipping pass: Target does not support machine combiner\n");
669     return false;
670   }
671
672   bool Changed = false;
673
674   // Try to combine instructions.
675   for (auto &MBB : MF)
676     Changed |= combineInstructions(&MBB);
677
678   return Changed;
679 }