]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/ScheduleDAGInstrs.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / ScheduleDAGInstrs.cpp
1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This implements the ScheduleDAGInstrs class, which implements
10 /// re-scheduling of MachineInstrs.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
15 #include "llvm/ADT/IntEqClasses.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/SparseSet.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/LiveIntervals.h"
24 #include "llvm/CodeGen/LivePhysRegs.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBundle.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/PseudoSourceValue.h"
34 #include "llvm/CodeGen/RegisterPressure.h"
35 #include "llvm/CodeGen/ScheduleDAG.h"
36 #include "llvm/CodeGen/ScheduleDFS.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Operator.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/MC/LaneBitmask.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/Format.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <iterator>
60 #include <string>
61 #include <utility>
62 #include <vector>
63
64 using namespace llvm;
65
66 #define DEBUG_TYPE "machine-scheduler"
67
68 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
69     cl::ZeroOrMore, cl::init(false),
70     cl::desc("Enable use of AA during MI DAG construction"));
71
72 static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
73     cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
74
75 // Note: the two options below might be used in tuning compile time vs
76 // output quality. Setting HugeRegion so large that it will never be
77 // reached means best-effort, but may be slow.
78
79 // When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
80 // together hold this many SUs, a reduction of maps will be done.
81 static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
82     cl::init(1000), cl::desc("The limit to use while constructing the DAG "
83                              "prior to scheduling, at which point a trade-off "
84                              "is made to avoid excessive compile time."));
85
86 static cl::opt<unsigned> ReductionSize(
87     "dag-maps-reduction-size", cl::Hidden,
88     cl::desc("A huge scheduling region will have maps reduced by this many "
89              "nodes at a time. Defaults to HugeRegion / 2."));
90
91 static unsigned getReductionSize() {
92   // Always reduce a huge region with half of the elements, except
93   // when user sets this number explicitly.
94   if (ReductionSize.getNumOccurrences() == 0)
95     return HugeRegion / 2;
96   return ReductionSize;
97 }
98
99 static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
100 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
101   dbgs() << "{ ";
102   for (const SUnit *su : L) {
103     dbgs() << "SU(" << su->NodeNum << ")";
104     if (su != L.back())
105       dbgs() << ", ";
106   }
107   dbgs() << "}\n";
108 #endif
109 }
110
111 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
112                                      const MachineLoopInfo *mli,
113                                      bool RemoveKillFlags)
114     : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
115       RemoveKillFlags(RemoveKillFlags),
116       UnknownValue(UndefValue::get(
117                              Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
118   DbgValues.clear();
119
120   const TargetSubtargetInfo &ST = mf.getSubtarget();
121   SchedModel.init(&ST);
122 }
123
124 /// If this machine instr has memory reference information and it can be
125 /// tracked to a normal reference to a known object, return the Value
126 /// for that object. This function returns false the memory location is
127 /// unknown or may alias anything.
128 static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
129                                          const MachineFrameInfo &MFI,
130                                          UnderlyingObjectsVector &Objects,
131                                          const DataLayout &DL) {
132   auto allMMOsOkay = [&]() {
133     for (const MachineMemOperand *MMO : MI->memoperands()) {
134       // TODO: Figure out whether isAtomic is really necessary (see D57601).
135       if (MMO->isVolatile() || MMO->isAtomic())
136         return false;
137
138       if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
139         // Function that contain tail calls don't have unique PseudoSourceValue
140         // objects. Two PseudoSourceValues might refer to the same or
141         // overlapping locations. The client code calling this function assumes
142         // this is not the case. So return a conservative answer of no known
143         // object.
144         if (MFI.hasTailCall())
145           return false;
146
147         // For now, ignore PseudoSourceValues which may alias LLVM IR values
148         // because the code that uses this function has no way to cope with
149         // such aliases.
150         if (PSV->isAliased(&MFI))
151           return false;
152
153         bool MayAlias = PSV->mayAlias(&MFI);
154         Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
155       } else if (const Value *V = MMO->getValue()) {
156         SmallVector<Value *, 4> Objs;
157         if (!getUnderlyingObjectsForCodeGen(V, Objs, DL))
158           return false;
159
160         for (Value *V : Objs) {
161           assert(isIdentifiedObject(V));
162           Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
163         }
164       } else
165         return false;
166     }
167     return true;
168   };
169
170   if (!allMMOsOkay()) {
171     Objects.clear();
172     return false;
173   }
174
175   return true;
176 }
177
178 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
179   BB = bb;
180 }
181
182 void ScheduleDAGInstrs::finishBlock() {
183   // Subclasses should no longer refer to the old block.
184   BB = nullptr;
185 }
186
187 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
188                                     MachineBasicBlock::iterator begin,
189                                     MachineBasicBlock::iterator end,
190                                     unsigned regioninstrs) {
191   assert(bb == BB && "startBlock should set BB");
192   RegionBegin = begin;
193   RegionEnd = end;
194   NumRegionInstrs = regioninstrs;
195 }
196
197 void ScheduleDAGInstrs::exitRegion() {
198   // Nothing to do.
199 }
200
201 void ScheduleDAGInstrs::addSchedBarrierDeps() {
202   MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
203   ExitSU.setInstr(ExitMI);
204   // Add dependencies on the defs and uses of the instruction.
205   if (ExitMI) {
206     for (const MachineOperand &MO : ExitMI->operands()) {
207       if (!MO.isReg() || MO.isDef()) continue;
208       unsigned Reg = MO.getReg();
209       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
210         Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
211       } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) {
212         addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
213       }
214     }
215   }
216   if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
217     // For others, e.g. fallthrough, conditional branch, assume the exit
218     // uses all the registers that are livein to the successor blocks.
219     for (const MachineBasicBlock *Succ : BB->successors()) {
220       for (const auto &LI : Succ->liveins()) {
221         if (!Uses.contains(LI.PhysReg))
222           Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
223       }
224     }
225   }
226 }
227
228 /// MO is an operand of SU's instruction that defines a physical register. Adds
229 /// data dependencies from SU to any uses of the physical register.
