]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/MachineSink.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / MachineSink.cpp
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/SparseBitVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachinePostDominators.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCRegisterInfo.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <map>
54 #include <utility>
55 #include <vector>
56
57 using namespace llvm;
58
59 #define DEBUG_TYPE "machine-sink"
60
61 static cl::opt<bool>
62 SplitEdges("machine-sink-split",
63            cl::desc("Split critical edges during machine sinking"),
64            cl::init(true), cl::Hidden);
65
66 static cl::opt<bool>
67 UseBlockFreqInfo("machine-sink-bfi",
68            cl::desc("Use block frequency info to find successors to sink"),
69            cl::init(true), cl::Hidden);
70
71 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
72     "machine-sink-split-probability-threshold",
73     cl::desc(
74         "Percentage threshold for splitting single-instruction critical edge. "
75         "If the branch threshold is higher than this threshold, we allow "
76         "speculative execution of up to 1 instruction to avoid branching to "
77         "splitted critical edge"),
78     cl::init(40), cl::Hidden);
79
80 STATISTIC(NumSunk,      "Number of machine instructions sunk");
81 STATISTIC(NumSplit,     "Number of critical edges split");
82 STATISTIC(NumCoalesces, "Number of copies coalesced");
83 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
84
85 namespace {
86
87   class MachineSinking : public MachineFunctionPass {
88     const TargetInstrInfo *TII;
89     const TargetRegisterInfo *TRI;
90     MachineRegisterInfo  *MRI;     // Machine register information
91     MachineDominatorTree *DT;      // Machine dominator tree
92     MachinePostDominatorTree *PDT; // Machine post dominator tree
93     MachineLoopInfo *LI;
94     const MachineBlockFrequencyInfo *MBFI;
95     const MachineBranchProbabilityInfo *MBPI;
96     AliasAnalysis *AA;
97
98     // Remember which edges have been considered for breaking.
99     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
100     CEBCandidates;
101     // Remember which edges we are about to split.
102     // This is different from CEBCandidates since those edges
103     // will be split.
104     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
105
106     SparseBitVector<> RegsToClearKillFlags;
107
108     using AllSuccsCache =
109         std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
110
111     /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
112     /// post-dominated by another DBG_VALUE of the same variable location.
113     /// This is necessary to detect sequences such as:
114     ///     %0 = someinst
115     ///     DBG_VALUE %0, !123, !DIExpression()
116     ///     %1 = anotherinst
117     ///     DBG_VALUE %1, !123, !DIExpression()
118     /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
119     /// would re-order assignments.
120     using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
121
122     /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
123     /// debug instructions to sink.
124     SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
125
126     /// Record of debug variables that have had their locations set in the
127     /// current block.
128     DenseSet<DebugVariable> SeenDbgVars;
129
130   public:
131     static char ID; // Pass identification
132
133     MachineSinking() : MachineFunctionPass(ID) {
134       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
135     }
136
137     bool runOnMachineFunction(MachineFunction &MF) override;
138
139     void getAnalysisUsage(AnalysisUsage &AU) const override {
140       MachineFunctionPass::getAnalysisUsage(AU);
141       AU.addRequired<AAResultsWrapperPass>();
142       AU.addRequired<MachineDominatorTree>();
143       AU.addRequired<MachinePostDominatorTree>();
144       AU.addRequired<MachineLoopInfo>();
145       AU.addRequired<MachineBranchProbabilityInfo>();
146       AU.addPreserved<MachineLoopInfo>();
147       if (UseBlockFreqInfo)
148         AU.addRequired<MachineBlockFrequencyInfo>();
149     }
150
151     void releaseMemory() override {
152       CEBCandidates.clear();
153     }
154
155   private:
156     bool ProcessBlock(MachineBasicBlock &MBB);
157     void ProcessDbgInst(MachineInstr &MI);
158     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
159                                      MachineBasicBlock *From,
160                                      MachineBasicBlock *To);
161
162     /// Postpone the splitting of the given critical
163     /// edge (\p From, \p To).
164     ///
165     /// We do not split the edges on the fly. Indeed, this invalidates
166     /// the dominance information and thus triggers a lot of updates
167     /// of that information underneath.
168     /// Instead, we postpone all the splits after each iteration of
169     /// the main loop. That way, the information is at least valid
170     /// for the lifetime of an iteration.
171     ///
172     /// \return True if the edge is marked as toSplit, false otherwise.
173     /// False can be returned if, for instance, this is not profitable.
174     bool PostponeSplitCriticalEdge(MachineInstr &MI,
175                                    MachineBasicBlock *From,
176                                    MachineBasicBlock *To,
177                                    bool BreakPHIEdge);
178     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
179                          AllSuccsCache &AllSuccessors);
180
181     /// If we sink a COPY inst, some debug users of it's destination may no
182     /// longer be dominated by the COPY, and will eventually be dropped.
183     /// This is easily rectified by forwarding the non-dominated debug uses
184     /// to the copy source.
