]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / RegAllocFast.cpp
1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RegAllocRegistry.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/MC/MCInstrDesc.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <cassert>
47 #include <tuple>
48 #include <vector>
49
50 using namespace llvm;
51
52 #define DEBUG_TYPE "regalloc"
53
54 STATISTIC(NumStores, "Number of stores added");
55 STATISTIC(NumLoads , "Number of loads added");
56 STATISTIC(NumCoalesced, "Number of copies coalesced");
57
58 static RegisterRegAlloc
59   fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
60
61 namespace {
62
63   class RegAllocFast : public MachineFunctionPass {
64   public:
65     static char ID;
66
67     RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
68
69   private:
70     MachineFrameInfo *MFI;
71     MachineRegisterInfo *MRI;
72     const TargetRegisterInfo *TRI;
73     const TargetInstrInfo *TII;
74     RegisterClassInfo RegClassInfo;
75
76     /// Basic block currently being allocated.
77     MachineBasicBlock *MBB;
78
79     /// Maps virtual regs to the frame index where these values are spilled.
80     IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
81
82     /// Everything we know about a live virtual register.
83     struct LiveReg {
84       MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
85       unsigned VirtReg;                ///< Virtual register number.
86       MCPhysReg PhysReg = 0;           ///< Currently held here.
87       unsigned short LastOpNum = 0;    ///< OpNum on LastUse.
88       bool Dirty = false;              ///< Register needs spill.
89
90       explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {}
91
92       unsigned getSparseSetIndex() const {
93         return TargetRegisterInfo::virtReg2Index(VirtReg);
94       }
95     };
96
97     using LiveRegMap = SparseSet<LiveReg>;
98     /// This map contains entries for each virtual register that is currently
99     /// available in a physical register.
100     LiveRegMap LiveVirtRegs;
101
102     DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;
103
104     /// Has a bit set for every virtual register for which it was determined
105     /// that it is alive across blocks.
106     BitVector MayLiveAcrossBlocks;
107
108     /// State of a physical register.
109     enum RegState {
110       /// A disabled register is not available for allocation, but an alias may
111       /// be in use. A register can only be moved out of the disabled state if
112       /// all aliases are disabled.
113       regDisabled,
114
115       /// A free register is not currently in use and can be allocated
116       /// immediately without checking aliases.
117       regFree,
118
119       /// A reserved register has been assigned explicitly (e.g., setting up a
120       /// call parameter), and it remains reserved until it is used.
121       regReserved
122
123       /// A register state may also be a virtual register number, indication
124       /// that the physical register is currently allocated to a virtual
125       /// register. In that case, LiveVirtRegs contains the inverse mapping.
126     };
127
128     /// Maps each physical register to a RegState enum or a virtual register.
129     std::vector<unsigned> PhysRegState;
130
131     SmallVector<unsigned, 16> VirtDead;
132     SmallVector<MachineInstr *, 32> Coalesced;
133
134     using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
135     /// Set of register units that are used in the current instruction, and so
136     /// cannot be allocated.
137     RegUnitSet UsedInInstr;
138
139     void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
140
141     /// Mark a physreg as used in this instruction.
142     void markRegUsedInInstr(MCPhysReg PhysReg) {
143       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
144         UsedInInstr.insert(*Units);
145     }
146
147     /// Check if a physreg or any of its aliases are used in this instruction.
148     bool isRegUsedInInstr(MCPhysReg PhysReg) const {
149       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
150         if (UsedInInstr.count(*Units))
151           return true;
152       return false;
153     }
154
155     enum : unsigned {
156       spillClean = 50,
157       spillDirty = 100,
158       spillPrefBonus = 20,
159       spillImpossible = ~0u
160     };
161
162   public:
163     StringRef getPassName() const override { return "Fast Register Allocator"; }
164
165     void getAnalysisUsage(AnalysisUsage &AU) const override {
166       AU.setPreservesCFG();
167       MachineFunctionPass::getAnalysisUsage(AU);
168     }
169
170     MachineFunctionProperties getRequiredProperties() const override {
171       return MachineFunctionProperties().set(
172           MachineFunctionProperties::Property::NoPHIs);
173     }
174
175     MachineFunctionProperties getSetProperties() const override {
176       return MachineFunctionProperties().set(
177           MachineFunctionProperties::Property::NoVRegs);
178     }
179
180   private:
181     bool runOnMachineFunction(MachineFunction &MF) override;
182
183     void allocateBasicBlock(MachineBasicBlock &MBB);
184     void allocateInstruction(MachineInstr &MI);
185     void handleDebugValue(MachineInstr &MI);
186     void handleThroughOperands(MachineInstr &MI,
187                                SmallVectorImpl<unsigned> &VirtDead);
188     bool isLastUseOfLocalReg(const MachineOperand &MO) const;
189
190     void addKillFlag(const LiveReg &LRI);
191     void killVirtReg(LiveReg &LR);
192     void killVirtReg(unsigned VirtReg);
193     void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR);
194     void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
195
196     void usePhysReg(MachineOperand &MO);
197     void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg,
198                        RegState NewState);
199     unsigned calcSpillCost(MCPhysReg PhysReg) const;
200     void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg);
201
202     LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
203       return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
204     }
205
206     LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
207       return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
208     }
209
210     void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint);
211     void allocVirtRegUndef(MachineOperand &MO);
212     MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
213                             unsigned Hint);
214     LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
215                            unsigned Hint);
216     void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut);
217     bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
218
219     unsigned traceCopies(unsigned VirtReg) const;
220     unsigned traceCopyChain(unsigned Reg) const;
221
222     int getStackSpaceFor(unsigned VirtReg);
223     void spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
224                MCPhysReg AssignedReg, bool Kill);
225     void reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
226                 MCPhysReg PhysReg);
227
228     bool mayLiveOut(unsigned VirtReg);
229     bool mayLiveIn(unsigned VirtReg);
230
231     void dumpState();
232   };
233
234 } // end anonymous namespace
235
236 char RegAllocFast::ID = 0;
237
238 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
239                 false)
240
241 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
242   PhysRegState[PhysReg] = NewState;
243 }
244
245 /// This allocates space for the specified virtual register to be held on the
246 /// stack.
