]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/InstrEmitter.cpp
MFV r356163,r356197:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / SelectionDAG / InstrEmitter.cpp
1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
11 // selection.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/StackMaps.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 using namespace llvm;
32
33 #define DEBUG_TYPE "instr-emitter"
34
35 /// MinRCSize - Smallest register class we allow when constraining virtual
36 /// registers.  If satisfying all register class constraints would require
37 /// using a smaller register class, emit a COPY to a new virtual register
38 /// instead.
39 const unsigned MinRCSize = 4;
40
41 /// CountResults - The results of target nodes have register or immediate
42 /// operands first, then an optional chain, and optional glue operands (which do
43 /// not go into the resulting MachineInstr).
44 unsigned InstrEmitter::CountResults(SDNode *Node) {
45   unsigned N = Node->getNumValues();
46   while (N && Node->getValueType(N - 1) == MVT::Glue)
47     --N;
48   if (N && Node->getValueType(N - 1) == MVT::Other)
49     --N;    // Skip over chain result.
50   return N;
51 }
52
53 /// countOperands - The inputs to target nodes have any actual inputs first,
54 /// followed by an optional chain operand, then an optional glue operand.
55 /// Compute the number of actual operands that will go into the resulting
56 /// MachineInstr.
57 ///
58 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
59 /// the chain and glue. These operands may be implicit on the machine instr.
60 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
61                               unsigned &NumImpUses) {
62   unsigned N = Node->getNumOperands();
63   while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
64     --N;
65   if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
66     --N; // Ignore chain if it exists.
67
68   // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
69   NumImpUses = N - NumExpUses;
70   for (unsigned I = N; I > NumExpUses; --I) {
71     if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
72       continue;
73     if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
74       if (TargetRegisterInfo::isPhysicalRegister(RN->getReg()))
75         continue;
76     NumImpUses = N - I;
77     break;
78   }
79
80   return N;
81 }
82
83 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
84 /// implicit physical register output.
85 void InstrEmitter::
86 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
87                 unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) {
88   unsigned VRBase = 0;
89   if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
90     // Just use the input register directly!
91     SDValue Op(Node, ResNo);
92     if (IsClone)
93       VRBaseMap.erase(Op);
94     bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
95     (void)isNew; // Silence compiler warning.
96     assert(isNew && "Node emitted out of order - early");
97     return;
98   }
99
100   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
101   // the CopyToReg'd destination register instead of creating a new vreg.
102   bool MatchReg = true;
103   const TargetRegisterClass *UseRC = nullptr;
104   MVT VT = Node->getSimpleValueType(ResNo);
105
106   // Stick to the preferred register classes for legal types.
107   if (TLI->isTypeLegal(VT))
108     UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
109
110   if (!IsClone && !IsCloned)
111     for (SDNode *User : Node->uses()) {
112       bool Match = true;
113       if (User->getOpcode() == ISD::CopyToReg &&
114           User->getOperand(2).getNode() == Node &&
115           User->getOperand(2).getResNo() == ResNo) {
116         unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
117         if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
118           VRBase = DestReg;
119           Match = false;
120         } else if (DestReg != SrcReg)
121           Match = false;
122       } else {
123         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
124           SDValue Op = User->getOperand(i);
125           if (Op.getNode() != Node || Op.getResNo() != ResNo)
126             continue;
127           MVT VT = Node->getSimpleValueType(Op.getResNo());
128           if (VT == MVT::Other || VT == MVT::Glue)
129             continue;
130           Match = false;
131           if (User->isMachineOpcode()) {
132             const MCInstrDesc &II = TII->get(User->getMachineOpcode());
133             const TargetRegisterClass *RC = nullptr;
134             if (i+II.getNumDefs() < II.getNumOperands()) {
135               RC = TRI->getAllocatableClass(
136                 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
137             }
138             if (!UseRC)
139               UseRC = RC;
140             else if (RC) {
141               const TargetRegisterClass *ComRC =
142                 TRI->getCommonSubClass(UseRC, RC, VT.SimpleTy);
143               // If multiple uses expect disjoint register classes, we emit
144               // copies in AddRegisterOperand.
145               if (ComRC)
146                 UseRC = ComRC;
147             }
148           }
149         }
150       }
151       MatchReg &= Match;
152       if (VRBase)
153         break;
154     }
155
156   const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
157   SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
158
159   // Figure out the register class to create for the destreg.
160   if (VRBase) {
161     DstRC = MRI->getRegClass(VRBase);
162   } else if (UseRC) {
163     assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
164            "Incompatible phys register def and uses!");
165     DstRC = UseRC;
166   } else {
167     DstRC = TLI->getRegClassFor(VT, Node->isDivergent());
168   }
169
170   // If all uses are reading from the src physical register and copying the
171   // register is either impossible or very expensive, then don't create a copy.
172   if (MatchReg && SrcRC->getCopyCost() < 0) {
173     VRBase = SrcReg;
174   } else {
175     // Create the reg, emit the copy.