230 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
231   const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
232   assert(MO.isDef() && "expect physreg def");
233
234   // Ask the target if address-backscheduling is desirable, and if so how much.
235   const TargetSubtargetInfo &ST = MF.getSubtarget();
236
237   // Only use any non-zero latency for real defs/uses, in contrast to
238   // "fake" operands added by regalloc.
239   const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
240   bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
241                             !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
242   for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
243        Alias.isValid(); ++Alias) {
244     if (!Uses.contains(*Alias))
245       continue;
246     for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
247       SUnit *UseSU = I->SU;
248       if (UseSU == SU)
249         continue;
250
251       // Adjust the dependence latency using operand def/use information,
252       // then allow the target to perform its own adjustments.
253       int UseOp = I->OpIdx;
254       MachineInstr *RegUse = nullptr;
255       SDep Dep;
256       if (UseOp < 0)
257         Dep = SDep(SU, SDep::Artificial);
258       else {
259         // Set the hasPhysRegDefs only for physreg defs that have a use within
260         // the scheduling region.
261         SU->hasPhysRegDefs = true;
262         Dep = SDep(SU, SDep::Data, *Alias);
263         RegUse = UseSU->getInstr();
264       }
265       const MCInstrDesc *UseMIDesc =
266           (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
267       bool ImplicitPseudoUse =
268           (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
269            !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
270       if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
271         Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
272                                                         RegUse, UseOp));
273         ST.adjustSchedDependency(SU, UseSU, Dep);
274       } else
275         Dep.setLatency(0);
276
277       UseSU->addPred(Dep);
278     }
279   }
280 }
281
282 /// Adds register dependencies (data, anti, and output) from this SUnit
283 /// to following instructions in the same scheduling region that depend the
284 /// physical register referenced at OperIdx.
285 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
286   MachineInstr *MI = SU->getInstr();
287   MachineOperand &MO = MI->getOperand(OperIdx);
288   unsigned Reg = MO.getReg();
289   // We do not need to track any dependencies for constant registers.
290   if (MRI.isConstantPhysReg(Reg))
291     return;
292
293   // Optionally add output and anti dependencies. For anti
294   // dependencies we use a latency of 0 because for a multi-issue
295   // target we want to allow the defining instruction to issue
296   // in the same cycle as the using instruction.
297   // TODO: Using a latency of 1 here for output dependencies assumes
298   //       there's no cost for reusing registers.
299   SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
300   for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
301     if (!Defs.contains(*Alias))
302       continue;
303     for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
304       SUnit *DefSU = I->SU;
305       if (DefSU == &ExitSU)
306         continue;
307       if (DefSU != SU &&
308           (Kind != SDep::Output || !MO.isDead() ||
309            !DefSU->getInstr()->registerDefIsDead(*Alias))) {
310         if (Kind == SDep::Anti)
311           DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
312         else {
313           SDep Dep(SU, Kind, /*Reg=*/*Alias);
314           Dep.setLatency(
315             SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
316           DefSU->addPred(Dep);
317         }
318       }
319     }
320   }
321
322   if (!MO.isDef()) {
323     SU->hasPhysRegUses = true;
324     // Either insert a new Reg2SUnits entry with an empty SUnits list, or
325     // retrieve the existing SUnits list for this register's uses.
326     // Push this SUnit on the use list.
327     Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
328     if (RemoveKillFlags)
329       MO.setIsKill(false);
330   } else {
331     addPhysRegDataDeps(SU, OperIdx);
332
333     // Clear previous uses and defs of this register and its subergisters.
334     for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) {
335       if (Uses.contains(*SubReg))
336         Uses.eraseAll(*SubReg);
337       if (!MO.isDead())
338         Defs.eraseAll(*SubReg);
339     }
340     if (MO.isDead() && SU->isCall) {
341       // Calls will not be reordered because of chain dependencies (see
342       // below). Since call operands are dead, calls may continue to be added
343       // to the DefList making dependence checking quadratic in the size of
344       // the block. Instead, we leave only one call at the back of the
345       // DefList.
346       Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
347       Reg2SUnitsMap::iterator B = P.first;
348       Reg2SUnitsMap::iterator I = P.second;
349       for (bool isBegin = I == B; !isBegin; /* empty */) {
350         isBegin = (--I) == B;
351         if (!I->SU->isCall)
352           break;
353         I = Defs.erase(I);
354       }
355     }
356
357     // Defs are pushed in the order they are visited and never reordered.
358     Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
359   }
360 }
361
362 LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
363 {
364   unsigned Reg = MO.getReg();
365   // No point in tracking lanemasks if we don't have interesting subregisters.
366   const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
367   if (!RC.HasDisjunctSubRegs)
368     return LaneBitmask::getAll();
369
370   unsigned SubReg = MO.getSubReg();
371   if (SubReg == 0)
372     return RC.getLaneMask();
373   return TRI->getSubRegIndexLaneMask(SubReg);
374 }
375
376 /// Adds register output and data dependencies from this SUnit to instructions
377 /// that occur later in the same scheduling region if they read from or write to
378 /// the virtual register defined at OperIdx.
379 ///
380 /// TODO: Hoist loop induction variable increments. This has to be
381 /// reevaluated. Generally, IV scheduling should be done before coalescing.
382 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
383   MachineInstr *MI = SU->getInstr();
384   MachineOperand &MO = MI->getOperand(OperIdx);
385   unsigned Reg = MO.getReg();
386
387   LaneBitmask DefLaneMask;
388   LaneBitmask KillLaneMask;
389   if (TrackLaneMasks) {
390     bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
391     DefLaneMask = getLaneMaskForMO(MO);
392     // If we have a <read-undef> flag, none of the lane values comes from an
393     // earlier instruction.
394     KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
395
396     // Clear undef flag, we'll re-add it later once we know which subregister
397     // Def is first.
398     MO.setIsUndef(false);
399   } else {
400     DefLaneMask = LaneBitmask::getAll();
401     KillLaneMask = LaneBitmask::getAll();
402   }
403
404   if (MO.isDead()) {
405     assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
406            "Dead defs should have no uses");
407   } else {
408     // Add data dependence to all uses we found so far.
