]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/RDFGraph.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / RDFGraph.cpp
1 //===- RDFGraph.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Target-independent, SSA-based data flow graph for register data flow (RDF).
10 //
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/CodeGen/MachineDominanceFrontier.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/RDFGraph.h"
22 #include "llvm/CodeGen/RDFRegisters.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCRegisterInfo.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <cassert>
36 #include <cstdint>
37 #include <cstring>
38 #include <iterator>
39 #include <set>
40 #include <utility>
41 #include <vector>
42
43 using namespace llvm;
44 using namespace rdf;
45
46 // Printing functions. Have them here first, so that the rest of the code
47 // can use them.
48 namespace llvm {
49 namespace rdf {
50
51 raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
52   if (!P.Mask.all())
53     OS << ':' << PrintLaneMask(P.Mask);
54   return OS;
55 }
56
57 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
58   auto &TRI = P.G.getTRI();
59   if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
60     OS << TRI.getName(P.Obj.Reg);
61   else
62     OS << '#' << P.Obj.Reg;
63   OS << PrintLaneMaskOpt(P.Obj.Mask);
64   return OS;
65 }
66
67 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
68   auto NA = P.G.addr<NodeBase*>(P.Obj);
69   uint16_t Attrs = NA.Addr->getAttrs();
70   uint16_t Kind = NodeAttrs::kind(Attrs);
71   uint16_t Flags = NodeAttrs::flags(Attrs);
72   switch (NodeAttrs::type(Attrs)) {
73     case NodeAttrs::Code:
74       switch (Kind) {
75         case NodeAttrs::Func:   OS << 'f'; break;
76         case NodeAttrs::Block:  OS << 'b'; break;
77         case NodeAttrs::Stmt:   OS << 's'; break;
78         case NodeAttrs::Phi:    OS << 'p'; break;
79         default:                OS << "c?"; break;
80       }
81       break;
82     case NodeAttrs::Ref:
83       if (Flags & NodeAttrs::Undef)
84         OS << '/';
85       if (Flags & NodeAttrs::Dead)
86         OS << '\\';
87       if (Flags & NodeAttrs::Preserving)
88         OS << '+';
89       if (Flags & NodeAttrs::Clobbering)
90         OS << '~';
91       switch (Kind) {
92         case NodeAttrs::Use:    OS << 'u'; break;
93         case NodeAttrs::Def:    OS << 'd'; break;
94         case NodeAttrs::Block:  OS << 'b'; break;
95         default:                OS << "r?"; break;
96       }
97       break;
98     default:
99       OS << '?';
100       break;
101   }
102   OS << P.Obj;
103   if (Flags & NodeAttrs::Shadow)
104     OS << '"';
105   return OS;
106 }
107
108 static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
109                 const DataFlowGraph &G) {
110   OS << Print<NodeId>(RA.Id, G) << '<'
111      << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
112   if (RA.Addr->getFlags() & NodeAttrs::Fixed)
113     OS << '!';
114 }
115
116 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
117   printRefHeader(OS, P.Obj, P.G);
118   OS << '(';
119   if (NodeId N = P.Obj.Addr->getReachingDef())
120     OS << Print<NodeId>(N, P.G);
121   OS << ',';
122   if (NodeId N = P.Obj.Addr->getReachedDef())
123     OS << Print<NodeId>(N, P.G);
124   OS << ',';
125   if (NodeId N = P.Obj.Addr->getReachedUse())
126     OS << Print<NodeId>(N, P.G);
127   OS << "):";
128   if (NodeId N = P.Obj.Addr->getSibling())
129     OS << Print<NodeId>(N, P.G);
130   return OS;
131 }
132
133 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
134   printRefHeader(OS, P.Obj, P.G);
135   OS << '(';
136   if (NodeId N = P.Obj.Addr->getReachingDef())
137     OS << Print<NodeId>(N, P.G);
138   OS << "):";
139   if (NodeId N = P.Obj.Addr->getSibling())
140     OS << Print<NodeId>(N, P.G);
141   return OS;
142 }
143
144 raw_ostream &operator<< (raw_ostream &OS,
145       const Print<NodeAddr<PhiUseNode*>> &P) {
146   printRefHeader(OS, P.Obj, P.G);
147   OS << '(';
148   if (NodeId N = P.Obj.Addr->getReachingDef())
149     OS << Print<NodeId>(N, P.G);
150   OS << ',';
151   if (NodeId N = P.Obj.Addr->getPredecessor())
152     OS << Print<NodeId>(N, P.G);
153   OS << "):";
154   if (NodeId N = P.Obj.Addr->getSibling())
155     OS << Print<NodeId>(N, P.G);
156   return OS;
157 }
158
159 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
160   switch (P.Obj.Addr->getKind()) {
161     case NodeAttrs::Def:
162       OS << PrintNode<DefNode*>(P.Obj, P.G);
163       break;
164     case NodeAttrs::Use:
165       if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
166         OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
167       else
168         OS << PrintNode<UseNode*>(P.Obj, P.G);
169       break;
170   }
171   return OS;
172 }
173
174 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
175   unsigned N = P.Obj.size();
176   for (auto I : P.Obj) {
177     OS << Print<NodeId>(I.Id, P.G);
178     if (--N)
179       OS << ' ';
180   }
181   return OS;
182 }
183
184 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
185   unsigned N = P.Obj.size();
186   for (auto I : P.Obj) {
187     OS << Print<NodeId>(I, P.G);
188     if (--N)
189       OS << ' ';
190   }
191   return OS;
192 }
193
194 namespace {
195
196   template <typename T>
197   struct PrintListV {
198     PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
199
200     using Type = T;
201     const NodeList &List;
202     const DataFlowGraph &G;
203   };
204
205   template <typename T>
206   raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
207     unsigned N = P.List.size();
208     for (NodeAddr<T> A : P.List) {
209       OS << PrintNode<T>(A, P.G);
210       if (--N)
211         OS << ", ";
212     }
213     return OS;
214   }
215
216 } // end anonymous namespace
217
218 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
219   OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
220      << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
221   return OS;
222 }
223
224 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) {
225   const MachineInstr &MI = *P.Obj.Addr->getCode();
226   unsigned Opc = MI.getOpcode();
227   OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
228   // Print the target for calls and branches (for readability).
