]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/RegAllocGreedy.cpp
contrib/libarchive: Import libarchive 3.5.1
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / RegAllocGreedy.cpp
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79
80 using namespace llvm;
81
82 #define DEBUG_TYPE "regalloc"
83
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112
113 static cl::opt<bool> EnableLocalReassignment(
114     "enable-local-reassign", cl::Hidden,
115     cl::desc("Local reassignment can yield better allocation decisions, but "
116              "may be compile time intensive"),
117     cl::init(false));
118
119 static cl::opt<bool> EnableDeferredSpilling(
120     "enable-deferred-spilling", cl::Hidden,
121     cl::desc("Instead of spilling a variable right away, defer the actual "
122              "code insertion to the end of the allocation. That way the "
123              "allocator might still find a suitable coloring for this "
124              "variable because of other evicted variables."),
125     cl::init(false));
126
127 // FIXME: Find a good default for this flag and remove the flag.
128 static cl::opt<unsigned>
129 CSRFirstTimeCost("regalloc-csr-first-time-cost",
130               cl::desc("Cost for first time use of callee-saved register."),
131               cl::init(0), cl::Hidden);
132
133 static cl::opt<bool> ConsiderLocalIntervalCost(
134     "consider-local-interval-cost", cl::Hidden,
135     cl::desc("Consider the cost of local intervals created by a split "
136              "candidate when choosing the best split candidate."),
137     cl::init(false));
138
139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
140                                        createGreedyRegisterAllocator);
141
142 namespace {
143
144 class RAGreedy : public MachineFunctionPass,
145                  public RegAllocBase,
146                  private LiveRangeEdit::Delegate {
147   // Convenient shortcuts.
148   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
149   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
150   using SmallVirtRegSet = SmallSet<unsigned, 16>;
151
152   // context
153   MachineFunction *MF;
154
155   // Shortcuts to some useful interface.
156   const TargetInstrInfo *TII;
157   const TargetRegisterInfo *TRI;
158   RegisterClassInfo RCI;
159
160   // analyses
161   SlotIndexes *Indexes;
162   MachineBlockFrequencyInfo *MBFI;
163   MachineDominatorTree *DomTree;
164   MachineLoopInfo *Loops;
165   MachineOptimizationRemarkEmitter *ORE;
166   EdgeBundles *Bundles;
167   SpillPlacement *SpillPlacer;
168   LiveDebugVariables *DebugVars;
169   AliasAnalysis *AA;
170
171   // state
172   std::unique_ptr<Spiller> SpillerInstance;
173   PQueue Queue;
174   unsigned NextCascade;
175
176   // Live ranges pass through a number of stages as we try to allocate them.
177   // Some of the stages may also create new live ranges:
178   //
179   // - Region splitting.
180   // - Per-block splitting.
181   // - Local splitting.
182   // - Spilling.
183   //
184   // Ranges produced by one of the stages skip the previous stages when they are
185   // dequeued. This improves performance because we can skip interference checks
186   // that are unlikely to give any results. It also guarantees that the live
187   // range splitting algorithm terminates, something that is otherwise hard to
188   // ensure.
189   enum LiveRangeStage {
190     /// Newly created live range that has never been queued.
191     RS_New,
192
193     /// Only attempt assignment and eviction. Then requeue as RS_Split.
194     RS_Assign,
195
196     /// Attempt live range splitting if assignment is impossible.
197     RS_Split,
198
199     /// Attempt more aggressive live range splitting that is guaranteed to make
200     /// progress.  This is used for split products that may not be making
201     /// progress.
202     RS_Split2,
203
204     /// Live range will be spilled.  No more splitting will be attempted.
205     RS_Spill,
206
207
208     /// Live range is in memory. Because of other evictions, it might get moved
209     /// in a register in the end.
210     RS_Memory,
211
212     /// There is nothing more we can do to this live range.  Abort compilation
213     /// if it can't be assigned.
214     RS_Done
215   };
216
217   // Enum CutOffStage to keep a track whether the register allocation failed
218   // because of the cutoffs encountered in last chance recoloring.
219   // Note: This is used as bitmask. New value should be next power of 2.
220   enum CutOffStage {
221     // No cutoffs encountered
222     CO_None = 0,
223
224     // lcr-max-depth cutoff encountered
225     CO_Depth = 1,
226
227     // lcr-max-interf cutoff encountered
228     CO_Interf = 2
229   };
230
231   uint8_t CutOffInfo;
232
233 #ifndef NDEBUG
234   static const char *const StageName[];
235 #endif
236
237   // RegInfo - Keep additional information about each live range.
238   struct RegInfo {
239     LiveRangeStage Stage = RS_New;
240
241     // Cascade - Eviction loop prevention. See canEvictInterference().
242     unsigned Cascade = 0;
243
244     RegInfo() = default;
245   };
246
247   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
248
249   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
250     return ExtraRegInfo[VirtReg.reg].Stage;
251   }
252
253   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
254     ExtraRegInfo.resize(MRI->getNumVirtRegs());
255     ExtraRegInfo[VirtReg.reg].Stage = Stage;
256   }
257
258   template<typename Iterator>
259   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
260     ExtraRegInfo.resize(MRI->getNumVirtRegs());
261     for (;Begin != End; ++Begin) {
262       unsigned Reg = *Begin;
263       if (ExtraRegInfo[Reg].Stage == RS_New)
264         ExtraRegInfo[Reg].Stage = NewStage;
265     }
266   }
267
268   /// Cost of evicting interference.
269   struct EvictionCost {
270     unsigned BrokenHints = 0; ///< Total number of broken hints.
271     float MaxWeight = 0;      ///< Maximum spill weight evicted.
272
273     EvictionCost() = default;
274
275     bool isMax() const { return BrokenHints == ~0u; }
276
277     void setMax() { BrokenHints = ~0u; }
278
279     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
280
281     bool operator<(const EvictionCost &O) const {
282       return std::tie(BrokenHints, MaxWeight) <
283              std::tie(O.BrokenHints, O.MaxWeight);
284     }
285   };
286
287   /// EvictionTrack - Keeps track of past evictions in order to optimize region
288   /// split decision.
289   class EvictionTrack {
290
291   public:
292     using EvictorInfo =
293         std::pair<unsigned /* evictor */, unsigned /* physreg */>;
294     using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
295
296   private:
297     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
298     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
299     EvicteeInfo Evictees;
300
301   public:
302     /// Clear all eviction information.
303     void clear() { Evictees.clear(); }
304
305     ///  Clear eviction information for the given evictee Vreg.
306     /// E.g. when Vreg get's a new allocation, the old eviction info is no
307     /// longer relevant.
308     /// \param Evictee The evictee Vreg for whom we want to clear collected
309     /// eviction info.
310     void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
311
312     /// Track new eviction.
313     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
314     /// \param PhysReg The physical register Evictee was evicted from.
315     /// \param Evictor The evictor Vreg that evicted Evictee.
316     /// \param Evictee The evictee Vreg.
317     void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
318       Evictees[Evictee].first = Evictor;
319       Evictees[Evictee].second = PhysReg;
320     }
321
322     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
323     /// \param Evictee The evictee vreg.
324     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
325     /// nobody has evicted Evictee from PhysReg.
326     EvictorInfo getEvictor(unsigned Evictee) {
327       if (Evictees.count(Evictee)) {
328         return Evictees[Evictee];
329       }
330
331       return EvictorInfo(0, 0);
332     }
333   };
334
335   // Keeps track of past evictions in order to optimize region split decision.
336   EvictionTrack LastEvicted;
337
338   // splitting state.
339   std::unique_ptr<SplitAnalysis> SA;
340   std::unique_ptr<SplitEditor> SE;
341
342   /// Cached per-block interference maps
343   InterferenceCache IntfCache;
344
345   /// All basic blocks where the current register has uses.
346   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
347
348   /// Global live range splitting candidate info.
349   struct GlobalSplitCandidate {
350     // Register intended for assignment, or 0.
351     unsigned PhysReg;
352
353     // SplitKit interval index for this candidate.
354     unsigned IntvIdx;
355
356     // Interference for PhysReg.
357     InterferenceCache::Cursor Intf;
358
359     // Bundles where this candidate should be live.
360     BitVector LiveBundles;
361     SmallVector<unsigned, 8> ActiveBlocks;
362
363     void reset(InterferenceCache &Cache, unsigned Reg) {
364       PhysReg = Reg;
365       IntvIdx = 0;
366       Intf.setPhysReg(Cache, Reg);
367       LiveBundles.clear();
368       ActiveBlocks.clear();
369     }
370
371     // Set B[i] = C for every live bundle where B[i] was NoCand.
372     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
373       unsigned Count = 0;
374       for (unsigned i : LiveBundles.set_bits())
375         if (B[i] == NoCand) {
376           B[i] = C;
377           Count++;
378         }
379       return Count;
380     }
381   };
382
383   /// Candidate info for each PhysReg in AllocationOrder.
384   /// This vector never shrinks, but grows to the size of the largest register
385   /// class.
386   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
387
388   enum : unsigned { NoCand = ~0u };
389
390   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
391   /// NoCand which indicates the stack interval.
392   SmallVector<unsigned, 32> BundleCand;
393
394   /// Callee-save register cost, calculated once per machine function.
395   BlockFrequency CSRCost;
396
397   /// Run or not the local reassignment heuristic. This information is
398   /// obtained from the TargetSubtargetInfo.
399   bool EnableLocalReassign;
400
401   /// Enable or not the consideration of the cost of local intervals created
402   /// by a split candidate when choosing the best split candidate.
403   bool EnableAdvancedRASplitCost;
404
405   /// Set of broken hints that may be reconciled later because of eviction.
406   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
407
408 public:
409   RAGreedy();
410
411   /// Return the pass name.
412   StringRef getPassName() const override { return "Greedy Register Allocator"; }
413
414   /// RAGreedy analysis usage.
415   void getAnalysisUsage(AnalysisUsage &AU) const override;
416   void releaseMemory() override;
417   Spiller &spiller() override { return *SpillerInstance; }
418   void enqueue(LiveInterval *LI) override;
419   LiveInterval *dequeue() override;
420   Register selectOrSplit(LiveInterval&, SmallVectorImpl<Register>&) override;
421   void aboutToRemoveInterval(LiveInterval &) override;
422
423   /// Perform register allocation.
424   bool runOnMachineFunction(MachineFunction &mf) override;
425
426   MachineFunctionProperties getRequiredProperties() const override {
427     return MachineFunctionProperties().set(
428         MachineFunctionProperties::Property::NoPHIs);
429   }
430
431   static char ID;
432
433 private:
434   Register selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
435                              SmallVirtRegSet &, unsigned = 0);
436
437   bool LRE_CanEraseVirtReg(unsigned) override;
438   void LRE_WillShrinkVirtReg(unsigned) override;
439   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
440   void enqueue(PQueue &CurQueue, LiveInterval *LI);
441   LiveInterval *dequeue(PQueue &CurQueue);
442
443   BlockFrequency calcSpillCost();
444   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
445   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
446   bool growRegion(GlobalSplitCandidate &Cand);
447   bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
448                                   unsigned BBNumber,
449                                   const AllocationOrder &Order);
450   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
451                                GlobalSplitCandidate &Cand, unsigned BBNumber,
452                                const AllocationOrder &Order);
453   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
454                                      const AllocationOrder &Order,
455                                      bool *CanCauseEvictionChain);
456   bool calcCompactRegion(GlobalSplitCandidate&);
457   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
458   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
459   Register canReassign(LiveInterval &VirtReg, Register PrevReg);
460   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
461   bool canEvictInterference(LiveInterval&, Register, bool, EvictionCost&,
462                             const SmallVirtRegSet&);
463   bool canEvictInterferenceInRange(LiveInterval &VirtReg, Register oPhysReg,
464                                    SlotIndex Start, SlotIndex End,
465                                    EvictionCost &MaxCost);
466   unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
467                                     LiveInterval &VirtReg, SlotIndex Start,
468                                     SlotIndex End, float *BestEvictWeight);
469   void evictInterference(LiveInterval&, Register,
470                          SmallVectorImpl<Register>&);
471   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
472                                   SmallLISet &RecoloringCandidates,
473                                   const SmallVirtRegSet &FixedRegisters);
474
475   Register tryAssign(LiveInterval&, AllocationOrder&,
476                      SmallVectorImpl<Register>&,
477                      const SmallVirtRegSet&);
478   unsigned tryEvict(LiveInterval&, AllocationOrder&,
479                     SmallVectorImpl<Register>&, unsigned,
480                     const SmallVirtRegSet&);
481   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
482                           SmallVectorImpl<Register>&);
483   /// Calculate cost of region splitting.
484   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
485                                     AllocationOrder &Order,
486                                     BlockFrequency &BestCost,
487                                     unsigned &NumCands, bool IgnoreCSR,
488                                     bool *CanCauseEvictionChain = nullptr);
489   /// Perform region splitting.
490   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
491                          bool HasCompact,
492                          SmallVectorImpl<Register> &NewVRegs);
493   /// Check other options before using a callee-saved register for the first
494   /// time.