409     const TargetSubtargetInfo &ST = MF.getSubtarget();
410     for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
411          E = CurrentVRegUses.end(); I != E; /*empty*/) {
412       LaneBitmask LaneMask = I->LaneMask;
413       // Ignore uses of other lanes.
414       if ((LaneMask & KillLaneMask).none()) {
415         ++I;
416         continue;
417       }
418
419       if ((LaneMask & DefLaneMask).any()) {
420         SUnit *UseSU = I->SU;
421         MachineInstr *Use = UseSU->getInstr();
422         SDep Dep(SU, SDep::Data, Reg);
423         Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
424                                                         I->OperandIndex));
425         ST.adjustSchedDependency(SU, UseSU, Dep);
426         UseSU->addPred(Dep);
427       }
428
429       LaneMask &= ~KillLaneMask;
430       // If we found a Def for all lanes of this use, remove it from the list.
431       if (LaneMask.any()) {
432         I->LaneMask = LaneMask;
433         ++I;
434       } else
435         I = CurrentVRegUses.erase(I);
436     }
437   }
438
439   // Shortcut: Singly defined vregs do not have output/anti dependencies.
440   if (MRI.hasOneDef(Reg))
441     return;
442
443   // Add output dependence to the next nearest defs of this vreg.
444   //
445   // Unless this definition is dead, the output dependence should be
446   // transitively redundant with antidependencies from this definition's
447   // uses. We're conservative for now until we have a way to guarantee the uses
448   // are not eliminated sometime during scheduling. The output dependence edge
449   // is also useful if output latency exceeds def-use latency.
450   LaneBitmask LaneMask = DefLaneMask;
451   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
452                                      CurrentVRegDefs.end())) {
453     // Ignore defs for other lanes.
454     if ((V2SU.LaneMask & LaneMask).none())
455       continue;
456     // Add an output dependence.
457     SUnit *DefSU = V2SU.SU;
458     // Ignore additional defs of the same lanes in one instruction. This can
459     // happen because lanemasks are shared for targets with too many
460     // subregisters. We also use some representration tricks/hacks where we
461     // add super-register defs/uses, to imply that although we only access parts
462     // of the reg we care about the full one.
463     if (DefSU == SU)
464       continue;
465     SDep Dep(SU, SDep::Output, Reg);
466     Dep.setLatency(
467       SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
468     DefSU->addPred(Dep);
469
470     // Update current definition. This can get tricky if the def was about a
471     // bigger lanemask before. We then have to shrink it and create a new
472     // VReg2SUnit for the non-overlapping part.
473     LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
474     LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
475     V2SU.SU = SU;
476     V2SU.LaneMask = OverlapMask;
477     if (NonOverlapMask.any())
478       CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
479   }
480   // If there was no CurrentVRegDefs entry for some lanes yet, create one.
481   if (LaneMask.any())
482     CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
483 }
484
485 /// Adds a register data dependency if the instruction that defines the
486 /// virtual register used at OperIdx is mapped to an SUnit. Add a register
487 /// antidependency from this SUnit to instructions that occur later in the same
488 /// scheduling region if they write the virtual register.
489 ///
490 /// TODO: Handle ExitSU "uses" properly.
491 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
492   const MachineInstr *MI = SU->getInstr();
493   const MachineOperand &MO = MI->getOperand(OperIdx);
494   unsigned Reg = MO.getReg();
495
496   // Remember the use. Data dependencies will be added when we find the def.
497   LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
498                                         : LaneBitmask::getAll();
499   CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
500
501   // Add antidependences to the following defs of the vreg.
502   for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
503                                      CurrentVRegDefs.end())) {
504     // Ignore defs for unrelated lanes.
505     LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
506     if ((PrevDefLaneMask & LaneMask).none())
507       continue;
508     if (V2SU.SU == SU)
509       continue;
510
511     V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
512   }
513 }
514
515 /// Returns true if MI is an instruction we are unable to reason about
516 /// (like a call or something with unmodeled side effects).
517 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
518   return MI->isCall() || MI->hasUnmodeledSideEffects() ||
519          (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA));
520 }
521
522 void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
523                                             unsigned Latency) {
524   if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
525     SDep Dep(SUa, SDep::MayAliasMem);
526     Dep.setLatency(Latency);
527     SUb->addPred(Dep);
528   }
529 }
530
531 /// Creates an SUnit for each real instruction, numbered in top-down
532 /// topological order. The instruction order A < B, implies that no edge exists
533 /// from B to A.
534 ///
535 /// Map each real instruction to its SUnit.
536 ///
537 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
538 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
539 /// instead of pointers.
540 ///
541 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
542 /// the original instruction list.
543 void ScheduleDAGInstrs::initSUnits() {
544   // We'll be allocating one SUnit for each real instruction in the region,
545   // which is contained within a basic block.
546   SUnits.reserve(NumRegionInstrs);
547
548   for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
549     if (MI.isDebugInstr())
550       continue;
551
552     SUnit *SU = newSUnit(&MI);
553     MISUnitMap[&MI] = SU;
554
555     SU->isCall = MI.isCall();
556     SU->isCommutable = MI.isCommutable();
557
558     // Assign the Latency field of SU using target-provided information.
559     SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
560
561     // If this SUnit uses a reserved or unbuffered resource, mark it as such.
562     //
563     // Reserved resources block an instruction from issuing and stall the
564     // entire pipeline. These are identified by BufferSize=0.
565     //
566     // Unbuffered resources prevent execution of subsequent instructions that
567     // require the same resources. This is used for in-order execution pipelines
568     // within an out-of-order core. These are identified by BufferSize=1.
569     if (SchedModel.hasInstrSchedModel()) {
570       const MCSchedClassDesc *SC = getSchedClass(SU);
571       for (const MCWriteProcResEntry &PRE :
572            make_range(SchedModel.getWriteProcResBegin(SC),
573                       SchedModel.getWriteProcResEnd(SC))) {
574         switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
575         case 0:
576           SU->hasReservedResource = true;
577           break;
578         case 1:
579           SU->isUnbuffered = true;
580           break;
581         default:
582           break;
583         }
584       }
585     }
586   }
587 }
588
589 class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
590   /// Current total number of SUs in map.