229   if (MI.isCall() || MI.isBranch()) {
230     MachineInstr::const_mop_iterator T =
231           llvm::find_if(MI.operands(),
232                         [] (const MachineOperand &Op) -> bool {
233                           return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
234                         });
235     if (T != MI.operands_end()) {
236       OS << ' ';
237       if (T->isMBB())
238         OS << printMBBReference(*T->getMBB());
239       else if (T->isGlobal())
240         OS << T->getGlobal()->getName();
241       else if (T->isSymbol())
242         OS << T->getSymbolName();
243     }
244   }
245   OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
246   return OS;
247 }
248
249 raw_ostream &operator<< (raw_ostream &OS,
250       const Print<NodeAddr<InstrNode*>> &P) {
251   switch (P.Obj.Addr->getKind()) {
252     case NodeAttrs::Phi:
253       OS << PrintNode<PhiNode*>(P.Obj, P.G);
254       break;
255     case NodeAttrs::Stmt:
256       OS << PrintNode<StmtNode*>(P.Obj, P.G);
257       break;
258     default:
259       OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
260       break;
261   }
262   return OS;
263 }
264
265 raw_ostream &operator<< (raw_ostream &OS,
266       const Print<NodeAddr<BlockNode*>> &P) {
267   MachineBasicBlock *BB = P.Obj.Addr->getCode();
268   unsigned NP = BB->pred_size();
269   std::vector<int> Ns;
270   auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
271     unsigned N = Ns.size();
272     for (int I : Ns) {
273       OS << "%bb." << I;
274       if (--N)
275         OS << ", ";
276     }
277   };
278
279   OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
280      << " --- preds(" << NP << "): ";
281   for (MachineBasicBlock *B : BB->predecessors())
282     Ns.push_back(B->getNumber());
283   PrintBBs(Ns);
284
285   unsigned NS = BB->succ_size();
286   OS << "  succs(" << NS << "): ";
287   Ns.clear();
288   for (MachineBasicBlock *B : BB->successors())
289     Ns.push_back(B->getNumber());
290   PrintBBs(Ns);
291   OS << '\n';
292
293   for (auto I : P.Obj.Addr->members(P.G))
294     OS << PrintNode<InstrNode*>(I, P.G) << '\n';
295   return OS;
296 }
297
298 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) {
299   OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
300      << P.Obj.Addr->getCode()->getName() << '\n';
301   for (auto I : P.Obj.Addr->members(P.G))
302     OS << PrintNode<BlockNode*>(I, P.G) << '\n';
303   OS << "]\n";
304   return OS;
305 }
306
307 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
308   OS << '{';
309   for (auto I : P.Obj)
310     OS << ' ' << Print<RegisterRef>(I, P.G);
311   OS << " }";
312   return OS;
313 }
314
315 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
316   P.Obj.print(OS);
317   return OS;
318 }
319
320 raw_ostream &operator<< (raw_ostream &OS,
321       const Print<DataFlowGraph::DefStack> &P) {
322   for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
323     OS << Print<NodeId>(I->Id, P.G)
324        << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
325     I.down();
326     if (I != E)
327       OS << ' ';
328   }
329   return OS;
330 }
331
332 } // end namespace rdf
333 } // end namespace llvm
334
335 // Node allocation functions.
336 //
337 // Node allocator is like a slab memory allocator: it allocates blocks of
338 // memory in sizes that are multiples of the size of a node. Each block has
339 // the same size. Nodes are allocated from the currently active block, and
340 // when it becomes full, a new one is created.
341 // There is a mapping scheme between node id and its location in a block,
342 // and within that block is described in the header file.
343 //
344 void NodeAllocator::startNewBlock() {
345   void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
346   char *P = static_cast<char*>(T);
347   Blocks.push_back(P);
348   // Check if the block index is still within the allowed range, i.e. less
349   // than 2^N, where N is the number of bits in NodeId for the block index.
350   // BitsPerIndex is the number of bits per node index.
351   assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
352          "Out of bits for block index");
353   ActiveEnd = P;
354 }
355
356 bool NodeAllocator::needNewBlock() {
357   if (Blocks.empty())
358     return true;
359
360   char *ActiveBegin = Blocks.back();
361   uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
362   return Index >= NodesPerBlock;
363 }
364
365 NodeAddr<NodeBase*> NodeAllocator::New() {
366   if (needNewBlock())
367     startNewBlock();
368
369   uint32_t ActiveB = Blocks.size()-1;
370   uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
371   NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
372                              makeId(ActiveB, Index) };
373   ActiveEnd += NodeMemSize;
374   return NA;
375 }
376
377 NodeId NodeAllocator::id(const NodeBase *P) const {
378   uintptr_t A = reinterpret_cast<uintptr_t>(P);
379   for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
380     uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
381     if (A < B || A >= B + NodesPerBlock*NodeMemSize)
382       continue;
383     uint32_t Idx = (A-B)/NodeMemSize;
384     return makeId(i, Idx);
385   }
386   llvm_unreachable("Invalid node address");
387 }
388
389 void NodeAllocator::clear() {
390   MemPool.Reset();
391   Blocks.clear();
392   ActiveEnd = nullptr;
393 }
394
395 // Insert node NA after "this" in the circular chain.
396 void NodeBase::append(NodeAddr<NodeBase*> NA) {
397   NodeId Nx = Next;
398   // If NA is already "next", do nothing.
399   if (Next != NA.Id) {
400     Next = NA.Id;
401     NA.Addr->Next = Nx;
402   }
403 }
404
405 // Fundamental node manipulator functions.
406
407 // Obtain the register reference from a reference node.
408 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
409   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
410   if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
411     return G.unpack(Ref.PR);
412   assert(Ref.Op != nullptr);
413   return G.makeRegRef(*Ref.Op);
414 }
415
416 // Set the register reference in the reference node directly (for references
417 // in phi nodes).
418 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
419   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
420   assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
421   Ref.PR = G.pack(RR);
422 }
423
424 // Set the register reference in the reference node based on a machine
425 // operand (for references in statement nodes).
426 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
427   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
428   assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
429   (void)G;
430   Ref.Op = Op;
431 }
432
433 // Get the owner of a given reference node.
434 NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
435   NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
436
437   while (NA.Addr != this) {
438     if (NA.Addr->getType() == NodeAttrs::Code)
439       return NA;
440     NA = G.addr<NodeBase*>(NA.Addr->getNext());
441   }
442   llvm_unreachable("No owner in circular list");
443 }
444
445 // Connect the def node to the reaching def node.
446 void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
447   Ref.RD = DA.Id;
448   Ref.Sib = DA.Addr->getReachedDef();
449   DA.Addr->setReachedDef(Self);
450 }
451
452 // Connect the use node to the reaching def node.
453 void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
454   Ref.RD = DA.Id;
455   Ref.Sib = DA.Addr->getReachedUse();
456   DA.Addr->setReachedUse(Self);
457 }
458
459 // Get the first member of the code node.
460 NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
461   if (Code.FirstM == 0)
462     return NodeAddr<NodeBase*>();
463   return G.addr<NodeBase*>(Code.FirstM);
464 }
465
466 // Get the last member of the code node.
467 NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
468   if (Code.LastM == 0)
469     return NodeAddr<NodeBase*>();
470   return G.addr<NodeBase*>(Code.LastM);
471 }
472
473 // Add node NA at the end of the member list of the given code node.
474 void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
475   NodeAddr<NodeBase*> ML = getLastMember(G);
476   if (ML.Id != 0) {
477     ML.Addr->append(NA);
478   } else {
479     Code.FirstM = NA.Id;
480     NodeId Self = G.id(this);
481     NA.Addr->setNext(Self);
482   }
483   Code.LastM = NA.Id;
484 }
485
486 // Add node NA after member node MA in the given code node.
487 void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
488       const DataFlowGraph &G) {
489   MA.Addr->append(NA);
490   if (Code.LastM == MA.Id)
491     Code.LastM = NA.Id;
492 }
493
494 // Remove member node NA from the given code node.
495 void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
496   NodeAddr<NodeBase*> MA = getFirstMember(G);
497   assert(MA.Id != 0);
498
499   // Special handling if the member to remove is the first member.
500   if (MA.Id == NA.Id) {
501     if (Code.LastM == MA.Id) {
502       // If it is the only member, set both first and last to 0.
503       Code.FirstM = Code.LastM = 0;
504     } else {
505       // Otherwise, advance the first member.
506       Code.FirstM = MA.Addr->getNext();
507     }
508     return;
509   }
510
511   while (MA.Addr != this) {
512     NodeId MX = MA.Addr->getNext();
513     if (MX == NA.Id) {
514       MA.Addr->setNext(NA.Addr->getNext());
515       // If the member to remove happens to be the last one, update the
516       // LastM indicator.
517       if (Code.LastM == NA.Id)
518         Code.LastM = MA.Id;
519       return;
520     }
521     MA = G.addr<NodeBase*>(MX);
522   }
523   llvm_unreachable("No such member");
524 }
525
526 // Return the list of all members of the code node.