185     void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
186                                        MachineBasicBlock *TargetBlock);
187     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
188                                  MachineBasicBlock *DefMBB,
189                                  bool &BreakPHIEdge, bool &LocalUse) const;
190     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
191                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
192     bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
193                               MachineBasicBlock *MBB,
194                               MachineBasicBlock *SuccToSinkTo,
195                               AllSuccsCache &AllSuccessors);
196
197     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
198                                          MachineBasicBlock *MBB);
199
200     SmallVector<MachineBasicBlock *, 4> &
201     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
202                            AllSuccsCache &AllSuccessors) const;
203   };
204
205 } // end anonymous namespace
206
207 char MachineSinking::ID = 0;
208
209 char &llvm::MachineSinkingID = MachineSinking::ID;
210
211 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
212                       "Machine code sinking", false, false)
213 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
214 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
215 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
216 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
217 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
218                     "Machine code sinking", false, false)
219
220 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
221                                                      MachineBasicBlock *MBB) {
222   if (!MI.isCopy())
223     return false;
224
225   Register SrcReg = MI.getOperand(1).getReg();
226   Register DstReg = MI.getOperand(0).getReg();
227   if (!Register::isVirtualRegister(SrcReg) ||
228       !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
229     return false;
230
231   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
232   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
233   if (SRC != DRC)
234     return false;
235
236   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
237   if (DefMI->isCopyLike())
238     return false;
239   LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
240   LLVM_DEBUG(dbgs() << "*** to: " << MI);
241   MRI->replaceRegWith(DstReg, SrcReg);
242   MI.eraseFromParent();
243
244   // Conservatively, clear any kill flags, since it's possible that they are no
245   // longer correct.
246   MRI->clearKillFlags(SrcReg);
247
248   ++NumCoalesces;
249   return true;
250 }
251
252 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
253 /// occur in blocks dominated by the specified block. If any use is in the
254 /// definition block, then return false since it is never legal to move def
255 /// after uses.
256 bool
257 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
258                                         MachineBasicBlock *MBB,
259                                         MachineBasicBlock *DefMBB,
260                                         bool &BreakPHIEdge,
261                                         bool &LocalUse) const {
262   assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
263
264   // Ignore debug uses because debug info doesn't affect the code.
265   if (MRI->use_nodbg_empty(Reg))
266     return true;
267
268   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
269   // into and they are all PHI nodes. In this case, machine-sink must break
270   // the critical edge first. e.g.
271   //
272   // %bb.1: derived from LLVM BB %bb4.preheader
273   //   Predecessors according to CFG: %bb.0
274   //     ...
275   //     %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
276   //     ...
277   //     JE_4 <%bb.37>, implicit %eflags
278   //   Successors according to CFG: %bb.37 %bb.2
279   //
280   // %bb.2: derived from LLVM BB %bb.nph
281   //   Predecessors according to CFG: %bb.0 %bb.1
282   //     %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
283   BreakPHIEdge = true;
284   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
285     MachineInstr *UseInst = MO.getParent();
286     unsigned OpNo = &MO - &UseInst->getOperand(0);
287     MachineBasicBlock *UseBlock = UseInst->getParent();
288     if (!(UseBlock == MBB && UseInst->isPHI() &&
289           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
290       BreakPHIEdge = false;
291       break;
292     }
293   }
294   if (BreakPHIEdge)
295     return true;
296
297   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
298     // Determine the block of the use.
299     MachineInstr *UseInst = MO.getParent();
300     unsigned OpNo = &MO - &UseInst->getOperand(0);
301     MachineBasicBlock *UseBlock = UseInst->getParent();
302     if (UseInst->isPHI()) {
303       // PHI nodes use the operand in the predecessor block, not the block with
304       // the PHI.
305       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
306     } else if (UseBlock == DefMBB) {
307       LocalUse = true;
308       return false;
309     }
310
311     // Check that it dominates.
312     if (!DT->dominates(MBB, UseBlock))
313       return false;
314   }
315
316   return true;
317 }
318
319 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
320   if (skipFunction(MF.getFunction()))
321     return false;
322
323   LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
324
325   TII = MF.getSubtarget().getInstrInfo();
326   TRI = MF.getSubtarget().getRegisterInfo();
327   MRI = &MF.getRegInfo();
328   DT = &getAnalysis<MachineDominatorTree>();
329   PDT = &getAnalysis<MachinePostDominatorTree>();
330   LI = &getAnalysis<MachineLoopInfo>();
331   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
332   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
333   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
334
335   bool EverMadeChange = false;
336
337   while (true) {
338     bool MadeChange = false;
339
340     // Process all basic blocks.
341     CEBCandidates.clear();
342     ToSplit.clear();
343     for (auto &MBB: MF)
344       MadeChange |= ProcessBlock(MBB);
345
346     // If we have anything we marked as toSplit, split it now.
347     for (auto &Pair : ToSplit) {
348       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
349       if (NewSucc != nullptr) {
350         LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
351                           << printMBBReference(*Pair.first) << " -- "
352                           << printMBBReference(*NewSucc) << " -- "
353                           << printMBBReference(*Pair.second) << '\n');
354         MadeChange = true;
355         ++NumSplit;
356       } else
357         LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
358     }
359     // If this iteration over the code changed anything, keep iterating.
360     if (!MadeChange) break;
361     EverMadeChange = true;
362   }
363
364   // Now clear any kill flags for recorded registers.
365   for (auto I : RegsToClearKillFlags)
366     MRI->clearKillFlags(I);
367   RegsToClearKillFlags.clear();
368
369   return EverMadeChange;
370 }
371
372 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
373   // Can't sink anything out of a block that has less than two successors.
374   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
375
376   // Don't bother sinking code out of unreachable blocks. In addition to being
377   // unprofitable, it can also lead to infinite looping, because in an
378   // unreachable loop there may be nowhere to stop.
379   if (!DT->isReachableFromEntry(&MBB)) return false;
380
381   bool MadeChange = false;
382
383   // Cache all successors, sorted by frequency info and loop depth.