247 int RegAllocFast::getStackSpaceFor(unsigned VirtReg) {
248   // Find the location Reg would belong...
249   int SS = StackSlotForVirtReg[VirtReg];
250   // Already has space allocated?
251   if (SS != -1)
252     return SS;
253
254   // Allocate a new stack object for this spill location...
255   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
256   unsigned Size = TRI->getSpillSize(RC);
257   unsigned Align = TRI->getSpillAlignment(RC);
258   int FrameIdx = MFI->CreateSpillStackObject(Size, Align);
259
260   // Assign the slot.
261   StackSlotForVirtReg[VirtReg] = FrameIdx;
262   return FrameIdx;
263 }
264
265 /// Returns false if \p VirtReg is known to not live out of the current block.
266 bool RegAllocFast::mayLiveOut(unsigned VirtReg) {
267   if (MayLiveAcrossBlocks.test(TargetRegisterInfo::virtReg2Index(VirtReg))) {
268     // Cannot be live-out if there are no successors.
269     return !MBB->succ_empty();
270   }
271
272   // If this block loops back to itself, it would be necessary to check whether
273   // the use comes after the def.
274   if (MBB->isSuccessor(MBB)) {
275     MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg));
276     return true;
277   }
278
279   // See if the first \p Limit uses of the register are all in the current
280   // block.
281   static const unsigned Limit = 8;
282   unsigned C = 0;
283   for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) {
284     if (UseInst.getParent() != MBB || ++C >= Limit) {
285       MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg));
286       // Cannot be live-out if there are no successors.
287       return !MBB->succ_empty();
288     }
289   }
290
291   return false;
292 }
293
294 /// Returns false if \p VirtReg is known to not be live into the current block.
295 bool RegAllocFast::mayLiveIn(unsigned VirtReg) {
296   if (MayLiveAcrossBlocks.test(TargetRegisterInfo::virtReg2Index(VirtReg)))
297     return !MBB->pred_empty();
298
299   // See if the first \p Limit def of the register are all in the current block.
300   static const unsigned Limit = 8;
301   unsigned C = 0;
302   for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
303     if (DefInst.getParent() != MBB || ++C >= Limit) {
304       MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg));
305       return !MBB->pred_empty();
306     }
307   }
308
309   return false;
310 }
311
312 /// Insert spill instruction for \p AssignedReg before \p Before. Update
313 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
314 void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
315                          MCPhysReg AssignedReg, bool Kill) {
316   LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
317                     << " in " << printReg(AssignedReg, TRI));
318   int FI = getStackSpaceFor(VirtReg);
319   LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
320
321   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
322   TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
323   ++NumStores;
324
325   // If this register is used by DBG_VALUE then insert new DBG_VALUE to
326   // identify spilled location as the place to find corresponding variable's
327   // value.
328   SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
329   for (MachineInstr *DBG : LRIDbgValues) {
330     MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
331     assert(NewDV->getParent() == MBB && "dangling parent pointer");
332     (void)NewDV;
333     LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
334   }
335   // Now this register is spilled there is should not be any DBG_VALUE
336   // pointing to this register because they are all pointing to spilled value
337   // now.
338   LRIDbgValues.clear();
339 }
340
341 /// Insert reload instruction for \p PhysReg before \p Before.
342 void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
343                           MCPhysReg PhysReg) {
344   LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
345                     << printReg(PhysReg, TRI) << '\n');
346   int FI = getStackSpaceFor(VirtReg);
347   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
348   TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
349   ++NumLoads;
350 }
351
352 /// Return true if MO is the only remaining reference to its virtual register,
353 /// and it is guaranteed to be a block-local register.
354 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const {
355   // If the register has ever been spilled or reloaded, we conservatively assume
356   // it is a global register used in multiple blocks.
357   if (StackSlotForVirtReg[MO.getReg()] != -1)
358     return false;
359
360   // Check that the use/def chain has exactly one operand - MO.
361   MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
362   if (&*I != &MO)
363     return false;
364   return ++I == MRI->reg_nodbg_end();
365 }
366
367 /// Set kill flags on last use of a virtual register.
368 void RegAllocFast::addKillFlag(const LiveReg &LR) {
369   if (!LR.LastUse) return;
370   MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
371   if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
372     if (MO.getReg() == LR.PhysReg)
373       MO.setIsKill();
374     // else, don't do anything we are problably redefining a
375     // subreg of this register and given we don't track which
376     // lanes are actually dead, we cannot insert a kill flag here.
377     // Otherwise we may end up in a situation like this:
378     // ... = (MO) physreg:sub1, implicit killed physreg
379     // ... <== Here we would allow later pass to reuse physreg:sub1
380     //         which is potentially wrong.