495   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
496                                  Register PhysReg, unsigned &CostPerUseLimit,
497                                  SmallVectorImpl<Register> &NewVRegs);
498   void initializeCSRCost();
499   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
500                          SmallVectorImpl<Register>&);
501   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
502                                SmallVectorImpl<Register>&);
503   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
504     SmallVectorImpl<Register>&);
505   unsigned trySplit(LiveInterval&, AllocationOrder&,
506                     SmallVectorImpl<Register>&,
507                     const SmallVirtRegSet&);
508   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
509                                    SmallVectorImpl<Register> &,
510                                    SmallVirtRegSet &, unsigned);
511   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
512                                SmallVirtRegSet &, unsigned);
513   void tryHintRecoloring(LiveInterval &);
514   void tryHintsRecoloring();
515
516   /// Model the information carried by one end of a copy.
517   struct HintInfo {
518     /// The frequency of the copy.
519     BlockFrequency Freq;
520     /// The virtual register or physical register.
521     Register Reg;
522     /// Its currently assigned register.
523     /// In case of a physical register Reg == PhysReg.
524     MCRegister PhysReg;
525
526     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
527         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
528   };
529   using HintsInfo = SmallVector<HintInfo, 4>;
530
531   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
532   void collectHintInfo(unsigned, HintsInfo &);
533
534   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
535
536   /// Compute and report the number of spills and reloads for a loop.
537   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
538                                     unsigned &FoldedReloads, unsigned &Spills,
539                                     unsigned &FoldedSpills);
540
541   /// Report the number of spills and reloads for each loop.
542   void reportNumberOfSplillsReloads() {
543     for (MachineLoop *L : *Loops) {
544       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
545       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
546                                    FoldedSpills);
547     }
548   }
549 };
550
551 } // end anonymous namespace
552
553 char RAGreedy::ID = 0;
554 char &llvm::RAGreedyID = RAGreedy::ID;
555
556 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
557                 "Greedy Register Allocator", false, false)
558 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
559 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
560 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
561 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
562 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
563 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
564 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
565 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
566 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
567 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
568 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
569 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
570 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
571 INITIALIZE_PASS_END(RAGreedy, "greedy",
572                 "Greedy Register Allocator", false, false)
573
574 #ifndef NDEBUG
575 const char *const RAGreedy::StageName[] = {
576     "RS_New",
577     "RS_Assign",
578     "RS_Split",
579     "RS_Split2",
580     "RS_Spill",
581     "RS_Memory",
582     "RS_Done"
583 };
584 #endif
585
586 // Hysteresis to use when comparing floats.
587 // This helps stabilize decisions based on float comparisons.
588 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
589
590 FunctionPass* llvm::createGreedyRegisterAllocator() {
591   return new RAGreedy();
592 }
593
594 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
595 }
596
597 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
598   AU.setPreservesCFG();
599   AU.addRequired<MachineBlockFrequencyInfo>();
600   AU.addPreserved<MachineBlockFrequencyInfo>();
601   AU.addRequired<AAResultsWrapperPass>();
602   AU.addPreserved<AAResultsWrapperPass>();
603   AU.addRequired<LiveIntervals>();
604   AU.addPreserved<LiveIntervals>();
605   AU.addRequired<SlotIndexes>();
606   AU.addPreserved<SlotIndexes>();
607   AU.addRequired<LiveDebugVariables>();
608   AU.addPreserved<LiveDebugVariables>();
609   AU.addRequired<LiveStacks>();
610   AU.addPreserved<LiveStacks>();
611   AU.addRequired<MachineDominatorTree>();
612   AU.addPreserved<MachineDominatorTree>();
613   AU.addRequired<MachineLoopInfo>();
614   AU.addPreserved<MachineLoopInfo>();
615   AU.addRequired<VirtRegMap>();
616   AU.addPreserved<VirtRegMap>();
617   AU.addRequired<LiveRegMatrix>();
618   AU.addPreserved<LiveRegMatrix>();
619   AU.addRequired<EdgeBundles>();
620   AU.addRequired<SpillPlacement>();
621   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
622   MachineFunctionPass::getAnalysisUsage(AU);
623 }
624
625 //===----------------------------------------------------------------------===//
626 //                     LiveRangeEdit delegate methods
627 //===----------------------------------------------------------------------===//
628
629 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
630   LiveInterval &LI = LIS->getInterval(VirtReg);
631   if (VRM->hasPhys(VirtReg)) {
632     Matrix->unassign(LI);
633     aboutToRemoveInterval(LI);
634     return true;
635   }
636   // Unassigned virtreg is probably in the priority queue.
637   // RegAllocBase will erase it after dequeueing.
638   // Nonetheless, clear the live-range so that the debug
639   // dump will show the right state for that VirtReg.
640   LI.clear();
641   return false;
642 }
643
644 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
645   if (!VRM->hasPhys(VirtReg))
646     return;
647
648   // Register is assigned, put it back on the queue for reassignment.
649   LiveInterval &LI = LIS->getInterval(VirtReg);
650   Matrix->unassign(LI);
651   enqueue(&LI);
652 }
653
654 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
655   // Cloning a register we haven't even heard about yet?  Just ignore it.
656   if (!ExtraRegInfo.inBounds(Old))
657     return;
658
659   // LRE may clone a virtual register because dead code elimination causes it to
660   // be split into connected components. The new components are much smaller
661   // than the original, so they should get a new chance at being assigned.
662   // same stage as the parent.
663   ExtraRegInfo[Old].Stage = RS_Assign;
664   ExtraRegInfo.grow(New);
665   ExtraRegInfo[New] = ExtraRegInfo[Old];
666 }
667
668 void RAGreedy::releaseMemory() {
669   SpillerInstance.reset();
670   ExtraRegInfo.clear();
671   GlobalCand.clear();
672 }
673
674 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
675
676 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
677   // Prioritize live ranges by size, assigning larger ranges first.
678   // The queue holds (size, reg) pairs.
679   const unsigned Size = LI->getSize();
680   const unsigned Reg = LI->reg;
681   assert(Register::isVirtualRegister(Reg) &&
682          "Can only enqueue virtual registers");
683   unsigned Prio;
684
685   ExtraRegInfo.grow(Reg);
686   if (ExtraRegInfo[Reg].Stage == RS_New)
687     ExtraRegInfo[Reg].Stage = RS_Assign;
688
689   if (ExtraRegInfo[Reg].Stage == RS_Split) {
690     // Unsplit ranges that couldn't be allocated immediately are deferred until
691     // everything else has been allocated.
692     Prio = Size;
693   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
694     // Memory operand should be considered last.
695     // Change the priority such that Memory operand are assigned in
696     // the reverse order that they came in.
697     // TODO: Make this a member variable and probably do something about hints.
698     static unsigned MemOp = 0;
699     Prio = MemOp++;
700   } else {
701     // Giant live ranges fall back to the global assignment heuristic, which
702     // prevents excessive spilling in pathological cases.
703     bool ReverseLocal = TRI->reverseLocalAssignment();
704     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
705     bool ForceGlobal = !ReverseLocal &&
706       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
707
708     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
709         LIS->intervalIsInOneMBB(*LI)) {
710       // Allocate original local ranges in linear instruction order. Since they
711       // are singly defined, this produces optimal coloring in the absence of
712       // global interference and other constraints.
713       if (!ReverseLocal)
714         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
715       else {
716         // Allocating bottom up may allow many short LRGs to be assigned first
717         // to one of the cheap registers. This could be much faster for very
718         // large blocks on targets with many physical registers.
719         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
720       }
721       Prio |= RC.AllocationPriority << 24;
722     } else {
723       // Allocate global and split ranges in long->short order. Long ranges that
724       // don't fit should be spilled (or split) ASAP so they don't create
725       // interference.  Mark a bit to prioritize global above local ranges.
726       Prio = (1u << 29) + Size;
727     }
728     // Mark a higher bit to prioritize global and local above RS_Split.
729     Prio |= (1u << 31);
730
731     // Boost ranges that have a physical register hint.
732     if (VRM->hasKnownPreference(Reg))
733       Prio |= (1u << 30);
734   }
735   // The virtual register number is a tie breaker for same-sized ranges.
736   // Give lower vreg numbers higher priority to assign them first.
737   CurQueue.push(std::make_pair(Prio, ~Reg));
738 }
739
740 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
741
742 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
743   if (CurQueue.empty())
744     return nullptr;
745   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
746   CurQueue.pop();
747   return LI;
748 }
749
750 //===----------------------------------------------------------------------===//
751 //                            Direct Assignment
752 //===----------------------------------------------------------------------===//
753
754 /// tryAssign - Try to assign VirtReg to an available register.
755 Register RAGreedy::tryAssign(LiveInterval &VirtReg,
756                              AllocationOrder &Order,
757                              SmallVectorImpl<Register> &NewVRegs,
758                              const SmallVirtRegSet &FixedRegisters) {
759   Order.rewind();
760   Register PhysReg;
761   while ((PhysReg = Order.next()))
762     if (!Matrix->checkInterference(VirtReg, PhysReg))
763       break;
764   if (!PhysReg || Order.isHint())
765     return PhysReg;
766
767   // PhysReg is available, but there may be a better choice.
768
769   // If we missed a simple hint, try to cheaply evict interference from the
770   // preferred register.
771   if (Register Hint = MRI->getSimpleHint(VirtReg.reg))
772     if (Order.isHint(Hint)) {
773       LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
774       EvictionCost MaxCost;
775       MaxCost.setBrokenHints(1);
776       if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) {
777         evictInterference(VirtReg, Hint, NewVRegs);
778         return Hint;
779       }
780       // Record the missed hint, we may be able to recover
781       // at the end if the surrounding allocation changed.
782       SetOfBrokenHints.insert(&VirtReg);
783     }
784
785   // Try to evict interference from a cheaper alternative.
786   unsigned Cost = TRI->getCostPerUse(PhysReg);
787
788   // Most registers have 0 additional cost.
789   if (!Cost)
790     return PhysReg;
791
792   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
793                     << Cost << '\n');
794   Register CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
795   return CheapReg ? CheapReg : PhysReg;
796 }
797
798 //===----------------------------------------------------------------------===//
799 //                         Interference eviction
800 //===----------------------------------------------------------------------===//
801
802 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) {
803   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
804   Register PhysReg;
805   while ((PhysReg = Order.next())) {
806     if (PhysReg == PrevReg)
807       continue;
808
809     MCRegUnitIterator Units(PhysReg, TRI);
810     for (; Units.isValid(); ++Units) {
811       // Instantiate a "subquery", not to be confused with the Queries array.
812       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
813       if (subQ.checkInterference())
814         break;
815     }
816     // If no units have interference, break out with the current PhysReg.
817     if (!Units.isValid())
818       break;
819   }
820   if (PhysReg)
821     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
822                       << printReg(PrevReg, TRI) << " to "
823                       << printReg(PhysReg, TRI) << '\n');
824   return PhysReg;
825 }
826
827 /// shouldEvict - determine if A should evict the assigned live range B. The
828 /// eviction policy defined by this function together with the allocation order
829 /// defined by enqueue() decides which registers ultimately end up being split
830 /// and spilled.
831 ///
832 /// Cascade numbers are used to prevent infinite loops if this function is a
833 /// cyclic relation.
834 ///
835 /// @param A          The live range to be assigned.
836 /// @param IsHint     True when A is about to be assigned to its preferred
837 ///                   register.
838 /// @param B          The live range to be evicted.
839 /// @param BreaksHint True when B is already assigned to its preferred register.
840 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
841                            LiveInterval &B, bool BreaksHint) {
842   bool CanSplit = getStage(B) < RS_Spill;
843
844   // Be fairly aggressive about following hints as long as the evictee can be
845   // split.
846   if (CanSplit && IsHint && !BreaksHint)
847     return true;
848
849   if (A.weight > B.weight) {
850     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
851     return true;
852   }
853   return false;
854 }
855
856 /// canEvictInterference - Return true if all interferences between VirtReg and
857 /// PhysReg can be evicted.
858 ///
859 /// @param VirtReg Live range that is about to be assigned.
860 /// @param PhysReg Desired register for assignment.
861 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
862 /// @param MaxCost Only look for cheaper candidates and update with new cost
863 ///                when returning true.
864 /// @returns True when interference can be evicted cheaper than MaxCost.
865 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, Register PhysReg,
866                                     bool IsHint, EvictionCost &MaxCost,
867                                     const SmallVirtRegSet &FixedRegisters) {
868   // It is only possible to evict virtual register interference.
869   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
870     return false;
871
872   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
873
874   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
875   // involved in an eviction before. If a cascade number was assigned, deny
876   // evicting anything with the same or a newer cascade number. This prevents
877   // infinite eviction loops.
878   //
879   // This works out so a register without a cascade number is allowed to evict
880   // anything, and it can be evicted by anything.
881   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
882   if (!Cascade)
883     Cascade = NextCascade;
884
885   EvictionCost Cost;
886   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
887     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
888     // If there is 10 or more interferences, chances are one is heavier.
889     if (Q.collectInterferingVRegs(10) >= 10)
890       return false;
891
892     // Check if any interfering live range is heavier than MaxWeight.