384   AllSuccsCache AllSuccessors;
385
386   // Walk the basic block bottom-up.  Remember if we saw a store.
387   MachineBasicBlock::iterator I = MBB.end();
388   --I;
389   bool ProcessedBegin, SawStore = false;
390   do {
391     MachineInstr &MI = *I;  // The instruction to sink.
392
393     // Predecrement I (if it's not begin) so that it isn't invalidated by
394     // sinking.
395     ProcessedBegin = I == MBB.begin();
396     if (!ProcessedBegin)
397       --I;
398
399     if (MI.isDebugInstr()) {
400       if (MI.isDebugValue())
401         ProcessDbgInst(MI);
402       continue;
403     }
404
405     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
406     if (Joined) {
407       MadeChange = true;
408       continue;
409     }
410
411     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
412       ++NumSunk;
413       MadeChange = true;
414     }
415
416     // If we just processed the first instruction in the block, we're done.
417   } while (!ProcessedBegin);
418
419   SeenDbgUsers.clear();
420   SeenDbgVars.clear();
421
422   return MadeChange;
423 }
424
425 void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
426   // When we see DBG_VALUEs for registers, record any vreg it reads, so that
427   // we know what to sink if the vreg def sinks.
428   assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
429
430   DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
431                     MI.getDebugLoc()->getInlinedAt());
432   bool SeenBefore = SeenDbgVars.count(Var) != 0;
433
434   MachineOperand &MO = MI.getOperand(0);
435   if (MO.isReg() && MO.getReg().isVirtual())
436     SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
437
438   // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
439   SeenDbgVars.insert(Var);
440 }
441
442 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
443                                                  MachineBasicBlock *From,
444                                                  MachineBasicBlock *To) {
445   // FIXME: Need much better heuristics.
446
447   // If the pass has already considered breaking this edge (during this pass
448   // through the function), then let's go ahead and break it. This means
449   // sinking multiple "cheap" instructions into the same block.
450   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
451     return true;
452
453   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
454     return true;
455
456   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
457       BranchProbability(SplitEdgeProbabilityThreshold, 100))
458     return true;
459
460   // MI is cheap, we probably don't want to break the critical edge for it.
461   // However, if this would allow some definitions of its source operands
462   // to be sunk then it's probably worth it.
463   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
464     const MachineOperand &MO = MI.getOperand(i);
465     if (!MO.isReg() || !MO.isUse())
466       continue;
467     Register Reg = MO.getReg();
468     if (Reg == 0)
469       continue;
470
471     // We don't move live definitions of physical registers,
472     // so sinking their uses won't enable any opportunities.
473     if (Register::isPhysicalRegister(Reg))
474       continue;
475
476     // If this instruction is the only user of a virtual register,
477     // check if breaking the edge will enable sinking
478     // both this instruction and the defining instruction.
479     if (MRI->hasOneNonDBGUse(Reg)) {
480       // If the definition resides in same MBB,
481       // claim it's likely we can sink these together.
482       // If definition resides elsewhere, we aren't
483       // blocking it from being sunk so don't break the edge.
484       MachineInstr *DefMI = MRI->getVRegDef(Reg);
485       if (DefMI->getParent() == MI.getParent())
486         return true;
487     }
488   }
489
490   return false;
491 }
492
493 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
494                                                MachineBasicBlock *FromBB,
495                                                MachineBasicBlock *ToBB,
496                                                bool BreakPHIEdge) {
497   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
498     return false;
499
500   // Avoid breaking back edge. From == To means backedge for single BB loop.
501   if (!SplitEdges || FromBB == ToBB)
502     return false;
503
504   // Check for backedges of more "complex" loops.
505   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
506       LI->isLoopHeader(ToBB))
507     return false;
508
509   // It's not always legal to break critical edges and sink the computation
510   // to the edge.
511   //
512   // %bb.1:
513   // v1024
514   // Beq %bb.3
515   // <fallthrough>
516   // %bb.2:
517   // ... no uses of v1024
518   // <fallthrough>
519   // %bb.3:
520   // ...
521   //       = v1024
522   //
523   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
524   //
525   // %bb.1:
526   // ...
527   // Bne %bb.2
528   // %bb.4:
529   // v1024 =
530   // B %bb.3
531   // %bb.2:
532   // ... no uses of v1024
533   // <fallthrough>
534   // %bb.3:
535   // ...
536   //       = v1024
537   //
538   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
539   // flow. We need to ensure the new basic block where the computation is
540   // sunk to dominates all the uses.
541   // It's only legal to break critical edge and sink the computation to the
542   // new block if all the predecessors of "To", except for "From", are
543   // not dominated by "From". Given SSA property, this means these
544   // predecessors are dominated by "To".
545   //
546   // There is no need to do this check if all the uses are PHI nodes. PHI
547   // sources are only defined on the specific predecessor edges.
548   if (!BreakPHIEdge) {
549     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
550            E = ToBB->pred_end(); PI != E; ++PI) {
551       if (*PI == FromBB)
552         continue;
553       if (!DT->dominates(ToBB, *PI))
554         return false;
555     }
556   }
557
558   ToSplit.insert(std::make_pair(FromBB, ToBB));
559
560   return true;
561 }
562
563 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
564 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
565                                           MachineBasicBlock *MBB,
566                                           MachineBasicBlock *SuccToSinkTo,
567                                           AllSuccsCache &AllSuccessors) {
568   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
569
570   if (MBB == SuccToSinkTo)
571     return false;
572
573   // It is profitable if SuccToSinkTo does not post dominate current block.