381     // LR:sub0 = ...
382     // ... = LR.sub1 <== This is going to use physreg:sub1
383   }
384 }
385
386 /// Mark virtreg as no longer available.
387 void RegAllocFast::killVirtReg(LiveReg &LR) {
388   addKillFlag(LR);
389   assert(PhysRegState[LR.PhysReg] == LR.VirtReg &&
390          "Broken RegState mapping");
391   setPhysRegState(LR.PhysReg, regFree);
392   LR.PhysReg = 0;
393 }
394
395 /// Mark virtreg as no longer available.
396 void RegAllocFast::killVirtReg(unsigned VirtReg) {
397   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
398          "killVirtReg needs a virtual register");
399   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
400   if (LRI != LiveVirtRegs.end() && LRI->PhysReg)
401     killVirtReg(*LRI);
402 }
403
404 /// This method spills the value specified by VirtReg into the corresponding
405 /// stack slot if needed.
406 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
407                                 unsigned VirtReg) {
408   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
409          "Spilling a physical register is illegal!");
410   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
411   assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
412          "Spilling unmapped virtual register");
413   spillVirtReg(MI, *LRI);
414 }
415
416 /// Do the actual work of spilling.
417 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) {
418   assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping");
419
420   if (LR.Dirty) {
421     // If this physreg is used by the instruction, we want to kill it on the
422     // instruction, not on the spill.
423     bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
424     LR.Dirty = false;
425
426     spill(MI, LR.VirtReg, LR.PhysReg, SpillKill);
427
428     if (SpillKill)
429       LR.LastUse = nullptr; // Don't kill register again
430   }
431   killVirtReg(LR);
432 }
433
434 /// Spill all dirty virtregs without killing them.
435 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) {
436   if (LiveVirtRegs.empty())
437     return;
438   // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
439   // of spilling here is deterministic, if arbitrary.
440   for (LiveReg &LR : LiveVirtRegs) {
441     if (!LR.PhysReg)
442       continue;
443     if (OnlyLiveOut && !mayLiveOut(LR.VirtReg))
444       continue;
445     spillVirtReg(MI, LR);
446   }
447   LiveVirtRegs.clear();
448 }
449
450 /// Handle the direct use of a physical register.  Check that the register is
451 /// not used by a virtreg. Kill the physreg, marking it free. This may add
452 /// implicit kills to MO->getParent() and invalidate MO.
453 void RegAllocFast::usePhysReg(MachineOperand &MO) {
454   // Ignore undef uses.
455   if (MO.isUndef())
456     return;
457
458   unsigned PhysReg = MO.getReg();
459   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
460          "Bad usePhysReg operand");
461
462   markRegUsedInInstr(PhysReg);
463   switch (PhysRegState[PhysReg]) {
464   case regDisabled:
465     break;
466   case regReserved:
467     PhysRegState[PhysReg] = regFree;
468     LLVM_FALLTHROUGH;
469   case regFree:
470     MO.setIsKill();
471     return;
472   default:
473     // The physreg was allocated to a virtual register. That means the value we
474     // wanted has been clobbered.
475     llvm_unreachable("Instruction uses an allocated register");
476   }
477
478   // Maybe a superregister is reserved?
479   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
480     MCPhysReg Alias = *AI;
481     switch (PhysRegState[Alias]) {
482     case regDisabled:
483       break;
484     case regReserved:
485       // Either PhysReg is a subregister of Alias and we mark the
486       // whole register as free, or PhysReg is the superregister of
487       // Alias and we mark all the aliases as disabled before freeing
488       // PhysReg.
489       // In the latter case, since PhysReg was disabled, this means that
490       // its value is defined only by physical sub-registers. This check
491       // is performed by the assert of the default case in this loop.
492       // Note: The value of the superregister may only be partial
493       // defined, that is why regDisabled is a valid state for aliases.
494       assert((TRI->isSuperRegister(PhysReg, Alias) ||
495               TRI->isSuperRegister(Alias, PhysReg)) &&
496              "Instruction is not using a subregister of a reserved register");
497       LLVM_FALLTHROUGH;
498     case regFree:
499       if (TRI->isSuperRegister(PhysReg, Alias)) {
500         // Leave the superregister in the working set.
501         setPhysRegState(Alias, regFree);
502         MO.getParent()->addRegisterKilled(Alias, TRI, true);
503         return;
504       }
505       // Some other alias was in the working set - clear it.
506       setPhysRegState(Alias, regDisabled);
507       break;
508     default:
509       llvm_unreachable("Instruction uses an alias of an allocated register");
510     }
511   }
512
513   // All aliases are disabled, bring register into working set.
514   setPhysRegState(PhysReg, regFree);
515   MO.setIsKill();
516 }
517
518 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
519 /// similar to defineVirtReg except the physreg is reserved instead of
520 /// allocated.
521 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI,
522                                  MCPhysReg PhysReg, RegState NewState) {
523   markRegUsedInInstr(PhysReg);
524   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
525   case regDisabled:
526     break;
527   default:
528     spillVirtReg(MI, VirtReg);
529     LLVM_FALLTHROUGH;
530   case regFree:
531   case regReserved:
532     setPhysRegState(PhysReg, NewState);
533     return;
534   }
535
536   // This is a disabled register, disable all aliases.
