]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/SpillPlacement.cpp
Fix a memory leak in if_delgroups() introduced in r334118.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / SpillPlacement.cpp
1 //===- SpillPlacement.cpp - Optimal Spill Code Placement ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the spill code placement analysis.
10 //
11 // Each edge bundle corresponds to a node in a Hopfield network. Constraints on
12 // basic blocks are weighted by the block frequency and added to become the node
13 // bias.
14 //
15 // Transparent basic blocks have the variable live through, but don't care if it
16 // is spilled or in a register. These blocks become connections in the Hopfield
17 // network, again weighted by block frequency.
18 //
19 // The Hopfield network minimizes (possibly locally) its energy function:
20 //
21 //   E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b )
22 //
23 // The energy function represents the expected spill code execution frequency,
24 // or the cost of spilling. This is a Lyapunov function which never increases
25 // when a node is updated. It is guaranteed to converge to a local minimum.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #include "SpillPlacement.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/SparseSet.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/BlockFrequency.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <utility>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "spill-code-placement"
50
51 char SpillPlacement::ID = 0;
52
53 char &llvm::SpillPlacementID = SpillPlacement::ID;
54
55 INITIALIZE_PASS_BEGIN(SpillPlacement, DEBUG_TYPE,
56                       "Spill Code Placement Analysis", true, true)
57 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
58 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
59 INITIALIZE_PASS_END(SpillPlacement, DEBUG_TYPE,
60                     "Spill Code Placement Analysis", true, true)
61
62 void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const {
63   AU.setPreservesAll();
64   AU.addRequired<MachineBlockFrequencyInfo>();
65   AU.addRequiredTransitive<EdgeBundles>();
66   AU.addRequiredTransitive<MachineLoopInfo>();
67   MachineFunctionPass::getAnalysisUsage(AU);
68 }
69
70 /// Node - Each edge bundle corresponds to a Hopfield node.
71 ///
72 /// The node contains precomputed frequency data that only depends on the CFG,
73 /// but Bias and Links are computed each time placeSpills is called.
74 ///
75 /// The node Value is positive when the variable should be in a register. The
76 /// value can change when linked nodes change, but convergence is very fast
77 /// because all weights are positive.
78 struct SpillPlacement::Node {
79   /// BiasN - Sum of blocks that prefer a spill.
80   BlockFrequency BiasN;
81
82   /// BiasP - Sum of blocks that prefer a register.
83   BlockFrequency BiasP;
84
85   /// Value - Output value of this node computed from the Bias and links.
86   /// This is always on of the values {-1, 0, 1}. A positive number means the
87   /// variable should go in a register through this bundle.
88   int Value;
89
90   using LinkVector = SmallVector<std::pair<BlockFrequency, unsigned>, 4>;
91
92   /// Links - (Weight, BundleNo) for all transparent blocks connecting to other
93   /// bundles. The weights are all positive block frequencies.
94   LinkVector Links;
95
96   /// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
97   BlockFrequency SumLinkWeights;
98
99   /// preferReg - Return true when this node prefers to be in a register.
100   bool preferReg() const {
101     // Undecided nodes (Value==0) go on the stack.
102     return Value > 0;
103   }
104
105   /// mustSpill - Return True if this node is so biased that it must spill.
106   bool mustSpill() const {
107     // We must spill if Bias < -sum(weights) or the MustSpill flag was set.
108     // BiasN is saturated when MustSpill is set, make sure this still returns
109     // true when the RHS saturates. Note that SumLinkWeights includes Threshold.
110     return BiasN >= BiasP + SumLinkWeights;
111   }
112
113   /// clear - Reset per-query data, but preserve frequencies that only depend on
114   /// the CFG.
115   void clear(const BlockFrequency &Threshold) {
116     BiasN = BiasP = Value = 0;
117     SumLinkWeights = Threshold;
118     Links.clear();
119   }
120
121   /// addLink - Add a link to bundle b with weight w.
122   void addLink(unsigned b, BlockFrequency w) {
123     // Update cached sum.
124     SumLinkWeights += w;
125
126     // There can be multiple links to the same bundle, add them up.
127     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I)
128       if (I->second == b) {
129         I->first += w;
130         return;
131       }
132     // This must be the first link to b.
133     Links.push_back(std::make_pair(w, b));
134   }
135
136   /// addBias - Bias this node.
137   void addBias(BlockFrequency freq, BorderConstraint direction) {
138     switch (direction) {
139     default:
140       break;
141     case PrefReg:
142       BiasP += freq;
143       break;
144     case PrefSpill:
145       BiasN += freq;
146       break;
147     case MustSpill:
148       BiasN = BlockFrequency::getMaxFrequency();
149       break;
150     }
151   }
152
153   /// update - Recompute Value from Bias and Links. Return true when node
154   /// preference changes.