574   if (!PDT->dominates(SuccToSinkTo, MBB))
575     return true;
576
577   // It is profitable to sink an instruction from a deeper loop to a shallower
578   // loop, even if the latter post-dominates the former (PR21115).
579   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
580     return true;
581
582   // Check if only use in post dominated block is PHI instruction.
583   bool NonPHIUse = false;
584   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
585     MachineBasicBlock *UseBlock = UseInst.getParent();
586     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
587       NonPHIUse = true;
588   }
589   if (!NonPHIUse)
590     return true;
591
592   // If SuccToSinkTo post dominates then also it may be profitable if MI
593   // can further profitably sinked into another block in next round.
594   bool BreakPHIEdge = false;
595   // FIXME - If finding successor is compile time expensive then cache results.
596   if (MachineBasicBlock *MBB2 =
597           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
598     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
599
600   // If SuccToSinkTo is final destination and it is a post dominator of current
601   // block then it is not profitable to sink MI into SuccToSinkTo block.
602   return false;
603 }
604
605 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
606 /// computing it if it was not already cached.
607 SmallVector<MachineBasicBlock *, 4> &
608 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
609                                        AllSuccsCache &AllSuccessors) const {
610   // Do we have the sorted successors in cache ?
611   auto Succs = AllSuccessors.find(MBB);
612   if (Succs != AllSuccessors.end())
613     return Succs->second;
614
615   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
616                                                MBB->succ_end());
617
618   // Handle cases where sinking can happen but where the sink point isn't a
619   // successor. For example:
620   //
621   //   x = computation
622   //   if () {} else {}
623   //   use x
624   //
625   const std::vector<MachineDomTreeNode *> &Children =
626     DT->getNode(MBB)->getChildren();
627   for (const auto &DTChild : Children)
628     // DomTree children of MBB that have MBB as immediate dominator are added.
629     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
630         // Skip MBBs already added to the AllSuccs vector above.
631         !MBB->isSuccessor(DTChild->getBlock()))
632       AllSuccs.push_back(DTChild->getBlock());
633
634   // Sort Successors according to their loop depth or block frequency info.
635   llvm::stable_sort(
636       AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
637         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
638         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
639         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
640         return HasBlockFreq ? LHSFreq < RHSFreq
641                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
642       });
643
644   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
645
646   return it.first->second;
647 }
648
649 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
650 MachineBasicBlock *
651 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
652                                  bool &BreakPHIEdge,
653                                  AllSuccsCache &AllSuccessors) {
654   assert (MBB && "Invalid MachineBasicBlock!");
655
656   // Loop over all the operands of the specified instruction.  If there is
657   // anything we can't handle, bail out.
658
659   // SuccToSinkTo - This is the successor to sink this instruction to, once we
660   // decide.
661   MachineBasicBlock *SuccToSinkTo = nullptr;
662   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
663     const MachineOperand &MO = MI.getOperand(i);
664     if (!MO.isReg()) continue;  // Ignore non-register operands.
665
666     Register Reg = MO.getReg();
667     if (Reg == 0) continue;
668
669     if (Register::isPhysicalRegister(Reg)) {
670       if (MO.isUse()) {
671         // If the physreg has no defs anywhere, it's just an ambient register
672         // and we can freely move its uses. Alternatively, if it's allocatable,
673         // it could get allocated to something with a def during allocation.
674         if (!MRI->isConstantPhysReg(Reg))
675           return nullptr;
676       } else if (!MO.isDead()) {
677         // A def that isn't dead. We can't move it.
678         return nullptr;
679       }
680     } else {
681       // Virtual register uses are always safe to sink.
682       if (MO.isUse()) continue;
683
684       // If it's not safe to move defs of the register class, then abort.
685       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
686         return nullptr;
687
688       // Virtual register defs can only be sunk if all their uses are in blocks
689       // dominated by one of the successors.
690       if (SuccToSinkTo) {
691         // If a previous operand picked a block to sink to, then this operand
692         // must be sinkable to the same block.
693         bool LocalUse = false;
694         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
695                                      BreakPHIEdge, LocalUse))
696           return nullptr;
697
698         continue;
699       }
700
701       // Otherwise, we should look at all the successors and decide which one
702       // we should sink to. If we have reliable block frequency information
703       // (frequency != 0) available, give successors with smaller frequencies
704       // higher priority, otherwise prioritize smaller loop depths.
705       for (MachineBasicBlock *SuccBlock :
706            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
707         bool LocalUse = false;
708         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
709                                     BreakPHIEdge, LocalUse)) {
710           SuccToSinkTo = SuccBlock;
711           break;
712         }
713         if (LocalUse)
714           // Def is used locally, it's never safe to move this def.
715           return nullptr;
716       }
717
718       // If we couldn't find a block to sink to, ignore this instruction.
719       if (!SuccToSinkTo)
720         return nullptr;
721       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
722         return nullptr;
723     }
724   }
725
726   // It is not possible to sink an instruction into its own block.  This can
727   // happen with loops.
728   if (MBB == SuccToSinkTo)
729     return nullptr;
730
731   // It's not safe to sink instructions to EH landing pad. Control flow into
732   // landing pad is implicitly defined.
733   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
734     return nullptr;
735
736   return SuccToSinkTo;
737 }
738
739 /// Return true if MI is likely to be usable as a memory operation by the
740 /// implicit null check optimization.
741 ///
742 /// This is a "best effort" heuristic, and should not be relied upon for
743 /// correctness.  This returning true does not guarantee that the implicit null
744 /// check optimization is legal over MI, and this returning false does not
745 /// guarantee MI cannot possibly be used to do a null check.