537   setPhysRegState(PhysReg, NewState);
538   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
539     MCPhysReg Alias = *AI;
540     switch (unsigned VirtReg = PhysRegState[Alias]) {
541     case regDisabled:
542       break;
543     default:
544       spillVirtReg(MI, VirtReg);
545       LLVM_FALLTHROUGH;
546     case regFree:
547     case regReserved:
548       setPhysRegState(Alias, regDisabled);
549       if (TRI->isSuperRegister(PhysReg, Alias))
550         return;
551       break;
552     }
553   }
554 }
555
556 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
557 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
558 /// disabled - it can be allocated directly.
559 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
560 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
561   if (isRegUsedInInstr(PhysReg)) {
562     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
563                       << " is already used in instr.\n");
564     return spillImpossible;
565   }
566   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
567   case regDisabled:
568     break;
569   case regFree:
570     return 0;
571   case regReserved:
572     LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding "
573                       << printReg(PhysReg, TRI) << " is reserved already.\n");
574     return spillImpossible;
575   default: {
576     LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
577     assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
578            "Missing VirtReg entry");
579     return LRI->Dirty ? spillDirty : spillClean;
580   }
581   }
582
583   // This is a disabled register, add up cost of aliases.
584   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n");
585   unsigned Cost = 0;
586   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
587     MCPhysReg Alias = *AI;
588     switch (unsigned VirtReg = PhysRegState[Alias]) {
589     case regDisabled:
590       break;
591     case regFree:
592       ++Cost;
593       break;
594     case regReserved:
595       return spillImpossible;
596     default: {
597       LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
598       assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
599              "Missing VirtReg entry");
600       Cost += LRI->Dirty ? spillDirty : spillClean;
601       break;
602     }
603     }
604   }
605   return Cost;
606 }
607
608 /// This method updates local state so that we know that PhysReg is the
609 /// proper container for VirtReg now.  The physical register must not be used
610 /// for anything else when this is called.
611 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) {
612   unsigned VirtReg = LR.VirtReg;
613   LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
614                     << printReg(PhysReg, TRI) << '\n');
615   assert(LR.PhysReg == 0 && "Already assigned a physreg");
616   assert(PhysReg != 0 && "Trying to assign no register");
617   LR.PhysReg = PhysReg;
618   setPhysRegState(PhysReg, VirtReg);
619 }
620
621 static bool isCoalescable(const MachineInstr &MI) {
622   return MI.isFullCopy();
623 }
624
625 unsigned RegAllocFast::traceCopyChain(unsigned Reg) const {
626   static const unsigned ChainLengthLimit = 3;
627   unsigned C = 0;
628   do {
629     if (TargetRegisterInfo::isPhysicalRegister(Reg))
630       return Reg;
631     assert(TargetRegisterInfo::isVirtualRegister(Reg));
632
633     MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
634     if (!VRegDef || !isCoalescable(*VRegDef))
635       return 0;
636     Reg = VRegDef->getOperand(1).getReg();
637   } while (++C <= ChainLengthLimit);
638   return 0;
639 }
640
641 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
642 /// chain of copies to check whether we reach a physical register we can
643 /// coalesce with.
644 unsigned RegAllocFast::traceCopies(unsigned VirtReg) const {
645   static const unsigned DefLimit = 3;
646   unsigned C = 0;
647   for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
648     if (isCoalescable(MI)) {
649       unsigned Reg = MI.getOperand(1).getReg();
650       Reg = traceCopyChain(Reg);
651       if (Reg != 0)
652         return Reg;
653     }
654
655     if (++C >= DefLimit)
656       break;
657   }
658   return 0;
659 }
660
661 /// Allocates a physical register for VirtReg.
662 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint0) {
663   const unsigned VirtReg = LR.VirtReg;
664
665   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
666          "Can only allocate virtual registers");
667
668   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
669   LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
670                     << " in class " << TRI->getRegClassName(&RC)
671                     << " with hint " << printReg(Hint0, TRI) << '\n');
672
673   // Take hint when possible.
674   if (TargetRegisterInfo::isPhysicalRegister(Hint0) &&
675       MRI->isAllocatable(Hint0) && RC.contains(Hint0)) {
676     // Ignore the hint if we would have to spill a dirty register.
677     unsigned Cost = calcSpillCost(Hint0);
678     if (Cost < spillDirty) {
679       LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
680                         << '\n');
681       if (Cost)
682         definePhysReg(MI, Hint0, regFree);
683       assignVirtToPhysReg(LR, Hint0);
684       return;
685     } else {
686       LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
687                         << "occupied\n");
688     }
689   } else {
690     Hint0 = 0;
691   }
692
693   // Try other hint.
694   unsigned Hint1 = traceCopies(VirtReg);
695   if (TargetRegisterInfo::isPhysicalRegister(Hint1) &&
696       MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
697       !isRegUsedInInstr(Hint1)) {
698     // Ignore the hint if we would have to spill a dirty register.
699     unsigned Cost = calcSpillCost(Hint1);
700     if (Cost < spillDirty) {
701       LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
702                         << '\n');
703       if (Cost)
704         definePhysReg(MI, Hint1, regFree);
705       assignVirtToPhysReg(LR, Hint1);
706       return;
707     } else {
708       LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
709                         << "occupied\n");
710     }
711   } else {
712     Hint1 = 0;
713   }
714
715   MCPhysReg BestReg = 0;
716   unsigned BestCost = spillImpossible;
717   ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
718   for (MCPhysReg PhysReg : AllocationOrder) {
719     LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
720     unsigned Cost = calcSpillCost(PhysReg);
721     LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
722     // Immediate take a register with cost 0.