527 NodeList CodeNode::members(const DataFlowGraph &G) const {
528   static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
529   return members_if(True, G);
530 }
531
532 // Return the owner of the given instr node.
533 NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
534   NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
535
536   while (NA.Addr != this) {
537     assert(NA.Addr->getType() == NodeAttrs::Code);
538     if (NA.Addr->getKind() == NodeAttrs::Block)
539       return NA;
540     NA = G.addr<NodeBase*>(NA.Addr->getNext());
541   }
542   llvm_unreachable("No owner in circular list");
543 }
544
545 // Add the phi node PA to the given block node.
546 void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
547   NodeAddr<NodeBase*> M = getFirstMember(G);
548   if (M.Id == 0) {
549     addMember(PA, G);
550     return;
551   }
552
553   assert(M.Addr->getType() == NodeAttrs::Code);
554   if (M.Addr->getKind() == NodeAttrs::Stmt) {
555     // If the first member of the block is a statement, insert the phi as
556     // the first member.
557     Code.FirstM = PA.Id;
558     PA.Addr->setNext(M.Id);
559   } else {
560     // If the first member is a phi, find the last phi, and append PA to it.
561     assert(M.Addr->getKind() == NodeAttrs::Phi);
562     NodeAddr<NodeBase*> MN = M;
563     do {
564       M = MN;
565       MN = G.addr<NodeBase*>(M.Addr->getNext());
566       assert(MN.Addr->getType() == NodeAttrs::Code);
567     } while (MN.Addr->getKind() == NodeAttrs::Phi);
568
569     // M is the last phi.
570     addMemberAfter(M, PA, G);
571   }
572 }
573
574 // Find the block node corresponding to the machine basic block BB in the
575 // given func node.
576 NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
577       const DataFlowGraph &G) const {
578   auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
579     return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
580   };
581   NodeList Ms = members_if(EqBB, G);
582   if (!Ms.empty())
583     return Ms[0];
584   return NodeAddr<BlockNode*>();
585 }
586
587 // Get the block node for the entry block in the given function.
588 NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
589   MachineBasicBlock *EntryB = &getCode()->front();
590   return findBlock(EntryB, G);
591 }
592
593 // Target operand information.
594 //
595
596 // For a given instruction, check if there are any bits of RR that can remain
597 // unchanged across this def.
598 bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
599       const {
600   return TII.isPredicated(In);
601 }
602
603 // Check if the definition of RR produces an unspecified value.
604 bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
605       const {
606   const MachineOperand &Op = In.getOperand(OpNum);
607   if (Op.isRegMask())
608     return true;
609   assert(Op.isReg());
610   if (In.isCall())
611     if (Op.isDef() && Op.isDead())
612       return true;
613   return false;
614 }
615
616 // Check if the given instruction specifically requires
617 bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
618       const {
619   if (In.isCall() || In.isReturn() || In.isInlineAsm())
620     return true;
621   // Check for a tail call.
622   if (In.isBranch())
623     for (const MachineOperand &O : In.operands())
624       if (O.isGlobal() || O.isSymbol())
625         return true;
626
627   const MCInstrDesc &D = In.getDesc();
628   if (!D.getImplicitDefs() && !D.getImplicitUses())
629     return false;
630   const MachineOperand &Op = In.getOperand(OpNum);
631   // If there is a sub-register, treat the operand as non-fixed. Currently,
632   // fixed registers are those that are listed in the descriptor as implicit
633   // uses or defs, and those lists do not allow sub-registers.
634   if (Op.getSubReg() != 0)
635     return false;
636   Register Reg = Op.getReg();
637   const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
638                                      : D.getImplicitUses();
639   if (!ImpR)
640     return false;
641   while (*ImpR)
642     if (*ImpR++ == Reg)
643       return true;
644   return false;
645 }
646
647 //
648 // The data flow graph construction.
649 //
650
651 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
652       const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
653       const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
654     : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
655       LiveIns(PRI) {
656 }
657
658 // The implementation of the definition stack.
659 // Each register reference has its own definition stack. In particular,
660 // for a register references "Reg" and "Reg:subreg" will each have their
661 // own definition stacks.
662
663 // Construct a stack iterator.
664 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
665       bool Top) : DS(S) {
666   if (!Top) {
667     // Initialize to bottom.
668     Pos = 0;
669     return;
670   }
671   // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
672   Pos = DS.Stack.size();
673   while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
674     Pos--;
675 }
676
677 // Return the size of the stack, including block delimiters.
678 unsigned DataFlowGraph::DefStack::size() const {
679   unsigned S = 0;
680   for (auto I = top(), E = bottom(); I != E; I.down())
681     S++;
682   return S;
683 }
684
685 // Remove the top entry from the stack. Remove all intervening delimiters
686 // so that after this, the stack is either empty, or the top of the stack
687 // is a non-delimiter.
688 void DataFlowGraph::DefStack::pop() {
689   assert(!empty());
690   unsigned P = nextDown(Stack.size());
691   Stack.resize(P);
692 }
693
694 // Push a delimiter for block node N on the stack.
695 void DataFlowGraph::DefStack::start_block(NodeId N) {
696   assert(N != 0);
697   Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
698 }
699
700 // Remove all nodes from the top of the stack, until the delimited for
701 // block node N is encountered. Remove the delimiter as well. In effect,
702 // this will remove from the stack all definitions from block N.
703 void DataFlowGraph::DefStack::clear_block(NodeId N) {
704   assert(N != 0);
705   unsigned P = Stack.size();
706   while (P > 0) {
707     bool Found = isDelimiter(Stack[P-1], N);
708     P--;
709     if (Found)
710       break;
711   }
712   // This will also remove the delimiter, if found.
713   Stack.resize(P);
714 }
715
716 // Move the stack iterator up by one.
717 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
718   // Get the next valid position after P (skipping all delimiters).
719   // The input position P does not have to point to a non-delimiter.
720   unsigned SS = Stack.size();
721   bool IsDelim;
722   assert(P < SS);
723   do {
724     P++;
725     IsDelim = isDelimiter(Stack[P-1]);
726   } while (P < SS && IsDelim);
727   assert(!IsDelim);
728   return P;
729 }
730
731 // Move the stack iterator down by one.
732 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
733   // Get the preceding valid position before P (skipping all delimiters).
734   // The input position P does not have to point to a non-delimiter.
735   assert(P > 0 && P <= Stack.size());
736   bool IsDelim = isDelimiter(Stack[P-1]);
737   do {
738     if (--P == 0)
739       break;
740     IsDelim = isDelimiter(Stack[P-1]);
741   } while (P > 0 && IsDelim);
742   assert(!IsDelim);
743   return P;
744 }
745
746 // Register information.
747
748 RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
749   RegisterSet LR;
750   const Function &F = MF.getFunction();
751   const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
752                                             : nullptr;
753   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
754   if (RegisterId R = TLI.getExceptionPointerRegister(PF))
755     LR.insert(RegisterRef(R));
756   if (!isFuncletEHPersonality(classifyEHPersonality(PF))) {
757     if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
758       LR.insert(RegisterRef(R));
759   }
760   return LR;
761 }
762
763 // Node management functions.
764
765 // Get the pointer to the node with the id N.
766 NodeBase *DataFlowGraph::ptr(NodeId N) const {
767   if (N == 0)
768     return nullptr;
769   return Memory.ptr(N);
770 }
771
772 // Get the id of the node at the address P.
773 NodeId DataFlowGraph::id(const NodeBase *P) const {
774   if (P == nullptr)
775     return 0;
776   return Memory.id(P);
777 }
778
779 // Allocate a new node and set the attributes to Attrs.