176     VRBase = MRI->createVirtualRegister(DstRC);
177     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
178             VRBase).addReg(SrcReg);
179   }
180
181   SDValue Op(Node, ResNo);
182   if (IsClone)
183     VRBaseMap.erase(Op);
184   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
185   (void)isNew; // Silence compiler warning.
186   assert(isNew && "Node emitted out of order - early");
187 }
188
189 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
190                                        MachineInstrBuilder &MIB,
191                                        const MCInstrDesc &II,
192                                        bool IsClone, bool IsCloned,
193                                        DenseMap<SDValue, unsigned> &VRBaseMap) {
194   assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
195          "IMPLICIT_DEF should have been handled as a special case elsewhere!");
196
197   unsigned NumResults = CountResults(Node);
198   for (unsigned i = 0; i < II.getNumDefs(); ++i) {
199     // If the specific node value is only used by a CopyToReg and the dest reg
200     // is a vreg in the same register class, use the CopyToReg'd destination
201     // register instead of creating a new vreg.
202     unsigned VRBase = 0;
203     const TargetRegisterClass *RC =
204       TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
205     // Always let the value type influence the used register class. The
206     // constraints on the instruction may be too lax to represent the value
207     // type correctly. For example, a 64-bit float (X86::FR64) can't live in
208     // the 32-bit float super-class (X86::FR32).
209     if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
210       const TargetRegisterClass *VTRC = TLI->getRegClassFor(
211           Node->getSimpleValueType(i),
212           (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
213       if (RC)
214         VTRC = TRI->getCommonSubClass(RC, VTRC);
215       if (VTRC)
216         RC = VTRC;
217     }
218
219     if (II.OpInfo[i].isOptionalDef()) {
220       // Optional def must be a physical register.
221       VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
222       assert(TargetRegisterInfo::isPhysicalRegister(VRBase));
223       MIB.addReg(VRBase, RegState::Define);
224     }
225
226     if (!VRBase && !IsClone && !IsCloned)
227       for (SDNode *User : Node->uses()) {
228         if (User->getOpcode() == ISD::CopyToReg &&
229             User->getOperand(2).getNode() == Node &&
230             User->getOperand(2).getResNo() == i) {
231           unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
232           if (TargetRegisterInfo::isVirtualRegister(Reg)) {
233             const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
234             if (RegRC == RC) {
235               VRBase = Reg;
236               MIB.addReg(VRBase, RegState::Define);
237               break;
238             }
239           }
240         }
241       }
242
243     // Create the result registers for this node and add the result regs to
244     // the machine instruction.
245     if (VRBase == 0) {
246       assert(RC && "Isn't a register operand!");
247       VRBase = MRI->createVirtualRegister(RC);
248       MIB.addReg(VRBase, RegState::Define);
249     }
250
251     // If this def corresponds to a result of the SDNode insert the VRBase into
252     // the lookup map.
253     if (i < NumResults) {
254       SDValue Op(Node, i);
255       if (IsClone)
256         VRBaseMap.erase(Op);
257       bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
258       (void)isNew; // Silence compiler warning.
259       assert(isNew && "Node emitted out of order - early");
260     }
261   }
262 }
263
264 /// getVR - Return the virtual register corresponding to the specified result
265 /// of the specified node.
266 unsigned InstrEmitter::getVR(SDValue Op,
267                              DenseMap<SDValue, unsigned> &VRBaseMap) {
268   if (Op.isMachineOpcode() &&
269       Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
270     // Add an IMPLICIT_DEF instruction before every use.
271     // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
272     // does not include operand register class info.
273     const TargetRegisterClass *RC = TLI->getRegClassFor(
274         Op.getSimpleValueType(), Op.getNode()->isDivergent());
275     unsigned VReg = MRI->createVirtualRegister(RC);
276     BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
277             TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
278     return VReg;
279   }
280
281   DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
282   assert(I != VRBaseMap.end() && "Node emitted out of order - late");
283   return I->second;
284 }
285
286
287 /// AddRegisterOperand - Add the specified register as an operand to the
288 /// specified machine instr. Insert register copies if the register is
289 /// not in the required register class.
290 void
291 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
292                                  SDValue Op,
293                                  unsigned IIOpNum,
294                                  const MCInstrDesc *II,
295                                  DenseMap<SDValue, unsigned> &VRBaseMap,
296                                  bool IsDebug, bool IsClone, bool IsCloned) {
297   assert(Op.getValueType() != MVT::Other &&
298          Op.getValueType() != MVT::Glue &&
299          "Chain and glue operands should occur at end of operand list!");
300   // Get/emit the operand.