893     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
894       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
895       assert(Register::isVirtualRegister(Intf->reg) &&
896              "Only expecting virtual register interference from query");
897
898       // Do not allow eviction of a virtual register if we are in the middle
899       // of last-chance recoloring and this virtual register is one that we
900       // have scavenged a physical register for.
901       if (FixedRegisters.count(Intf->reg))
902         return false;
903
904       // Never evict spill products. They cannot split or spill.
905       if (getStage(*Intf) == RS_Done)
906         return false;
907       // Once a live range becomes small enough, it is urgent that we find a
908       // register for it. This is indicated by an infinite spill weight. These
909       // urgent live ranges get to evict almost anything.
910       //
911       // Also allow urgent evictions of unspillable ranges from a strictly
912       // larger allocation order.
913       bool Urgent = !VirtReg.isSpillable() &&
914         (Intf->isSpillable() ||
915          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
916          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
917       // Only evict older cascades or live ranges without a cascade.
918       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
919       if (Cascade <= IntfCascade) {
920         if (!Urgent)
921           return false;
922         // We permit breaking cascades for urgent evictions. It should be the
923         // last resort, though, so make it really expensive.
924         Cost.BrokenHints += 10;
925       }
926       // Would this break a satisfied hint?
927       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
928       // Update eviction cost.
929       Cost.BrokenHints += BreaksHint;
930       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
931       // Abort if this would be too expensive.
932       if (!(Cost < MaxCost))
933         return false;
934       if (Urgent)
935         continue;
936       // Apply the eviction policy for non-urgent evictions.
937       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
938         return false;
939       // If !MaxCost.isMax(), then we're just looking for a cheap register.
940       // Evicting another local live range in this case could lead to suboptimal
941       // coloring.
942       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
943           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
944         return false;
945       }
946     }
947   }
948   MaxCost = Cost;
949   return true;
950 }
951
952 /// Return true if all interferences between VirtReg and PhysReg between
953 /// Start and End can be evicted.
954 ///
955 /// \param VirtReg Live range that is about to be assigned.
956 /// \param PhysReg Desired register for assignment.
957 /// \param Start   Start of range to look for interferences.
958 /// \param End     End of range to look for interferences.
959 /// \param MaxCost Only look for cheaper candidates and update with new cost
960 ///                when returning true.
961 /// \return True when interference can be evicted cheaper than MaxCost.
962 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
963                                            Register PhysReg, SlotIndex Start,
964                                            SlotIndex End,
965                                            EvictionCost &MaxCost) {
966   EvictionCost Cost;
967
968   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
969     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
970
971     // Check if any interfering live range is heavier than MaxWeight.
972     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
973       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
974
975       // Check if interference overlast the segment in interest.
976       if (!Intf->overlaps(Start, End))
977         continue;
978
979       // Cannot evict non virtual reg interference.
980       if (!Register::isVirtualRegister(Intf->reg))
981         return false;
982       // Never evict spill products. They cannot split or spill.
983       if (getStage(*Intf) == RS_Done)
984         return false;
985
986       // Would this break a satisfied hint?
987       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
988       // Update eviction cost.
989       Cost.BrokenHints += BreaksHint;
990       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
991       // Abort if this would be too expensive.
992       if (!(Cost < MaxCost))
993         return false;
994     }
995   }
996
997   if (Cost.MaxWeight == 0)
998     return false;
999
1000   MaxCost = Cost;
1001   return true;
1002 }
1003
1004 /// Return the physical register that will be best
1005 /// candidate for eviction by a local split interval that will be created
1006 /// between Start and End.
1007 ///
1008 /// \param Order            The allocation order
1009 /// \param VirtReg          Live range that is about to be assigned.
1010 /// \param Start            Start of range to look for interferences
1011 /// \param End              End of range to look for interferences
1012 /// \param BestEvictweight  The eviction cost of that eviction
1013 /// \return The PhysReg which is the best candidate for eviction and the
1014 /// eviction cost in BestEvictweight
1015 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1016                                             LiveInterval &VirtReg,
1017                                             SlotIndex Start, SlotIndex End,
1018                                             float *BestEvictweight) {
1019   EvictionCost BestEvictCost;
1020   BestEvictCost.setMax();
1021   BestEvictCost.MaxWeight = VirtReg.weight;
1022   unsigned BestEvicteePhys = 0;
1023
1024   // Go over all physical registers and find the best candidate for eviction
1025   for (auto PhysReg : Order.getOrder()) {
1026
1027     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1028                                      BestEvictCost))
1029       continue;
1030
1031     // Best so far.
1032     BestEvicteePhys = PhysReg;
1033   }
1034   *BestEvictweight = BestEvictCost.MaxWeight;
1035   return BestEvicteePhys;
1036 }
1037
1038 /// evictInterference - Evict any interferring registers that prevent VirtReg
1039 /// from being assigned to Physreg. This assumes that canEvictInterference
1040 /// returned true.
1041 void RAGreedy::evictInterference(LiveInterval &VirtReg, Register PhysReg,
1042                                  SmallVectorImpl<Register> &NewVRegs) {
1043   // Make sure that VirtReg has a cascade number, and assign that cascade
1044   // number to every evicted register. These live ranges than then only be
1045   // evicted by a newer cascade, preventing infinite loops.
1046   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
1047   if (!Cascade)
1048     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
1049
1050   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1051                     << " interference: Cascade " << Cascade << '\n');
1052
1053   // Collect all interfering virtregs first.
1054   SmallVector<LiveInterval*, 8> Intfs;
1055   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1056     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1057     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1058     // should be fast, we may need to recalculate if when different physregs
1059     // overlap the same register unit so we had different SubRanges queried
1060     // against it.
1061     Q.collectInterferingVRegs();
1062     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1063     Intfs.append(IVR.begin(), IVR.end());
1064   }
1065
1066   // Evict them second. This will invalidate the queries.
1067   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
1068     LiveInterval *Intf = Intfs[i];
1069     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1070     if (!VRM->hasPhys(Intf->reg))
1071       continue;
1072
1073     LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg);
1074
1075     Matrix->unassign(*Intf);
1076     assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
1077             VirtReg.isSpillable() < Intf->isSpillable()) &&
1078            "Cannot decrease cascade number, illegal eviction");
1079     ExtraRegInfo[Intf->reg].Cascade = Cascade;
1080     ++NumEvicted;
1081     NewVRegs.push_back(Intf->reg);
1082   }
1083 }
1084
1085 /// Returns true if the given \p PhysReg is a callee saved register and has not
1086 /// been used for allocation yet.
1087 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1088   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1089   if (!CSR)
1090     return false;
1091
1092   return !Matrix->isPhysRegUsed(PhysReg);
1093 }
1094
1095 /// tryEvict - Try to evict all interferences for a physreg.
1096 /// @param  VirtReg Currently unassigned virtual register.
1097 /// @param  Order   Physregs to try.
1098 /// @return         Physreg to assign VirtReg, or 0.
1099 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1100                             AllocationOrder &Order,
1101                             SmallVectorImpl<Register> &NewVRegs,
1102                             unsigned CostPerUseLimit,
1103                             const SmallVirtRegSet &FixedRegisters) {
1104   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1105                      TimePassesIsEnabled);
1106
1107   // Keep track of the cheapest interference seen so far.
1108   EvictionCost BestCost;
1109   BestCost.setMax();
1110   unsigned BestPhys = 0;
1111   unsigned OrderLimit = Order.getOrder().size();
1112
1113   // When we are just looking for a reduced cost per use, don't break any
1114   // hints, and only evict smaller spill weights.
1115   if (CostPerUseLimit < ~0u) {
1116     BestCost.BrokenHints = 0;
1117     BestCost.MaxWeight = VirtReg.weight;
1118
1119     // Check of any registers in RC are below CostPerUseLimit.
1120     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
1121     unsigned MinCost = RegClassInfo.getMinCost(RC);
1122     if (MinCost >= CostPerUseLimit) {
1123       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1124                         << MinCost << ", no cheaper registers to be found.\n");
1125       return 0;
1126     }
1127
1128     // It is normal for register classes to have a long tail of registers with
1129     // the same cost. We don't need to look at them if they're too expensive.
1130     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1131       OrderLimit = RegClassInfo.getLastCostChange(RC);
1132       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1133                         << " regs.\n");
1134     }
1135   }
1136
1137   Order.rewind();
1138   while (MCRegister PhysReg = Order.next(OrderLimit)) {
1139     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1140       continue;
1141     // The first use of a callee-saved register in a function has cost 1.
1142     // Don't start using a CSR when the CostPerUseLimit is low.
1143     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1144       LLVM_DEBUG(
1145           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1146                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1147                  << '\n');
1148       continue;
1149     }
1150
1151     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1152                               FixedRegisters))
1153       continue;
1154
1155     // Best so far.
1156     BestPhys = PhysReg;
1157
1158     // Stop if the hint can be used.
1159     if (Order.isHint())
1160       break;
1161   }
1162
1163   if (!BestPhys)
1164     return 0;
1165
1166   evictInterference(VirtReg, BestPhys, NewVRegs);
1167   return BestPhys;
1168 }
1169
1170 //===----------------------------------------------------------------------===//
1171 //                              Region Splitting
1172 //===----------------------------------------------------------------------===//
1173
1174 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1175 /// interference pattern in Physreg and its aliases. Add the constraints to
1176 /// SpillPlacement and return the static cost of this split in Cost, assuming
1177 /// that all preferences in SplitConstraints are met.
1178 /// Return false if there are no bundles with positive bias.
1179 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1180                                    BlockFrequency &Cost) {
1181   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1182
1183   // Reset interference dependent info.
1184   SplitConstraints.resize(UseBlocks.size());
1185   BlockFrequency StaticCost = 0;
1186   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1187     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1188     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1189
1190     BC.Number = BI.MBB->getNumber();
1191     Intf.moveToBlock(BC.Number);
1192     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1193     BC.Exit = (BI.LiveOut &&
1194                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1195                   ? SpillPlacement::PrefReg
1196                   : SpillPlacement::DontCare;
1197     BC.ChangesValue = BI.FirstDef.isValid();
1198
1199     if (!Intf.hasInterference())
1200       continue;
1201
1202     // Number of spill code instructions to insert.
1203     unsigned Ins = 0;
1204
1205     // Interference for the live-in value.
1206     if (BI.LiveIn) {
1207       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1208         BC.Entry = SpillPlacement::MustSpill;
1209         ++Ins;
1210       } else if (Intf.first() < BI.FirstInstr) {
1211         BC.Entry = SpillPlacement::PrefSpill;
1212         ++Ins;
1213       } else if (Intf.first() < BI.LastInstr) {
1214         ++Ins;
1215       }
1216
1217       // Abort if the spill cannot be inserted at the MBB' start
1218       if (((BC.Entry == SpillPlacement::MustSpill) ||
1219            (BC.Entry == SpillPlacement::PrefSpill)) &&
1220           SlotIndex::isEarlierInstr(BI.FirstInstr,
1221                                     SA->getFirstSplitPoint(BC.Number)))
1222         return false;
1223     }
1224
1225     // Interference for the live-out value.
1226     if (BI.LiveOut) {
1227       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1228         BC.Exit = SpillPlacement::MustSpill;
1229         ++Ins;
1230       } else if (Intf.last() > BI.LastInstr) {
1231         BC.Exit = SpillPlacement::PrefSpill;
1232         ++Ins;
1233       } else if (Intf.last() > BI.FirstInstr) {
1234         ++Ins;
1235       }
1236     }
1237
1238     // Accumulate the total frequency of inserted spill code.
1239     while (Ins--)
1240       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1241   }
1242   Cost = StaticCost;
1243
1244   // Add constraints for use-blocks. Note that these are the only constraints
1245   // that may add a positive bias, it is downhill from here.
1246   SpillPlacer->addConstraints(SplitConstraints);
1247   return SpillPlacer->scanActiveBundles();
1248 }
1249
1250 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1251 /// live-through blocks in Blocks.
1252 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1253                                      ArrayRef<unsigned> Blocks) {
1254   const unsigned GroupSize = 8;
1255   SpillPlacement::BlockConstraint BCS[GroupSize];
1256   unsigned TBS[GroupSize];
1257   unsigned B = 0, T = 0;
1258
1259   for (unsigned i = 0; i != Blocks.size(); ++i) {
1260     unsigned Number = Blocks[i];
1261     Intf.moveToBlock(Number);
1262
1263     if (!Intf.hasInterference()) {
1264       assert(T < GroupSize && "Array overflow");
1265       TBS[T] = Number;
1266       if (++T == GroupSize) {
1267         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1268         T = 0;
1269       }
1270       continue;
1271     }
1272
1273     assert(B < GroupSize && "Array overflow");
1274     BCS[B].Number = Number;
1275
1276     // Abort if the spill cannot be inserted at the MBB' start
1277     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1278     if (!MBB->empty() &&
1279         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1280                                   SA->getFirstSplitPoint(Number)))
1281       return false;
1282     // Interference for the live-in value.
1283     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1284       BCS[B].Entry = SpillPlacement::MustSpill;
1285     else
1286       BCS[B].Entry = SpillPlacement::PrefSpill;
1287
1288     // Interference for the live-out value.