780 NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
781   NodeAddr<NodeBase*> P = Memory.New();
782   P.Addr->init();
783   P.Addr->setAttrs(Attrs);
784   return P;
785 }
786
787 // Make a copy of the given node B, except for the data-flow links, which
788 // are set to 0.
789 NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
790   NodeAddr<NodeBase*> NA = newNode(0);
791   memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
792   // Ref nodes need to have the data-flow links reset.
793   if (NA.Addr->getType() == NodeAttrs::Ref) {
794     NodeAddr<RefNode*> RA = NA;
795     RA.Addr->setReachingDef(0);
796     RA.Addr->setSibling(0);
797     if (NA.Addr->getKind() == NodeAttrs::Def) {
798       NodeAddr<DefNode*> DA = NA;
799       DA.Addr->setReachedDef(0);
800       DA.Addr->setReachedUse(0);
801     }
802   }
803   return NA;
804 }
805
806 // Allocation routines for specific node types/kinds.
807
808 NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
809       MachineOperand &Op, uint16_t Flags) {
810   NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
811   UA.Addr->setRegRef(&Op, *this);
812   return UA;
813 }
814
815 NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
816       RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
817   NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
818   assert(Flags & NodeAttrs::PhiRef);
819   PUA.Addr->setRegRef(RR, *this);
820   PUA.Addr->setPredecessor(PredB.Id);
821   return PUA;
822 }
823
824 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
825       MachineOperand &Op, uint16_t Flags) {
826   NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
827   DA.Addr->setRegRef(&Op, *this);
828   return DA;
829 }
830
831 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
832       RegisterRef RR, uint16_t Flags) {
833   NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
834   assert(Flags & NodeAttrs::PhiRef);
835   DA.Addr->setRegRef(RR, *this);
836   return DA;
837 }
838
839 NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
840   NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
841   Owner.Addr->addPhi(PA, *this);
842   return PA;
843 }
844
845 NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
846       MachineInstr *MI) {
847   NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
848   SA.Addr->setCode(MI);
849   Owner.Addr->addMember(SA, *this);
850   return SA;
851 }
852
853 NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
854       MachineBasicBlock *BB) {
855   NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
856   BA.Addr->setCode(BB);
857   Owner.Addr->addMember(BA, *this);
858   return BA;
859 }
860
861 NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
862   NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
863   FA.Addr->setCode(MF);
864   return FA;
865 }
866
867 // Build the data flow graph.
868 void DataFlowGraph::build(unsigned Options) {
869   reset();
870   Func = newFunc(&MF);
871
872   if (MF.empty())
873     return;
874
875   for (MachineBasicBlock &B : MF) {
876     NodeAddr<BlockNode*> BA = newBlock(Func, &B);
877     BlockNodes.insert(std::make_pair(&B, BA));
878     for (MachineInstr &I : B) {
879       if (I.isDebugInstr())
880         continue;
881       buildStmt(BA, I);
882     }
883   }
884
885   NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
886   NodeList Blocks = Func.Addr->members(*this);
887
888   // Collect information about block references.
889   RegisterSet AllRefs;
890   for (NodeAddr<BlockNode*> BA : Blocks)
891     for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
892       for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
893         AllRefs.insert(RA.Addr->getRegRef(*this));
894
895   // Collect function live-ins and entry block live-ins.
896   MachineRegisterInfo &MRI = MF.getRegInfo();
897   MachineBasicBlock &EntryB = *EA.Addr->getCode();
898   assert(EntryB.pred_empty() && "Function entry block has predecessors");
899   for (std::pair<unsigned,unsigned> P : MRI.liveins())
900     LiveIns.insert(RegisterRef(P.first));
901   if (MRI.tracksLiveness()) {
902     for (auto I : EntryB.liveins())
903       LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
904   }
905
906   // Add function-entry phi nodes for the live-in registers.
907   //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
908   for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
909     RegisterRef RR = *I;
910     NodeAddr<PhiNode*> PA = newPhi(EA);
911     uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
912     NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
913     PA.Addr->addMember(DA, *this);
914   }
915
916   // Add phis for landing pads.
917   // Landing pads, unlike usual backs blocks, are not entered through
918   // branches in the program, or fall-throughs from other blocks. They
919   // are entered from the exception handling runtime and target's ABI
920   // may define certain registers as defined on entry to such a block.
921   RegisterSet EHRegs = getLandingPadLiveIns();
922   if (!EHRegs.empty()) {
923     for (NodeAddr<BlockNode*> BA : Blocks) {
924       const MachineBasicBlock &B = *BA.Addr->getCode();
925       if (!B.isEHPad())
926         continue;
927
928       // Prepare a list of NodeIds of the block's predecessors.
929       NodeList Preds;
930       for (MachineBasicBlock *PB : B.predecessors())
931         Preds.push_back(findBlock(PB));
932
933       // Build phi nodes for each live-in.
934       for (RegisterRef RR : EHRegs) {
935         NodeAddr<PhiNode*> PA = newPhi(BA);
936         uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
937         // Add def:
938         NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
939         PA.Addr->addMember(DA, *this);
940         // Add uses (no reaching defs for phi uses):
941         for (NodeAddr<BlockNode*> PBA : Preds) {
942           NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
943           PA.Addr->addMember(PUA, *this);
944         }
945       }
946     }
947   }
948
949   // Build a map "PhiM" which will contain, for each block, the set
950   // of references that will require phi definitions in that block.
951   BlockRefsMap PhiM;
952   for (NodeAddr<BlockNode*> BA : Blocks)
953     recordDefsForDF(PhiM, BA);
954   for (NodeAddr<BlockNode*> BA : Blocks)
955     buildPhis(PhiM, AllRefs, BA);
956
957   // Link all the refs. This will recursively traverse the dominator tree.
958   DefStackMap DM;
959   linkBlockRefs(DM, EA);
960
961   // Finally, remove all unused phi nodes.
962   if (!(Options & BuildOptions::KeepDeadPhis))
963     removeUnusedPhis();
964 }
965
966 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
967   assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
968          Register::isPhysicalRegister(Reg));
969   assert(Reg != 0);
970   if (Sub != 0)
971     Reg = TRI.getSubReg(Reg, Sub);
972   return RegisterRef(Reg);
973 }
974
975 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
976   assert(Op.isReg() || Op.isRegMask());
977   if (Op.isReg())
978     return makeRegRef(Op.getReg(), Op.getSubReg());
979   return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
980 }
981
982 RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const {
983   if (AR.Reg == BR.Reg) {
984     LaneBitmask M = AR.Mask & BR.Mask;
985     return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef();
986   }
987 #ifndef NDEBUG
988 //  RegisterRef NAR = PRI.normalize(AR);
989 //  RegisterRef NBR = PRI.normalize(BR);
990 //  assert(NAR.Reg != NBR.Reg);
991 #endif
992   // This isn't strictly correct, because the overlap may happen in the
993   // part masked out.
994   if (PRI.alias(AR, BR))
995     return AR;
996   return RegisterRef();
997 }
998
999 // For each stack in the map DefM, push the delimiter for block B on it.
1000 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
1001   // Push block delimiters.
1002   for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1003     I->second.start_block(B);
1004 }
1005
1006 // Remove all definitions coming from block B from each stack in DefM.
1007 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
1008   // Pop all defs from this block from the definition stack. Defs that were
1009   // added to the map during the traversal of instructions will not have a
1010   // delimiter, but for those, the whole stack will be emptied.
1011   for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1012     I->second.clear_block(B);
1013
1014   // Finally, remove empty stacks from the map.