301   unsigned VReg = getVR(Op, VRBaseMap);
302
303   const MCInstrDesc &MCID = MIB->getDesc();
304   bool isOptDef = IIOpNum < MCID.getNumOperands() &&
305     MCID.OpInfo[IIOpNum].isOptionalDef();
306
307   // If the instruction requires a register in a different class, create
308   // a new virtual register and copy the value into it, but first attempt to
309   // shrink VReg's register class within reason.  For example, if VReg == GR32
310   // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
311   if (II) {
312     const TargetRegisterClass *OpRC = nullptr;
313     if (IIOpNum < II->getNumOperands())
314       OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
315
316     if (OpRC) {
317       const TargetRegisterClass *ConstrainedRC
318         = MRI->constrainRegClass(VReg, OpRC, MinRCSize);
319       if (!ConstrainedRC) {
320         OpRC = TRI->getAllocatableClass(OpRC);
321         assert(OpRC && "Constraints cannot be fulfilled for allocation");
322         unsigned NewVReg = MRI->createVirtualRegister(OpRC);
323         BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
324                 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
325         VReg = NewVReg;
326       } else {
327         assert(ConstrainedRC->isAllocatable() &&
328            "Constraining an allocatable VReg produced an unallocatable class?");
329       }
330     }
331   }
332
333   // If this value has only one use, that use is a kill. This is a
334   // conservative approximation. InstrEmitter does trivial coalescing
335   // with CopyFromReg nodes, so don't emit kill flags for them.
336   // Avoid kill flags on Schedule cloned nodes, since there will be
337   // multiple uses.
338   // Tied operands are never killed, so we need to check that. And that
339   // means we need to determine the index of the operand.
340   bool isKill = Op.hasOneUse() &&
341                 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
342                 !IsDebug &&
343                 !(IsClone || IsCloned);
344   if (isKill) {
345     unsigned Idx = MIB->getNumOperands();
346     while (Idx > 0 &&
347            MIB->getOperand(Idx-1).isReg() &&
348            MIB->getOperand(Idx-1).isImplicit())
349       --Idx;
350     bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
351     if (isTied)
352       isKill = false;
353   }
354
355   MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
356              getDebugRegState(IsDebug));
357 }
358
359 /// AddOperand - Add the specified operand to the specified machine instr.  II
360 /// specifies the instruction information for the node, and IIOpNum is the
361 /// operand number (in the II) that we are adding.
362 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
363                               SDValue Op,
364                               unsigned IIOpNum,
365                               const MCInstrDesc *II,
366                               DenseMap<SDValue, unsigned> &VRBaseMap,
367                               bool IsDebug, bool IsClone, bool IsCloned) {
368   if (Op.isMachineOpcode()) {
369     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
370                        IsDebug, IsClone, IsCloned);
371   } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
372     MIB.addImm(C->getSExtValue());
373   } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
374     MIB.addFPImm(F->getConstantFPValue());
375   } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
376     unsigned VReg = R->getReg();
377     MVT OpVT = Op.getSimpleValueType();
378     const TargetRegisterClass *IIRC =
379         II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
380            : nullptr;
381     const TargetRegisterClass *OpRC =
382         TLI->isTypeLegal(OpVT)
383             ? TLI->getRegClassFor(OpVT,
384                                   Op.getNode()->isDivergent() ||
385                                       (IIRC && TRI->isDivergentRegClass(IIRC)))
386             : nullptr;
387
388     if (OpRC && IIRC && OpRC != IIRC &&
389         TargetRegisterInfo::isVirtualRegister(VReg)) {
390       unsigned NewVReg = MRI->createVirtualRegister(IIRC);
391       BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
392                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
393       VReg = NewVReg;
394     }
395     // Turn additional physreg operands into implicit uses on non-variadic
396     // instructions. This is used by call and return instructions passing
397     // arguments in registers.
398     bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
399     MIB.addReg(VReg, getImplRegState(Imp));
400   } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
401     MIB.addRegMask(RM->getRegMask());
402   } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
403     MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
404                          TGA->getTargetFlags());
405   } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
406     MIB.addMBB(BBNode->getBasicBlock());
407   } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
408     MIB.addFrameIndex(FI->getIndex());
409   } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
410     MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
411   } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
412     int Offset = CP->getOffset();
413     unsigned Align = CP->getAlignment();
414     Type *Type = CP->getType();
415     // MachineConstantPool wants an explicit alignment.
416     if (Align == 0) {
417       Align = MF->getDataLayout().getPrefTypeAlignment(Type);
418       if (Align == 0) {
419         // Alignment of vector types.  FIXME!
420         Align = MF->getDataLayout().getTypeAllocSize(Type);
421       }
422     }
423
424     unsigned Idx;
425     MachineConstantPool *MCP = MF->getConstantPool();
426     if (CP->isMachineConstantPoolEntry())
427       Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align);
428     else
429       Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align);
430     MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
431   } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
432     MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
433   } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
434     MIB.addSym(SymNode->getMCSymbol());
435   } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
436     MIB.addBlockAddress(BA->getBlockAddress(),
437                         BA->getOffset(),
438                         BA->getTargetFlags());
439   } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
440     MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
441   } else {
442     assert(Op.getValueType() != MVT::Other &&
443            Op.getValueType() != MVT::Glue &&
444            "Chain and glue operands should occur at end of operand list!");
445     AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
446                        IsDebug, IsClone, IsCloned);
447   }
448 }
449
450 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx,
451                                           MVT VT, bool isDivergent, const DebugLoc &DL) {
452   const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
453   const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
454
455   // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
456   // within reason.