1289     if (Intf.last() >= SA->getLastSplitPoint(Number))
1290       BCS[B].Exit = SpillPlacement::MustSpill;
1291     else
1292       BCS[B].Exit = SpillPlacement::PrefSpill;
1293
1294     if (++B == GroupSize) {
1295       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1296       B = 0;
1297     }
1298   }
1299
1300   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1301   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1302   return true;
1303 }
1304
1305 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1306   // Keep track of through blocks that have not been added to SpillPlacer.
1307   BitVector Todo = SA->getThroughBlocks();
1308   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1309   unsigned AddedTo = 0;
1310 #ifndef NDEBUG
1311   unsigned Visited = 0;
1312 #endif
1313
1314   while (true) {
1315     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1316     // Find new through blocks in the periphery of PrefRegBundles.
1317     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1318       unsigned Bundle = NewBundles[i];
1319       // Look at all blocks connected to Bundle in the full graph.
1320       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1321       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1322            I != E; ++I) {
1323         unsigned Block = *I;
1324         if (!Todo.test(Block))
1325           continue;
1326         Todo.reset(Block);
1327         // This is a new through block. Add it to SpillPlacer later.
1328         ActiveBlocks.push_back(Block);
1329 #ifndef NDEBUG
1330         ++Visited;
1331 #endif
1332       }
1333     }
1334     // Any new blocks to add?
1335     if (ActiveBlocks.size() == AddedTo)
1336       break;
1337
1338     // Compute through constraints from the interference, or assume that all
1339     // through blocks prefer spilling when forming compact regions.
1340     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1341     if (Cand.PhysReg) {
1342       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1343         return false;
1344     } else
1345       // Provide a strong negative bias on through blocks to prevent unwanted
1346       // liveness on loop backedges.
1347       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1348     AddedTo = ActiveBlocks.size();
1349
1350     // Perhaps iterating can enable more bundles?
1351     SpillPlacer->iterate();
1352   }
1353   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1354   return true;
1355 }
1356
1357 /// calcCompactRegion - Compute the set of edge bundles that should be live
1358 /// when splitting the current live range into compact regions.  Compact
1359 /// regions can be computed without looking at interference.  They are the
1360 /// regions formed by removing all the live-through blocks from the live range.
1361 ///
1362 /// Returns false if the current live range is already compact, or if the
1363 /// compact regions would form single block regions anyway.
1364 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1365   // Without any through blocks, the live range is already compact.
1366   if (!SA->getNumThroughBlocks())
1367     return false;
1368
1369   // Compact regions don't correspond to any physreg.
1370   Cand.reset(IntfCache, 0);
1371
1372   LLVM_DEBUG(dbgs() << "Compact region bundles");
1373
1374   // Use the spill placer to determine the live bundles. GrowRegion pretends
1375   // that all the through blocks have interference when PhysReg is unset.
1376   SpillPlacer->prepare(Cand.LiveBundles);
1377
1378   // The static split cost will be zero since Cand.Intf reports no interference.
1379   BlockFrequency Cost;
1380   if (!addSplitConstraints(Cand.Intf, Cost)) {
1381     LLVM_DEBUG(dbgs() << ", none.\n");
1382     return false;
1383   }
1384
1385   if (!growRegion(Cand)) {
1386     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1387     return false;
1388   }
1389
1390   SpillPlacer->finish();
1391
1392   if (!Cand.LiveBundles.any()) {
1393     LLVM_DEBUG(dbgs() << ", none.\n");
1394     return false;
1395   }
1396
1397   LLVM_DEBUG({
1398     for (int i : Cand.LiveBundles.set_bits())
1399       dbgs() << " EB#" << i;
1400     dbgs() << ".\n";
1401   });
1402   return true;
1403 }
1404
1405 /// calcSpillCost - Compute how expensive it would be to split the live range in
1406 /// SA around all use blocks instead of forming bundle regions.
1407 BlockFrequency RAGreedy::calcSpillCost() {
1408   BlockFrequency Cost = 0;
1409   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1410   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1411     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1412     unsigned Number = BI.MBB->getNumber();
1413     // We normally only need one spill instruction - a load or a store.
1414     Cost += SpillPlacer->getBlockFrequency(Number);
1415
1416     // Unless the value is redefined in the block.
1417     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1418       Cost += SpillPlacer->getBlockFrequency(Number);
1419   }
1420   return Cost;
1421 }
1422
1423 /// Check if splitting Evictee will create a local split interval in
1424 /// basic block number BBNumber that may cause a bad eviction chain. This is
1425 /// intended to prevent bad eviction sequences like:
1426 /// movl        %ebp, 8(%esp)           # 4-byte Spill
1427 /// movl        %ecx, %ebp
1428 /// movl        %ebx, %ecx
1429 /// movl        %edi, %ebx
1430 /// movl        %edx, %edi
1431 /// cltd
1432 /// idivl       %esi
1433 /// movl        %edi, %edx
1434 /// movl        %ebx, %edi
1435 /// movl        %ecx, %ebx
1436 /// movl        %ebp, %ecx
1437 /// movl        16(%esp), %ebp          # 4 - byte Reload
1438 ///
1439 /// Such sequences are created in 2 scenarios:
1440 ///
1441 /// Scenario #1:
1442 /// %0 is evicted from physreg0 by %1.
1443 /// Evictee %0 is intended for region splitting with split candidate
1444 /// physreg0 (the reg %0 was evicted from).
1445 /// Region splitting creates a local interval because of interference with the
1446 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1447 /// and "by stack" intervals and local interval created when interference
1448 /// occurs).
1449 /// One of the split intervals ends up evicting %2 from physreg1.
1450 /// Evictee %2 is intended for region splitting with split candidate
1451 /// physreg1.
1452 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1453 ///
1454 /// Scenario #2
1455 /// %0 is evicted from physreg0 by %1.
1456 /// %2 is evicted from physreg2 by %3 etc.
1457 /// Evictee %0 is intended for region splitting with split candidate
1458 /// physreg1.
1459 /// Region splitting creates a local interval because of interference with the
1460 /// evictor %1.
1461 /// One of the split intervals ends up evicting back original evictor %1
1462 /// from physreg0 (the reg %0 was evicted from).
1463 /// Another evictee %2 is intended for region splitting with split candidate
1464 /// physreg1.
1465 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1466 ///
1467 /// \param Evictee  The register considered to be split.
1468 /// \param Cand     The split candidate that determines the physical register
1469 ///                 we are splitting for and the interferences.
1470 /// \param BBNumber The number of a BB for which the region split process will
1471 ///                 create a local split interval.
1472 /// \param Order    The physical registers that may get evicted by a split
1473 ///                 artifact of Evictee.
1474 /// \return True if splitting Evictee may cause a bad eviction chain, false
1475 /// otherwise.
1476 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1477                                           GlobalSplitCandidate &Cand,
1478                                           unsigned BBNumber,
1479                                           const AllocationOrder &Order) {
1480   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1481   unsigned Evictor = VregEvictorInfo.first;
1482   unsigned PhysReg = VregEvictorInfo.second;
1483
1484   // No actual evictor.
1485   if (!Evictor || !PhysReg)
1486     return false;
1487
1488   float MaxWeight = 0;
1489   unsigned FutureEvictedPhysReg =
1490       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1491                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1492
1493   // The bad eviction chain occurs when either the split candidate is the
1494   // evicting reg or one of the split artifact will evict the evicting reg.
1495   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1496     return false;
1497
1498   Cand.Intf.moveToBlock(BBNumber);
1499
1500   // Check to see if the Evictor contains interference (with Evictee) in the
1501   // given BB. If so, this interference caused the eviction of Evictee from
1502   // PhysReg. This suggest that we will create a local interval during the
1503   // region split to avoid this interference This local interval may cause a bad
1504   // eviction chain.
1505   if (!LIS->hasInterval(Evictor))
1506     return false;
1507   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1508   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1509     return false;
1510
1511   // Now, check to see if the local interval we will create is going to be
1512   // expensive enough to evict somebody If so, this may cause a bad eviction
1513   // chain.
1514   VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1515   float splitArtifactWeight =
1516       VRAI.futureWeight(LIS->getInterval(Evictee),
1517                         Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1518   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1519     return false;
1520
1521   return true;
1522 }
1523
1524 /// Check if splitting VirtRegToSplit will create a local split interval
1525 /// in basic block number BBNumber that may cause a spill.
1526 ///
1527 /// \param VirtRegToSplit The register considered to be split.
1528 /// \param Cand           The split candidate that determines the physical
1529 ///                       register we are splitting for and the interferences.
1530 /// \param BBNumber       The number of a BB for which the region split process
1531 ///                       will create a local split interval.
1532 /// \param Order          The physical registers that may get evicted by a
1533 ///                       split artifact of VirtRegToSplit.
1534 /// \return True if splitting VirtRegToSplit may cause a spill, false
1535 /// otherwise.
1536 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1537                                        GlobalSplitCandidate &Cand,
1538                                        unsigned BBNumber,
1539                                        const AllocationOrder &Order) {
1540   Cand.Intf.moveToBlock(BBNumber);
1541
1542   // Check if the local interval will find a non interfereing assignment.
1543   for (auto PhysReg : Order.getOrder()) {
1544     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1545                                    Cand.Intf.last(), PhysReg))
1546       return false;
1547   }
1548
1549   // Check if the local interval will evict a cheaper interval.
1550   float CheapestEvictWeight = 0;
1551   unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1552       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1553       Cand.Intf.last(), &CheapestEvictWeight);
1554
1555   // Have we found an interval that can be evicted?
1556   if (FutureEvictedPhysReg) {
1557     VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1558     float splitArtifactWeight =
1559         VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
1560                           Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1561     // Will the weight of the local interval be higher than the cheapest evictee
1562     // weight? If so it will evict it and will not cause a spill.
1563     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1564       return false;
1565   }
1566
1567   // The local interval is not able to find non interferencing assignment and
1568   // not able to evict a less worthy interval, therfore, it can cause a spill.
1569   return true;
1570 }
1571
1572 /// calcGlobalSplitCost - Return the global split cost of following the split
1573 /// pattern in LiveBundles. This cost should be added to the local cost of the
1574 /// interference pattern in SplitConstraints.
1575 ///
1576 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1577                                              const AllocationOrder &Order,
1578                                              bool *CanCauseEvictionChain) {
1579   BlockFrequency GlobalCost = 0;
1580   const BitVector &LiveBundles = Cand.LiveBundles;
1581   unsigned VirtRegToSplit = SA->getParent().reg;
1582   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1583   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1584     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1585     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1586     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1587     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1588     unsigned Ins = 0;
1589
1590     Cand.Intf.moveToBlock(BC.Number);
1591     // Check wheather a local interval is going to be created during the region
1592     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1593     // is enabled.
1594     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1595         BI.LiveOut && RegIn && RegOut) {
1596
1597       if (CanCauseEvictionChain &&
1598           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1599         // This interference causes our eviction from this assignment, we might
1600         // evict somebody else and eventually someone will spill, add that cost.
1601         // See splitCanCauseEvictionChain for detailed description of scenarios.
1602         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1603         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1604
1605         *CanCauseEvictionChain = true;
1606
1607       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1608                                          Order)) {
1609         // This interference causes local interval to spill, add that cost.
1610         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1611         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1612       }
1613     }
1614
1615     if (BI.LiveIn)
1616       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1617     if (BI.LiveOut)
1618       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1619     while (Ins--)
1620       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1621   }
1622
1623   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1624     unsigned Number = Cand.ActiveBlocks[i];
1625     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1626     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1627     if (!RegIn && !RegOut)
1628       continue;
1629     if (RegIn && RegOut) {
1630       // We need double spill code if this block has interference.
1631       Cand.Intf.moveToBlock(Number);
1632       if (Cand.Intf.hasInterference()) {
1633         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1634         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1635
1636         // Check wheather a local interval is going to be created during the
1637         // region split.
1638         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1639             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1640           // This interference cause our eviction from this assignment, we might
1641           // evict somebody else, add that cost.
1642           // See splitCanCauseEvictionChain for detailed description of
1643           // scenarios.
1644           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1645           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1646
1647           *CanCauseEvictionChain = true;
1648         }
1649       }
1650       continue;
1651     }
1652     // live-in / stack-out or stack-in live-out.
1653     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1654   }
1655   return GlobalCost;
1656 }
1657
1658 /// splitAroundRegion - Split the current live range around the regions
1659 /// determined by BundleCand and GlobalCand.
1660 ///
1661 /// Before calling this function, GlobalCand and BundleCand must be initialized
1662 /// so each bundle is assigned to a valid candidate, or NoCand for the
1663 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1664 /// objects must be initialized for the current live range, and intervals
1665 /// created for the used candidates.
1666 ///
1667 /// @param LREdit    The LiveRangeEdit object handling the current split.
1668 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1669 ///                  must appear in this list.
1670 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1671                                  ArrayRef<unsigned> UsedCands) {
1672   // These are the intervals created for new global ranges. We may create more
1673   // intervals for local ranges.
1674   const unsigned NumGlobalIntvs = LREdit.size();
1675   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1676                     << " globals.\n");
1677   assert(NumGlobalIntvs && "No global intervals configured");
1678
1679   // Isolate even single instructions when dealing with a proper sub-class.
1680   // That guarantees register class inflation for the stack interval because it
1681   // is all copies.