746 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
747                                              const TargetInstrInfo *TII,
748                                              const TargetRegisterInfo *TRI) {
749   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
750
751   auto *MBB = MI.getParent();
752   if (MBB->pred_size() != 1)
753     return false;
754
755   auto *PredMBB = *MBB->pred_begin();
756   auto *PredBB = PredMBB->getBasicBlock();
757
758   // Frontends that don't use implicit null checks have no reason to emit
759   // branches with make.implicit metadata, and this function should always
760   // return false for them.
761   if (!PredBB ||
762       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
763     return false;
764
765   const MachineOperand *BaseOp;
766   int64_t Offset;
767   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
768     return false;
769
770   if (!BaseOp->isReg())
771     return false;
772
773   if (!(MI.mayLoad() && !MI.isPredicable()))
774     return false;
775
776   MachineBranchPredicate MBP;
777   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
778     return false;
779
780   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
781          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
782           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
783          MBP.LHS.getReg() == BaseOp->getReg();
784 }
785
786 /// If the sunk instruction is a copy, try to forward the copy instead of
787 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
788 /// there's any subregister weirdness involved. Returns true if copy
789 /// propagation occurred.
790 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) {
791   const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
792   const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
793
794   // Copy DBG_VALUE operand and set the original to undef. We then check to
795   // see whether this is something that can be copy-forwarded. If it isn't,
796   // continue around the loop.
797   MachineOperand DbgMO = DbgMI.getOperand(0);
798
799   const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
800   auto CopyOperands = TII.isCopyInstr(SinkInst);
801   if (!CopyOperands)
802     return false;
803   SrcMO = CopyOperands->Source;
804   DstMO = CopyOperands->Destination;
805
806   // Check validity of forwarding this copy.
807   bool PostRA = MRI.getNumVirtRegs() == 0;
808
809   // Trying to forward between physical and virtual registers is too hard.
810   if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual())
811     return false;
812
813   // Only try virtual register copy-forwarding before regalloc, and physical
814   // register copy-forwarding after regalloc.
815   bool arePhysRegs = !DbgMO.getReg().isVirtual();
816   if (arePhysRegs != PostRA)
817     return false;
818
819   // Pre-regalloc, only forward if all subregisters agree (or there are no
820   // subregs at all). More analysis might recover some forwardable copies.
821   if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() ||
822                   DbgMO.getSubReg() != DstMO->getSubReg()))
823     return false;
824
825   // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
826   // of this copy. Only forward the copy if the DBG_VALUE operand exactly
827   // matches the copy destination.
828   if (PostRA && DbgMO.getReg() != DstMO->getReg())
829     return false;
830
831   DbgMI.getOperand(0).setReg(SrcMO->getReg());
832   DbgMI.getOperand(0).setSubReg(SrcMO->getSubReg());
833   return true;
834 }
835
836 /// Sink an instruction and its associated debug instructions.
837 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
838                         MachineBasicBlock::iterator InsertPos,
839                         SmallVectorImpl<MachineInstr *> &DbgValuesToSink) {
840
841   // If we cannot find a location to use (merge with), then we erase the debug
842   // location to prevent debug-info driven tools from potentially reporting
843   // wrong location information.
844   if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
845     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
846                                                  InsertPos->getDebugLoc()));
847   else
848     MI.setDebugLoc(DebugLoc());
849
850   // Move the instruction.
851   MachineBasicBlock *ParentBlock = MI.getParent();
852   SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
853                       ++MachineBasicBlock::iterator(MI));
854
855   // Sink a copy of debug users to the insert position. Mark the original
856   // DBG_VALUE location as 'undef', indicating that any earlier variable
857   // location should be terminated as we've optimised away the value at this
858   // point.
859   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
860                                                  DBE = DbgValuesToSink.end();
861        DBI != DBE; ++DBI) {
862     MachineInstr *DbgMI = *DBI;
863     MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI);
864     SuccToSinkTo.insert(InsertPos, NewDbgMI);
865
866     if (!attemptDebugCopyProp(MI, *DbgMI))
867       DbgMI->getOperand(0).setReg(0);
868   }
869 }
870
871 /// SinkInstruction - Determine whether it is safe to sink the specified machine
872 /// instruction out of its current block into a successor.
873 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
874                                      AllSuccsCache &AllSuccessors) {
875   // Don't sink instructions that the target prefers not to sink.
876   if (!TII->shouldSink(MI))
877     return false;
878
879   // Check if it's safe to move the instruction.
880   if (!MI.isSafeToMove(AA, SawStore))
881     return false;
882
883   // Convergent operations may not be made control-dependent on additional
884   // values.
885   if (MI.isConvergent())
886     return false;
887
888   // Don't break implicit null checks.  This is a performance heuristic, and not
889   // required for correctness.
890   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
891     return false;
892
893   // FIXME: This should include support for sinking instructions within the
894   // block they are currently in to shorten the live ranges.  We often get
895   // instructions sunk into the top of a large block, but it would be better to
896   // also sink them down before their first use in the block.  This xform has to
897   // be careful not to *increase* register pressure though, e.g. sinking
898   // "x = y + z" down if it kills y and z would increase the live ranges of y
899   // and z and only shrink the live range of x.
900
901   bool BreakPHIEdge = false;
902   MachineBasicBlock *ParentBlock = MI.getParent();
903   MachineBasicBlock *SuccToSinkTo =
904       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
905
906   // If there are no outputs, it must have side-effects.
