]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
Merge ^/vendor/lld/dist up to its last change, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / SelectionDAG / FunctionLoweringInfo.cpp
1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating functions from LLVM IR into
10 // Machine IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/FunctionLoweringInfo.h"
15 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
16 #include "llvm/CodeGen/Analysis.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetOptions.h"
40 #include <algorithm>
41 using namespace llvm;
42
43 #define DEBUG_TYPE "function-lowering-info"
44
45 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
46 /// PHI nodes or outside of the basic block that defines it, or used by a
47 /// switch or atomic instruction, which may expand to multiple basic blocks.
48 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
49   if (I->use_empty()) return false;
50   if (isa<PHINode>(I)) return true;
51   const BasicBlock *BB = I->getParent();
52   for (const User *U : I->users())
53     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
54       return true;
55
56   return false;
57 }
58
59 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
60   // For the users of the source value being used for compare instruction, if
61   // the number of signed predicate is greater than unsigned predicate, we
62   // prefer to use SIGN_EXTEND.
63   //
64   // With this optimization, we would be able to reduce some redundant sign or
65   // zero extension instruction, and eventually more machine CSE opportunities
66   // can be exposed.
67   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
68   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
69   for (const User *U : V->users()) {
70     if (const auto *CI = dyn_cast<CmpInst>(U)) {
71       NumOfSigned += CI->isSigned();
72       NumOfUnsigned += CI->isUnsigned();
73     }
74   }
75   if (NumOfSigned > NumOfUnsigned)
76     ExtendKind = ISD::SIGN_EXTEND;
77
78   return ExtendKind;
79 }
80
81 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
82                                SelectionDAG *DAG) {
83   Fn = &fn;
84   MF = &mf;
85   TLI = MF->getSubtarget().getTargetLowering();
86   RegInfo = &MF->getRegInfo();
87   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
88   unsigned StackAlign = TFI->getStackAlignment();
89   DA = DAG->getDivergenceAnalysis();
90
91   // Check whether the function can return without sret-demotion.
92   SmallVector<ISD::OutputArg, 4> Outs;
93   CallingConv::ID CC = Fn->getCallingConv();
94
95   GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
96                 mf.getDataLayout());
97   CanLowerReturn =
98       TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
99
100   // If this personality uses funclets, we need to do a bit more work.
101   DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
102   EHPersonality Personality = classifyEHPersonality(
103       Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
104   if (isFuncletEHPersonality(Personality)) {
105     // Calculate state numbers if we haven't already.
106     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
107     if (Personality == EHPersonality::MSVC_CXX)
108       calculateWinCXXEHStateNumbers(&fn, EHInfo);
109     else if (isAsynchronousEHPersonality(Personality))
110       calculateSEHStateNumbers(&fn, EHInfo);
111     else if (Personality == EHPersonality::CoreCLR)
112       calculateClrEHStateNumbers(&fn, EHInfo);
113
114     // Map all BB references in the WinEH data to MBBs.
115     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
116       for (WinEHHandlerType &H : TBME.HandlerArray) {
117         if (const AllocaInst *AI = H.CatchObj.Alloca)
118           CatchObjects.insert({AI, {}}).first->second.push_back(
119               &H.CatchObj.FrameIndex);
120         else
121           H.CatchObj.FrameIndex = INT_MAX;
122       }
123     }
124   }
125   if (Personality == EHPersonality::Wasm_CXX) {
126     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
127     calculateWasmEHInfo(&fn, EHInfo);
128   }
129
130   // Initialize the mapping of values to registers.  This is only set up for
131   // instruction values that are used outside of the block that defines
132   // them.
133   for (const BasicBlock &BB : *Fn) {
134     for (const Instruction &I : BB) {
135       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
136         Type *Ty = AI->getAllocatedType();
137         unsigned Align =
138           std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
139                    AI->getAlignment());
140
141         // Static allocas can be folded into the initial stack frame
142         // adjustment. For targets that don't realign the stack, don't
143         // do this if there is an extra alignment requirement.
