]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/PHIElimination.cpp
MFV r368207:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / PHIElimination.cpp
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions.  This destroys SSA information, but is the desired input for
11 // some register allocators.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "phi-node-elimination"
50
51 static cl::opt<bool>
52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
53                      cl::Hidden, cl::desc("Disable critical edge splitting "
54                                           "during PHI elimination"));
55
56 static cl::opt<bool>
57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
58                       cl::Hidden, cl::desc("Split all critical edges during "
59                                            "PHI elimination"));
60
61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
62     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
63     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
64
65 namespace {
66
67   class PHIElimination : public MachineFunctionPass {
68     MachineRegisterInfo *MRI; // Machine register information
69     LiveVariables *LV;
70     LiveIntervals *LIS;
71
72   public:
73     static char ID; // Pass identification, replacement for typeid
74
75     PHIElimination() : MachineFunctionPass(ID) {
76       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
77     }
78
79     bool runOnMachineFunction(MachineFunction &MF) override;
80     void getAnalysisUsage(AnalysisUsage &AU) const override;
81
82   private:
83     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
84     /// in predecessor basic blocks.
85     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
86
87     void LowerPHINode(MachineBasicBlock &MBB,
88                       MachineBasicBlock::iterator LastPHIIt);
89
90     /// analyzePHINodes - Gather information about the PHI nodes in
91     /// here. In particular, we want to map the number of uses of a virtual
92     /// register which is used in a PHI node. We map that to the BB the
93     /// vreg is coming from. This is used later to determine when the vreg
94     /// is killed in the BB.
95     void analyzePHINodes(const MachineFunction& MF);
96
97     /// Split critical edges where necessary for good coalescer performance.
98     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
99                        MachineLoopInfo *MLI,
100                        std::vector<SparseBitVector<>> *LiveInSets);
101
102     // These functions are temporary abstractions around LiveVariables and
103     // LiveIntervals, so they can go away when LiveVariables does.
104     bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
105     bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
106
107     using BBVRegPair = std::pair<unsigned, unsigned>;
108     using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
109
110     VRegPHIUse VRegPHIUseCount;
111
112     // Defs of PHI sources which are implicit_def.
113     SmallPtrSet<MachineInstr*, 4> ImpDefs;
114
115     // Map reusable lowered PHI node -> incoming join register.
116     using LoweredPHIMap =
117         DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
118     LoweredPHIMap LoweredPHIs;
119   };
120
121 } // end anonymous namespace
122
123 STATISTIC(NumLowered, "Number of phis lowered");
124 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
125 STATISTIC(NumReused, "Number of reused lowered phis");
126
127 char PHIElimination::ID = 0;
128
129 char& llvm::PHIEliminationID = PHIElimination::ID;
130
131 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
132                       "Eliminate PHI nodes for register allocation",
133                       false, false)
134 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
135 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
136                     "Eliminate PHI nodes for register allocation", false, false)
137
138 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
139   AU.addUsedIfAvailable<LiveVariables>();
140   AU.addPreserved<LiveVariables>();
141   AU.addPreserved<SlotIndexes>();
142   AU.addPreserved<LiveIntervals>();
143   AU.addPreserved<MachineDominatorTree>();
144   AU.addPreserved<MachineLoopInfo>();
145   MachineFunctionPass::getAnalysisUsage(AU);
146 }
147
148 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
149   MRI = &MF.getRegInfo();
150   LV = getAnalysisIfAvailable<LiveVariables>();
151   LIS = getAnalysisIfAvailable<LiveIntervals>();
152
153   bool Changed = false;
154
155   // Split critical edges to help the coalescer.
156   if (!DisableEdgeSplitting && (LV || LIS)) {
157     // A set of live-in regs for each MBB which is used to update LV
158     // efficiently also with large functions.
159     std::vector<SparseBitVector<>> LiveInSets;
160     if (LV) {
161       LiveInSets.resize(MF.size());
162       for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
163         // Set the bit for this register for each MBB where it is
164         // live-through or live-in (killed).