907   if (!SuccToSinkTo)
908     return false;
909
910   // If the instruction to move defines a dead physical register which is live
911   // when leaving the basic block, don't move it because it could turn into a
912   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
913   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
914     const MachineOperand &MO = MI.getOperand(I);
915     if (!MO.isReg()) continue;
916     Register Reg = MO.getReg();
917     if (Reg == 0 || !Register::isPhysicalRegister(Reg))
918       continue;
919     if (SuccToSinkTo->isLiveIn(Reg))
920       return false;
921   }
922
923   LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
924
925   // If the block has multiple predecessors, this is a critical edge.
926   // Decide if we can sink along it or need to break the edge.
927   if (SuccToSinkTo->pred_size() > 1) {
928     // We cannot sink a load across a critical edge - there may be stores in
929     // other code paths.
930     bool TryBreak = false;
931     bool store = true;
932     if (!MI.isSafeToMove(AA, store)) {
933       LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
934       TryBreak = true;
935     }
936
937     // We don't want to sink across a critical edge if we don't dominate the
938     // successor. We could be introducing calculations to new code paths.
939     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
940       LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
941       TryBreak = true;
942     }
943
944     // Don't sink instructions into a loop.
945     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
946       LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
947       TryBreak = true;
948     }
949
950     // Otherwise we are OK with sinking along a critical edge.
951     if (!TryBreak)
952       LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
953     else {
954       // Mark this edge as to be split.
955       // If the edge can actually be split, the next iteration of the main loop
956       // will sink MI in the newly created block.
957       bool Status =
958         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
959       if (!Status)
960         LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
961                              "break critical edge\n");
962       // The instruction will not be sunk this time.
963       return false;
964     }
965   }
966
967   if (BreakPHIEdge) {
968     // BreakPHIEdge is true if all the uses are in the successor MBB being
969     // sunken into and they are all PHI nodes. In this case, machine-sink must
970     // break the critical edge first.
971     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
972                                             SuccToSinkTo, BreakPHIEdge);
973     if (!Status)
974       LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
975                            "break critical edge\n");
976     // The instruction will not be sunk this time.
977     return false;
978   }
979
980   // Determine where to insert into. Skip phi nodes.
981   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
982   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
983     ++InsertPos;
984
985   // Collect debug users of any vreg that this inst defines.
986   SmallVector<MachineInstr *, 4> DbgUsersToSink;
987   for (auto &MO : MI.operands()) {
988     if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
989       continue;
990     if (!SeenDbgUsers.count(MO.getReg()))
991       continue;
992
993     // Sink any users that don't pass any other DBG_VALUEs for this variable.
994     auto &Users = SeenDbgUsers[MO.getReg()];
995     for (auto &User : Users) {
996       MachineInstr *DbgMI = User.getPointer();
997       if (User.getInt()) {
998         // This DBG_VALUE would re-order assignments. If we can't copy-propagate
999         // it, it can't be recovered. Set it undef.
1000         if (!attemptDebugCopyProp(MI, *DbgMI))
1001           DbgMI->getOperand(0).setReg(0);
1002       } else {
1003         DbgUsersToSink.push_back(DbgMI);
1004       }
1005     }
1006   }
1007
1008   // After sinking, some debug users may not be dominated any more. If possible,
1009   // copy-propagate their operands. As it's expensive, don't do this if there's
1010   // no debuginfo in the program.
1011   if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1012     SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1013
1014   performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1015
1016   // Conservatively, clear any kill flags, since it's possible that they are no
1017   // longer correct.
1018   // Note that we have to clear the kill flags for any register this instruction
1019   // uses as we may sink over another instruction which currently kills the
1020   // used registers.
1021   for (MachineOperand &MO : MI.operands()) {
1022     if (MO.isReg() && MO.isUse())
1023       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
1024   }
1025
1026   return true;
1027 }
1028
1029 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1030     MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1031   assert(MI.isCopy());
1032   assert(MI.getOperand(1).isReg());
1033
1034   // Enumerate all users of vreg operands that are def'd. Skip those that will
1035   // be sunk. For the rest, if they are not dominated by the block we will sink
1036   // MI into, propagate the copy source to them.
1037   SmallVector<MachineInstr *, 4> DbgDefUsers;
1038   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1039   for (auto &MO : MI.operands()) {
1040     if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1041       continue;
1042     for (auto &User : MRI.use_instructions(MO.getReg())) {
1043       if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1044         continue;
1045
1046       // If is in same block, will either sink or be use-before-def.
1047       if (User.getParent() == MI.getParent())
1048         continue;
1049
1050       assert(User.getOperand(0).isReg() &&
1051              "DBG_VALUE user of vreg, but non reg operand?");
1052       DbgDefUsers.push_back(&User);
1053     }
1054   }
1055
1056   // Point the users of this copy that are no longer dominated, at the source
1057   // of the copy.
1058   for (auto *User : DbgDefUsers) {
1059     User->getOperand(0).setReg(MI.getOperand(1).getReg());
1060     User->getOperand(0).setSubReg(MI.getOperand(1).getSubReg());
1061   }
1062 }
1063
1064 //===----------------------------------------------------------------------===//
1065 // This pass is not intended to be a replacement or a complete alternative
1066 // for the pre-ra machine sink pass. It is only designed to sink COPY
1067 // instructions which should be handled after RA.
1068 //
1069 // This pass sinks COPY instructions into a successor block, if the COPY is not
1070 // used in the current block and the COPY is live-in to a single successor
1071 // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
1072 // copy on paths where their results aren't needed.  This also exposes
1073 // additional opportunites for dead copy elimination and shrink wrapping.