457   if (RC && RC != VRC)
458     RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
459
460   // VReg has been adjusted.  It can be used with SubIdx operands now.
461   if (RC)
462     return VReg;
463
464   // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
465   // register instead.
466   RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
467   assert(RC && "No legal register class for VT supports that SubIdx");
468   unsigned NewReg = MRI->createVirtualRegister(RC);
469   BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
470     .addReg(VReg);
471   return NewReg;
472 }
473
474 /// EmitSubregNode - Generate machine code for subreg nodes.
475 ///
476 void InstrEmitter::EmitSubregNode(SDNode *Node,
477                                   DenseMap<SDValue, unsigned> &VRBaseMap,
478                                   bool IsClone, bool IsCloned) {
479   unsigned VRBase = 0;
480   unsigned Opc = Node->getMachineOpcode();
481
482   // If the node is only used by a CopyToReg and the dest reg is a vreg, use
483   // the CopyToReg'd destination register instead of creating a new vreg.
484   for (SDNode *User : Node->uses()) {
485     if (User->getOpcode() == ISD::CopyToReg &&
486         User->getOperand(2).getNode() == Node) {
487       unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
488       if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
489         VRBase = DestReg;
490         break;
491       }
492     }
493   }
494
495   if (Opc == TargetOpcode::EXTRACT_SUBREG) {
496     // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
497     // constraints on the %dst register, COPY can target all legal register
498     // classes.
499     unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
500     const TargetRegisterClass *TRC =
501       TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
502
503     unsigned Reg;
504     MachineInstr *DefMI;
505     RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
506     if (R && TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
507       Reg = R->getReg();
508       DefMI = nullptr;
509     } else {
510       Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
511       DefMI = MRI->getVRegDef(Reg);
512     }
513
514     unsigned SrcReg, DstReg, DefSubIdx;
515     if (DefMI &&
516         TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
517         SubIdx == DefSubIdx &&
518         TRC == MRI->getRegClass(SrcReg)) {
519       // Optimize these:
520       // r1025 = s/zext r1024, 4
521       // r1026 = extract_subreg r1025, 4
522       // to a copy
523       // r1026 = copy r1024
524       VRBase = MRI->createVirtualRegister(TRC);
525       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
526               TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
527       MRI->clearKillFlags(SrcReg);
528     } else {
529       // Reg may not support a SubIdx sub-register, and we may need to
530       // constrain its register class or issue a COPY to a compatible register
531       // class.
532       if (TargetRegisterInfo::isVirtualRegister(Reg))
533         Reg = ConstrainForSubReg(Reg, SubIdx,
534                                  Node->getOperand(0).getSimpleValueType(),
535                                  Node->isDivergent(), Node->getDebugLoc());
536       // Create the destreg if it is missing.
537       if (VRBase == 0)
538         VRBase = MRI->createVirtualRegister(TRC);
539
540       // Create the extract_subreg machine instruction.
541       MachineInstrBuilder CopyMI =
542           BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
543                   TII->get(TargetOpcode::COPY), VRBase);
544       if (TargetRegisterInfo::isVirtualRegister(Reg))
545         CopyMI.addReg(Reg, 0, SubIdx);
546       else
547         CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
548     }
549   } else if (Opc == TargetOpcode::INSERT_SUBREG ||
550              Opc == TargetOpcode::SUBREG_TO_REG) {
551     SDValue N0 = Node->getOperand(0);
552     SDValue N1 = Node->getOperand(1);
553     SDValue N2 = Node->getOperand(2);
554     unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
555
556     // Figure out the register class to create for the destreg.  It should be
557     // the largest legal register class supporting SubIdx sub-registers.
558     // RegisterCoalescer will constrain it further if it decides to eliminate
559     // the INSERT_SUBREG instruction.
560     //
561     //   %dst = INSERT_SUBREG %src, %sub, SubIdx
562     //
563     // is lowered by TwoAddressInstructionPass to:
564     //
565     //   %dst = COPY %src
566     //   %dst:SubIdx = COPY %sub
567     //
568     // There is no constraint on the %src register class.
569     //
570     const TargetRegisterClass *SRC =
571         TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
572     SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
573     assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
574
575     if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
576       VRBase = MRI->createVirtualRegister(SRC);
577
578     // Create the insert_subreg or subreg_to_reg machine instruction.