1682   unsigned Reg = SA->getParent().reg;
1683   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1684
1685   // First handle all the blocks with uses.
1686   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1687   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1688     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1689     unsigned Number = BI.MBB->getNumber();
1690     unsigned IntvIn = 0, IntvOut = 0;
1691     SlotIndex IntfIn, IntfOut;
1692     if (BI.LiveIn) {
1693       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1694       if (CandIn != NoCand) {
1695         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1696         IntvIn = Cand.IntvIdx;
1697         Cand.Intf.moveToBlock(Number);
1698         IntfIn = Cand.Intf.first();
1699       }
1700     }
1701     if (BI.LiveOut) {
1702       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1703       if (CandOut != NoCand) {
1704         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1705         IntvOut = Cand.IntvIdx;
1706         Cand.Intf.moveToBlock(Number);
1707         IntfOut = Cand.Intf.last();
1708       }
1709     }
1710
1711     // Create separate intervals for isolated blocks with multiple uses.
1712     if (!IntvIn && !IntvOut) {
1713       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1714       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1715         SE->splitSingleBlock(BI);
1716       continue;
1717     }
1718
1719     if (IntvIn && IntvOut)
1720       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1721     else if (IntvIn)
1722       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1723     else
1724       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1725   }
1726
1727   // Handle live-through blocks. The relevant live-through blocks are stored in
1728   // the ActiveBlocks list with each candidate. We need to filter out
1729   // duplicates.
1730   BitVector Todo = SA->getThroughBlocks();
1731   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1732     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1733     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1734       unsigned Number = Blocks[i];
1735       if (!Todo.test(Number))
1736         continue;
1737       Todo.reset(Number);
1738
1739       unsigned IntvIn = 0, IntvOut = 0;
1740       SlotIndex IntfIn, IntfOut;
1741
1742       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1743       if (CandIn != NoCand) {
1744         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1745         IntvIn = Cand.IntvIdx;
1746         Cand.Intf.moveToBlock(Number);
1747         IntfIn = Cand.Intf.first();
1748       }
1749
1750       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1751       if (CandOut != NoCand) {
1752         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1753         IntvOut = Cand.IntvIdx;
1754         Cand.Intf.moveToBlock(Number);
1755         IntfOut = Cand.Intf.last();
1756       }
1757       if (!IntvIn && !IntvOut)
1758         continue;
1759       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1760     }
1761   }
1762
1763   ++NumGlobalSplits;
1764
1765   SmallVector<unsigned, 8> IntvMap;
1766   SE->finish(&IntvMap);
1767   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1768
1769   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1770   unsigned OrigBlocks = SA->getNumLiveBlocks();
1771
1772   // Sort out the new intervals created by splitting. We get four kinds:
1773   // - Remainder intervals should not be split again.
1774   // - Candidate intervals can be assigned to Cand.PhysReg.
1775   // - Block-local splits are candidates for local splitting.
1776   // - DCE leftovers should go back on the queue.
1777   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1778     LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1779
1780     // Ignore old intervals from DCE.
1781     if (getStage(Reg) != RS_New)
1782       continue;
1783
1784     // Remainder interval. Don't try splitting again, spill if it doesn't
1785     // allocate.
1786     if (IntvMap[i] == 0) {
1787       setStage(Reg, RS_Spill);
1788       continue;
1789     }
1790
1791     // Global intervals. Allow repeated splitting as long as the number of live
1792     // blocks is strictly decreasing.
1793     if (IntvMap[i] < NumGlobalIntvs) {
1794       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1795         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1796                           << " blocks as original.\n");
1797         // Don't allow repeated splitting as a safe guard against looping.
1798         setStage(Reg, RS_Split2);
1799       }
1800       continue;
1801     }
1802
1803     // Other intervals are treated as new. This includes local intervals created
1804     // for blocks with multiple uses, and anything created by DCE.
1805   }
1806
1807   if (VerifyEnabled)
1808     MF->verify(this, "After splitting live range around region");
1809 }
1810
1811 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1812                                   SmallVectorImpl<Register> &NewVRegs) {
1813   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1814     return 0;
1815   unsigned NumCands = 0;
1816   BlockFrequency SpillCost = calcSpillCost();
1817   BlockFrequency BestCost;
1818
1819   // Check if we can split this live range around a compact region.
1820   bool HasCompact = calcCompactRegion(GlobalCand.front());
1821   if (HasCompact) {
1822     // Yes, keep GlobalCand[0] as the compact region candidate.
1823     NumCands = 1;
1824     BestCost = BlockFrequency::getMaxFrequency();
1825   } else {
1826     // No benefit from the compact region, our fallback will be per-block
1827     // splitting. Make sure we find a solution that is cheaper than spilling.
1828     BestCost = SpillCost;
1829     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1830                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1831   }
1832
1833   bool CanCauseEvictionChain = false;
1834   unsigned BestCand =
1835       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1836                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1837
1838   // Split candidates with compact regions can cause a bad eviction sequence.
1839   // See splitCanCauseEvictionChain for detailed description of scenarios.
1840   // To avoid it, we need to comapre the cost with the spill cost and not the
1841   // current max frequency.
1842   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1843     CanCauseEvictionChain) {
1844     return 0;
1845   }
1846
1847   // No solutions found, fall back to single block splitting.
1848   if (!HasCompact && BestCand == NoCand)
1849     return 0;
1850
1851   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1852 }
1853
1854 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1855                                             AllocationOrder &Order,
1856                                             BlockFrequency &BestCost,
1857                                             unsigned &NumCands, bool IgnoreCSR,
1858                                             bool *CanCauseEvictionChain) {
1859   unsigned BestCand = NoCand;
1860   Order.rewind();
1861   while (unsigned PhysReg = Order.next()) {
1862     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1863       continue;
1864
1865     // Discard bad candidates before we run out of interference cache cursors.
1866     // This will only affect register classes with a lot of registers (>32).
1867     if (NumCands == IntfCache.getMaxCursors()) {
1868       unsigned WorstCount = ~0u;
1869       unsigned Worst = 0;
1870       for (unsigned i = 0; i != NumCands; ++i) {
1871         if (i == BestCand || !GlobalCand[i].PhysReg)
1872           continue;
1873         unsigned Count = GlobalCand[i].LiveBundles.count();
1874         if (Count < WorstCount) {
1875           Worst = i;
1876           WorstCount = Count;
1877         }
1878       }
1879       --NumCands;
1880       GlobalCand[Worst] = GlobalCand[NumCands];
1881       if (BestCand == NumCands)
1882         BestCand = Worst;
1883     }
1884
1885     if (GlobalCand.size() <= NumCands)
1886       GlobalCand.resize(NumCands+1);
1887     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1888     Cand.reset(IntfCache, PhysReg);
1889
1890     SpillPlacer->prepare(Cand.LiveBundles);
1891     BlockFrequency Cost;
1892     if (!addSplitConstraints(Cand.Intf, Cost)) {
1893       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1894       continue;
1895     }
1896     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1897                MBFI->printBlockFreq(dbgs(), Cost));
1898     if (Cost >= BestCost) {
1899       LLVM_DEBUG({
1900         if (BestCand == NoCand)
1901           dbgs() << " worse than no bundles\n";
1902         else
1903           dbgs() << " worse than "
1904                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1905       });
1906       continue;
1907     }
1908     if (!growRegion(Cand)) {
1909       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1910       continue;
1911     }
1912
1913     SpillPlacer->finish();
1914
1915     // No live bundles, defer to splitSingleBlocks().
1916     if (!Cand.LiveBundles.any()) {
1917       LLVM_DEBUG(dbgs() << " no bundles.\n");
1918       continue;
1919     }
1920
1921     bool HasEvictionChain = false;
1922     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1923     LLVM_DEBUG({
1924       dbgs() << ", total = ";
1925       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1926       for (int i : Cand.LiveBundles.set_bits())
1927         dbgs() << " EB#" << i;
1928       dbgs() << ".\n";
1929     });
1930     if (Cost < BestCost) {
1931       BestCand = NumCands;
1932       BestCost = Cost;
1933       // See splitCanCauseEvictionChain for detailed description of bad
1934       // eviction chain scenarios.
1935       if (CanCauseEvictionChain)
1936         *CanCauseEvictionChain = HasEvictionChain;
1937     }
1938     ++NumCands;
1939   }
1940
1941   if (CanCauseEvictionChain && BestCand != NoCand) {
1942     // See splitCanCauseEvictionChain for detailed description of bad
1943     // eviction chain scenarios.
1944     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1945                       << printReg(VirtReg.reg, TRI) << "  may ");
1946     if (!(*CanCauseEvictionChain))
1947       LLVM_DEBUG(dbgs() << "not ");
1948     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1949   }
1950
1951   return BestCand;
1952 }
1953
1954 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1955                                  bool HasCompact,
1956                                  SmallVectorImpl<Register> &NewVRegs) {
1957   SmallVector<unsigned, 8> UsedCands;
1958   // Prepare split editor.
1959   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1960   SE->reset(LREdit, SplitSpillMode);
1961
1962   // Assign all edge bundles to the preferred candidate, or NoCand.
1963   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1964
1965   // Assign bundles for the best candidate region.
1966   if (BestCand != NoCand) {
1967     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1968     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1969       UsedCands.push_back(BestCand);
1970       Cand.IntvIdx = SE->openIntv();
1971       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1972                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1973       (void)B;
1974     }
1975   }
1976
1977   // Assign bundles for the compact region.
1978   if (HasCompact) {
1979     GlobalSplitCandidate &Cand = GlobalCand.front();
1980     assert(!Cand.PhysReg && "Compact region has no physreg");
1981     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1982       UsedCands.push_back(0);
1983       Cand.IntvIdx = SE->openIntv();
1984       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1985                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1986       (void)B;
1987     }
1988   }
1989
1990   splitAroundRegion(LREdit, UsedCands);
1991   return 0;
1992 }
1993
1994 //===----------------------------------------------------------------------===//
1995 //                            Per-Block Splitting
1996 //===----------------------------------------------------------------------===//
1997
1998 /// tryBlockSplit - Split a global live range around every block with uses. This
1999 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2000 /// they don't allocate.
2001 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2002                                  SmallVectorImpl<Register> &NewVRegs) {
2003   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2004   Register Reg = VirtReg.reg;
2005   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2006   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2007   SE->reset(LREdit, SplitSpillMode);
2008   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2009   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
2010     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
2011     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2012       SE->splitSingleBlock(BI);
2013   }
2014   // No blocks were split.
2015   if (LREdit.empty())
2016     return 0;
2017
2018   // We did split for some blocks.
2019   SmallVector<unsigned, 8> IntvMap;
2020   SE->finish(&IntvMap);
2021
2022   // Tell LiveDebugVariables about the new ranges.
2023   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2024
2025   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2026
2027   // Sort out the new intervals created by splitting. The remainder interval
2028   // goes straight to spilling, the new local ranges get to stay RS_New.
2029   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
2030     LiveInterval &LI = LIS->getInterval(LREdit.get(i));
2031     if (getStage(LI) == RS_New && IntvMap[i] == 0)
2032       setStage(LI, RS_Spill);
2033   }
2034
2035   if (VerifyEnabled)
2036     MF->verify(this, "After splitting live range around basic blocks");
2037   return 0;
2038 }
2039
2040 //===----------------------------------------------------------------------===//
2041 //                         Per-Instruction Splitting
2042 //===----------------------------------------------------------------------===//
2043
2044 /// Get the number of allocatable registers that match the constraints of \p Reg
2045 /// on \p MI and that are also in \p SuperRC.
2046 static unsigned getNumAllocatableRegsForConstraints(
2047     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2048     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2049     const RegisterClassInfo &RCI) {
2050   assert(SuperRC && "Invalid register class");
2051
2052   const TargetRegisterClass *ConstrainedRC =
2053       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2054                                              /* ExploreBundle */ true);
2055   if (!ConstrainedRC)
2056     return 0;
2057   return RCI.getNumAllocatableRegs(ConstrainedRC);
2058 }
2059
2060 /// tryInstructionSplit - Split a live range around individual instructions.
2061 /// This is normally not worthwhile since the spiller is doing essentially the
2062 /// same thing. However, when the live range is in a constrained register
2063 /// class, it may help to insert copies such that parts of the live range can
2064 /// be moved to a larger register class.
2065 ///
2066 /// This is similar to spilling to a larger register class.
2067 unsigned
2068 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2069                               SmallVectorImpl<Register> &NewVRegs) {
2070   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2071   // There is no point to this if there are no larger sub-classes.
2072   if (!RegClassInfo.isProperSubClass(CurRC))
2073     return 0;
2074
2075   // Always enable split spill mode, since we're effectively spilling to a
2076   // register.
2077   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2078   SE->reset(LREdit, SplitEditor::SM_Size);
2079
2080   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2081   if (Uses.size() <= 1)
2082     return 0;
2083
2084   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2085                     << " individual instrs.\n");
2086
2087   const TargetRegisterClass *SuperRC =
2088       TRI->getLargestLegalSuperClass(CurRC, *MF);
2089   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2090   // Split around every non-copy instruction if this split will relax
2091   // the constraints on the virtual register.