165         unsigned VirtReg = Register::index2VirtReg(Index);
166         MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
167         if (!DefMI)
168           continue;
169         LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
170         SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
171         SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
172         while (AliveBlockItr != EndItr) {
173           unsigned BlockNum = *(AliveBlockItr++);
174           LiveInSets[BlockNum].set(Index);
175         }
176         // The register is live into an MBB in which it is killed but not
177         // defined. See comment for VarInfo in LiveVariables.h.
178         MachineBasicBlock *DefMBB = DefMI->getParent();
179         if (VI.Kills.size() > 1 ||
180             (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
181           for (auto *MI : VI.Kills)
182             LiveInSets[MI->getParent()->getNumber()].set(Index);
183       }
184     }
185
186     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
187     for (auto &MBB : MF)
188       Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
189   }
190
191   // This pass takes the function out of SSA form.
192   MRI->leaveSSA();
193
194   // Populate VRegPHIUseCount
195   analyzePHINodes(MF);
196
197   // Eliminate PHI instructions by inserting copies into predecessor blocks.
198   for (auto &MBB : MF)
199     Changed |= EliminatePHINodes(MF, MBB);
200
201   // Remove dead IMPLICIT_DEF instructions.
202   for (MachineInstr *DefMI : ImpDefs) {
203     Register DefReg = DefMI->getOperand(0).getReg();
204     if (MRI->use_nodbg_empty(DefReg)) {
205       if (LIS)
206         LIS->RemoveMachineInstrFromMaps(*DefMI);
207       DefMI->eraseFromParent();
208     }
209   }
210
211   // Clean up the lowered PHI instructions.
212   for (auto &I : LoweredPHIs) {
213     if (LIS)
214       LIS->RemoveMachineInstrFromMaps(*I.first);
215     MF.DeleteMachineInstr(I.first);
216   }
217
218   // TODO: we should use the incremental DomTree updater here.
219   if (Changed)
220     if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
221       MDT->getBase().recalculate(MF);
222
223   LoweredPHIs.clear();
224   ImpDefs.clear();
225   VRegPHIUseCount.clear();
226
227   MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
228
229   return Changed;
230 }
231
232 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
233 /// predecessor basic blocks.
234 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
235                                        MachineBasicBlock &MBB) {
236   if (MBB.empty() || !MBB.front().isPHI())
237     return false;   // Quick exit for basic blocks without PHIs.
238
239   // Get an iterator to the last PHI node.
240   MachineBasicBlock::iterator LastPHIIt =
241     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
242
243   while (MBB.front().isPHI())
244     LowerPHINode(MBB, LastPHIIt);
245
246   return true;
247 }
248
249 /// Return true if all defs of VirtReg are implicit-defs.
250 /// This includes registers with no defs.
251 static bool isImplicitlyDefined(unsigned VirtReg,
252                                 const MachineRegisterInfo &MRI) {
253   for (MachineInstr &DI : MRI.def_instructions(VirtReg))
254     if (!DI.isImplicitDef())
255       return false;
256   return true;
257 }
258
259 /// Return true if all sources of the phi node are implicit_def's, or undef's.
260 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
261                                     const MachineRegisterInfo &MRI) {
262   for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
263     const MachineOperand &MO = MPhi.getOperand(I);
264     if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
265       return false;
266   }
267   return true;
268 }
269 /// LowerPHINode - Lower the PHI node at the top of the specified block.
270 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
271                                   MachineBasicBlock::iterator LastPHIIt) {
272   ++NumLowered;
273
274   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
275
276   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
277   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
278
279   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
280   Register DestReg = MPhi->getOperand(0).getReg();
281   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
282   bool isDead = MPhi->getOperand(0).isDead();
283
284   // Create a new register for the incoming PHI arguments.
285   MachineFunction &MF = *MBB.getParent();
286   unsigned IncomingReg = 0;
287   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
288
289   // Insert a register to register copy at the top of the current block (but
290   // after any remaining phi nodes) which copies the new incoming register
291   // into the phi node destination.
292   MachineInstr *PHICopy = nullptr;
293   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
294   if (allPhiOperandsUndefined(*MPhi, *MRI))
295     // If all sources of a PHI node are implicit_def or undef uses, just emit an
296     // implicit_def instead of a copy.
297     PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
298             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
299   else {
300     // Can we reuse an earlier PHI node? This only happens for critical edges,
301     // typically those created by tail duplication.