579     MachineInstrBuilder MIB =
580       BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
581
582     // If creating a subreg_to_reg, then the first input operand
583     // is an implicit value immediate, otherwise it's a register
584     if (Opc == TargetOpcode::SUBREG_TO_REG) {
585       const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
586       MIB.addImm(SD->getZExtValue());
587     } else
588       AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
589                  IsClone, IsCloned);
590     // Add the subregister being inserted
591     AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
592                IsClone, IsCloned);
593     MIB.addImm(SubIdx);
594     MBB->insert(InsertPos, MIB);
595   } else
596     llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
597
598   SDValue Op(Node, 0);
599   bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
600   (void)isNew; // Silence compiler warning.
601   assert(isNew && "Node emitted out of order - early");
602 }
603
604 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
605 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
606 /// register is constrained to be in a particular register class.
607 ///
608 void
609 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
610                                      DenseMap<SDValue, unsigned> &VRBaseMap) {
611   unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
612
613   // Create the new VReg in the destination class and emit a copy.
614   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
615   const TargetRegisterClass *DstRC =
616     TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
617   unsigned NewVReg = MRI->createVirtualRegister(DstRC);
618   BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
619     NewVReg).addReg(VReg);
620
621   SDValue Op(Node, 0);
622   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
623   (void)isNew; // Silence compiler warning.
624   assert(isNew && "Node emitted out of order - early");
625 }
626
627 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
628 ///
629 void InstrEmitter::EmitRegSequence(SDNode *Node,
630                                   DenseMap<SDValue, unsigned> &VRBaseMap,
631                                   bool IsClone, bool IsCloned) {
632   unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
633   const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
634   unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
635   const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
636   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
637   unsigned NumOps = Node->getNumOperands();
638   // If the input pattern has a chain, then the root of the corresponding
639   // output pattern will get a chain as well. This can happen to be a
640   // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
641   if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
642     --NumOps; // Ignore chain if it exists.
643
644   assert((NumOps & 1) == 1 &&
645          "REG_SEQUENCE must have an odd number of operands!");
646   for (unsigned i = 1; i != NumOps; ++i) {
647     SDValue Op = Node->getOperand(i);
648     if ((i & 1) == 0) {
649       RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
650       // Skip physical registers as they don't have a vreg to get and we'll
651       // insert copies for them in TwoAddressInstructionPass anyway.
652       if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
653         unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
654         unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
655         const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
656         const TargetRegisterClass *SRC =
657         TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
658         if (SRC && SRC != RC) {
659           MRI->setRegClass(NewVReg, SRC);
660           RC = SRC;
661         }
662       }
663     }
664     AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
665                IsClone, IsCloned);
666   }
667
668   MBB->insert(InsertPos, MIB);
669   SDValue Op(Node, 0);
670   bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
671   (void)isNew; // Silence compiler warning.
672   assert(isNew && "Node emitted out of order - early");
673 }
674
675 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
676 ///
677 MachineInstr *
678 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
679                            DenseMap<SDValue, unsigned> &VRBaseMap) {
680   MDNode *Var = SD->getVariable();
681   MDNode *Expr = SD->getExpression();
682   DebugLoc DL = SD->getDebugLoc();
683   assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
684          "Expected inlined-at fields to agree");
685
686   SD->setIsEmitted();
687
688   if (SD->isInvalidated()) {
689     // An invalidated SDNode must generate an undef DBG_VALUE: although the
690     // original value is no longer computed, earlier DBG_VALUEs live ranges
691     // must not leak into later code.
692     auto MIB = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE));
693     MIB.addReg(0U);
694     MIB.addReg(0U, RegState::Debug);
695     MIB.addMetadata(Var);
696     MIB.addMetadata(Expr);
697     return &*MIB;
698   }
699
700   if (SD->getKind() == SDDbgValue::FRAMEIX) {
701     // Stack address; this needs to be lowered in target-dependent fashion.
702     // EmitTargetCodeForFrameDebugValue is responsible for allocation.
703     auto FrameMI = BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
704                        .addFrameIndex(SD->getFrameIx());
705     if (SD->isIndirect())
706       // Push [fi + 0] onto the DIExpression stack.
707       FrameMI.addImm(0);
708     else
709       // Push fi onto the DIExpression stack.
710       FrameMI.addReg(0);
711     return FrameMI.addMetadata(Var).addMetadata(Expr);
712   }
713   // Otherwise, we're going to create an instruction here.
714   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
715   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
716   if (SD->getKind() == SDDbgValue::SDNODE) {
717     SDNode *Node = SD->getSDNode();
718     SDValue Op = SDValue(Node, SD->getResNo());
719     // It's possible we replaced this SDNode with other(s) and therefore
720     // didn't generate code for it.  It's better to catch these cases where
721     // they happen and transfer the debug info, but trying to guarantee that
722     // in all cases would be very fragile; this is a safeguard for any
723     // that were missed.
724     DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
725     if (I==VRBaseMap.end())
726       MIB.addReg(0U);       // undef
727     else
728       AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
729                  /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
730   } else if (SD->getKind() == SDDbgValue::VREG) {
731     MIB.addReg(SD->getVReg(), RegState::Debug);
732   } else if (SD->getKind() == SDDbgValue::CONST) {
733     const Value *V = SD->getConst();
734     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
735       if (CI->getBitWidth() > 64)
736         MIB.addCImm(CI);
737       else
738         MIB.addImm(CI->getSExtValue());
739     } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
740       MIB.addFPImm(CF);
741     } else if (isa<ConstantPointerNull>(V)) {
742       // Note: This assumes that all nullptr constants are zero-valued.