723     if (Cost == 0) {
724       assignVirtToPhysReg(LR, PhysReg);
725       return;
726     }
727
728     if (PhysReg == Hint1 || PhysReg == Hint0)
729       Cost -= spillPrefBonus;
730
731     if (Cost < BestCost) {
732       BestReg = PhysReg;
733       BestCost = Cost;
734     }
735   }
736
737   if (!BestReg) {
738     // Nothing we can do: Report an error and keep going with an invalid
739     // allocation.
740     if (MI.isInlineAsm())
741       MI.emitError("inline assembly requires more registers than available");
742     else
743       MI.emitError("ran out of registers during register allocation");
744     definePhysReg(MI, *AllocationOrder.begin(), regFree);
745     assignVirtToPhysReg(LR, *AllocationOrder.begin());
746     return;
747   }
748
749   definePhysReg(MI, BestReg, regFree);
750   assignVirtToPhysReg(LR, BestReg);
751 }
752
753 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
754   assert(MO.isUndef() && "expected undef use");
755   unsigned VirtReg = MO.getReg();
756   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Expected virtreg");
757
758   LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
759   MCPhysReg PhysReg;
760   if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
761     PhysReg = LRI->PhysReg;
762   } else {
763     const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
764     ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
765     assert(!AllocationOrder.empty() && "Allocation order must not be empty");
766     PhysReg = AllocationOrder[0];
767   }
768
769   unsigned SubRegIdx = MO.getSubReg();
770   if (SubRegIdx != 0) {
771     PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
772     MO.setSubReg(0);
773   }
774   MO.setReg(PhysReg);
775   MO.setIsRenamable(true);
776 }
777
778 /// Allocates a register for VirtReg and mark it as dirty.
779 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
780                                       unsigned VirtReg, unsigned Hint) {
781   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
782          "Not a virtual register");
783   LiveRegMap::iterator LRI;
784   bool New;
785   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
786   if (!LRI->PhysReg) {
787     // If there is no hint, peek at the only use of this register.
788     if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
789         MRI->hasOneNonDBGUse(VirtReg)) {
790       const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
791       // It's a copy, use the destination register as a hint.
792       if (UseMI.isCopyLike())
793         Hint = UseMI.getOperand(0).getReg();
794     }
795     allocVirtReg(MI, *LRI, Hint);
796   } else if (LRI->LastUse) {
797     // Redefining a live register - kill at the last use, unless it is this
798     // instruction defining VirtReg multiple times.
799     if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
800       addKillFlag(*LRI);
801   }
802   assert(LRI->PhysReg && "Register not assigned");
803   LRI->LastUse = &MI;
804   LRI->LastOpNum = OpNum;
805   LRI->Dirty = true;
806   markRegUsedInInstr(LRI->PhysReg);
807   return LRI->PhysReg;
808 }
809
810 /// Make sure VirtReg is available in a physreg and return it.
811 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI,
812                                                    unsigned OpNum,
813                                                    unsigned VirtReg,
814                                                    unsigned Hint) {
815   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
816          "Not a virtual register");
817   LiveRegMap::iterator LRI;
818   bool New;
819   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
820   MachineOperand &MO = MI.getOperand(OpNum);
821   if (!LRI->PhysReg) {
822     allocVirtReg(MI, *LRI, Hint);
823     reload(MI, VirtReg, LRI->PhysReg);
824   } else if (LRI->Dirty) {
825     if (isLastUseOfLocalReg(MO)) {
826       LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n');
827       if (MO.isUse())
828         MO.setIsKill();
829       else
830         MO.setIsDead();
831     } else if (MO.isKill()) {
832       LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n');
833       MO.setIsKill(false);
834     } else if (MO.isDead()) {
835       LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n');
836       MO.setIsDead(false);
837     }
838   } else if (MO.isKill()) {
839     // We must remove kill flags from uses of reloaded registers because the
840     // register would be killed immediately, and there might be a second use:
841     //   %foo = OR killed %x, %x
842     // This would cause a second reload of %x into a different register.
843     LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n');
844     MO.setIsKill(false);
845   } else if (MO.isDead()) {
846     LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n');
847     MO.setIsDead(false);
848   }
849   assert(LRI->PhysReg && "Register not assigned");
850   LRI->LastUse = &MI;
851   LRI->LastOpNum = OpNum;
852   markRegUsedInInstr(LRI->PhysReg);
853   return *LRI;
854 }
855
856 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
857 /// may invalidate any operand pointers.  Return true if the operand kills its
858 /// register.
859 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
860                               MCPhysReg PhysReg) {
861   bool Dead = MO.isDead();
862   if (!MO.getSubReg()) {
863     MO.setReg(PhysReg);
864     MO.setIsRenamable(true);
865     return MO.isKill() || Dead;
866   }
867
868   // Handle subregister index.
869   MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
870   MO.setIsRenamable(true);
871   MO.setSubReg(0);
872
873   // A kill flag implies killing the full register. Add corresponding super
874   // register kill.
875   if (MO.isKill()) {
876     MI.addRegisterKilled(PhysReg, TRI, true);
877     return true;
878   }
879
880   // A <def,read-undef> of a sub-register requires an implicit def of the full
881   // register.