1074 //
1075 // These copies were either not handled by or are inserted after the MachineSink
1076 // pass. As an example of the former case, the MachineSink pass cannot sink
1077 // COPY instructions with allocatable source registers; for AArch64 these type
1078 // of copy instructions are frequently used to move function parameters (PhyReg)
1079 // into virtual registers in the entry block.
1080 //
1081 // For the machine IR below, this pass will sink %w19 in the entry into its
1082 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1083 // %bb.0:
1084 //   %wzr = SUBSWri %w1, 1
1085 //   %w19 = COPY %w0
1086 //   Bcc 11, %bb.2
1087 // %bb.1:
1088 //   Live Ins: %w19
1089 //   BL @fun
1090 //   %w0 = ADDWrr %w0, %w19
1091 //   RET %w0
1092 // %bb.2:
1093 //   %w0 = COPY %wzr
1094 //   RET %w0
1095 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1096 // able to see %bb.0 as a candidate.
1097 //===----------------------------------------------------------------------===//
1098 namespace {
1099
1100 class PostRAMachineSinking : public MachineFunctionPass {
1101 public:
1102   bool runOnMachineFunction(MachineFunction &MF) override;
1103
1104   static char ID;
1105   PostRAMachineSinking() : MachineFunctionPass(ID) {}
1106   StringRef getPassName() const override { return "PostRA Machine Sink"; }
1107
1108   void getAnalysisUsage(AnalysisUsage &AU) const override {
1109     AU.setPreservesCFG();
1110     MachineFunctionPass::getAnalysisUsage(AU);
1111   }
1112
1113   MachineFunctionProperties getRequiredProperties() const override {
1114     return MachineFunctionProperties().set(
1115         MachineFunctionProperties::Property::NoVRegs);
1116   }
1117
1118 private:
1119   /// Track which register units have been modified and used.
1120   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1121
1122   /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1123   /// entry in this map for each unit it touches.
1124   DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
1125
1126   /// Sink Copy instructions unused in the same block close to their uses in
1127   /// successors.
1128   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1129                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1130 };
1131 } // namespace
1132
1133 char PostRAMachineSinking::ID = 0;
1134 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1135
1136 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1137                 "PostRA Machine Sink", false, false)
1138
1139 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1140                                   const TargetRegisterInfo *TRI) {
1141   LiveRegUnits LiveInRegUnits(*TRI);
1142   LiveInRegUnits.addLiveIns(MBB);
1143   return !LiveInRegUnits.available(Reg);
1144 }
1145
1146 static MachineBasicBlock *
1147 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1148                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1149                       unsigned Reg, const TargetRegisterInfo *TRI) {
1150   // Try to find a single sinkable successor in which Reg is live-in.
1151   MachineBasicBlock *BB = nullptr;
1152   for (auto *SI : SinkableBBs) {
1153     if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1154       // If BB is set here, Reg is live-in to at least two sinkable successors,
1155       // so quit.
1156       if (BB)
1157         return nullptr;
1158       BB = SI;
1159     }
1160   }
1161   // Reg is not live-in to any sinkable successors.
1162   if (!BB)
1163     return nullptr;
1164
1165   // Check if any register aliased with Reg is live-in in other successors.
1166   for (auto *SI : CurBB.successors()) {
1167     if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1168       return nullptr;
1169   }
1170   return BB;
1171 }
1172
1173 static MachineBasicBlock *
1174 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1175                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1176                       ArrayRef<unsigned> DefedRegsInCopy,
1177                       const TargetRegisterInfo *TRI) {
1178   MachineBasicBlock *SingleBB = nullptr;
1179   for (auto DefReg : DefedRegsInCopy) {
1180     MachineBasicBlock *BB =
1181         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1182     if (!BB || (SingleBB && SingleBB != BB))
1183       return nullptr;
1184     SingleBB = BB;
1185   }
1186   return SingleBB;
1187 }
1188
1189 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1190                            SmallVectorImpl<unsigned> &UsedOpsInCopy,
1191                            LiveRegUnits &UsedRegUnits,
1192                            const TargetRegisterInfo *TRI) {
1193   for (auto U : UsedOpsInCopy) {
1194     MachineOperand &MO = MI->getOperand(U);
1195     Register SrcReg = MO.getReg();
1196     if (!UsedRegUnits.available(SrcReg)) {
1197       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1198       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1199         if (UI.killsRegister(SrcReg, TRI)) {
1200           UI.clearRegisterKills(SrcReg, TRI);
1201           MO.setIsKill(true);
1202           break;
1203         }
1204       }
1205     }
1206   }
1207 }
1208
1209 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1210                          SmallVectorImpl<unsigned> &UsedOpsInCopy,
1211                          SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1212   MachineFunction &MF = *SuccBB->getParent();
1213   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1214   for (unsigned DefReg : DefedRegsInCopy)
1215     for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1216       SuccBB->removeLiveIn(*S);
1217   for (auto U : UsedOpsInCopy) {
1218     Register SrcReg = MI->getOperand(U).getReg();
1219     LaneBitmask Mask;
1220     for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
1221       Mask |= (*S).second;
1222     }
1223     SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
1224   }
1225   SuccBB->sortUniqueLiveIns();
1226 }
1227
1228 static bool hasRegisterDependency(MachineInstr *MI,
1229                                   SmallVectorImpl<unsigned> &UsedOpsInCopy,
1230                                   SmallVectorImpl<unsigned> &DefedRegsInCopy,
1231                                   LiveRegUnits &ModifiedRegUnits,
1232                                   LiveRegUnits &UsedRegUnits) {
1233   bool HasRegDependency = false;
1234   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1235     MachineOperand &MO = MI->getOperand(i);
1236     if (!MO.isReg())
1237       continue;
1238     Register Reg = MO.getReg();
1239     if (!Reg)
1240       continue;
1241     if (MO.isDef()) {
1242       if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1243         HasRegDependency = true;
1244         break;
1245       }
1246       DefedRegsInCopy.push_back(Reg);
1247
1248       // FIXME: instead of isUse(), readsReg() would be a better fix here,
1249       // For example, we can ignore modifications in reg with undef. However,
1250       // it's not perfectly clear if skipping the internal read is safe in all
1251       // other targets.