743       MIB.addImm(0);
744     } else {
745       // Could be an Undef.  In any case insert an Undef so we can see what we
746       // dropped.
747       MIB.addReg(0U);
748     }
749   } else {
750     // Insert an Undef so we can see what we dropped.
751     MIB.addReg(0U);
752   }
753
754   // Indirect addressing is indicated by an Imm as the second parameter.
755   if (SD->isIndirect())
756     MIB.addImm(0U);
757   else
758     MIB.addReg(0U, RegState::Debug);
759
760   MIB.addMetadata(Var);
761   MIB.addMetadata(Expr);
762
763   return &*MIB;
764 }
765
766 MachineInstr *
767 InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
768   MDNode *Label = SD->getLabel();
769   DebugLoc DL = SD->getDebugLoc();
770   assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
771          "Expected inlined-at fields to agree");
772
773   const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
774   MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
775   MIB.addMetadata(Label);
776
777   return &*MIB;
778 }
779
780 /// EmitMachineNode - Generate machine code for a target-specific node and
781 /// needed dependencies.
782 ///
783 void InstrEmitter::
784 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
785                 DenseMap<SDValue, unsigned> &VRBaseMap) {
786   unsigned Opc = Node->getMachineOpcode();
787
788   // Handle subreg insert/extract specially
789   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
790       Opc == TargetOpcode::INSERT_SUBREG ||
791       Opc == TargetOpcode::SUBREG_TO_REG) {
792     EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
793     return;
794   }
795
796   // Handle COPY_TO_REGCLASS specially.
797   if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
798     EmitCopyToRegClassNode(Node, VRBaseMap);
799     return;
800   }
801
802   // Handle REG_SEQUENCE specially.
803   if (Opc == TargetOpcode::REG_SEQUENCE) {
804     EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
805     return;
806   }
807
808   if (Opc == TargetOpcode::IMPLICIT_DEF)
809     // We want a unique VR for each IMPLICIT_DEF use.
810     return;
811
812   const MCInstrDesc &II = TII->get(Opc);
813   unsigned NumResults = CountResults(Node);
814   unsigned NumDefs = II.getNumDefs();
815   const MCPhysReg *ScratchRegs = nullptr;
816
817   // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
818   if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
819     // Stackmaps do not have arguments and do not preserve their calling
820     // convention. However, to simplify runtime support, they clobber the same
821     // scratch registers as AnyRegCC.
822     unsigned CC = CallingConv::AnyReg;
823     if (Opc == TargetOpcode::PATCHPOINT) {
824       CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
825       NumDefs = NumResults;
826     }
827     ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
828   }
829
830   unsigned NumImpUses = 0;
831   unsigned NodeOperands =
832     countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
833   bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=nullptr;
834 #ifndef NDEBUG
835   unsigned NumMIOperands = NodeOperands + NumResults;
836   if (II.isVariadic())
837     assert(NumMIOperands >= II.getNumOperands() &&
838            "Too few operands for a variadic node!");
839   else
840     assert(NumMIOperands >= II.getNumOperands() &&
841            NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
842                             NumImpUses &&
843            "#operands for dag node doesn't match .td file!");
844 #endif
845
846   // Create the new machine instruction.
847   MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
848
849   // Add result register values for things that are defined by this
850   // instruction.
851   if (NumResults) {
852     CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
853
854     // Transfer any IR flags from the SDNode to the MachineInstr
855     MachineInstr *MI = MIB.getInstr();
856     const SDNodeFlags Flags = Node->getFlags();
857     if (Flags.hasNoSignedZeros())
858       MI->setFlag(MachineInstr::MIFlag::FmNsz);
859
860     if (Flags.hasAllowReciprocal())
861       MI->setFlag(MachineInstr::MIFlag::FmArcp);
862
863     if (Flags.hasNoNaNs())
864       MI->setFlag(MachineInstr::MIFlag::FmNoNans);
865
866     if (Flags.hasNoInfs())
867       MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
868
869     if (Flags.hasAllowContract())
870       MI->setFlag(MachineInstr::MIFlag::FmContract);
871
872     if (Flags.hasApproximateFuncs())
873       MI->setFlag(MachineInstr::MIFlag::FmAfn);
874
875     if (Flags.hasAllowReassociation())
876       MI->setFlag(MachineInstr::MIFlag::FmReassoc);
877
878     if (Flags.hasNoUnsignedWrap())
879       MI->setFlag(MachineInstr::MIFlag::NoUWrap);
880
881     if (Flags.hasNoSignedWrap())
882       MI->setFlag(MachineInstr::MIFlag::NoSWrap);
883
884     if (Flags.hasExact())
885       MI->setFlag(MachineInstr::MIFlag::IsExact);
886
887     if (Flags.hasFPExcept())
888       MI->setFlag(MachineInstr::MIFlag::FPExcept);
889   }
890
891   // Emit all of the actual operands of this instruction, adding them to the
892   // instruction as appropriate.