591   unsigned NumNodes = 0;
592
593   /// 1 for loads, 0 for stores. (see comment in SUList)
594   unsigned TrueMemOrderLatency;
595
596 public:
597   Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
598
599   /// To keep NumNodes up to date, insert() is used instead of
600   /// this operator w/ push_back().
601   ValueType &operator[](const SUList &Key) {
602     llvm_unreachable("Don't use. Use insert() instead."); };
603
604   /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
605   /// reduce().
606   void inline insert(SUnit *SU, ValueType V) {
607     MapVector::operator[](V).push_back(SU);
608     NumNodes++;
609   }
610
611   /// Clears the list of SUs mapped to V.
612   void inline clearList(ValueType V) {
613     iterator Itr = find(V);
614     if (Itr != end()) {
615       assert(NumNodes >= Itr->second.size());
616       NumNodes -= Itr->second.size();
617
618       Itr->second.clear();
619     }
620   }
621
622   /// Clears map from all contents.
623   void clear() {
624     MapVector<ValueType, SUList>::clear();
625     NumNodes = 0;
626   }
627
628   unsigned inline size() const { return NumNodes; }
629
630   /// Counts the number of SUs in this map after a reduction.
631   void reComputeSize() {
632     NumNodes = 0;
633     for (auto &I : *this)
634       NumNodes += I.second.size();
635   }
636
637   unsigned inline getTrueMemOrderLatency() const {
638     return TrueMemOrderLatency;
639   }
640
641   void dump();
642 };
643
644 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
645                                              Value2SUsMap &Val2SUsMap) {
646   for (auto &I : Val2SUsMap)
647     addChainDependencies(SU, I.second,
648                          Val2SUsMap.getTrueMemOrderLatency());
649 }
650
651 void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
652                                              Value2SUsMap &Val2SUsMap,
653                                              ValueType V) {
654   Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
655   if (Itr != Val2SUsMap.end())
656     addChainDependencies(SU, Itr->second,
657                          Val2SUsMap.getTrueMemOrderLatency());
658 }
659
660 void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
661   assert(BarrierChain != nullptr);
662
663   for (auto &I : map) {
664     SUList &sus = I.second;
665     for (auto *SU : sus)
666       SU->addPredBarrier(BarrierChain);
667   }
668   map.clear();
669 }
670
671 void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
672   assert(BarrierChain != nullptr);
673
674   // Go through all lists of SUs.
675   for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
676     Value2SUsMap::iterator CurrItr = I++;
677     SUList &sus = CurrItr->second;
678     SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
679     for (; SUItr != SUEE; ++SUItr) {
680       // Stop on BarrierChain or any instruction above it.
681       if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
682         break;
683
684       (*SUItr)->addPredBarrier(BarrierChain);
685     }
686
687     // Remove also the BarrierChain from list if present.
688     if (SUItr != SUEE && *SUItr == BarrierChain)
689       SUItr++;
690
691     // Remove all SUs that are now successors of BarrierChain.
692     if (SUItr != sus.begin())
693       sus.erase(sus.begin(), SUItr);
694   }
695
696   // Remove all entries with empty su lists.
697   map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
698       return (mapEntry.second.empty()); });
699
700   // Recompute the size of the map (NumNodes).
701   map.reComputeSize();
702 }
703
704 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
705                                         RegPressureTracker *RPTracker,
706                                         PressureDiffs *PDiffs,
707                                         LiveIntervals *LIS,
708                                         bool TrackLaneMasks) {
709   const TargetSubtargetInfo &ST = MF.getSubtarget();
710   bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
711                                                        : ST.useAA();
712   AAForDep = UseAA ? AA : nullptr;
713
714   BarrierChain = nullptr;
715
716   this->TrackLaneMasks = TrackLaneMasks;
717   MISUnitMap.clear();
718   ScheduleDAG::clearDAG();
719
720   // Create an SUnit for each real instruction.
721   initSUnits();
722
723   if (PDiffs)
724     PDiffs->init(SUnits.size());
725
726   // We build scheduling units by walking a block's instruction list
727   // from bottom to top.
728
729   // Each MIs' memory operand(s) is analyzed to a list of underlying
730   // objects. The SU is then inserted in the SUList(s) mapped from the
731   // Value(s). Each Value thus gets mapped to lists of SUs depending
732   // on it, stores and loads kept separately. Two SUs are trivially
733   // non-aliasing if they both depend on only identified Values and do
734   // not share any common Value.
735   Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
736
737   // Certain memory accesses are known to not alias any SU in Stores
738   // or Loads, and have therefore their own 'NonAlias'
739   // domain. E.g. spill / reload instructions never alias LLVM I/R
740   // Values. It would be nice to assume that this type of memory
741   // accesses always have a proper memory operand modelling, and are
742   // therefore never unanalyzable, but this is conservatively not
743   // done.
744   Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
745
746   // Track all instructions that may raise floating-point exceptions.
747   // These do not depend on one other (or normal loads or stores), but
748   // must not be rescheduled across global barriers.  Note that we don't
749   // really need a "map" here since we don't track those MIs by value;
750   // using the same Value2SUsMap data type here is simply a matter of
751   // convenience.
752   Value2SUsMap FPExceptions;
753
754   // Remove any stale debug info; sometimes BuildSchedGraph is called again
755   // without emitting the info from the previous call.
756   DbgValues.clear();
757   FirstDbgValue = nullptr;
758
759   assert(Defs.empty() && Uses.empty() &&
760          "Only BuildGraph should update Defs/Uses");
761   Defs.setUniverse(TRI->getNumRegs());
762   Uses.setUniverse(TRI->getNumRegs());
763
764   assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
765   assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
766   unsigned NumVirtRegs = MRI.getNumVirtRegs();
767   CurrentVRegDefs.setUniverse(NumVirtRegs);
768   CurrentVRegUses.setUniverse(NumVirtRegs);
769
770   // Model data dependencies between instructions being scheduled and the
771   // ExitSU.