1252     } else if (MO.isUse()) {
1253       if (!ModifiedRegUnits.available(Reg)) {
1254         HasRegDependency = true;
1255         break;
1256       }
1257       UsedOpsInCopy.push_back(i);
1258     }
1259   }
1260   return HasRegDependency;
1261 }
1262
1263 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
1264                                          const TargetRegisterInfo *TRI) {
1265   SmallSet<unsigned, 4> RegUnits;
1266   for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1267     RegUnits.insert(*RI);
1268   return RegUnits;
1269 }
1270
1271 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1272                                          MachineFunction &MF,
1273                                          const TargetRegisterInfo *TRI,
1274                                          const TargetInstrInfo *TII) {
1275   SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1276   // FIXME: For now, we sink only to a successor which has a single predecessor
1277   // so that we can directly sink COPY instructions to the successor without
1278   // adding any new block or branch instruction.
1279   for (MachineBasicBlock *SI : CurBB.successors())
1280     if (!SI->livein_empty() && SI->pred_size() == 1)
1281       SinkableBBs.insert(SI);
1282
1283   if (SinkableBBs.empty())
1284     return false;
1285
1286   bool Changed = false;
1287
1288   // Track which registers have been modified and used between the end of the
1289   // block and the current instruction.
1290   ModifiedRegUnits.clear();
1291   UsedRegUnits.clear();
1292   SeenDbgInstrs.clear();
1293
1294   for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1295     MachineInstr *MI = &*I;
1296     ++I;
1297
1298     // Track the operand index for use in Copy.
1299     SmallVector<unsigned, 2> UsedOpsInCopy;
1300     // Track the register number defed in Copy.
1301     SmallVector<unsigned, 2> DefedRegsInCopy;
1302
1303     // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1304     // for DBG_VALUEs later, record them when they're encountered.
1305     if (MI->isDebugValue()) {
1306       auto &MO = MI->getOperand(0);
1307       if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1308         // Bail if we can already tell the sink would be rejected, rather
1309         // than needlessly accumulating lots of DBG_VALUEs.
1310         if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1311                                   ModifiedRegUnits, UsedRegUnits))
1312           continue;
1313
1314         // Record debug use of each reg unit.
1315         SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1316         for (unsigned Reg : Units)
1317           SeenDbgInstrs[Reg].push_back(MI);
1318       }
1319       continue;
1320     }
1321
1322     if (MI->isDebugInstr())
1323       continue;
1324
1325     // Do not move any instruction across function call.
1326     if (MI->isCall())
1327       return false;
1328
1329     if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1330       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1331                                         TRI);
1332       continue;
1333     }
1334
1335     // Don't sink the COPY if it would violate a register dependency.
1336     if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1337                               ModifiedRegUnits, UsedRegUnits)) {
1338       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1339                                         TRI);
1340       continue;
1341     }
1342     assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1343            "Unexpect SrcReg or DefReg");
1344     MachineBasicBlock *SuccBB =
1345         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1346     // Don't sink if we cannot find a single sinkable successor in which Reg
1347     // is live-in.
1348     if (!SuccBB) {
1349       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1350                                         TRI);
1351       continue;
1352     }
1353     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1354            "Unexpected predecessor");
1355
1356     // Collect DBG_VALUEs that must sink with this copy. We've previously
1357     // recorded which reg units that DBG_VALUEs read, if this instruction
1358     // writes any of those units then the corresponding DBG_VALUEs must sink.
1359     SetVector<MachineInstr *> DbgValsToSinkSet;
1360     SmallVector<MachineInstr *, 4> DbgValsToSink;
1361     for (auto &MO : MI->operands()) {
1362       if (!MO.isReg() || !MO.isDef())
1363         continue;
1364
1365       SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1366       for (unsigned Reg : Units)
1367         for (auto *MI : SeenDbgInstrs.lookup(Reg))
1368           DbgValsToSinkSet.insert(MI);
1369     }
1370     DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
1371                          DbgValsToSinkSet.end());
1372
1373     // Clear the kill flag if SrcReg is killed between MI and the end of the
1374     // block.
1375     clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1376     MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1377     performSink(*MI, *SuccBB, InsertPos, DbgValsToSink);
1378     updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1379
1380     Changed = true;
1381     ++NumPostRACopySink;
1382   }
1383   return Changed;
1384 }
1385
1386 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1387   if (skipFunction(MF.getFunction()))
1388     return false;
1389
1390   bool Changed = false;
1391   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1392   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1393
1394   ModifiedRegUnits.init(*TRI);
1395   UsedRegUnits.init(*TRI);
1396   for (auto &BB : MF)
1397     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1398
1399   return Changed;
1400 }