893   bool HasOptPRefs = NumDefs > NumResults;
894   assert((!HasOptPRefs || !HasPhysRegOuts) &&
895          "Unable to cope with optional defs and phys regs defs!");
896   unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
897   for (unsigned i = NumSkip; i != NodeOperands; ++i)
898     AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
899                VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
900
901   // Add scratch registers as implicit def and early clobber
902   if (ScratchRegs)
903     for (unsigned i = 0; ScratchRegs[i]; ++i)
904       MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
905                                  RegState::EarlyClobber);
906
907   // Set the memory reference descriptions of this instruction now that it is
908   // part of the function.
909   MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
910
911   // Insert the instruction into position in the block. This needs to
912   // happen before any custom inserter hook is called so that the
913   // hook knows where in the block to insert the replacement code.
914   MBB->insert(InsertPos, MIB);
915
916   // The MachineInstr may also define physregs instead of virtregs.  These
917   // physreg values can reach other instructions in different ways:
918   //
919   // 1. When there is a use of a Node value beyond the explicitly defined
920   //    virtual registers, we emit a CopyFromReg for one of the implicitly
921   //    defined physregs.  This only happens when HasPhysRegOuts is true.
922   //
923   // 2. A CopyFromReg reading a physreg may be glued to this instruction.
924   //
925   // 3. A glued instruction may implicitly use a physreg.
926   //
927   // 4. A glued instruction may use a RegisterSDNode operand.
928   //
929   // Collect all the used physreg defs, and make sure that any unused physreg
930   // defs are marked as dead.
931   SmallVector<unsigned, 8> UsedRegs;
932
933   // Additional results must be physical register defs.
934   if (HasPhysRegOuts) {
935     for (unsigned i = NumDefs; i < NumResults; ++i) {
936       unsigned Reg = II.getImplicitDefs()[i - NumDefs];
937       if (!Node->hasAnyUseOfValue(i))
938         continue;
939       // This implicitly defined physreg has a use.
940       UsedRegs.push_back(Reg);
941       EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
942     }
943   }
944
945   // Scan the glue chain for any used physregs.
946   if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
947     for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
948       if (F->getOpcode() == ISD::CopyFromReg) {
949         UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
950         continue;
951       } else if (F->getOpcode() == ISD::CopyToReg) {
952         // Skip CopyToReg nodes that are internal to the glue chain.
953         continue;
954       }
955       // Collect declared implicit uses.
956       const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
957       UsedRegs.append(MCID.getImplicitUses(),
958                       MCID.getImplicitUses() + MCID.getNumImplicitUses());
959       // In addition to declared implicit uses, we must also check for
960       // direct RegisterSDNode operands.
961       for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
962         if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
963           unsigned Reg = R->getReg();
964           if (TargetRegisterInfo::isPhysicalRegister(Reg))
965             UsedRegs.push_back(Reg);
966         }
967     }
968   }
969
970   // Finally mark unused registers as dead.
971   if (!UsedRegs.empty() || II.getImplicitDefs() || II.hasOptionalDef())
972     MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
973
974   // Run post-isel target hook to adjust this instruction if needed.
975   if (II.hasPostISelHook())
976     TLI->AdjustInstrPostInstrSelection(*MIB, Node);
977 }
978
979 /// EmitSpecialNode - Generate machine code for a target-independent node and
980 /// needed dependencies.
981 void InstrEmitter::
982 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
983                 DenseMap<SDValue, unsigned> &VRBaseMap) {
984   switch (Node->getOpcode()) {
985   default:
986 #ifndef NDEBUG
987     Node->dump();
988 #endif
989     llvm_unreachable("This target-independent node should have been selected!");
990   case ISD::EntryToken:
991     llvm_unreachable("EntryToken should have been excluded from the schedule!");
992   case ISD::MERGE_VALUES:
993   case ISD::TokenFactor: // fall thru
994     break;
995   case ISD::CopyToReg: {
996     unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
997     SDValue SrcVal = Node->getOperand(2);
998     if (TargetRegisterInfo::isVirtualRegister(DestReg) &&
999         SrcVal.isMachineOpcode() &&
1000         SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1001       // Instead building a COPY to that vreg destination, build an
1002       // IMPLICIT_DEF instruction instead.