772   addSchedBarrierDeps();
773
774   // Walk the list of instructions, from bottom moving up.
775   MachineInstr *DbgMI = nullptr;
776   for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
777        MII != MIE; --MII) {
778     MachineInstr &MI = *std::prev(MII);
779     if (DbgMI) {
780       DbgValues.push_back(std::make_pair(DbgMI, &MI));
781       DbgMI = nullptr;
782     }
783
784     if (MI.isDebugValue()) {
785       DbgMI = &MI;
786       continue;
787     }
788     if (MI.isDebugLabel())
789       continue;
790
791     SUnit *SU = MISUnitMap[&MI];
792     assert(SU && "No SUnit mapped to this MI");
793
794     if (RPTracker) {
795       RegisterOperands RegOpers;
796       RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
797       if (TrackLaneMasks) {
798         SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
799         RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
800       }
801       if (PDiffs != nullptr)
802         PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
803
804       if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
805         RPTracker->recedeSkipDebugValues();
806       assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
807       RPTracker->recede(RegOpers);
808     }
809
810     assert(
811         (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
812         "Cannot schedule terminators or labels!");
813
814     // Add register-based dependencies (data, anti, and output).
815     // For some instructions (calls, returns, inline-asm, etc.) there can
816     // be explicit uses and implicit defs, in which case the use will appear
817     // on the operand list before the def. Do two passes over the operand
818     // list to make sure that defs are processed before any uses.
819     bool HasVRegDef = false;
820     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
821       const MachineOperand &MO = MI.getOperand(j);
822       if (!MO.isReg() || !MO.isDef())
823         continue;
824       unsigned Reg = MO.getReg();
825       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
826         addPhysRegDeps(SU, j);
827       } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
828         HasVRegDef = true;
829         addVRegDefDeps(SU, j);
830       }
831     }
832     // Now process all uses.
833     for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
834       const MachineOperand &MO = MI.getOperand(j);
835       // Only look at use operands.
836       // We do not need to check for MO.readsReg() here because subsequent
837       // subregister defs will get output dependence edges and need no
838       // additional use dependencies.
839       if (!MO.isReg() || !MO.isUse())
840         continue;
841       unsigned Reg = MO.getReg();
842       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
843         addPhysRegDeps(SU, j);
844       } else if (TargetRegisterInfo::isVirtualRegister(Reg) && MO.readsReg()) {
845         addVRegUseDeps(SU, j);
846       }
847     }
848
849     // If we haven't seen any uses in this scheduling region, create a
850     // dependence edge to ExitSU to model the live-out latency. This is required
851     // for vreg defs with no in-region use, and prefetches with no vreg def.
852     //
853     // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
854     // check currently relies on being called before adding chain deps.
855     if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
856       SDep Dep(SU, SDep::Artificial);
857       Dep.setLatency(SU->Latency - 1);
858       ExitSU.addPred(Dep);
859     }
860
861     // Add memory dependencies (Note: isStoreToStackSlot and
862     // isLoadFromStackSLot are not usable after stack slots are lowered to
863     // actual addresses).
864
865     // This is a barrier event that acts as a pivotal node in the DAG.
866     if (isGlobalMemoryObject(AA, &MI)) {
867
868       // Become the barrier chain.
869       if (BarrierChain)
870         BarrierChain->addPredBarrier(SU);
871       BarrierChain = SU;
872
873       LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
874                         << BarrierChain->NodeNum << ").\n";);
875
876       // Add dependencies against everything below it and clear maps.
877       addBarrierChain(Stores);
878       addBarrierChain(Loads);
879       addBarrierChain(NonAliasStores);
880       addBarrierChain(NonAliasLoads);
881       addBarrierChain(FPExceptions);
882
883       continue;
884     }
885
886     // Instructions that may raise FP exceptions may not be moved
887     // across any global barriers.
888     if (MI.mayRaiseFPException()) {
889       if (BarrierChain)
890         BarrierChain->addPredBarrier(SU);
891
892       FPExceptions.insert(SU, UnknownValue);
893
894       if (FPExceptions.size() >= HugeRegion) {
895         LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
896         Value2SUsMap empty;
897         reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
898       }
899     }
900
901     // If it's not a store or a variant load, we're done.
902     if (!MI.mayStore() &&
903         !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)))
904       continue;
905
906     // Always add dependecy edge to BarrierChain if present.
907     if (BarrierChain)
908       BarrierChain->addPredBarrier(SU);
909
910     // Find the underlying objects for MI. The Objs vector is either
911     // empty, or filled with the Values of memory locations which this
912     // SU depends on.
913     UnderlyingObjectsVector Objs;
914     bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
915                                                   MF.getDataLayout());
916
917     if (MI.mayStore()) {
918       if (!ObjsFound) {
919         // An unknown store depends on all stores and loads.
920         addChainDependencies(SU, Stores);
921         addChainDependencies(SU, NonAliasStores);
922         addChainDependencies(SU, Loads);
923         addChainDependencies(SU, NonAliasLoads);
924
925         // Map this store to 'UnknownValue'.
926         Stores.insert(SU, UnknownValue);
927       } else {
928         // Add precise dependencies against all previously seen memory
929         // accesses mapped to the same Value(s).
930         for (const UnderlyingObject &UnderlObj : Objs) {
931           ValueType V = UnderlObj.getValue();
932           bool ThisMayAlias = UnderlObj.mayAlias();
933
934           // Add dependencies to previous stores and loads mapped to V.
935           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
936           addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
937         }
938         // Update the store map after all chains have been added to avoid adding
939         // self-loop edge if multiple underlying objects are present.
940         for (const UnderlyingObject &UnderlObj : Objs) {
941           ValueType V = UnderlObj.getValue();
942           bool ThisMayAlias = UnderlObj.mayAlias();
943
944           // Map this store to V.
945           (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
946         }
947         // The store may have dependencies to unanalyzable loads and
948         // stores.
949         addChainDependencies(SU, Loads, UnknownValue);
950         addChainDependencies(SU, Stores, UnknownValue);
951       }
952     } else { // SU is a load.