1015   for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
1016     NextI = std::next(I);
1017     // This preserves the validity of iterators other than I.
1018     if (I->second.empty())
1019       DefM.erase(I);
1020   }
1021 }
1022
1023 // Push all definitions from the instruction node IA to an appropriate
1024 // stack in DefM.
1025 void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1026   pushClobbers(IA, DefM);
1027   pushDefs(IA, DefM);
1028 }
1029
1030 // Push all definitions from the instruction node IA to an appropriate
1031 // stack in DefM.
1032 void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1033   NodeSet Visited;
1034   std::set<RegisterId> Defined;
1035
1036   // The important objectives of this function are:
1037   // - to be able to handle instructions both while the graph is being
1038   //   constructed, and after the graph has been constructed, and
1039   // - maintain proper ordering of definitions on the stack for each
1040   //   register reference:
1041   //   - if there are two or more related defs in IA (i.e. coming from
1042   //     the same machine operand), then only push one def on the stack,
1043   //   - if there are multiple unrelated defs of non-overlapping
1044   //     subregisters of S, then the stack for S will have both (in an
1045   //     unspecified order), but the order does not matter from the data-
1046   //     -flow perspective.
1047
1048   for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1049     if (Visited.count(DA.Id))
1050       continue;
1051     if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
1052       continue;
1053
1054     NodeList Rel = getRelatedRefs(IA, DA);
1055     NodeAddr<DefNode*> PDA = Rel.front();
1056     RegisterRef RR = PDA.Addr->getRegRef(*this);
1057
1058     // Push the definition on the stack for the register and all aliases.
1059     // The def stack traversal in linkNodeUp will check the exact aliasing.
1060     DefM[RR.Reg].push(DA);
1061     Defined.insert(RR.Reg);
1062     for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1063       // Check that we don't push the same def twice.
1064       assert(A != RR.Reg);
1065       if (!Defined.count(A))
1066         DefM[A].push(DA);
1067     }
1068     // Mark all the related defs as visited.
1069     for (NodeAddr<NodeBase*> T : Rel)
1070       Visited.insert(T.Id);
1071   }
1072 }
1073
1074 // Push all definitions from the instruction node IA to an appropriate
1075 // stack in DefM.
1076 void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1077   NodeSet Visited;
1078 #ifndef NDEBUG
1079   std::set<RegisterId> Defined;
1080 #endif
1081
1082   // The important objectives of this function are:
1083   // - to be able to handle instructions both while the graph is being
1084   //   constructed, and after the graph has been constructed, and
1085   // - maintain proper ordering of definitions on the stack for each
1086   //   register reference:
1087   //   - if there are two or more related defs in IA (i.e. coming from
1088   //     the same machine operand), then only push one def on the stack,
1089   //   - if there are multiple unrelated defs of non-overlapping
1090   //     subregisters of S, then the stack for S will have both (in an
1091   //     unspecified order), but the order does not matter from the data-
1092   //     -flow perspective.
1093
1094   for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1095     if (Visited.count(DA.Id))
1096       continue;
1097     if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
1098       continue;
1099
1100     NodeList Rel = getRelatedRefs(IA, DA);
1101     NodeAddr<DefNode*> PDA = Rel.front();
1102     RegisterRef RR = PDA.Addr->getRegRef(*this);
1103 #ifndef NDEBUG
1104     // Assert if the register is defined in two or more unrelated defs.
1105     // This could happen if there are two or more def operands defining it.
1106     if (!Defined.insert(RR.Reg).second) {
1107       MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
1108       dbgs() << "Multiple definitions of register: "
1109              << Print<RegisterRef>(RR, *this) << " in\n  " << *MI << "in "
1110              << printMBBReference(*MI->getParent()) << '\n';
1111       llvm_unreachable(nullptr);
1112     }
1113 #endif
1114     // Push the definition on the stack for the register and all aliases.
1115     // The def stack traversal in linkNodeUp will check the exact aliasing.
1116     DefM[RR.Reg].push(DA);
1117     for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1118       // Check that we don't push the same def twice.
1119       assert(A != RR.Reg);
1120       DefM[A].push(DA);
1121     }
1122     // Mark all the related defs as visited.
1123     for (NodeAddr<NodeBase*> T : Rel)
1124       Visited.insert(T.Id);
1125   }
1126 }
1127
1128 // Return the list of all reference nodes related to RA, including RA itself.
1129 // See "getNextRelated" for the meaning of a "related reference".
1130 NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
1131       NodeAddr<RefNode*> RA) const {
1132   assert(IA.Id != 0 && RA.Id != 0);
1133
1134   NodeList Refs;
1135   NodeId Start = RA.Id;
1136   do {
1137     Refs.push_back(RA);
1138     RA = getNextRelated(IA, RA);
1139   } while (RA.Id != 0 && RA.Id != Start);
1140   return Refs;
1141 }
1142
1143 // Clear all information in the graph.
1144 void DataFlowGraph::reset() {
1145   Memory.clear();
1146   BlockNodes.clear();
1147   Func = NodeAddr<FuncNode*>();
1148 }
1149
1150 // Return the next reference node in the instruction node IA that is related
1151 // to RA. Conceptually, two reference nodes are related if they refer to the
1152 // same instance of a register access, but differ in flags or other minor
1153 // characteristics. Specific examples of related nodes are shadow reference
1154 // nodes.
1155 // Return the equivalent of nullptr if there are no more related references.
1156 NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
1157       NodeAddr<RefNode*> RA) const {
1158   assert(IA.Id != 0 && RA.Id != 0);
1159
1160   auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
1161     if (TA.Addr->getKind() != RA.Addr->getKind())
1162       return false;
1163     if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
1164       return false;
1165     return true;
1166   };
1167   auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1168     return Related(TA) &&
1169            &RA.Addr->getOp() == &TA.Addr->getOp();
1170   };
1171   auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1172     if (!Related(TA))
1173       return false;
1174     if (TA.Addr->getKind() != NodeAttrs::Use)
1175       return true;
1176     // For phi uses, compare predecessor blocks.
1177     const NodeAddr<const PhiUseNode*> TUA = TA;
1178     const NodeAddr<const PhiUseNode*> RUA = RA;
1179     return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
1180   };
1181
1182   RegisterRef RR = RA.Addr->getRegRef(*this);
1183   if (IA.Addr->getKind() == NodeAttrs::Stmt)
1184     return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
1185   return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
1186 }
1187
1188 // Find the next node related to RA in IA that satisfies condition P.
1189 // If such a node was found, return a pair where the second element is the
1190 // located node. If such a node does not exist, return a pair where the
1191 // first element is the element after which such a node should be inserted,
1192 // and the second element is a null-address.
1193 template <typename Predicate>
1194 std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
1195 DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
1196       Predicate P) const {
1197   assert(IA.Id != 0 && RA.Id != 0);
1198
1199   NodeAddr<RefNode*> NA;
1200   NodeId Start = RA.Id;
1201   while (true) {
1202     NA = getNextRelated(IA, RA);
1203     if (NA.Id == 0 || NA.Id == Start)
1204       break;
1205     if (P(NA))
1206       break;
1207     RA = NA;
1208   }
1209
1210   if (NA.Id != 0 && NA.Id != Start)
1211     return std::make_pair(RA, NA);
1212   return std::make_pair(RA, NodeAddr<RefNode*>());
1213 }
1214
1215 // Get the next shadow node in IA corresponding to RA, and optionally create
1216 // such a node if it does not exist.