882   if (MO.isDef() && MO.isUndef())
883     MI.addRegisterDefined(PhysReg, TRI);
884
885   return Dead;
886 }
887
888 // Handles special instruction operand like early clobbers and tied ops when
889 // there are additional physreg defines.
890 void RegAllocFast::handleThroughOperands(MachineInstr &MI,
891                                          SmallVectorImpl<unsigned> &VirtDead) {
892   LLVM_DEBUG(dbgs() << "Scanning for through registers:");
893   SmallSet<unsigned, 8> ThroughRegs;
894   for (const MachineOperand &MO : MI.operands()) {
895     if (!MO.isReg()) continue;
896     unsigned Reg = MO.getReg();
897     if (!TargetRegisterInfo::isVirtualRegister(Reg))
898       continue;
899     if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) ||
900         (MO.getSubReg() && MI.readsVirtualRegister(Reg))) {
901       if (ThroughRegs.insert(Reg).second)
902         LLVM_DEBUG(dbgs() << ' ' << printReg(Reg));
903     }
904   }
905
906   // If any physreg defines collide with preallocated through registers,
907   // we must spill and reallocate.
908   LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
909   for (const MachineOperand &MO : MI.operands()) {
910     if (!MO.isReg() || !MO.isDef()) continue;
911     unsigned Reg = MO.getReg();
912     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
913     markRegUsedInInstr(Reg);
914     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
915       if (ThroughRegs.count(PhysRegState[*AI]))
916         definePhysReg(MI, *AI, regFree);
917     }
918   }
919
920   SmallVector<unsigned, 8> PartialDefs;
921   LLVM_DEBUG(dbgs() << "Allocating tied uses.\n");
922   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
923     MachineOperand &MO = MI.getOperand(I);
924     if (!MO.isReg()) continue;
925     unsigned Reg = MO.getReg();
926     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
927     if (MO.isUse()) {
928       if (!MO.isTied()) continue;
929       LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO
930                         << ") is tied to operand " << MI.findTiedOperandIdx(I)
931                         << ".\n");
932       LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
933       MCPhysReg PhysReg = LR.PhysReg;
934       setPhysReg(MI, MO, PhysReg);
935       // Note: we don't update the def operand yet. That would cause the normal
936       // def-scan to attempt spilling.
937     } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) {
938       LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n');
939       // Reload the register, but don't assign to the operand just yet.
940       // That would confuse the later phys-def processing pass.
941       LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
942       PartialDefs.push_back(LR.PhysReg);
943     }
944   }
945
946   LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n");
947   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
948     const MachineOperand &MO = MI.getOperand(I);
949     if (!MO.isReg()) continue;
950     unsigned Reg = MO.getReg();
951     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
952     if (!MO.isEarlyClobber())
953       continue;
954     // Note: defineVirtReg may invalidate MO.
955     MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0);
956     if (setPhysReg(MI, MI.getOperand(I), PhysReg))
957       VirtDead.push_back(Reg);
958   }
959
960   // Restore UsedInInstr to a state usable for allocating normal virtual uses.
961   UsedInInstr.clear();
962   for (const MachineOperand &MO : MI.operands()) {
963     if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
964     unsigned Reg = MO.getReg();
965     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
966     LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI)
967                       << " as used in instr\n");
968     markRegUsedInInstr(Reg);
969   }
970
971   // Also mark PartialDefs as used to avoid reallocation.
972   for (unsigned PartialDef : PartialDefs)
973     markRegUsedInInstr(PartialDef);
974 }
975
976 #ifndef NDEBUG
977 void RegAllocFast::dumpState() {
978   for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
979     if (PhysRegState[Reg] == regDisabled) continue;
980     dbgs() << " " << printReg(Reg, TRI);
981     switch(PhysRegState[Reg]) {
982     case regFree:
983       break;
984     case regReserved:
985       dbgs() << "*";
986       break;
987     default: {
988       dbgs() << '=' << printReg(PhysRegState[Reg]);
989       LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]);
990       assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
991              "Missing VirtReg entry");
992       if (LRI->Dirty)
993         dbgs() << "*";
994       assert(LRI->PhysReg == Reg && "Bad inverse map");
995       break;
996     }
997     }
998   }
999   dbgs() << '\n';
1000   // Check that LiveVirtRegs is the inverse.
1001   for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
1002        e = LiveVirtRegs.end(); i != e; ++i) {
1003     if (!i->PhysReg)
1004       continue;
1005     assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
1006            "Bad map key");
1007     assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
1008            "Bad map value");
1009     assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
1010   }
1011 }
1012 #endif
1013
1014 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
1015   const MCInstrDesc &MCID = MI.getDesc();
1016
1017   // If this is a copy, we may be able to coalesce.
1018   unsigned CopySrcReg = 0;
1019   unsigned CopyDstReg = 0;
1020   unsigned CopySrcSub = 0;
1021   unsigned CopyDstSub = 0;
1022   if (MI.isCopy()) {
1023     CopyDstReg = MI.getOperand(0).getReg();
1024     CopySrcReg = MI.getOperand(1).getReg();
1025     CopyDstSub = MI.getOperand(0).getSubReg();
1026     CopySrcSub = MI.getOperand(1).getSubReg();
1027   }
1028
1029   // Track registers used by instruction.
1030   UsedInInstr.clear();
1031
1032   // First scan.
1033   // Mark physreg uses and early clobbers as used.