1003       BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1004               TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1005       break;
1006     }
1007     unsigned SrcReg;
1008     if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1009       SrcReg = R->getReg();
1010     else
1011       SrcReg = getVR(SrcVal, VRBaseMap);
1012
1013     if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1014       break;
1015
1016     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1017             DestReg).addReg(SrcReg);
1018     break;
1019   }
1020   case ISD::CopyFromReg: {
1021     unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1022     EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
1023     break;
1024   }
1025   case ISD::EH_LABEL:
1026   case ISD::ANNOTATION_LABEL: {
1027     unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1028                        ? TargetOpcode::EH_LABEL
1029                        : TargetOpcode::ANNOTATION_LABEL;
1030     MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1031     BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1032             TII->get(Opc)).addSym(S);
1033     break;
1034   }
1035
1036   case ISD::LIFETIME_START:
1037   case ISD::LIFETIME_END: {
1038     unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
1039     TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
1040
1041     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
1042     BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1043     .addFrameIndex(FI->getIndex());
1044     break;
1045   }
1046
1047   case ISD::INLINEASM:
1048   case ISD::INLINEASM_BR: {
1049     unsigned NumOps = Node->getNumOperands();
1050     if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1051       --NumOps;  // Ignore the glue operand.
1052
1053     // Create the inline asm machine instruction.
1054     unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1055                           ? TargetOpcode::INLINEASM_BR
1056                           : TargetOpcode::INLINEASM;
1057     MachineInstrBuilder MIB =
1058         BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1059
1060     // Add the asm string as an external symbol operand.
1061     SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1062     const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1063     MIB.addExternalSymbol(AsmStr);
1064
1065     // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1066     // bits.
1067     int64_t ExtraInfo =
1068       cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1069                           getZExtValue();
1070     MIB.addImm(ExtraInfo);
1071
1072     // Remember to operand index of the group flags.
1073     SmallVector<unsigned, 8> GroupIdx;
1074
1075     // Remember registers that are part of early-clobber defs.
1076     SmallVector<unsigned, 8> ECRegs;
1077
1078     // Add all of the operand registers to the instruction.
1079     for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1080       unsigned Flags =
1081         cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1082       const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1083
1084       GroupIdx.push_back(MIB->getNumOperands());
1085       MIB.addImm(Flags);
1086       ++i;  // Skip the ID value.
1087
1088       switch (InlineAsm::getKind(Flags)) {
1089       default: llvm_unreachable("Bad flags!");
1090         case InlineAsm::Kind_RegDef:
1091         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1092           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1093           // FIXME: Add dead flags for physical and virtual registers defined.
1094           // For now, mark physical register defs as implicit to help fast
1095           // regalloc. This makes inline asm look a lot like calls.
1096           MIB.addReg(Reg, RegState::Define |
1097                   getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
1098         }
1099         break;
1100       case InlineAsm::Kind_RegDefEarlyClobber:
1101       case InlineAsm::Kind_Clobber:
1102         for (unsigned j = 0; j != NumVals; ++j, ++i) {
1103           unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1104           MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber |
1105                   getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
1106           ECRegs.push_back(Reg);
1107         }
1108         break;
1109       case InlineAsm::Kind_RegUse:  // Use of register.
1110       case InlineAsm::Kind_Imm:  // Immediate.
1111       case InlineAsm::Kind_Mem:  // Addressing mode.
1112         // The addressing mode has been selected, just add all of the
1113         // operands to the machine instruction.
1114         for (unsigned j = 0; j != NumVals; ++j, ++i)
1115           AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1116                      /*IsDebug=*/false, IsClone, IsCloned);
1117
1118         // Manually set isTied bits.
1119         if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1120           unsigned DefGroup = 0;
1121           if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1122             unsigned DefIdx = GroupIdx[DefGroup] + 1;
1123             unsigned UseIdx = GroupIdx.back() + 1;
1124             for (unsigned j = 0; j != NumVals; ++j)
1125               MIB->tieOperands(DefIdx + j, UseIdx + j);
1126           }
1127         }
1128         break;
1129       }
1130     }
1131
1132     // GCC inline assembly allows input operands to also be early-clobber
1133     // output operands (so long as the operand is written only after it's
1134     // used), but this does not match the semantics of our early-clobber flag.
1135     // If an early-clobber operand register is also an input operand register,
1136     // then remove the early-clobber flag.
1137     for (unsigned Reg : ECRegs) {
1138       if (MIB->readsRegister(Reg, TRI)) {
1139         MachineOperand *MO = 
1140             MIB->findRegisterDefOperand(Reg, false, false, TRI);
1141         assert(MO && "No def operand for clobbered register?");
1142         MO->setIsEarlyClobber(false);
1143       }
1144     }
1145
1146     // Get the mdnode from the asm if it exists and add it to the instruction.
1147     SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1148     const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1149     if (MD)
1150       MIB.addMetadata(MD);
1151
1152     MBB->insert(InsertPos, MIB);
1153     break;
1154   }
1155   }
1156 }
1157
1158 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1159 /// at the given position in the given block.
1160 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
1161                            MachineBasicBlock::iterator insertpos)
1162     : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1163       TII(MF->getSubtarget().getInstrInfo()),
1164       TRI(MF->getSubtarget().getRegisterInfo()),
1165       TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1166       InsertPos(insertpos) {}