1217 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1218       NodeAddr<RefNode*> RA, bool Create) {
1219   assert(IA.Id != 0 && RA.Id != 0);
1220
1221   uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1222   auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1223     return TA.Addr->getFlags() == Flags;
1224   };
1225   auto Loc = locateNextRef(IA, RA, IsShadow);
1226   if (Loc.second.Id != 0 || !Create)
1227     return Loc.second;
1228
1229   // Create a copy of RA and mark is as shadow.
1230   NodeAddr<RefNode*> NA = cloneNode(RA);
1231   NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1232   IA.Addr->addMemberAfter(Loc.first, NA, *this);
1233   return NA;
1234 }
1235
1236 // Get the next shadow node in IA corresponding to RA. Return null-address
1237 // if such a node does not exist.
1238 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1239       NodeAddr<RefNode*> RA) const {
1240   assert(IA.Id != 0 && RA.Id != 0);
1241   uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1242   auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1243     return TA.Addr->getFlags() == Flags;
1244   };
1245   return locateNextRef(IA, RA, IsShadow).second;
1246 }
1247
1248 // Create a new statement node in the block node BA that corresponds to
1249 // the machine instruction MI.
1250 void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
1251   NodeAddr<StmtNode*> SA = newStmt(BA, &In);
1252
1253   auto isCall = [] (const MachineInstr &In) -> bool {
1254     if (In.isCall())
1255       return true;
1256     // Is tail call?
1257     if (In.isBranch()) {
1258       for (const MachineOperand &Op : In.operands())
1259         if (Op.isGlobal() || Op.isSymbol())
1260           return true;
1261       // Assume indirect branches are calls. This is for the purpose of
1262       // keeping implicit operands, and so it won't hurt on intra-function
1263       // indirect branches.
1264       if (In.isIndirectBranch())
1265         return true;
1266     }
1267     return false;
1268   };
1269
1270   auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
1271     // This instruction defines DR. Check if there is a use operand that
1272     // would make DR live on entry to the instruction.
1273     for (const MachineOperand &Op : In.operands()) {
1274       if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
1275         continue;
1276       RegisterRef UR = makeRegRef(Op);
1277       if (PRI.alias(DR, UR))
1278         return false;
1279     }
1280     return true;
1281   };
1282
1283   bool IsCall = isCall(In);
1284   unsigned NumOps = In.getNumOperands();
1285
1286   // Avoid duplicate implicit defs. This will not detect cases of implicit
1287   // defs that define registers that overlap, but it is not clear how to
1288   // interpret that in the absence of explicit defs. Overlapping explicit
1289   // defs are likely illegal already.
1290   BitVector DoneDefs(TRI.getNumRegs());
1291   // Process explicit defs first.
1292   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1293     MachineOperand &Op = In.getOperand(OpN);
1294     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1295       continue;
1296     Register R = Op.getReg();
1297     if (!R || !Register::isPhysicalRegister(R))
1298       continue;
1299     uint16_t Flags = NodeAttrs::None;
1300     if (TOI.isPreserving(In, OpN)) {
1301       Flags |= NodeAttrs::Preserving;
1302       // If the def is preserving, check if it is also undefined.
1303       if (isDefUndef(In, makeRegRef(Op)))
1304         Flags |= NodeAttrs::Undef;
1305     }
1306     if (TOI.isClobbering(In, OpN))
1307       Flags |= NodeAttrs::Clobbering;
1308     if (TOI.isFixedReg(In, OpN))
1309       Flags |= NodeAttrs::Fixed;
1310     if (IsCall && Op.isDead())
1311       Flags |= NodeAttrs::Dead;
1312     NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1313     SA.Addr->addMember(DA, *this);
1314     assert(!DoneDefs.test(R));
1315     DoneDefs.set(R);
1316   }
1317
1318   // Process reg-masks (as clobbers).
1319   BitVector DoneClobbers(TRI.getNumRegs());
1320   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1321     MachineOperand &Op = In.getOperand(OpN);
1322     if (!Op.isRegMask())
1323       continue;
1324     uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
1325                      NodeAttrs::Dead;
1326     NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1327     SA.Addr->addMember(DA, *this);
1328     // Record all clobbered registers in DoneDefs.
1329     const uint32_t *RM = Op.getRegMask();
1330     for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
1331       if (!(RM[i/32] & (1u << (i%32))))
1332         DoneClobbers.set(i);
1333   }
1334
1335   // Process implicit defs, skipping those that have already been added
1336   // as explicit.
1337   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1338     MachineOperand &Op = In.getOperand(OpN);
1339     if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1340       continue;
1341     Register R = Op.getReg();
1342     if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R))
1343       continue;
1344     RegisterRef RR = makeRegRef(Op);
1345     uint16_t Flags = NodeAttrs::None;
1346     if (TOI.isPreserving(In, OpN)) {
1347       Flags |= NodeAttrs::Preserving;
1348       // If the def is preserving, check if it is also undefined.
1349       if (isDefUndef(In, RR))
1350         Flags |= NodeAttrs::Undef;
1351     }
1352     if (TOI.isClobbering(In, OpN))
1353       Flags |= NodeAttrs::Clobbering;
1354     if (TOI.isFixedReg(In, OpN))
1355       Flags |= NodeAttrs::Fixed;
1356     if (IsCall && Op.isDead()) {
1357       if (DoneClobbers.test(R))
1358         continue;
1359       Flags |= NodeAttrs::Dead;
1360     }
1361     NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1362     SA.Addr->addMember(DA, *this);
1363     DoneDefs.set(R);
1364   }
1365
1366   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1367     MachineOperand &Op = In.getOperand(OpN);
1368     if (!Op.isReg() || !Op.isUse())
1369       continue;
1370     Register R = Op.getReg();
1371     if (!R || !Register::isPhysicalRegister(R))
1372       continue;
1373     uint16_t Flags = NodeAttrs::None;
1374     if (Op.isUndef())
1375       Flags |= NodeAttrs::Undef;
1376     if (TOI.isFixedReg(In, OpN))
1377       Flags |= NodeAttrs::Fixed;
1378     NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
1379     SA.Addr->addMember(UA, *this);
1380   }
1381 }
1382
1383 // Scan all defs in the block node BA and record in PhiM the locations of
1384 // phi nodes corresponding to these defs.
1385 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
1386       NodeAddr<BlockNode*> BA) {
1387   // Check all defs from block BA and record them in each block in BA's
1388   // iterated dominance frontier. This information will later be used to
1389   // create phi nodes.
1390   MachineBasicBlock *BB = BA.Addr->getCode();
1391   assert(BB);
1392   auto DFLoc = MDF.find(BB);
1393   if (DFLoc == MDF.end() || DFLoc->second.empty())
1394     return;
1395
1396   // Traverse all instructions in the block and collect the set of all
1397   // defined references. For each reference there will be a phi created
1398   // in the block's iterated dominance frontier.
1399   // This is done to make sure that each defined reference gets only one
1400   // phi node, even if it is defined multiple times.
1401   RegisterSet Defs;
1402   for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
1403     for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
1404       Defs.insert(RA.Addr->getRegRef(*this));
1405
1406   // Calculate the iterated dominance frontier of BB.
1407   const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1408   SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
1409   for (unsigned i = 0; i < IDF.size(); ++i) {
1410     auto F = MDF.find(IDF[i]);
1411     if (F != MDF.end())
1412       IDF.insert(F->second.begin(), F->second.end());
1413   }
1414
1415   // Finally, add the set of defs to each block in the iterated dominance
1416   // frontier.
1417   for (auto DB : IDF) {
1418     NodeAddr<BlockNode*> DBA = findBlock(DB);
1419     PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
1420   }
1421 }
1422
1423 // Given the locations of phi nodes in the map PhiM, create the phi nodes
1424 // that are located in the block node BA.