302     unsigned &entry = LoweredPHIs[MPhi];
303     if (entry) {
304       // An identical PHI node was already lowered. Reuse the incoming register.
305       IncomingReg = entry;
306       reusedIncoming = true;
307       ++NumReused;
308       LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
309                         << *MPhi);
310     } else {
311       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
312       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
313     }
314     // Give the target possiblity to handle special cases fallthrough otherwise
315     PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
316                                   IncomingReg, DestReg);
317   }
318
319   // Update live variable information if there is any.
320   if (LV) {
321     if (IncomingReg) {
322       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
323
324       // Increment use count of the newly created virtual register.
325       LV->setPHIJoin(IncomingReg);
326
327       // When we are reusing the incoming register, it may already have been
328       // killed in this block. The old kill will also have been inserted at
329       // AfterPHIsIt, so it appears before the current PHICopy.
330       if (reusedIncoming)
331         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
332           LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
333           LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
334           LLVM_DEBUG(MBB.dump());
335         }
336
337       // Add information to LiveVariables to know that the incoming value is
338       // killed.  Note that because the value is defined in several places (once
339       // each for each incoming block), the "def" block and instruction fields
340       // for the VarInfo is not filled in.
341       LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
342     }
343
344     // Since we are going to be deleting the PHI node, if it is the last use of
345     // any registers, or if the value itself is dead, we need to move this
346     // information over to the new copy we just inserted.
347     LV->removeVirtualRegistersKilled(*MPhi);
348
349     // If the result is dead, update LV.
350     if (isDead) {
351       LV->addVirtualRegisterDead(DestReg, *PHICopy);
352       LV->removeVirtualRegisterDead(DestReg, *MPhi);
353     }
354   }
355
356   // Update LiveIntervals for the new copy or implicit def.
357   if (LIS) {
358     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
359
360     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
361     if (IncomingReg) {
362       // Add the region from the beginning of MBB to the copy instruction to
363       // IncomingReg's live interval.
364       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
365       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
366       if (!IncomingVNI)
367         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
368                                               LIS->getVNInfoAllocator());
369       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
370                                                   DestCopyIndex.getRegSlot(),
371                                                   IncomingVNI));
372     }
373
374     LiveInterval &DestLI = LIS->getInterval(DestReg);
375     assert(DestLI.begin() != DestLI.end() &&
376            "PHIs should have nonempty LiveIntervals.");
377     if (DestLI.endIndex().isDead()) {
378       // A dead PHI's live range begins and ends at the start of the MBB, but
379       // the lowered copy, which will still be dead, needs to begin and end at
380       // the copy instruction.
381       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
382       assert(OrigDestVNI && "PHI destination should be live at block entry.");
383       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
384       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
385                            LIS->getVNInfoAllocator());
386       DestLI.removeValNo(OrigDestVNI);
387     } else {
388       // Otherwise, remove the region from the beginning of MBB to the copy
389       // instruction from DestReg's live interval.
390       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
391       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
392       assert(DestVNI && "PHI destination should be live at its definition.");
393       DestVNI->def = DestCopyIndex.getRegSlot();
394     }
395   }
396
397   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
398   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
399     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
400                                  MPhi->getOperand(i).getReg())];
401
402   // Now loop over all of the incoming arguments, changing them to copy into the
403   // IncomingReg register in the corresponding predecessor basic block.
404   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
405   for (int i = NumSrcs - 1; i >= 0; --i) {
406     Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
407     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
408     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
409       isImplicitlyDefined(SrcReg, *MRI);
410     assert(Register::isVirtualRegister(SrcReg) &&
411            "Machine PHI Operands must all be virtual registers!");
412
413     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
414     // path the PHI.
415     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
416
417     // Check to make sure we haven't already emitted the copy for this block.
418     // This can happen because PHI nodes may have multiple entries for the same
419     // basic block.
420     if (!MBBsInsertedInto.insert(&opBlock).second)
421       continue;  // If the copy has already been emitted, we're done.
422
423     // Find a safe location to insert the copy, this may be the first terminator
424     // in the block (or end()).
425     MachineBasicBlock::iterator InsertPos =
426       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
427
428     // Insert the copy.