144         if (AI->isStaticAlloca() &&
145             (TFI->isStackRealignable() || (Align <= StackAlign))) {
146           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
147           uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);
148
149           TySize *= CUI->getZExtValue();   // Get total allocated size.
150           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
151           int FrameIndex = INT_MAX;
152           auto Iter = CatchObjects.find(AI);
153           if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
154             FrameIndex = MF->getFrameInfo().CreateFixedObject(
155                 TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
156             MF->getFrameInfo().setObjectAlignment(FrameIndex, Align);
157           } else {
158             FrameIndex =
159                 MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI);
160           }
161
162           StaticAllocaMap[AI] = FrameIndex;
163           // Update the catch handler information.
164           if (Iter != CatchObjects.end()) {
165             for (int *CatchObjPtr : Iter->second)
166               *CatchObjPtr = FrameIndex;
167           }
168         } else {
169           // FIXME: Overaligned static allocas should be grouped into
170           // a single dynamic allocation instead of using a separate
171           // stack allocation for each one.
172           if (Align <= StackAlign)
173             Align = 0;
174           // Inform the Frame Information that we have variable-sized objects.
175           MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI);
176         }
177       }
178
179       // Look for inline asm that clobbers the SP register.
180       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
181         ImmutableCallSite CS(&I);
182         if (isa<InlineAsm>(CS.getCalledValue())) {
183           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
184           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
185           std::vector<TargetLowering::AsmOperandInfo> Ops =
186               TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
187           for (TargetLowering::AsmOperandInfo &Op : Ops) {
188             if (Op.Type == InlineAsm::isClobber) {
189               // Clobbers don't have SDValue operands, hence SDValue().
190               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
191               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
192                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
193                                                     Op.ConstraintVT);
194               if (PhysReg.first == SP)
195                 MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
196             }
197           }
198         }
199       }
200
201       // Look for calls to the @llvm.va_start intrinsic. We can omit some
202       // prologue boilerplate for variadic functions that don't examine their
203       // arguments.
204       if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
205         if (II->getIntrinsicID() == Intrinsic::vastart)
206           MF->getFrameInfo().setHasVAStart(true);
207       }
208
209       // If we have a musttail call in a variadic function, we need to ensure we
210       // forward implicit register parameters.
211       if (const auto *CI = dyn_cast<CallInst>(&I)) {
212         if (CI->isMustTailCall() && Fn->isVarArg())
213           MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
214       }
215
216       // Mark values used outside their block as exported, by allocating
217       // a virtual register for them.
218       if (isUsedOutsideOfDefiningBlock(&I))
219         if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
220           InitializeRegForValue(&I);
221
222       // Decide the preferred extend type for a value.
223       PreferredExtendType[&I] = getPreferredExtendForValue(&I);
224     }
225   }
226
227   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
228   // also creates the initial PHI MachineInstrs, though none of the input
229   // operands are populated.
230   for (const BasicBlock &BB : *Fn) {
231     // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
232     // are really data, and no instructions can live here.
233     if (BB.isEHPad()) {
234       const Instruction *PadInst = BB.getFirstNonPHI();
235       // If this is a non-landingpad EH pad, mark this function as using
236       // funclets.
237       // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
238       // setting this in such cases in order to improve frame layout.
239       if (!isa<LandingPadInst>(PadInst)) {
240         MF->setHasEHScopes(true);
241         MF->setHasEHFunclets(true);
242         MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
243       }
244       if (isa<CatchSwitchInst>(PadInst)) {
245         assert(&*BB.begin() == PadInst &&
246                "WinEHPrepare failed to remove PHIs from imaginary BBs");
247         continue;
248       }
249       if (isa<FuncletPadInst>(PadInst))
250         assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
251     }
252
253     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
254     MBBMap[&BB] = MBB;
255     MF->push_back(MBB);
256
257     // Transfer the address-taken flag. This is necessary because there could
258     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
259     // the first one should be marked.
260     if (BB.hasAddressTaken())
261       MBB->setHasAddressTaken();
262
263     // Mark landing pad blocks.
264     if (BB.isEHPad())
265       MBB->setIsEHPad();
266
267     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
268     // appropriate.