1425 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
1426       NodeAddr<BlockNode*> BA) {
1427   // Check if this blocks has any DF defs, i.e. if there are any defs
1428   // that this block is in the iterated dominance frontier of.
1429   auto HasDF = PhiM.find(BA.Id);
1430   if (HasDF == PhiM.end() || HasDF->second.empty())
1431     return;
1432
1433   // First, remove all R in Refs in such that there exists T in Refs
1434   // such that T covers R. In other words, only leave those refs that
1435   // are not covered by another ref (i.e. maximal with respect to covering).
1436
1437   auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
1438     for (RegisterRef I : RRs)
1439       if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
1440         RR = I;
1441     return RR;
1442   };
1443
1444   RegisterSet MaxDF;
1445   for (RegisterRef I : HasDF->second)
1446     MaxDF.insert(MaxCoverIn(I, HasDF->second));
1447
1448   std::vector<RegisterRef> MaxRefs;
1449   for (RegisterRef I : MaxDF)
1450     MaxRefs.push_back(MaxCoverIn(I, AllRefs));
1451
1452   // Now, for each R in MaxRefs, get the alias closure of R. If the closure
1453   // only has R in it, create a phi a def for R. Otherwise, create a phi,
1454   // and add a def for each S in the closure.
1455
1456   // Sort the refs so that the phis will be created in a deterministic order.
1457   llvm::sort(MaxRefs);
1458   // Remove duplicates.
1459   auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
1460   MaxRefs.erase(NewEnd, MaxRefs.end());
1461
1462   auto Aliased = [this,&MaxRefs](RegisterRef RR,
1463                                  std::vector<unsigned> &Closure) -> bool {
1464     for (unsigned I : Closure)
1465       if (PRI.alias(RR, MaxRefs[I]))
1466         return true;
1467     return false;
1468   };
1469
1470   // Prepare a list of NodeIds of the block's predecessors.
1471   NodeList Preds;
1472   const MachineBasicBlock *MBB = BA.Addr->getCode();
1473   for (MachineBasicBlock *PB : MBB->predecessors())
1474     Preds.push_back(findBlock(PB));
1475
1476   while (!MaxRefs.empty()) {
1477     // Put the first element in the closure, and then add all subsequent
1478     // elements from MaxRefs to it, if they alias at least one element
1479     // already in the closure.
1480     // ClosureIdx: vector of indices in MaxRefs of members of the closure.
1481     std::vector<unsigned> ClosureIdx = { 0 };
1482     for (unsigned i = 1; i != MaxRefs.size(); ++i)
1483       if (Aliased(MaxRefs[i], ClosureIdx))
1484         ClosureIdx.push_back(i);
1485
1486     // Build a phi for the closure.
1487     unsigned CS = ClosureIdx.size();
1488     NodeAddr<PhiNode*> PA = newPhi(BA);
1489
1490     // Add defs.
1491     for (unsigned X = 0; X != CS; ++X) {
1492       RegisterRef RR = MaxRefs[ClosureIdx[X]];
1493       uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1494       NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
1495       PA.Addr->addMember(DA, *this);
1496     }
1497     // Add phi uses.
1498     for (NodeAddr<BlockNode*> PBA : Preds) {
1499       for (unsigned X = 0; X != CS; ++X) {
1500         RegisterRef RR = MaxRefs[ClosureIdx[X]];
1501         NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
1502         PA.Addr->addMember(PUA, *this);
1503       }
1504     }
1505
1506     // Erase from MaxRefs all elements in the closure.
1507     auto Begin = MaxRefs.begin();
1508     for (unsigned i = ClosureIdx.size(); i != 0; --i)
1509       MaxRefs.erase(Begin + ClosureIdx[i-1]);
1510   }
1511 }
1512
1513 // Remove any unneeded phi nodes that were created during the build process.
1514 void DataFlowGraph::removeUnusedPhis() {
1515   // This will remove unused phis, i.e. phis where each def does not reach
1516   // any uses or other defs. This will not detect or remove circular phi
1517   // chains that are otherwise dead. Unused/dead phis are created during
1518   // the build process and this function is intended to remove these cases
1519   // that are easily determinable to be unnecessary.
1520
1521   SetVector<NodeId> PhiQ;
1522   for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
1523     for (auto P : BA.Addr->members_if(IsPhi, *this))
1524       PhiQ.insert(P.Id);
1525   }
1526
1527   static auto HasUsedDef = [](NodeList &Ms) -> bool {
1528     for (NodeAddr<NodeBase*> M : Ms) {
1529       if (M.Addr->getKind() != NodeAttrs::Def)
1530         continue;
1531       NodeAddr<DefNode*> DA = M;
1532       if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1533         return true;
1534     }
1535     return false;
1536   };
1537
1538   // Any phi, if it is removed, may affect other phis (make them dead).
1539   // For each removed phi, collect the potentially affected phis and add
1540   // them back to the queue.
1541   while (!PhiQ.empty()) {
1542     auto PA = addr<PhiNode*>(PhiQ[0]);
1543     PhiQ.remove(PA.Id);
1544     NodeList Refs = PA.Addr->members(*this);
1545     if (HasUsedDef(Refs))
1546       continue;
1547     for (NodeAddr<RefNode*> RA : Refs) {
1548       if (NodeId RD = RA.Addr->getReachingDef()) {
1549         auto RDA = addr<DefNode*>(RD);
1550         NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
1551         if (IsPhi(OA))
1552           PhiQ.insert(OA.Id);
1553       }
1554       if (RA.Addr->isDef())
1555         unlinkDef(RA, true);
1556       else
1557         unlinkUse(RA, true);
1558     }
1559     NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
1560     BA.Addr->removeMember(PA, *this);
1561   }
1562 }
1563
1564 // For a given reference node TA in an instruction node IA, connect the
1565 // reaching def of TA to the appropriate def node. Create any shadow nodes
1566 // as appropriate.
1567 template <typename T>
1568 void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
1569       DefStack &DS) {
1570   if (DS.empty())
1571     return;
1572   RegisterRef RR = TA.Addr->getRegRef(*this);
1573   NodeAddr<T> TAP;
1574
1575   // References from the def stack that have been examined so far.
1576   RegisterAggr Defs(PRI);
1577
1578   for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
1579     RegisterRef QR = I->Addr->getRegRef(*this);
1580
1581     // Skip all defs that are aliased to any of the defs that we have already
1582     // seen. If this completes a cover of RR, stop the stack traversal.
1583     bool Alias = Defs.hasAliasOf(QR);
1584     bool Cover = Defs.insert(QR).hasCoverOf(RR);
1585     if (Alias) {
1586       if (Cover)
1587         break;
1588       continue;
1589     }
1590
1591     // The reaching def.
1592     NodeAddr<DefNode*> RDA = *I;
1593
1594     // Pick the reached node.
1595     if (TAP.Id == 0) {
1596       TAP = TA;
1597     } else {
1598       // Mark the existing ref as "shadow" and create a new shadow.
1599       TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1600       TAP = getNextShadow(IA, TAP, true);
1601     }
1602
1603     // Create the link.
1604     TAP.Addr->linkToDef(TAP.Id, RDA);
1605
1606     if (Cover)
1607       break;
1608   }
1609 }
1610
1611 // Create data-flow links for all reference nodes in the statement node SA.
1612 template <typename Predicate>
1613 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
1614       Predicate P) {
1615 #ifndef NDEBUG
1616   RegisterSet Defs;
1617 #endif
1618
1619   // Link all nodes (upwards in the data-flow) with their reaching defs.