1034   // Find the end of the virtreg operands
1035   unsigned VirtOpEnd = 0;
1036   bool hasTiedOps = false;
1037   bool hasEarlyClobbers = false;
1038   bool hasPartialRedefs = false;
1039   bool hasPhysDefs = false;
1040   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1041     MachineOperand &MO = MI.getOperand(i);
1042     // Make sure MRI knows about registers clobbered by regmasks.
1043     if (MO.isRegMask()) {
1044       MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
1045       continue;
1046     }
1047     if (!MO.isReg()) continue;
1048     unsigned Reg = MO.getReg();
1049     if (!Reg) continue;
1050     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1051       VirtOpEnd = i+1;
1052       if (MO.isUse()) {
1053         hasTiedOps = hasTiedOps ||
1054                             MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
1055       } else {
1056         if (MO.isEarlyClobber())
1057           hasEarlyClobbers = true;
1058         if (MO.getSubReg() && MI.readsVirtualRegister(Reg))
1059           hasPartialRedefs = true;
1060       }
1061       continue;
1062     }
1063     if (!MRI->isAllocatable(Reg)) continue;
1064     if (MO.isUse()) {
1065       usePhysReg(MO);
1066     } else if (MO.isEarlyClobber()) {
1067       definePhysReg(MI, Reg,
1068                     (MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
1069       hasEarlyClobbers = true;
1070     } else
1071       hasPhysDefs = true;
1072   }
1073
1074   // The instruction may have virtual register operands that must be allocated
1075   // the same register at use-time and def-time: early clobbers and tied
1076   // operands. If there are also physical defs, these registers must avoid
1077   // both physical defs and uses, making them more constrained than normal
1078   // operands.
1079   // Similarly, if there are multiple defs and tied operands, we must make
1080   // sure the same register is allocated to uses and defs.
1081   // We didn't detect inline asm tied operands above, so just make this extra
1082   // pass for all inline asm.
1083   if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
1084       (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
1085     handleThroughOperands(MI, VirtDead);
1086     // Don't attempt coalescing when we have funny stuff going on.
1087     CopyDstReg = 0;
1088     // Pretend we have early clobbers so the use operands get marked below.
1089     // This is not necessary for the common case of a single tied use.
1090     hasEarlyClobbers = true;
1091   }
1092
1093   // Second scan.
1094   // Allocate virtreg uses.
1095   bool HasUndefUse = false;
1096   for (unsigned I = 0; I != VirtOpEnd; ++I) {
1097     MachineOperand &MO = MI.getOperand(I);
1098     if (!MO.isReg()) continue;
1099     unsigned Reg = MO.getReg();
1100     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
1101     if (MO.isUse()) {
1102       if (MO.isUndef()) {
1103         HasUndefUse = true;
1104         // There is no need to allocate a register for an undef use.
1105         continue;
1106       }
1107
1108       // Populate MayLiveAcrossBlocks in case the use block is allocated before
1109       // the def block (removing the vreg uses).
1110       mayLiveIn(Reg);
1111
1112       LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg);
1113       MCPhysReg PhysReg = LR.PhysReg;
1114       CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0;
1115       if (setPhysReg(MI, MO, PhysReg))
1116         killVirtReg(LR);
1117     }
1118   }
1119
1120   // Allocate undef operands. This is a separate step because in a situation
1121   // like  ` = OP undef %X, %X`    both operands need the same register assign
1122   // so we should perform the normal assignment first.
1123   if (HasUndefUse) {
1124     for (MachineOperand &MO : MI.uses()) {
1125       if (!MO.isReg() || !MO.isUse())
1126         continue;
1127       unsigned Reg = MO.getReg();
1128       if (!TargetRegisterInfo::isVirtualRegister(Reg))
1129         continue;
1130
1131       assert(MO.isUndef() && "Should only have undef virtreg uses left");
1132       allocVirtRegUndef(MO);
1133     }
1134   }
1135
1136   // Track registers defined by instruction - early clobbers and tied uses at
1137   // this point.
1138   UsedInInstr.clear();
1139   if (hasEarlyClobbers) {
1140     for (const MachineOperand &MO : MI.operands()) {
1141       if (!MO.isReg()) continue;
1142       unsigned Reg = MO.getReg();
1143       if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1144       // Look for physreg defs and tied uses.
1145       if (!MO.isDef() && !MO.isTied()) continue;
1146       markRegUsedInInstr(Reg);
1147     }
1148   }
1149
1150   unsigned DefOpEnd = MI.getNumOperands();
1151   if (MI.isCall()) {
1152     // Spill all virtregs before a call. This serves one purpose: If an
1153     // exception is thrown, the landing pad is going to expect to find
1154     // registers in their spill slots.
1155     // Note: although this is appealing to just consider all definitions
1156     // as call-clobbered, this is not correct because some of those
1157     // definitions may be used later on and we do not want to reuse
1158     // those for virtual registers in between.
1159     LLVM_DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
1160     spillAll(MI, /*OnlyLiveOut*/ false);
1161   }
1162
1163   // Third scan.
1164   // Mark all physreg defs as used before allocating virtreg defs.
1165   for (unsigned I = 0; I != DefOpEnd; ++I) {
1166     const MachineOperand &MO = MI.getOperand(I);
1167     if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1168       continue;
1169     unsigned Reg = MO.getReg();
1170
1171     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg) ||
1172         !MRI->isAllocatable(Reg))
1173       continue;
1174     definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
1175   }
1176
1177   // Fourth scan.
1178   // Allocate defs and collect dead defs.