429     MachineInstr *NewSrcInstr = nullptr;
430     if (!reusedIncoming && IncomingReg) {
431       if (SrcUndef) {
432         // The source register is undefined, so there is no need for a real
433         // COPY, but we still need to ensure joint dominance by defs.
434         // Insert an IMPLICIT_DEF instruction.
435         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
436                               TII->get(TargetOpcode::IMPLICIT_DEF),
437                               IncomingReg);
438
439         // Clean up the old implicit-def, if there even was one.
440         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
441           if (DefMI->isImplicitDef())
442             ImpDefs.insert(DefMI);
443       } else {
444         NewSrcInstr =
445             TII->createPHISourceCopy(opBlock, InsertPos, MPhi->getDebugLoc(),
446                                      SrcReg, SrcSubReg, IncomingReg);
447       }
448     }
449
450     // We only need to update the LiveVariables kill of SrcReg if this was the
451     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
452     // out of the predecessor. We can also ignore undef sources.
453     if (LV && !SrcUndef &&
454         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
455         !LV->isLiveOut(SrcReg, opBlock)) {
456       // We want to be able to insert a kill of the register if this PHI (aka,
457       // the copy we just inserted) is the last use of the source value. Live
458       // variable analysis conservatively handles this by saying that the value
459       // is live until the end of the block the PHI entry lives in. If the value
460       // really is dead at the PHI copy, there will be no successor blocks which
461       // have the value live-in.
462
463       // Okay, if we now know that the value is not live out of the block, we
464       // can add a kill marker in this block saying that it kills the incoming
465       // value!
466
467       // In our final twist, we have to decide which instruction kills the
468       // register.  In most cases this is the copy, however, terminator
469       // instructions at the end of the block may also use the value. In this
470       // case, we should mark the last such terminator as being the killing
471       // block, not the copy.
472       MachineBasicBlock::iterator KillInst = opBlock.end();
473       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
474       for (MachineBasicBlock::iterator Term = FirstTerm;
475           Term != opBlock.end(); ++Term) {
476         if (Term->readsRegister(SrcReg))
477           KillInst = Term;
478       }
479
480       if (KillInst == opBlock.end()) {
481         // No terminator uses the register.
482
483         if (reusedIncoming || !IncomingReg) {
484           // We may have to rewind a bit if we didn't insert a copy this time.
485           KillInst = FirstTerm;
486           while (KillInst != opBlock.begin()) {
487             --KillInst;
488             if (KillInst->isDebugInstr())
489               continue;
490             if (KillInst->readsRegister(SrcReg))
491               break;
492           }
493         } else {
494           // We just inserted this copy.
495           KillInst = NewSrcInstr;
496         }
497       }
498       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
499
500       // Finally, mark it killed.
501       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
502
503       // This vreg no longer lives all of the way through opBlock.
504       unsigned opBlockNum = opBlock.getNumber();
505       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
506     }
507
508     if (LIS) {
509       if (NewSrcInstr) {
510         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
511         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
512       }
513
514       if (!SrcUndef &&
515           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
516         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
517
518         bool isLiveOut = false;
519         for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
520              SE = opBlock.succ_end(); SI != SE; ++SI) {
521           SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
522           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
523
524           // Definitions by other PHIs are not truly live-in for our purposes.
525           if (VNI && VNI->def != startIdx) {
526             isLiveOut = true;
527             break;
528           }
529         }
530
531         if (!isLiveOut) {
532           MachineBasicBlock::iterator KillInst = opBlock.end();
533           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
534           for (MachineBasicBlock::iterator Term = FirstTerm;
535               Term != opBlock.end(); ++Term) {
536             if (Term->readsRegister(SrcReg))
537               KillInst = Term;
538           }
539
540           if (KillInst == opBlock.end()) {
541             // No terminator uses the register.
542
543             if (reusedIncoming || !IncomingReg) {
544               // We may have to rewind a bit if we didn't just insert a copy.
545               KillInst = FirstTerm;
546               while (KillInst != opBlock.begin()) {
547                 --KillInst;
548                 if (KillInst->isDebugInstr())
549                   continue;
550                 if (KillInst->readsRegister(SrcReg))
551                   break;
552               }
553             } else {
554               // We just inserted this copy.