1620   for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
1621     uint16_t Kind = RA.Addr->getKind();
1622     assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
1623     RegisterRef RR = RA.Addr->getRegRef(*this);
1624 #ifndef NDEBUG
1625     // Do not expect multiple defs of the same reference.
1626     assert(Kind != NodeAttrs::Def || !Defs.count(RR));
1627     Defs.insert(RR);
1628 #endif
1629
1630     auto F = DefM.find(RR.Reg);
1631     if (F == DefM.end())
1632       continue;
1633     DefStack &DS = F->second;
1634     if (Kind == NodeAttrs::Use)
1635       linkRefUp<UseNode*>(SA, RA, DS);
1636     else if (Kind == NodeAttrs::Def)
1637       linkRefUp<DefNode*>(SA, RA, DS);
1638     else
1639       llvm_unreachable("Unexpected node in instruction");
1640   }
1641 }
1642
1643 // Create data-flow links for all instructions in the block node BA. This
1644 // will include updating any phi nodes in BA.
1645 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
1646   // Push block delimiters.
1647   markBlock(BA.Id, DefM);
1648
1649   auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1650     return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
1651   };
1652   auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1653     return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
1654   };
1655
1656   assert(BA.Addr && "block node address is needed to create a data-flow link");
1657   // For each non-phi instruction in the block, link all the defs and uses
1658   // to their reaching defs. For any member of the block (including phis),
1659   // push the defs on the corresponding stacks.
1660   for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
1661     // Ignore phi nodes here. They will be linked part by part from the
1662     // predecessors.
1663     if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1664       linkStmtRefs(DefM, IA, IsUse);
1665       linkStmtRefs(DefM, IA, IsClobber);
1666     }
1667
1668     // Push the definitions on the stack.
1669     pushClobbers(IA, DefM);
1670
1671     if (IA.Addr->getKind() == NodeAttrs::Stmt)
1672       linkStmtRefs(DefM, IA, IsNoClobber);
1673
1674     pushDefs(IA, DefM);
1675   }
1676
1677   // Recursively process all children in the dominator tree.
1678   MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1679   for (auto I : *N) {
1680     MachineBasicBlock *SB = I->getBlock();
1681     NodeAddr<BlockNode*> SBA = findBlock(SB);
1682     linkBlockRefs(DefM, SBA);
1683   }
1684
1685   // Link the phi uses from the successor blocks.
1686   auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
1687     if (NA.Addr->getKind() != NodeAttrs::Use)
1688       return false;
1689     assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1690     NodeAddr<PhiUseNode*> PUA = NA;
1691     return PUA.Addr->getPredecessor() == BA.Id;
1692   };
1693
1694   RegisterSet EHLiveIns = getLandingPadLiveIns();
1695   MachineBasicBlock *MBB = BA.Addr->getCode();
1696
1697   for (MachineBasicBlock *SB : MBB->successors()) {
1698     bool IsEHPad = SB->isEHPad();
1699     NodeAddr<BlockNode*> SBA = findBlock(SB);
1700     for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
1701       // Do not link phi uses for landing pad live-ins.
1702       if (IsEHPad) {
1703         // Find what register this phi is for.
1704         NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
1705         assert(RA.Id != 0);
1706         if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
1707           continue;
1708       }
1709       // Go over each phi use associated with MBB, and link it.
1710       for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1711         NodeAddr<PhiUseNode*> PUA = U;
1712         RegisterRef RR = PUA.Addr->getRegRef(*this);
1713         linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
1714       }
1715     }
1716   }
1717
1718   // Pop all defs from this block from the definition stacks.
1719   releaseBlock(BA.Id, DefM);
1720 }
1721
1722 // Remove the use node UA from any data-flow and structural links.
1723 void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
1724   NodeId RD = UA.Addr->getReachingDef();
1725   NodeId Sib = UA.Addr->getSibling();
1726
1727   if (RD == 0) {
1728     assert(Sib == 0);
1729     return;
1730   }
1731
1732   auto RDA = addr<DefNode*>(RD);
1733   auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
1734   if (TA.Id == UA.Id) {
1735     RDA.Addr->setReachedUse(Sib);
1736     return;
1737   }
1738
1739   while (TA.Id != 0) {
1740     NodeId S = TA.Addr->getSibling();
1741     if (S == UA.Id) {
1742       TA.Addr->setSibling(UA.Addr->getSibling());
1743       return;
1744     }
1745     TA = addr<UseNode*>(S);
1746   }
1747 }
1748
1749 // Remove the def node DA from any data-flow and structural links.
1750 void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
1751   //
1752   //         RD
1753   //         | reached
1754   //         | def
1755   //         :
1756   //         .
1757   //        +----+
1758   // ... -- | DA | -- ... -- 0  : sibling chain of DA
1759   //        +----+
1760   //         |  | reached
1761   //         |  : def
1762   //         |  .
1763   //         | ...  : Siblings (defs)
1764   //         |
1765   //         : reached
1766   //         . use
1767   //        ... : sibling chain of reached uses
1768
1769   NodeId RD = DA.Addr->getReachingDef();
1770
1771   // Visit all siblings of the reached def and reset their reaching defs.
1772   // Also, defs reached by DA are now "promoted" to being reached by RD,
1773   // so all of them will need to be spliced into the sibling chain where
1774   // DA belongs.
1775   auto getAllNodes = [this] (NodeId N) -> NodeList {
1776     NodeList Res;
1777     while (N) {
1778       auto RA = addr<RefNode*>(N);
1779       // Keep the nodes in the exact sibling order.
1780       Res.push_back(RA);
1781       N = RA.Addr->getSibling();
1782     }
1783     return Res;
1784   };
1785   NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1786   NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1787
1788   if (RD == 0) {
1789     for (NodeAddr<RefNode*> I : ReachedDefs)
1790       I.Addr->setSibling(0);
1791     for (NodeAddr<RefNode*> I : ReachedUses)
1792       I.Addr->setSibling(0);
1793   }
1794   for (NodeAddr<DefNode*> I : ReachedDefs)
1795     I.Addr->setReachingDef(RD);
1796   for (NodeAddr<UseNode*> I : ReachedUses)
1797     I.Addr->setReachingDef(RD);
1798
1799   NodeId Sib = DA.Addr->getSibling();
1800   if (RD == 0) {
1801     assert(Sib == 0);
1802     return;
1803   }
1804
1805   // Update the reaching def node and remove DA from the sibling list.
1806   auto RDA = addr<DefNode*>(RD);
1807   auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
1808   if (TA.Id == DA.Id) {
1809     // If DA is the first reached def, just update the RD's reached def
1810     // to the DA's sibling.
1811     RDA.Addr->setReachedDef(Sib);
1812   } else {
1813     // Otherwise, traverse the sibling list of the reached defs and remove
1814     // DA from it.
1815     while (TA.Id != 0) {
1816       NodeId S = TA.Addr->getSibling();
1817       if (S == DA.Id) {
1818         TA.Addr->setSibling(Sib);
1819         break;
1820       }
1821       TA = addr<DefNode*>(S);
1822     }
1823   }
1824
1825   // Splice the DA's reached defs into the RDA's reached def chain.
1826   if (!ReachedDefs.empty()) {
1827     auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
1828     Last.Addr->setSibling(RDA.Addr->getReachedDef());
1829     RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1830   }
1831   // Splice the DA's reached uses into the RDA's reached use chain.
1832   if (!ReachedUses.empty()) {
1833     auto Last = NodeAddr<UseNode*>(ReachedUses.back());
1834     Last.Addr->setSibling(RDA.Addr->getReachedUse());
1835     RDA.Addr->setReachedUse(ReachedUses.front().Id);
1836   }
1837 }