2092   // Otherwise, splitting just inserts uncoalescable copies that do not help
2093   // the allocation.
2094   for (unsigned i = 0; i != Uses.size(); ++i) {
2095     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
2096       if (MI->isFullCopy() ||
2097           SuperRCNumAllocatableRegs ==
2098               getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
2099                                                   TRI, RCI)) {
2100         LLVM_DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
2101         continue;
2102       }
2103     SE->openIntv();
2104     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
2105     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
2106     SE->useIntv(SegStart, SegStop);
2107   }
2108
2109   if (LREdit.empty()) {
2110     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2111     return 0;
2112   }
2113
2114   SmallVector<unsigned, 8> IntvMap;
2115   SE->finish(&IntvMap);
2116   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2117   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2118
2119   // Assign all new registers to RS_Spill. This was the last chance.
2120   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2121   return 0;
2122 }
2123
2124 //===----------------------------------------------------------------------===//
2125 //                             Local Splitting
2126 //===----------------------------------------------------------------------===//
2127
2128 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2129 /// in order to use PhysReg between two entries in SA->UseSlots.
2130 ///
2131 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
2132 ///
2133 void RAGreedy::calcGapWeights(unsigned PhysReg,
2134                               SmallVectorImpl<float> &GapWeight) {
2135   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2136   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2137   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2138   const unsigned NumGaps = Uses.size()-1;
2139
2140   // Start and end points for the interference check.
2141   SlotIndex StartIdx =
2142     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2143   SlotIndex StopIdx =
2144     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2145
2146   GapWeight.assign(NumGaps, 0.0f);
2147
2148   // Add interference from each overlapping register.
2149   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2150     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2151           .checkInterference())
2152       continue;
2153
2154     // We know that VirtReg is a continuous interval from FirstInstr to
2155     // LastInstr, so we don't need InterferenceQuery.
2156     //
2157     // Interference that overlaps an instruction is counted in both gaps
2158     // surrounding the instruction. The exception is interference before
2159     // StartIdx and after StopIdx.
2160     //
2161     LiveIntervalUnion::SegmentIter IntI =
2162       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2163     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2164       // Skip the gaps before IntI.
2165       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2166         if (++Gap == NumGaps)
2167           break;
2168       if (Gap == NumGaps)
2169         break;
2170
2171       // Update the gaps covered by IntI.
2172       const float weight = IntI.value()->weight;
2173       for (; Gap != NumGaps; ++Gap) {
2174         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2175         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2176           break;
2177       }
2178       if (Gap == NumGaps)
2179         break;
2180     }
2181   }
2182
2183   // Add fixed interference.
2184   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2185     const LiveRange &LR = LIS->getRegUnit(*Units);
2186     LiveRange::const_iterator I = LR.find(StartIdx);
2187     LiveRange::const_iterator E = LR.end();
2188
2189     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2190     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2191       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2192         if (++Gap == NumGaps)
2193           break;
2194       if (Gap == NumGaps)
2195         break;
2196
2197       for (; Gap != NumGaps; ++Gap) {
2198         GapWeight[Gap] = huge_valf;
2199         if (Uses[Gap+1].getBaseIndex() >= I->end)
2200           break;
2201       }
2202       if (Gap == NumGaps)
2203         break;
2204     }
2205   }
2206 }
2207
2208 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2209 /// basic block.
2210 ///
2211 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2212                                  SmallVectorImpl<Register> &NewVRegs) {
2213   // TODO: the function currently only handles a single UseBlock; it should be
2214   // possible to generalize.
2215   if (SA->getUseBlocks().size() != 1)
2216     return 0;
2217
2218   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2219
2220   // Note that it is possible to have an interval that is live-in or live-out
2221   // while only covering a single block - A phi-def can use undef values from
2222   // predecessors, and the block could be a single-block loop.
2223   // We don't bother doing anything clever about such a case, we simply assume
2224   // that the interval is continuous from FirstInstr to LastInstr. We should
2225   // make sure that we don't do anything illegal to such an interval, though.
2226
2227   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2228   if (Uses.size() <= 2)
2229     return 0;
2230   const unsigned NumGaps = Uses.size()-1;
2231
2232   LLVM_DEBUG({
2233     dbgs() << "tryLocalSplit: ";
2234     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
2235       dbgs() << ' ' << Uses[i];
2236     dbgs() << '\n';
2237   });
2238
2239   // If VirtReg is live across any register mask operands, compute a list of
2240   // gaps with register masks.
2241   SmallVector<unsigned, 8> RegMaskGaps;
2242   if (Matrix->checkRegMaskInterference(VirtReg)) {
2243     // Get regmask slots for the whole block.
2244     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2245     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2246     // Constrain to VirtReg's live range.
2247     unsigned ri =
2248         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2249     unsigned re = RMS.size();
2250     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
2251       // Look for Uses[i] <= RMS <= Uses[i+1].
2252       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
2253       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
2254         continue;
2255       // Skip a regmask on the same instruction as the last use. It doesn't
2256       // overlap the live range.
2257       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
2258         break;
2259       LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-'
2260                         << Uses[i + 1]);
2261       RegMaskGaps.push_back(i);
2262       // Advance ri to the next gap. A regmask on one of the uses counts in
2263       // both gaps.
2264       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
2265         ++ri;
2266     }
2267     LLVM_DEBUG(dbgs() << '\n');
2268   }
2269
2270   // Since we allow local split results to be split again, there is a risk of
2271   // creating infinite loops. It is tempting to require that the new live
2272   // ranges have less instructions than the original. That would guarantee
2273   // convergence, but it is too strict. A live range with 3 instructions can be
2274   // split 2+3 (including the COPY), and we want to allow that.
2275   //
2276   // Instead we use these rules:
2277   //
2278   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2279   //    noop split, of course).
2280   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2281   //    the new ranges must have fewer instructions than before the split.
2282   // 3. New ranges with the same number of instructions are marked RS_Split2,
2283   //    smaller ranges are marked RS_New.
2284   //
2285   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2286   // excessive splitting and infinite loops.
2287   //
2288   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2289
2290   // Best split candidate.
2291   unsigned BestBefore = NumGaps;
2292   unsigned BestAfter = 0;
2293   float BestDiff = 0;
2294
2295   const float blockFreq =
2296     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2297     (1.0f / MBFI->getEntryFreq());
2298   SmallVector<float, 8> GapWeight;
2299
2300   Order.rewind();
2301   while (unsigned PhysReg = Order.next()) {
2302     // Keep track of the largest spill weight that would need to be evicted in
2303     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
2304     calcGapWeights(PhysReg, GapWeight);
2305
2306     // Remove any gaps with regmask clobbers.
2307     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2308       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
2309         GapWeight[RegMaskGaps[i]] = huge_valf;
2310
2311     // Try to find the best sequence of gaps to close.
2312     // The new spill weight must be larger than any gap interference.
2313
2314     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2315     unsigned SplitBefore = 0, SplitAfter = 1;
2316
2317     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2318     // It is the spill weight that needs to be evicted.
2319     float MaxGap = GapWeight[0];
2320
2321     while (true) {
2322       // Live before/after split?
2323       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2324       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2325
2326       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2327                         << '-' << Uses[SplitAfter] << " i=" << MaxGap);
2328
2329       // Stop before the interval gets so big we wouldn't be making progress.
2330       if (!LiveBefore && !LiveAfter) {
2331         LLVM_DEBUG(dbgs() << " all\n");
2332         break;
2333       }
2334       // Should the interval be extended or shrunk?
2335       bool Shrink = true;
2336
2337       // How many gaps would the new range have?
2338       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2339
2340       // Legally, without causing looping?
2341       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2342
2343       if (Legal && MaxGap < huge_valf) {
2344         // Estimate the new spill weight. Each instruction reads or writes the
2345         // register. Conservatively assume there are no read-modify-write
2346         // instructions.
2347         //
2348         // Try to guess the size of the new interval.
2349         const float EstWeight = normalizeSpillWeight(
2350             blockFreq * (NewGaps + 1),
2351             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2352                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2353             1);
2354         // Would this split be possible to allocate?
2355         // Never allocate all gaps, we wouldn't be making progress.
2356         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2357         if (EstWeight * Hysteresis >= MaxGap) {
2358           Shrink = false;
2359           float Diff = EstWeight - MaxGap;
2360           if (Diff > BestDiff) {
2361             LLVM_DEBUG(dbgs() << " (best)");
2362             BestDiff = Hysteresis * Diff;
2363             BestBefore = SplitBefore;
2364             BestAfter = SplitAfter;
2365           }
2366         }
2367       }
2368
2369       // Try to shrink.
2370       if (Shrink) {
2371         if (++SplitBefore < SplitAfter) {
2372           LLVM_DEBUG(dbgs() << " shrink\n");
2373           // Recompute the max when necessary.
2374           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2375             MaxGap = GapWeight[SplitBefore];
2376             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
2377               MaxGap = std::max(MaxGap, GapWeight[i]);
2378           }
2379           continue;
2380         }
2381         MaxGap = 0;
2382       }
2383
2384       // Try to extend the interval.
2385       if (SplitAfter >= NumGaps) {
2386         LLVM_DEBUG(dbgs() << " end\n");
2387         break;
2388       }
2389
2390       LLVM_DEBUG(dbgs() << " extend\n");
2391       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2392     }
2393   }
2394
2395   // Didn't find any candidates?
2396   if (BestBefore == NumGaps)
2397     return 0;
2398
2399   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2400                     << Uses[BestAfter] << ", " << BestDiff << ", "
2401                     << (BestAfter - BestBefore + 1) << " instrs\n");
2402
2403   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2404   SE->reset(LREdit);
2405
2406   SE->openIntv();
2407   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2408   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2409   SE->useIntv(SegStart, SegStop);
2410   SmallVector<unsigned, 8> IntvMap;
2411   SE->finish(&IntvMap);
2412   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2413
2414   // If the new range has the same number of instructions as before, mark it as
2415   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2416   // leave the new intervals as RS_New so they can compete.
2417   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2418   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2419   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2420   if (NewGaps >= NumGaps) {
2421     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2422     assert(!ProgressRequired && "Didn't make progress when it was required.");
2423     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
2424       if (IntvMap[i] == 1) {
2425         setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
2426         LLVM_DEBUG(dbgs() << printReg(LREdit.get(i)));
2427       }
2428     LLVM_DEBUG(dbgs() << '\n');
2429   }
2430   ++NumLocalSplits;
2431
2432   return 0;
2433 }
2434
2435 //===----------------------------------------------------------------------===//
2436 //                          Live Range Splitting
2437 //===----------------------------------------------------------------------===//
2438
2439 /// trySplit - Try to split VirtReg or one of its interferences, making it
2440 /// assignable.
2441 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2442 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2443                             SmallVectorImpl<Register> &NewVRegs,
2444                             const SmallVirtRegSet &FixedRegisters) {
2445   // Ranges must be Split2 or less.
2446   if (getStage(VirtReg) >= RS_Spill)
2447     return 0;
2448
2449   // Local intervals are handled separately.
2450   if (LIS->intervalIsInOneMBB(VirtReg)) {
2451     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2452                        TimerGroupDescription, TimePassesIsEnabled);
2453     SA->analyze(&VirtReg);
2454     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2455     if (PhysReg || !NewVRegs.empty())
2456       return PhysReg;
2457     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2458   }
2459
2460   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2461                      TimerGroupDescription, TimePassesIsEnabled);
2462
2463   SA->analyze(&VirtReg);
2464
2465   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2466   // coalescer. That may cause the range to become allocatable which means that
2467   // tryRegionSplit won't be making progress. This check should be replaced with
2468   // an assertion when the coalescer is fixed.
2469   if (SA->didRepairRange()) {
2470     // VirtReg has changed, so all cached queries are invalid.
2471     Matrix->invalidateVirtRegs();
2472     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2473       return PhysReg;
2474   }
2475
2476   // First try to split around a region spanning multiple blocks. RS_Split2
2477   // ranges already made dubious progress with region splitting, so they go
2478   // straight to single block splitting.
2479   if (getStage(VirtReg) < RS_Split2) {
2480     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2481     if (PhysReg || !NewVRegs.empty())
2482       return PhysReg;
2483   }
2484
2485   // Then isolate blocks.
2486   return tryBlockSplit(VirtReg, Order, NewVRegs);
2487 }
2488
2489 //===----------------------------------------------------------------------===//
2490 //                          Last Chance Recoloring
2491 //===----------------------------------------------------------------------===//
2492
2493 /// Return true if \p reg has any tied def operand.
2494 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2495   for (const MachineOperand &MO : MRI->def_operands(reg))
2496     if (MO.isTied())
2497       return true;
2498
2499   return false;
2500 }
2501
2502 /// mayRecolorAllInterferences - Check if the virtual registers that
2503 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2504 /// recolored to free \p PhysReg.
2505 /// When true is returned, \p RecoloringCandidates has been augmented with all
2506 /// the live intervals that need to be recolored in order to free \p PhysReg
2507 /// for \p VirtReg.
2508 /// \p FixedRegisters contains all the virtual registers that cannot be
2509 /// recolored.