953       if (!ObjsFound) {
954         // An unknown load depends on all stores.
955         addChainDependencies(SU, Stores);
956         addChainDependencies(SU, NonAliasStores);
957
958         Loads.insert(SU, UnknownValue);
959       } else {
960         for (const UnderlyingObject &UnderlObj : Objs) {
961           ValueType V = UnderlObj.getValue();
962           bool ThisMayAlias = UnderlObj.mayAlias();
963
964           // Add precise dependencies against all previously seen stores
965           // mapping to the same Value(s).
966           addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
967
968           // Map this load to V.
969           (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
970         }
971         // The load may have dependencies to unanalyzable stores.
972         addChainDependencies(SU, Stores, UnknownValue);
973       }
974     }
975
976     // Reduce maps if they grow huge.
977     if (Stores.size() + Loads.size() >= HugeRegion) {
978       LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
979       reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
980     }
981     if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
982       LLVM_DEBUG(
983           dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
984       reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
985     }
986   }
987
988   if (DbgMI)
989     FirstDbgValue = DbgMI;
990
991   Defs.clear();
992   Uses.clear();
993   CurrentVRegDefs.clear();
994   CurrentVRegUses.clear();
995
996   Topo.MarkDirty();
997 }
998
999 raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
1000   PSV->printCustom(OS);
1001   return OS;
1002 }
1003
1004 void ScheduleDAGInstrs::Value2SUsMap::dump() {
1005   for (auto &Itr : *this) {
1006     if (Itr.first.is<const Value*>()) {
1007       const Value *V = Itr.first.get<const Value*>();
1008       if (isa<UndefValue>(V))
1009         dbgs() << "Unknown";
1010       else
1011         V->printAsOperand(dbgs());
1012     }
1013     else if (Itr.first.is<const PseudoSourceValue*>())
1014       dbgs() <<  Itr.first.get<const PseudoSourceValue*>();
1015     else
1016       llvm_unreachable("Unknown Value type.");
1017
1018     dbgs() << " : ";
1019     dumpSUList(Itr.second);
1020   }
1021 }
1022
1023 void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
1024                                               Value2SUsMap &loads, unsigned N) {
1025   LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
1026              dbgs() << "Loading SUnits:\n"; loads.dump());
1027
1028   // Insert all SU's NodeNums into a vector and sort it.
1029   std::vector<unsigned> NodeNums;
1030   NodeNums.reserve(stores.size() + loads.size());
1031   for (auto &I : stores)
1032     for (auto *SU : I.second)
1033       NodeNums.push_back(SU->NodeNum);
1034   for (auto &I : loads)
1035     for (auto *SU : I.second)
1036       NodeNums.push_back(SU->NodeNum);
1037   llvm::sort(NodeNums);
1038
1039   // The N last elements in NodeNums will be removed, and the SU with
1040   // the lowest NodeNum of them will become the new BarrierChain to
1041   // let the not yet seen SUs have a dependency to the removed SUs.
1042   assert(N <= NodeNums.size());
1043   SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
1044   if (BarrierChain) {
1045     // The aliasing and non-aliasing maps reduce independently of each
1046     // other, but share a common BarrierChain. Check if the
1047     // newBarrierChain is above the former one. If it is not, it may
1048     // introduce a loop to use newBarrierChain, so keep the old one.
1049     if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
1050       BarrierChain->addPredBarrier(newBarrierChain);
1051       BarrierChain = newBarrierChain;
1052       LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
1053                         << BarrierChain->NodeNum << ").\n";);
1054     }
1055     else
1056       LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
1057                         << BarrierChain->NodeNum << ").\n";);
1058   }
1059   else
1060     BarrierChain = newBarrierChain;
1061
1062   insertBarrierChain(stores);
1063   insertBarrierChain(loads);
1064
1065   LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
1066              dbgs() << "Loading SUnits:\n"; loads.dump());
1067 }
1068
1069 static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
1070                         MachineInstr &MI, bool addToLiveRegs) {
1071   for (MachineOperand &MO : MI.operands()) {
1072     if (!MO.isReg() || !MO.readsReg())
1073       continue;
1074     unsigned Reg = MO.getReg();
1075     if (!Reg)
1076       continue;
1077
1078     // Things that are available after the instruction are killed by it.
1079     bool IsKill = LiveRegs.available(MRI, Reg);
1080     MO.setIsKill(IsKill);
1081     if (addToLiveRegs)
1082       LiveRegs.addReg(Reg);
1083   }
1084 }
1085
1086 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
1087   LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
1088
1089   LiveRegs.init(*TRI);
1090   LiveRegs.addLiveOuts(MBB);
1091
1092   // Examine block from end to start...
1093   for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
1094     if (MI.isDebugInstr())
1095       continue;
1096
1097     // Update liveness.  Registers that are defed but not used in this
1098     // instruction are now dead. Mark register and all subregs as they
1099     // are completely defined.
1100     for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
1101       const MachineOperand &MO = *O;
1102       if (MO.isReg()) {
1103         if (!MO.isDef())
1104           continue;
1105         unsigned Reg = MO.getReg();
1106         if (!Reg)
1107           continue;
1108         LiveRegs.removeReg(Reg);
1109       } else if (MO.isRegMask()) {
1110         LiveRegs.removeRegsInMask(MO);
1111       }
1112     }
1113
1114     // If there is a bundle header fix it up first.
1115     if (!MI.isBundled()) {
1116       toggleKills(MRI, LiveRegs, MI, true);
1117     } else {
1118       MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
1119       if (MI.isBundle())
1120         toggleKills(MRI, LiveRegs, MI, false);
1121
1122       // Some targets make the (questionable) assumtion that the instructions
1123       // inside the bundle are ordered and consequently only the last use of
1124       // a register inside the bundle can kill it.