269     for (const PHINode &PN : BB.phis()) {
270       if (PN.use_empty())
271         continue;
272
273       // Skip empty types
274       if (PN.getType()->isEmptyTy())
275         continue;
276
277       DebugLoc DL = PN.getDebugLoc();
278       unsigned PHIReg = ValueMap[&PN];
279       assert(PHIReg && "PHI node does not have an assigned virtual register!");
280
281       SmallVector<EVT, 4> ValueVTs;
282       ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
283       for (EVT VT : ValueVTs) {
284         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
285         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
286         for (unsigned i = 0; i != NumRegisters; ++i)
287           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
288         PHIReg += NumRegisters;
289       }
290     }
291   }
292
293   if (isFuncletEHPersonality(Personality)) {
294     WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
295
296     // Map all BB references in the WinEH data to MBBs.
297     for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
298       for (WinEHHandlerType &H : TBME.HandlerArray) {
299         if (H.Handler)
300           H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
301       }
302     }
303     for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
304       if (UME.Cleanup)
305         UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
306     for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
307       const auto *BB = UME.Handler.get<const BasicBlock *>();
308       UME.Handler = MBBMap[BB];
309     }
310     for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
311       const auto *BB = CME.Handler.get<const BasicBlock *>();
312       CME.Handler = MBBMap[BB];
313     }
314   }
315
316   else if (Personality == EHPersonality::Wasm_CXX) {
317     WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
318     // Map all BB references in the WinEH data to MBBs.
319     DenseMap<BBOrMBB, BBOrMBB> NewMap;
320     for (auto &KV : EHInfo.EHPadUnwindMap) {
321       const auto *Src = KV.first.get<const BasicBlock *>();
322       const auto *Dst = KV.second.get<const BasicBlock *>();
323       NewMap[MBBMap[Src]] = MBBMap[Dst];
324     }
325     EHInfo.EHPadUnwindMap = std::move(NewMap);
326   }
327 }
328
329 /// clear - Clear out all the function-specific state. This returns this
330 /// FunctionLoweringInfo to an empty state, ready to be used for a
331 /// different function.
332 void FunctionLoweringInfo::clear() {
333   MBBMap.clear();
334   ValueMap.clear();
335   VirtReg2Value.clear();
336   StaticAllocaMap.clear();
337   LiveOutRegInfo.clear();
338   VisitedBBs.clear();
339   ArgDbgValues.clear();
340   DescribedArgs.clear();
341   ByValArgFrameIndexMap.clear();
342   RegFixups.clear();
343   RegsWithFixups.clear();
344   StatepointStackSlots.clear();
345   StatepointSpillMaps.clear();
346   PreferredExtendType.clear();
347 }
348
349 /// CreateReg - Allocate a single virtual register for the given type.
350 unsigned FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
351   return RegInfo->createVirtualRegister(
352       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent));
353 }
354
355 /// CreateRegs - Allocate the appropriate number of virtual registers of
356 /// the correctly promoted or expanded types.  Assign these registers
357 /// consecutive vreg numbers and return the first assigned number.
358 ///
359 /// In the case that the given value has struct or array type, this function
360 /// will assign registers for each member or element.
361 ///
362 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
363   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
364
365   SmallVector<EVT, 4> ValueVTs;
366   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
367
368   unsigned FirstReg = 0;
369   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
370     EVT ValueVT = ValueVTs[Value];
371     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
372
373     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
374     for (unsigned i = 0; i != NumRegs; ++i) {
375       unsigned R = CreateReg(RegisterVT, isDivergent);
376       if (!FirstReg) FirstReg = R;
377     }
378   }
379   return FirstReg;
380 }
381
382 unsigned FunctionLoweringInfo::CreateRegs(const Value *V) {
383   return CreateRegs(V->getType(), DA && !TLI->requiresUniformRegister(*MF, V) &&
384                                       DA->isDivergent(V));
385 }
386
387 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
388 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
389 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
390 /// the larger bit width by zero extension. The bit width must be no smaller
391 /// than the LiveOutInfo's existing bit width.
392 const FunctionLoweringInfo::LiveOutInfo *
393 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
394   if (!LiveOutRegInfo.inBounds(Reg))
395     return nullptr;
396
397   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
398   if (!LOI->IsValid)
399     return nullptr;
400
401   if (BitWidth > LOI->Known.getBitWidth()) {
402     LOI->NumSignBits = 1;
403     LOI->Known = LOI->Known.zext(BitWidth, false /* => any extend */);
404   }
405
406   return LOI;
407 }
408
409 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
410 /// register based on the LiveOutInfo of its operands.