2510 bool
2511 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2512                                      SmallLISet &RecoloringCandidates,
2513                                      const SmallVirtRegSet &FixedRegisters) {
2514   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2515
2516   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2517     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2518     // If there is LastChanceRecoloringMaxInterference or more interferences,
2519     // chances are one would not be recolorable.
2520     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2521         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2522       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2523       CutOffInfo |= CO_Interf;
2524       return false;
2525     }
2526     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2527       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2528       // If Intf is done and sit on the same register class as VirtReg,
2529       // it would not be recolorable as it is in the same state as VirtReg.
2530       // However, if VirtReg has tied defs and Intf doesn't, then
2531       // there is still a point in examining if it can be recolorable.
2532       if (((getStage(*Intf) == RS_Done &&
2533             MRI->getRegClass(Intf->reg) == CurRC) &&
2534            !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) ||
2535           FixedRegisters.count(Intf->reg)) {
2536         LLVM_DEBUG(
2537             dbgs() << "Early abort: the interference is not recolorable.\n");
2538         return false;
2539       }
2540       RecoloringCandidates.insert(Intf);
2541     }
2542   }
2543   return true;
2544 }
2545
2546 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2547 /// its interferences.
2548 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2549 /// virtual register that was using it. The recoloring process may recursively
2550 /// use the last chance recoloring. Therefore, when a virtual register has been
2551 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2552 /// be last-chance-recolored again during this recoloring "session".
2553 /// E.g.,
2554 /// Let
2555 /// vA can use {R1, R2    }
2556 /// vB can use {    R2, R3}
2557 /// vC can use {R1        }
2558 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2559 /// instance) and they all interfere.
2560 ///
2561 /// vA is assigned R1
2562 /// vB is assigned R2
2563 /// vC tries to evict vA but vA is already done.
2564 /// Regular register allocation fails.
2565 ///
2566 /// Last chance recoloring kicks in:
2567 /// vC does as if vA was evicted => vC uses R1.
2568 /// vC is marked as fixed.
2569 /// vA needs to find a color.
2570 /// None are available.
2571 /// vA cannot evict vC: vC is a fixed virtual register now.
2572 /// vA does as if vB was evicted => vA uses R2.
2573 /// vB needs to find a color.
2574 /// R3 is available.
2575 /// Recoloring => vC = R1, vA = R2, vB = R3
2576 ///
2577 /// \p Order defines the preferred allocation order for \p VirtReg.
2578 /// \p NewRegs will contain any new virtual register that have been created
2579 /// (split, spill) during the process and that must be assigned.
2580 /// \p FixedRegisters contains all the virtual registers that cannot be
2581 /// recolored.
2582 /// \p Depth gives the current depth of the last chance recoloring.
2583 /// \return a physical register that can be used for VirtReg or ~0u if none
2584 /// exists.
2585 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2586                                            AllocationOrder &Order,
2587                                            SmallVectorImpl<Register> &NewVRegs,
2588                                            SmallVirtRegSet &FixedRegisters,
2589                                            unsigned Depth) {
2590   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2591   // Ranges must be Done.
2592   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2593          "Last chance recoloring should really be last chance");
2594   // Set the max depth to LastChanceRecoloringMaxDepth.
2595   // We may want to reconsider that if we end up with a too large search space
2596   // for target with hundreds of registers.
2597   // Indeed, in that case we may want to cut the search space earlier.
2598   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2599     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2600     CutOffInfo |= CO_Depth;
2601     return ~0u;
2602   }
2603
2604   // Set of Live intervals that will need to be recolored.
2605   SmallLISet RecoloringCandidates;
2606   // Record the original mapping virtual register to physical register in case
2607   // the recoloring fails.
2608   DenseMap<Register, Register> VirtRegToPhysReg;
2609   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2610   // this recoloring "session".
2611   assert(!FixedRegisters.count(VirtReg.reg));
2612   FixedRegisters.insert(VirtReg.reg);
2613   SmallVector<Register, 4> CurrentNewVRegs;
2614
2615   Order.rewind();
2616   while (Register PhysReg = Order.next()) {
2617     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2618                       << printReg(PhysReg, TRI) << '\n');
2619     RecoloringCandidates.clear();
2620     VirtRegToPhysReg.clear();
2621     CurrentNewVRegs.clear();
2622
2623     // It is only possible to recolor virtual register interference.
2624     if (Matrix->checkInterference(VirtReg, PhysReg) >
2625         LiveRegMatrix::IK_VirtReg) {
2626       LLVM_DEBUG(
2627           dbgs() << "Some interferences are not with virtual registers.\n");
2628
2629       continue;
2630     }
2631
2632     // Early give up on this PhysReg if it is obvious we cannot recolor all
2633     // the interferences.
2634     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2635                                     FixedRegisters)) {
2636       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2637       continue;
2638     }
2639
2640     // RecoloringCandidates contains all the virtual registers that interfer
2641     // with VirtReg on PhysReg (or one of its aliases).
2642     // Enqueue them for recoloring and perform the actual recoloring.
2643     PQueue RecoloringQueue;
2644     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2645                               EndIt = RecoloringCandidates.end();
2646          It != EndIt; ++It) {
2647       Register ItVirtReg = (*It)->reg;
2648       enqueue(RecoloringQueue, *It);
2649       assert(VRM->hasPhys(ItVirtReg) &&
2650              "Interferences are supposed to be with allocated variables");
2651
2652       // Record the current allocation.
2653       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2654       // unset the related struct.
2655       Matrix->unassign(**It);
2656     }
2657
2658     // Do as if VirtReg was assigned to PhysReg so that the underlying
2659     // recoloring has the right information about the interferes and
2660     // available colors.
2661     Matrix->assign(VirtReg, PhysReg);
2662
2663     // Save the current recoloring state.
2664     // If we cannot recolor all the interferences, we will have to start again
2665     // at this point for the next physical register.
2666     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2667     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2668                                 FixedRegisters, Depth)) {
2669       // Push the queued vregs into the main queue.
2670       for (Register NewVReg : CurrentNewVRegs)
2671         NewVRegs.push_back(NewVReg);
2672       // Do not mess up with the global assignment process.
2673       // I.e., VirtReg must be unassigned.
2674       Matrix->unassign(VirtReg);
2675       return PhysReg;
2676     }
2677
2678     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2679                       << printReg(PhysReg, TRI) << '\n');
2680
2681     // The recoloring attempt failed, undo the changes.
2682     FixedRegisters = SaveFixedRegisters;
2683     Matrix->unassign(VirtReg);
2684
2685     // For a newly created vreg which is also in RecoloringCandidates,
2686     // don't add it to NewVRegs because its physical register will be restored
2687     // below. Other vregs in CurrentNewVRegs are created by calling
2688     // selectOrSplit and should be added into NewVRegs.
2689     for (SmallVectorImpl<Register>::iterator Next = CurrentNewVRegs.begin(),
2690                                              End = CurrentNewVRegs.end();
2691          Next != End; ++Next) {
2692       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2693         continue;
2694       NewVRegs.push_back(*Next);
2695     }
2696
2697     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2698                               EndIt = RecoloringCandidates.end();
2699          It != EndIt; ++It) {
2700       Register ItVirtReg = (*It)->reg;
2701       if (VRM->hasPhys(ItVirtReg))
2702         Matrix->unassign(**It);
2703       Register ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2704       Matrix->assign(**It, ItPhysReg);
2705     }
2706   }
2707
2708   // Last chance recoloring did not worked either, give up.
2709   return ~0u;
2710 }
2711
2712 /// tryRecoloringCandidates - Try to assign a new color to every register
2713 /// in \RecoloringQueue.
2714 /// \p NewRegs will contain any new virtual register created during the
2715 /// recoloring process.
2716 /// \p FixedRegisters[in/out] contains all the registers that have been
2717 /// recolored.
2718 /// \return true if all virtual registers in RecoloringQueue were successfully
2719 /// recolored, false otherwise.
2720 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2721                                        SmallVectorImpl<Register> &NewVRegs,
2722                                        SmallVirtRegSet &FixedRegisters,
2723                                        unsigned Depth) {
2724   while (!RecoloringQueue.empty()) {
2725     LiveInterval *LI = dequeue(RecoloringQueue);
2726     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2727     Register PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2728                                          Depth + 1);
2729     // When splitting happens, the live-range may actually be empty.
2730     // In that case, this is okay to continue the recoloring even
2731     // if we did not find an alternative color for it. Indeed,
2732     // there will not be anything to color for LI in the end.
2733     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2734       return false;
2735
2736     if (!PhysReg) {
2737       assert(LI->empty() && "Only empty live-range do not require a register");
2738       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2739                         << " succeeded. Empty LI.\n");
2740       continue;
2741     }
2742     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2743                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2744
2745     Matrix->assign(*LI, PhysReg);
2746     FixedRegisters.insert(LI->reg);
2747   }
2748   return true;
2749 }
2750
2751 //===----------------------------------------------------------------------===//
2752 //                            Main Entry Point
2753 //===----------------------------------------------------------------------===//
2754
2755 Register RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2756                                  SmallVectorImpl<Register> &NewVRegs) {
2757   CutOffInfo = CO_None;
2758   LLVMContext &Ctx = MF->getFunction().getContext();
2759   SmallVirtRegSet FixedRegisters;
2760   Register Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2761   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2762     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2763     if (CutOffEncountered == CO_Depth)
2764       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2765                     "reached. Use -fexhaustive-register-search to skip "
2766                     "cutoffs");
2767     else if (CutOffEncountered == CO_Interf)
2768       Ctx.emitError("register allocation failed: maximum interference for "
2769                     "recoloring reached. Use -fexhaustive-register-search "
2770                     "to skip cutoffs");
2771     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2772       Ctx.emitError("register allocation failed: maximum interference and "
2773                     "depth for recoloring reached. Use "
2774                     "-fexhaustive-register-search to skip cutoffs");
2775   }
2776   return Reg;
2777 }
2778
2779 /// Using a CSR for the first time has a cost because it causes push|pop
2780 /// to be added to prologue|epilogue. Splitting a cold section of the live
2781 /// range can have lower cost than using the CSR for the first time;
2782 /// Spilling a live range in the cold path can have lower cost than using
2783 /// the CSR for the first time. Returns the physical register if we decide
2784 /// to use the CSR; otherwise return 0.
2785 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2786                                          AllocationOrder &Order,
2787                                          Register PhysReg,
2788                                          unsigned &CostPerUseLimit,
2789                                          SmallVectorImpl<Register> &NewVRegs) {
2790   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2791     // We choose spill over using the CSR for the first time if the spill cost
2792     // is lower than CSRCost.
2793     SA->analyze(&VirtReg);
2794     if (calcSpillCost() >= CSRCost)
2795       return PhysReg;
2796
2797     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2798     // we will not use a callee-saved register in tryEvict.
2799     CostPerUseLimit = 1;
2800     return 0;
2801   }
2802   if (getStage(VirtReg) < RS_Split) {
2803     // We choose pre-splitting over using the CSR for the first time if
2804     // the cost of splitting is lower than CSRCost.
2805     SA->analyze(&VirtReg);
2806     unsigned NumCands = 0;
2807     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2808     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2809                                                  NumCands, true /*IgnoreCSR*/);
2810     if (BestCand == NoCand)
2811       // Use the CSR if we can't find a region split below CSRCost.
2812       return PhysReg;
2813
2814     // Perform the actual pre-splitting.
2815     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2816     return 0;
2817   }
2818   return PhysReg;
2819 }
2820
2821 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2822   // Do not keep invalid information around.
2823   SetOfBrokenHints.remove(&LI);
2824 }
2825
2826 void RAGreedy::initializeCSRCost() {
2827   // We use the larger one out of the command-line option and the value report
2828   // by TRI.
2829   CSRCost = BlockFrequency(
2830       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2831   if (!CSRCost.getFrequency())
2832     return;
2833
2834   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2835   uint64_t ActualEntry = MBFI->getEntryFreq();
2836   if (!ActualEntry) {
2837     CSRCost = 0;
2838     return;
2839   }
2840   uint64_t FixedEntry = 1 << 14;
2841   if (ActualEntry < FixedEntry)
2842     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2843   else if (ActualEntry <= UINT32_MAX)
2844     // Invert the fraction and divide.
2845     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2846   else
2847     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2848     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2849 }
2850
2851 /// Collect the hint info for \p Reg.
2852 /// The results are stored into \p Out.
2853 /// \p Out is not cleared before being populated.
2854 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2855   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2856     if (!Instr.isFullCopy())
2857       continue;
2858     // Look for the other end of the copy.
2859     Register OtherReg = Instr.getOperand(0).getReg();
2860     if (OtherReg == Reg) {
2861       OtherReg = Instr.getOperand(1).getReg();
2862       if (OtherReg == Reg)
2863         continue;
2864     }
2865     // Get the current assignment.
2866     Register OtherPhysReg = Register::isPhysicalRegister(OtherReg)
2867                                 ? OtherReg
2868                                 : VRM->getPhys(OtherReg);
2869     // Push the collected information.
2870     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2871                            OtherPhysReg));
2872   }
2873 }
2874
2875 /// Using the given \p List, compute the cost of the broken hints if
2876 /// \p PhysReg was used.
2877 /// \return The cost of \p List for \p PhysReg.