555               KillInst = std::prev(InsertPos);
556             }
557           }
558           assert(KillInst->readsRegister(SrcReg) &&
559                  "Cannot find kill instruction");
560
561           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
562           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
563                               LIS->getMBBEndIdx(&opBlock));
564         }
565       }
566     }
567   }
568
569   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
570   if (reusedIncoming || !IncomingReg) {
571     if (LIS)
572       LIS->RemoveMachineInstrFromMaps(*MPhi);
573     MF.DeleteMachineInstr(MPhi);
574   }
575 }
576
577 /// analyzePHINodes - Gather information about the PHI nodes in here. In
578 /// particular, we want to map the number of uses of a virtual register which is
579 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
580 /// used later to determine when the vreg is killed in the BB.
581 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
582   for (const auto &MBB : MF)
583     for (const auto &BBI : MBB) {
584       if (!BBI.isPHI())
585         break;
586       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
587         ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
588                                      BBI.getOperand(i).getReg())];
589     }
590 }
591
592 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
593                                    MachineBasicBlock &MBB,
594                                    MachineLoopInfo *MLI,
595                                    std::vector<SparseBitVector<>> *LiveInSets) {
596   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
597     return false;   // Quick exit for basic blocks without PHIs.
598
599   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
600   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
601
602   bool Changed = false;
603   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
604        BBI != BBE && BBI->isPHI(); ++BBI) {
605     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
606       Register Reg = BBI->getOperand(i).getReg();
607       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
608       // Is there a critical edge from PreMBB to MBB?
609       if (PreMBB->succ_size() == 1)
610         continue;
611
612       // Avoid splitting backedges of loops. It would introduce small
613       // out-of-line blocks into the loop which is very bad for code placement.
614       if (PreMBB == &MBB && !SplitAllCriticalEdges)
615         continue;
616       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
617       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
618         continue;
619
620       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
621       // when the source register is live-out for some other reason than a phi
622       // use. That means the copy we will insert in PreMBB won't be a kill, and
623       // there is a risk it may not be coalesced away.
624       //
625       // If the copy would be a kill, there is no need to split the edge.
626       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
627       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
628         continue;
629       if (ShouldSplit) {
630         LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
631                           << printMBBReference(*PreMBB) << " -> "
632                           << printMBBReference(MBB) << ": " << *BBI);
633       }
634
635       // If Reg is not live-in to MBB, it means it must be live-in to some
636       // other PreMBB successor, and we can avoid the interference by splitting
637       // the edge.
638       //
639       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
640       // is likely to be left after coalescing. If we are looking at a loop
641       // exiting edge, split it so we won't insert code in the loop, otherwise
642       // don't bother.
643       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
644
645       // Check for a loop exiting edge.
646       if (!ShouldSplit && CurLoop != PreLoop) {
647         LLVM_DEBUG({
648           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
649           if (PreLoop)
650             dbgs() << "PreLoop: " << *PreLoop;
651           if (CurLoop)
652             dbgs() << "CurLoop: " << *CurLoop;
653         });
654         // This edge could be entering a loop, exiting a loop, or it could be
655         // both: Jumping directly form one loop to the header of a sibling
656         // loop.
657         // Split unless this edge is entering CurLoop from an outer loop.
658         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
659       }
660       if (!ShouldSplit && !SplitAllCriticalEdges)
661         continue;
662       if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
663         LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
664         continue;
665       }
666       Changed = true;
667       ++NumCriticalEdgesSplit;
668     }
669   }
670   return Changed;
671 }
672
673 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
674   assert((LV || LIS) &&
675          "isLiveIn() requires either LiveVariables or LiveIntervals");
676   if (LIS)
677     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
678   else
679     return LV->isLiveIn(Reg, *MBB);
680 }
681
682 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
683                                        const MachineBasicBlock *MBB) {
684   assert((LV || LIS) &&
685          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
686   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
687   // so that a register used only in a PHI is not live out of the block. In
688   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
689   // in the predecessor basic block, so that a register used only in a PHI is live
690   // out of the block.
691   if (LIS) {
692     const LiveInterval &LI = LIS->getInterval(Reg);
693     for (const MachineBasicBlock *SI : MBB->successors())
694       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
695         return true;
696     return false;
697   } else {
698     return LV->isLiveOut(Reg, *MBB);
699   }
700 }