411 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
412   Type *Ty = PN->getType();
413   if (!Ty->isIntegerTy() || Ty->isVectorTy())
414     return;
415
416   SmallVector<EVT, 1> ValueVTs;
417   ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
418   assert(ValueVTs.size() == 1 &&
419          "PHIs with non-vector integer types should have a single VT.");
420   EVT IntVT = ValueVTs[0];
421
422   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
423     return;
424   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
425   unsigned BitWidth = IntVT.getSizeInBits();
426
427   unsigned DestReg = ValueMap[PN];
428   if (!Register::isVirtualRegister(DestReg))
429     return;
430   LiveOutRegInfo.grow(DestReg);
431   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
432
433   Value *V = PN->getIncomingValue(0);
434   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
435     DestLOI.NumSignBits = 1;
436     DestLOI.Known = KnownBits(BitWidth);
437     return;
438   }
439
440   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
441     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
442     DestLOI.NumSignBits = Val.getNumSignBits();
443     DestLOI.Known.Zero = ~Val;
444     DestLOI.Known.One = Val;
445   } else {
446     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
447                                 "CopyToReg node was created.");
448     unsigned SrcReg = ValueMap[V];
449     if (!Register::isVirtualRegister(SrcReg)) {
450       DestLOI.IsValid = false;
451       return;
452     }
453     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
454     if (!SrcLOI) {
455       DestLOI.IsValid = false;
456       return;
457     }
458     DestLOI = *SrcLOI;
459   }
460
461   assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
462          DestLOI.Known.One.getBitWidth() == BitWidth &&
463          "Masks should have the same bit width as the type.");
464
465   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
466     Value *V = PN->getIncomingValue(i);
467     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
468       DestLOI.NumSignBits = 1;
469       DestLOI.Known = KnownBits(BitWidth);
470       return;
471     }
472
473     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
474       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
475       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
476       DestLOI.Known.Zero &= ~Val;
477       DestLOI.Known.One &= Val;
478       continue;
479     }
480
481     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
482                                 "its CopyToReg node was created.");
483     unsigned SrcReg = ValueMap[V];
484     if (!Register::isVirtualRegister(SrcReg)) {
485       DestLOI.IsValid = false;
486       return;
487     }
488     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
489     if (!SrcLOI) {
490       DestLOI.IsValid = false;
491       return;
492     }
493     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
494     DestLOI.Known.Zero &= SrcLOI->Known.Zero;
495     DestLOI.Known.One &= SrcLOI->Known.One;
496   }
497 }
498
499 /// setArgumentFrameIndex - Record frame index for the byval
500 /// argument. This overrides previous frame index entry for this argument,
501 /// if any.
502 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
503                                                  int FI) {
504   ByValArgFrameIndexMap[A] = FI;
505 }
506
507 /// getArgumentFrameIndex - Get frame index for the byval argument.
508 /// If the argument does not have any assigned frame index then 0 is
509 /// returned.
510 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
511   auto I = ByValArgFrameIndexMap.find(A);
512   if (I != ByValArgFrameIndexMap.end())
513     return I->second;
514   LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
515   return INT_MAX;
516 }
517
518 unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
519     const Value *CPI, const TargetRegisterClass *RC) {
520   MachineRegisterInfo &MRI = MF->getRegInfo();
521   auto I = CatchPadExceptionPointers.insert({CPI, 0});
522   unsigned &VReg = I.first->second;
523   if (I.second)
524     VReg = MRI.createVirtualRegister(RC);
525   assert(VReg && "null vreg in exception pointer table!");
526   return VReg;
527 }
528
529 const Value *
530 FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) {
531   if (VirtReg2Value.empty()) {
532     SmallVector<EVT, 4> ValueVTs;
533     for (auto &P : ValueMap) {
534       ValueVTs.clear();
535       ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
536                       P.first->getType(), ValueVTs);
537       unsigned Reg = P.second;
538       for (EVT VT : ValueVTs) {
539         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
540         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
541           VirtReg2Value[Reg++] = P.first;
542       }
543     }
544   }
545   return VirtReg2Value.lookup(Vreg);
546 }