1125       MachineBasicBlock::instr_iterator I = std::next(Bundle);
1126       while (I->isBundledWithSucc())
1127         ++I;
1128       do {
1129         if (!I->isDebugInstr())
1130           toggleKills(MRI, LiveRegs, *I, true);
1131         --I;
1132       } while (I != Bundle);
1133     }
1134   }
1135 }
1136
1137 void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
1138 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1139   dumpNodeName(SU);
1140   dbgs() << ": ";
1141   SU.getInstr()->dump();
1142 #endif
1143 }
1144
1145 void ScheduleDAGInstrs::dump() const {
1146 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1147   if (EntrySU.getInstr() != nullptr)
1148     dumpNodeAll(EntrySU);
1149   for (const SUnit &SU : SUnits)
1150     dumpNodeAll(SU);
1151   if (ExitSU.getInstr() != nullptr)
1152     dumpNodeAll(ExitSU);
1153 #endif
1154 }
1155
1156 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1157   std::string s;
1158   raw_string_ostream oss(s);
1159   if (SU == &EntrySU)
1160     oss << "<entry>";
1161   else if (SU == &ExitSU)
1162     oss << "<exit>";
1163   else
1164     SU->getInstr()->print(oss, /*SkipOpers=*/true);
1165   return oss.str();
1166 }
1167
1168 /// Return the basic block label. It is not necessarilly unique because a block
1169 /// contains multiple scheduling regions. But it is fine for visualization.
1170 std::string ScheduleDAGInstrs::getDAGName() const {
1171   return "dag." + BB->getFullName();
1172 }
1173
1174 bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
1175   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
1176 }
1177
1178 bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
1179   if (SuccSU != &ExitSU) {
1180     // Do not use WillCreateCycle, it assumes SD scheduling.
1181     // If Pred is reachable from Succ, then the edge creates a cycle.
1182     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
1183       return false;
1184     Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
1185   }
1186   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
1187   // Return true regardless of whether a new edge needed to be inserted.
1188   return true;
1189 }
1190
1191 //===----------------------------------------------------------------------===//
1192 // SchedDFSResult Implementation
1193 //===----------------------------------------------------------------------===//
1194
1195 namespace llvm {
1196
1197 /// Internal state used to compute SchedDFSResult.
1198 class SchedDFSImpl {
1199   SchedDFSResult &R;
1200
1201   /// Join DAG nodes into equivalence classes by their subtree.
1202   IntEqClasses SubtreeClasses;
1203   /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1204   std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
1205
1206   struct RootData {
1207     unsigned NodeID;
1208     unsigned ParentNodeID;  ///< Parent node (member of the parent subtree).
1209     unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
1210                                 /// children.
1211
1212     RootData(unsigned id): NodeID(id),
1213                            ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
1214
1215     unsigned getSparseSetIndex() const { return NodeID; }
1216   };
1217
1218   SparseSet<RootData> RootSet;
1219
1220 public:
1221   SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1222     RootSet.setUniverse(R.DFSNodeData.size());
1223   }
1224
1225   /// Returns true if this node been visited by the DFS traversal.
1226   ///
1227   /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1228   /// ID. Later, SubtreeID is updated but remains valid.
1229   bool isVisited(const SUnit *SU) const {
1230     return R.DFSNodeData[SU->NodeNum].SubtreeID
1231       != SchedDFSResult::InvalidSubtreeID;
1232   }
1233
1234   /// Initializes this node's instruction count. We don't need to flag the node
1235   /// visited until visitPostorder because the DAG cannot have cycles.
1236   void visitPreorder(const SUnit *SU) {
1237     R.DFSNodeData[SU->NodeNum].InstrCount =
1238       SU->getInstr()->isTransient() ? 0 : 1;
1239   }
1240
1241   /// Called once for each node after all predecessors are visited. Revisit this
1242   /// node's predecessors and potentially join them now that we know the ILP of
1243   /// the other predecessors.
1244   void visitPostorderNode(const SUnit *SU) {
1245     // Mark this node as the root of a subtree. It may be joined with its
1246     // successors later.
1247     R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1248     RootData RData(SU->NodeNum);
1249     RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1250
1251     // If any predecessors are still in their own subtree, they either cannot be
1252     // joined or are large enough to remain separate. If this parent node's
1253     // total instruction count is not greater than a child subtree by at least
1254     // the subtree limit, then try to join it now since splitting subtrees is
1255     // only useful if multiple high-pressure paths are possible.
1256     unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1257     for (const SDep &PredDep : SU->Preds) {
1258       if (PredDep.getKind() != SDep::Data)
1259         continue;
1260       unsigned PredNum = PredDep.getSUnit()->NodeNum;
1261       if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1262         joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
1263
1264       // Either link or merge the TreeData entry from the child to the parent.
1265       if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1266         // If the predecessor's parent is invalid, this is a tree edge and the
1267         // current node is the parent.
1268         if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1269           RootSet[PredNum].ParentNodeID = SU->NodeNum;
1270       }
1271       else if (RootSet.count(PredNum)) {
1272         // The predecessor is not a root, but is still in the root set. This
1273         // must be the new parent that it was just joined to. Note that
1274         // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1275         // set to the original parent.
1276         RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1277         RootSet.erase(PredNum);
1278       }
1279     }
1280     RootSet[SU->NodeNum] = RData;
1281   }
1282
1283   /// Called once for each tree edge after calling visitPostOrderNode on
1284   /// the predecessor. Increment the parent node's instruction count and
1285   /// preemptively join this subtree to its parent's if it is small enough.
1286   void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1287     R.DFSNodeData[Succ->NodeNum].InstrCount
1288       += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1289     joinPredSubtree(PredDep, Succ);
1290   }
1291
1292   /// Adds a connection for cross edges.
1293   void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1294     ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1295   }
1296
1297   /// Sets each node's subtree ID to the representative ID and record
1298   /// connections between trees.
1299   void finalize() {
1300     SubtreeClasses.compress();
1301     R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1302     assert(SubtreeClasses.getNumClasses() == RootSet.size()
1303            && "number of roots should match trees");
1304     for (const RootData &Root : RootSet) {
1305       unsigned TreeID = SubtreeClasses[Root.NodeID];
1306       if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1307         R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
1308       R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
1309       // Note that SubInstrCount may be greater than InstrCount if we joined
1310       // subtrees across a cross edge. InstrCount will be attributed to the
1311       // original parent, while SubInstrCount will be attributed to the joined
1312       // parent.