2878 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2879                                            unsigned PhysReg) {
2880   BlockFrequency Cost = 0;
2881   for (const HintInfo &Info : List) {
2882     if (Info.PhysReg != PhysReg)
2883       Cost += Info.Freq;
2884   }
2885   return Cost;
2886 }
2887
2888 /// Using the register assigned to \p VirtReg, try to recolor
2889 /// all the live ranges that are copy-related with \p VirtReg.
2890 /// The recoloring is then propagated to all the live-ranges that have
2891 /// been recolored and so on, until no more copies can be coalesced or
2892 /// it is not profitable.
2893 /// For a given live range, profitability is determined by the sum of the
2894 /// frequencies of the non-identity copies it would introduce with the old
2895 /// and new register.
2896 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2897   // We have a broken hint, check if it is possible to fix it by
2898   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2899   // some register and PhysReg may be available for the other live-ranges.
2900   SmallSet<unsigned, 4> Visited;
2901   SmallVector<unsigned, 2> RecoloringCandidates;
2902   HintsInfo Info;
2903   unsigned Reg = VirtReg.reg;
2904   Register PhysReg = VRM->getPhys(Reg);
2905   // Start the recoloring algorithm from the input live-interval, then
2906   // it will propagate to the ones that are copy-related with it.
2907   Visited.insert(Reg);
2908   RecoloringCandidates.push_back(Reg);
2909
2910   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2911                     << '(' << printReg(PhysReg, TRI) << ")\n");
2912
2913   do {
2914     Reg = RecoloringCandidates.pop_back_val();
2915
2916     // We cannot recolor physical register.
2917     if (Register::isPhysicalRegister(Reg))
2918       continue;
2919
2920     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2921
2922     // Get the live interval mapped with this virtual register to be able
2923     // to check for the interference with the new color.
2924     LiveInterval &LI = LIS->getInterval(Reg);
2925     Register CurrPhys = VRM->getPhys(Reg);
2926     // Check that the new color matches the register class constraints and
2927     // that it is free for this live range.
2928     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2929                                 Matrix->checkInterference(LI, PhysReg)))
2930       continue;
2931
2932     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2933                       << ") is recolorable.\n");
2934
2935     // Gather the hint info.
2936     Info.clear();
2937     collectHintInfo(Reg, Info);
2938     // Check if recoloring the live-range will increase the cost of the
2939     // non-identity copies.
2940     if (CurrPhys != PhysReg) {
2941       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2942       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2943       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2944       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2945                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2946                         << '\n');
2947       if (OldCopiesCost < NewCopiesCost) {
2948         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2949         continue;
2950       }
2951       // At this point, the cost is either cheaper or equal. If it is
2952       // equal, we consider this is profitable because it may expose
2953       // more recoloring opportunities.
2954       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2955       // Recolor the live-range.
2956       Matrix->unassign(LI);
2957       Matrix->assign(LI, PhysReg);
2958     }
2959     // Push all copy-related live-ranges to keep reconciling the broken
2960     // hints.
2961     for (const HintInfo &HI : Info) {
2962       if (Visited.insert(HI.Reg).second)
2963         RecoloringCandidates.push_back(HI.Reg);
2964     }
2965   } while (!RecoloringCandidates.empty());
2966 }
2967
2968 /// Try to recolor broken hints.
2969 /// Broken hints may be repaired by recoloring when an evicted variable
2970 /// freed up a register for a larger live-range.
2971 /// Consider the following example:
2972 /// BB1:
2973 ///   a =
2974 ///   b =
2975 /// BB2:
2976 ///   ...
2977 ///   = b
2978 ///   = a
2979 /// Let us assume b gets split:
2980 /// BB1:
2981 ///   a =
2982 ///   b =
2983 /// BB2:
2984 ///   c = b
2985 ///   ...
2986 ///   d = c
2987 ///   = d
2988 ///   = a
2989 /// Because of how the allocation work, b, c, and d may be assigned different
2990 /// colors. Now, if a gets evicted later:
2991 /// BB1:
2992 ///   a =
2993 ///   st a, SpillSlot
2994 ///   b =
2995 /// BB2:
2996 ///   c = b
2997 ///   ...
2998 ///   d = c
2999 ///   = d
3000 ///   e = ld SpillSlot
3001 ///   = e
3002 /// This is likely that we can assign the same register for b, c, and d,
3003 /// getting rid of 2 copies.
3004 void RAGreedy::tryHintsRecoloring() {
3005   for (LiveInterval *LI : SetOfBrokenHints) {
3006     assert(Register::isVirtualRegister(LI->reg) &&
3007            "Recoloring is possible only for virtual registers");
3008     // Some dead defs may be around (e.g., because of debug uses).
3009     // Ignore those.
3010     if (!VRM->hasPhys(LI->reg))
3011       continue;
3012     tryHintRecoloring(*LI);
3013   }
3014 }
3015
3016 Register RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3017                                      SmallVectorImpl<Register> &NewVRegs,
3018                                      SmallVirtRegSet &FixedRegisters,
3019                                      unsigned Depth) {
3020   unsigned CostPerUseLimit = ~0u;
3021   // First try assigning a free register.
3022   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
3023   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3024     // If VirtReg got an assignment, the eviction info is no longre relevant.
3025     LastEvicted.clearEvicteeInfo(VirtReg.reg);
3026     // When NewVRegs is not empty, we may have made decisions such as evicting
3027     // a virtual register, go with the earlier decisions and use the physical
3028     // register.
3029     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3030         NewVRegs.empty()) {
3031       Register CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3032                                               CostPerUseLimit, NewVRegs);
3033       if (CSRReg || !NewVRegs.empty())
3034         // Return now if we decide to use a CSR or create new vregs due to
3035         // pre-splitting.
3036         return CSRReg;
3037     } else
3038       return PhysReg;
3039   }
3040
3041   LiveRangeStage Stage = getStage(VirtReg);
3042   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3043                     << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
3044
3045   // Try to evict a less worthy live range, but only for ranges from the primary
3046   // queue. The RS_Split ranges already failed to do this, and they should not
3047   // get a second chance until they have been split.
3048   if (Stage != RS_Split)
3049     if (Register PhysReg =
3050             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3051                      FixedRegisters)) {
3052       Register Hint = MRI->getSimpleHint(VirtReg.reg);
3053       // If VirtReg has a hint and that hint is broken record this
3054       // virtual register as a recoloring candidate for broken hint.
3055       // Indeed, since we evicted a variable in its neighborhood it is
3056       // likely we can at least partially recolor some of the
3057       // copy-related live-ranges.
3058       if (Hint && Hint != PhysReg)
3059         SetOfBrokenHints.insert(&VirtReg);
3060       // If VirtReg eviction someone, the eviction info for it as an evictee is
3061       // no longre relevant.
3062       LastEvicted.clearEvicteeInfo(VirtReg.reg);
3063       return PhysReg;
3064     }
3065
3066   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3067
3068   // The first time we see a live range, don't try to split or spill.
3069   // Wait until the second time, when all smaller ranges have been allocated.
3070   // This gives a better picture of the interference to split around.
3071   if (Stage < RS_Split) {
3072     setStage(VirtReg, RS_Split);
3073     LLVM_DEBUG(dbgs() << "wait for second round\n");
3074     NewVRegs.push_back(VirtReg.reg);
3075     return 0;
3076   }
3077
3078   if (Stage < RS_Spill) {
3079     // Try splitting VirtReg or interferences.
3080     unsigned NewVRegSizeBefore = NewVRegs.size();
3081     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3082     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3083       // If VirtReg got split, the eviction info is no longer relevant.
3084       LastEvicted.clearEvicteeInfo(VirtReg.reg);
3085       return PhysReg;
3086     }
3087   }
3088
3089   // If we couldn't allocate a register from spilling, there is probably some
3090   // invalid inline assembly. The base class will report it.
3091   if (Stage >= RS_Done || !VirtReg.isSpillable())
3092     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3093                                    Depth);
3094
3095   // Finally spill VirtReg itself.
3096   if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
3097     // TODO: This is experimental and in particular, we do not model
3098     // the live range splitting done by spilling correctly.
3099     // We would need a deep integration with the spiller to do the
3100     // right thing here. Anyway, that is still good for early testing.
3101     setStage(VirtReg, RS_Memory);
3102     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3103     NewVRegs.push_back(VirtReg.reg);
3104   } else {
3105     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3106                        TimerGroupDescription, TimePassesIsEnabled);
3107     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3108     spiller().spill(LRE);
3109     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3110
3111     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3112     // the new regs are kept in LDV (still mapping to the old register), until
3113     // we rewrite spilled locations in LDV at a later stage.
3114     DebugVars->splitRegister(VirtReg.reg, LRE.regs(), *LIS);
3115
3116     if (VerifyEnabled)
3117       MF->verify(this, "After spilling");
3118   }
3119
3120   // The live virtual register requesting allocation was spilled, so tell
3121   // the caller not to allocate anything during this round.
3122   return 0;
3123 }
3124
3125 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3126                                             unsigned &FoldedReloads,
3127                                             unsigned &Spills,
3128                                             unsigned &FoldedSpills) {
3129   Reloads = 0;
3130   FoldedReloads = 0;
3131   Spills = 0;
3132   FoldedSpills = 0;
3133
3134   // Sum up the spill and reloads in subloops.
3135   for (MachineLoop *SubLoop : *L) {
3136     unsigned SubReloads;
3137     unsigned SubFoldedReloads;
3138     unsigned SubSpills;
3139     unsigned SubFoldedSpills;
3140
3141     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3142                                  SubSpills, SubFoldedSpills);
3143     Reloads += SubReloads;
3144     FoldedReloads += SubFoldedReloads;
3145     Spills += SubSpills;
3146     FoldedSpills += SubFoldedSpills;
3147   }
3148
3149   const MachineFrameInfo &MFI = MF->getFrameInfo();
3150   int FI;
3151
3152   for (MachineBasicBlock *MBB : L->getBlocks())
3153     // Handle blocks that were not included in subloops.
3154     if (Loops->getLoopFor(MBB) == L)
3155       for (MachineInstr &MI : *MBB) {
3156         SmallVector<const MachineMemOperand *, 2> Accesses;
3157         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3158           return MFI.isSpillSlotObjectIndex(
3159               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3160                   ->getFrameIndex());
3161         };
3162
3163         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3164           ++Reloads;
3165         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3166                  llvm::any_of(Accesses, isSpillSlotAccess))
3167           ++FoldedReloads;
3168         else if (TII->isStoreToStackSlot(MI, FI) &&
3169                  MFI.isSpillSlotObjectIndex(FI))
3170           ++Spills;
3171         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3172                  llvm::any_of(Accesses, isSpillSlotAccess))
3173           ++FoldedSpills;
3174       }
3175
3176   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3177     using namespace ore;
3178
3179     ORE->emit([&]() {
3180       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3181                                         L->getStartLoc(), L->getHeader());
3182       if (Spills)
3183         R << NV("NumSpills", Spills) << " spills ";
3184       if (FoldedSpills)
3185         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3186       if (Reloads)
3187         R << NV("NumReloads", Reloads) << " reloads ";
3188       if (FoldedReloads)
3189         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3190       R << "generated in loop";
3191       return R;
3192     });
3193   }
3194 }
3195
3196 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3197   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3198                     << "********** Function: " << mf.getName() << '\n');
3199
3200   MF = &mf;
3201   TRI = MF->getSubtarget().getRegisterInfo();
3202   TII = MF->getSubtarget().getInstrInfo();
3203   RCI.runOnMachineFunction(mf);
3204
3205   EnableLocalReassign = EnableLocalReassignment ||
3206                         MF->getSubtarget().enableRALocalReassignment(
3207                             MF->getTarget().getOptLevel());
3208
3209   EnableAdvancedRASplitCost =
3210       ConsiderLocalIntervalCost.getNumOccurrences()
3211           ? ConsiderLocalIntervalCost
3212           : MF->getSubtarget().enableAdvancedRASplitCost();
3213
3214   if (VerifyEnabled)
3215     MF->verify(this, "Before greedy register allocator");
3216
3217   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3218                      getAnalysis<LiveIntervals>(),
3219                      getAnalysis<LiveRegMatrix>());
3220   Indexes = &getAnalysis<SlotIndexes>();
3221   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3222   DomTree = &getAnalysis<MachineDominatorTree>();
3223   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3224   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3225   Loops = &getAnalysis<MachineLoopInfo>();
3226   Bundles = &getAnalysis<EdgeBundles>();
3227   SpillPlacer = &getAnalysis<SpillPlacement>();
3228   DebugVars = &getAnalysis<LiveDebugVariables>();
3229   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3230
3231   initializeCSRCost();
3232
3233   calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
3234
3235   LLVM_DEBUG(LIS->dump());
3236
3237   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3238   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3239   ExtraRegInfo.clear();
3240   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3241   NextCascade = 1;
3242   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3243   GlobalCand.resize(32);  // This will grow as needed.
3244   SetOfBrokenHints.clear();
3245   LastEvicted.clear();
3246
3247   allocatePhysRegs();
3248   tryHintsRecoloring();
3249   postOptimization();
3250   reportNumberOfSplillsReloads();
3251
3252   releaseMemory();
3253   return true;
3254 }