1179   for (unsigned I = 0; I != DefOpEnd; ++I) {
1180     const MachineOperand &MO = MI.getOperand(I);
1181     if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1182       continue;
1183     unsigned Reg = MO.getReg();
1184
1185     // We have already dealt with phys regs in the previous scan.
1186     if (TargetRegisterInfo::isPhysicalRegister(Reg))
1187       continue;
1188     MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg);
1189     if (setPhysReg(MI, MI.getOperand(I), PhysReg)) {
1190       VirtDead.push_back(Reg);
1191       CopyDstReg = 0; // cancel coalescing;
1192     } else
1193       CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0;
1194   }
1195
1196   // Kill dead defs after the scan to ensure that multiple defs of the same
1197   // register are allocated identically. We didn't need to do this for uses
1198   // because we are crerating our own kill flags, and they are always at the
1199   // last use.
1200   for (unsigned VirtReg : VirtDead)
1201     killVirtReg(VirtReg);
1202   VirtDead.clear();
1203
1204   LLVM_DEBUG(dbgs() << "<< " << MI);
1205   if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) {
1206     LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1207     Coalesced.push_back(&MI);
1208   }
1209 }
1210
1211 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1212   MachineOperand &MO = MI.getOperand(0);
1213
1214   // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1215   // mostly constants and frame indices.
1216   if (!MO.isReg())
1217     return;
1218   unsigned Reg = MO.getReg();
1219   if (!TargetRegisterInfo::isVirtualRegister(Reg))
1220     return;
1221
1222   // See if this virtual register has already been allocated to a physical
1223   // register or spilled to a stack slot.
1224   LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1225   if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1226     setPhysReg(MI, MO, LRI->PhysReg);
1227   } else {
1228     int SS = StackSlotForVirtReg[Reg];
1229     if (SS != -1) {
1230       // Modify DBG_VALUE now that the value is in a spill slot.
1231       updateDbgValueForSpill(MI, SS);
1232       LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI);
1233       return;
1234     }
1235
1236     // We can't allocate a physreg for a DebugValue, sorry!
1237     LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
1238     MO.setReg(0);
1239   }
1240
1241   // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1242   // that future spills of Reg will have DBG_VALUEs.
1243   LiveDbgValueMap[Reg].push_back(&MI);
1244 }
1245
1246 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1247   this->MBB = &MBB;
1248   LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1249
1250   PhysRegState.assign(TRI->getNumRegs(), regDisabled);
1251   assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1252
1253   MachineBasicBlock::iterator MII = MBB.begin();
1254
1255   // Add live-in registers as live.
1256   for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins())
1257     if (MRI->isAllocatable(LI.PhysReg))
1258       definePhysReg(MII, LI.PhysReg, regReserved);
1259
1260   VirtDead.clear();
1261   Coalesced.clear();
1262
1263   // Otherwise, sequentially allocate each instruction in the MBB.
1264   for (MachineInstr &MI : MBB) {
1265     LLVM_DEBUG(
1266       dbgs() << "\n>> " << MI << "Regs:";
1267       dumpState()
1268     );
1269
1270     // Special handling for debug values. Note that they are not allowed to
1271     // affect codegen of the other instructions in any way.
1272     if (MI.isDebugValue()) {
1273       handleDebugValue(MI);
1274       continue;
1275     }
1276
1277     allocateInstruction(MI);
1278   }
1279
1280   // Spill all physical registers holding virtual registers now.
1281   LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1282   spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true);
1283
1284   // Erase all the coalesced copies. We are delaying it until now because
1285   // LiveVirtRegs might refer to the instrs.
1286   for (MachineInstr *MI : Coalesced)
1287     MBB.erase(MI);
1288   NumCoalesced += Coalesced.size();
1289
1290   LLVM_DEBUG(MBB.dump());
1291 }
1292
1293 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1294   LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1295                     << "********** Function: " << MF.getName() << '\n');
1296   MRI = &MF.getRegInfo();
1297   const TargetSubtargetInfo &STI = MF.getSubtarget();
1298   TRI = STI.getRegisterInfo();
1299   TII = STI.getInstrInfo();
1300   MFI = &MF.getFrameInfo();
1301   MRI->freezeReservedRegs(MF);
1302   RegClassInfo.runOnMachineFunction(MF);
1303   UsedInInstr.clear();
1304   UsedInInstr.setUniverse(TRI->getNumRegUnits());
1305
1306   // initialize the virtual->physical register map to have a 'null'
1307   // mapping for all virtual registers
1308   unsigned NumVirtRegs = MRI->getNumVirtRegs();
1309   StackSlotForVirtReg.resize(NumVirtRegs);
1310   LiveVirtRegs.setUniverse(NumVirtRegs);
1311   MayLiveAcrossBlocks.clear();
1312   MayLiveAcrossBlocks.resize(NumVirtRegs);
1313
1314   // Loop over all of the basic blocks, eliminating virtual register references
1315   for (MachineBasicBlock &MBB : MF)
1316     allocateBasicBlock(MBB);
1317
1318   // All machine operands and other references to virtual registers have been
1319   // replaced. Remove the virtual registers.
1320   MRI->clearVirtRegs();
1321
1322   StackSlotForVirtReg.clear();
1323   LiveDbgValueMap.clear();
1324   return true;
1325 }
1326
1327 FunctionPass *llvm::createFastRegisterAllocator() {
1328   return new RegAllocFast();
1329 }