1313     }
1314     R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1315     R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1316     LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1317     for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1318       R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1319       LLVM_DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1320                         << R.DFSNodeData[Idx].SubtreeID << '\n');
1321     }
1322     for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
1323       unsigned PredTree = SubtreeClasses[P.first->NodeNum];
1324       unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
1325       if (PredTree == SuccTree)
1326         continue;
1327       unsigned Depth = P.first->getDepth();
1328       addConnection(PredTree, SuccTree, Depth);
1329       addConnection(SuccTree, PredTree, Depth);
1330     }
1331   }
1332
1333 protected:
1334   /// Joins the predecessor subtree with the successor that is its DFS parent.
1335   /// Applies some heuristics before joining.
1336   bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1337                        bool CheckLimit = true) {
1338     assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1339
1340     // Check if the predecessor is already joined.
1341     const SUnit *PredSU = PredDep.getSUnit();
1342     unsigned PredNum = PredSU->NodeNum;
1343     if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1344       return false;
1345
1346     // Four is the magic number of successors before a node is considered a
1347     // pinch point.
1348     unsigned NumDataSucs = 0;
1349     for (const SDep &SuccDep : PredSU->Succs) {
1350       if (SuccDep.getKind() == SDep::Data) {
1351         if (++NumDataSucs >= 4)
1352           return false;
1353       }
1354     }
1355     if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1356       return false;
1357     R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1358     SubtreeClasses.join(Succ->NodeNum, PredNum);
1359     return true;
1360   }
1361
1362   /// Called by finalize() to record a connection between trees.
1363   void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1364     if (!Depth)
1365       return;
1366
1367     do {
1368       SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1369         R.SubtreeConnections[FromTree];
1370       for (SchedDFSResult::Connection &C : Connections) {
1371         if (C.TreeID == ToTree) {
1372           C.Level = std::max(C.Level, Depth);
1373           return;
1374         }
1375       }
1376       Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1377       FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1378     } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1379   }
1380 };
1381
1382 } // end namespace llvm
1383
1384 namespace {
1385
1386 /// Manage the stack used by a reverse depth-first search over the DAG.
1387 class SchedDAGReverseDFS {
1388   std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
1389
1390 public:
1391   bool isComplete() const { return DFSStack.empty(); }
1392
1393   void follow(const SUnit *SU) {
1394     DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1395   }
1396   void advance() { ++DFSStack.back().second; }
1397
1398   const SDep *backtrack() {
1399     DFSStack.pop_back();
1400     return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
1401   }
1402
1403   const SUnit *getCurr() const { return DFSStack.back().first; }
1404
1405   SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1406
1407   SUnit::const_pred_iterator getPredEnd() const {
1408     return getCurr()->Preds.end();
1409   }
1410 };
1411
1412 } // end anonymous namespace
1413
1414 static bool hasDataSucc(const SUnit *SU) {
1415   for (const SDep &SuccDep : SU->Succs) {
1416     if (SuccDep.getKind() == SDep::Data &&
1417         !SuccDep.getSUnit()->isBoundaryNode())
1418       return true;
1419   }
1420   return false;
1421 }
1422
1423 /// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
1424 /// search from this root.
1425 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1426   if (!IsBottomUp)
1427     llvm_unreachable("Top-down ILP metric is unimplemented");
1428
1429   SchedDFSImpl Impl(*this);
1430   for (const SUnit &SU : SUnits) {
1431     if (Impl.isVisited(&SU) || hasDataSucc(&SU))
1432       continue;
1433
1434     SchedDAGReverseDFS DFS;
1435     Impl.visitPreorder(&SU);
1436     DFS.follow(&SU);
1437     while (true) {
1438       // Traverse the leftmost path as far as possible.
1439       while (DFS.getPred() != DFS.getPredEnd()) {
1440         const SDep &PredDep = *DFS.getPred();
1441         DFS.advance();
1442         // Ignore non-data edges.
1443         if (PredDep.getKind() != SDep::Data
1444             || PredDep.getSUnit()->isBoundaryNode()) {
1445           continue;
1446         }
1447         // An already visited edge is a cross edge, assuming an acyclic DAG.
1448         if (Impl.isVisited(PredDep.getSUnit())) {
1449           Impl.visitCrossEdge(PredDep, DFS.getCurr());
1450           continue;
1451         }
1452         Impl.visitPreorder(PredDep.getSUnit());
1453         DFS.follow(PredDep.getSUnit());
1454       }
1455       // Visit the top of the stack in postorder and backtrack.
1456       const SUnit *Child = DFS.getCurr();
1457       const SDep *PredDep = DFS.backtrack();
1458       Impl.visitPostorderNode(Child);
1459       if (PredDep)
1460         Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1461       if (DFS.isComplete())
1462         break;
1463     }
1464   }
1465   Impl.finalize();
1466 }
1467
1468 /// The root of the given SubtreeID was just scheduled. For all subtrees
1469 /// connected to this tree, record the depth of the connection so that the
1470 /// nearest connected subtrees can be prioritized.
1471 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1472   for (const Connection &C : SubtreeConnections[SubtreeID]) {
1473     SubtreeConnectLevels[C.TreeID] =
1474       std::max(SubtreeConnectLevels[C.TreeID], C.Level);
1475     LLVM_DEBUG(dbgs() << "  Tree: " << C.TreeID << " @"
1476                       << SubtreeConnectLevels[C.TreeID] << '\n');
1477   }
1478 }
1479
1480 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1481 LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
1482   OS << InstrCount << " / " << Length << " = ";
1483   if (!Length)
1484     OS << "BADILP";
1485   else
1486     OS << format("%g", ((double)InstrCount / Length));
1487 }
1488
1489 LLVM_DUMP_METHOD void ILPValue::dump() const {
1490   dbgs() << *this << '\n';
1491 }
1492
1493 namespace llvm {
1494
1495 LLVM_DUMP_METHOD
1496 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1497   Val.print(OS);
1498   return OS;
1499 }
1500
1501 } // end namespace llvm
1502
1503 #endif