155   bool update(const Node nodes[], const BlockFrequency &Threshold) {
156     // Compute the weighted sum of inputs.
157     BlockFrequency SumN = BiasN;
158     BlockFrequency SumP = BiasP;
159     for (LinkVector::iterator I = Links.begin(), E = Links.end(); I != E; ++I) {
160       if (nodes[I->second].Value == -1)
161         SumN += I->first;
162       else if (nodes[I->second].Value == 1)
163         SumP += I->first;
164     }
165
166     // Each weighted sum is going to be less than the total frequency of the
167     // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
168     // will add a dead zone around 0 for two reasons:
169     //
170     //  1. It avoids arbitrary bias when all links are 0 as is possible during
171     //     initial iterations.
172     //  2. It helps tame rounding errors when the links nominally sum to 0.
173     //
174     bool Before = preferReg();
175     if (SumN >= SumP + Threshold)
176       Value = -1;
177     else if (SumP >= SumN + Threshold)
178       Value = 1;
179     else
180       Value = 0;
181     return Before != preferReg();
182   }
183
184   void getDissentingNeighbors(SparseSet<unsigned> &List,
185                               const Node nodes[]) const {
186     for (const auto &Elt : Links) {
187       unsigned n = Elt.second;
188       // Neighbors that already have the same value are not going to
189       // change because of this node changing.
190       if (Value != nodes[n].Value)
191         List.insert(n);
192     }
193   }
194 };
195
196 bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) {
197   MF = &mf;
198   bundles = &getAnalysis<EdgeBundles>();
199   loops = &getAnalysis<MachineLoopInfo>();
200
201   assert(!nodes && "Leaking node array");
202   nodes = new Node[bundles->getNumBundles()];
203   TodoList.clear();
204   TodoList.setUniverse(bundles->getNumBundles());
205
206   // Compute total ingoing and outgoing block frequencies for all bundles.
207   BlockFrequencies.resize(mf.getNumBlockIDs());
208   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
209   setThreshold(MBFI->getEntryFreq());
210   for (auto &I : mf) {
211     unsigned Num = I.getNumber();
212     BlockFrequencies[Num] = MBFI->getBlockFreq(&I);
213   }
214
215   // We never change the function.
216   return false;
217 }
218
219 void SpillPlacement::releaseMemory() {
220   delete[] nodes;
221   nodes = nullptr;
222   TodoList.clear();
223 }
224
225 /// activate - mark node n as active if it wasn't already.
226 void SpillPlacement::activate(unsigned n) {
227   TodoList.insert(n);
228   if (ActiveNodes->test(n))
229     return;
230   ActiveNodes->set(n);
231   nodes[n].clear(Threshold);
232
233   // Very large bundles usually come from big switches, indirect branches,
234   // landing pads, or loops with many 'continue' statements. It is difficult to
235   // allocate registers when so many different blocks are involved.
236   //
237   // Give a small negative bias to large bundles such that a substantial
238   // fraction of the connected blocks need to be interested before we consider
239   // expanding the region through the bundle. This helps compile time by
240   // limiting the number of blocks visited and the number of links in the
241   // Hopfield network.
242   if (bundles->getBlocks(n).size() > 100) {
243     nodes[n].BiasP = 0;
244     nodes[n].BiasN = (MBFI->getEntryFreq() / 16);
245   }
246 }
247
248 /// Set the threshold for a given entry frequency.
249 ///
250 /// Set the threshold relative to \c Entry.  Since the threshold is used as a
251 /// bound on the open interval (-Threshold;Threshold), 1 is the minimum
252 /// threshold.
253 void SpillPlacement::setThreshold(const BlockFrequency &Entry) {
254   // Apparently 2 is a good threshold when Entry==2^14, but we need to scale
255   // it.  Divide by 2^13, rounding as appropriate.
256   uint64_t Freq = Entry.getFrequency();
257   uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12));
258   Threshold = std::max(UINT64_C(1), Scaled);
259 }
260
261 /// addConstraints - Compute node biases and weights from a set of constraints.
262 /// Set a bit in NodeMask for each active node.
263 void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) {
264   for (ArrayRef<BlockConstraint>::iterator I = LiveBlocks.begin(),
265        E = LiveBlocks.end(); I != E; ++I) {
266     BlockFrequency Freq = BlockFrequencies[I->Number];
267
268     // Live-in to block?
269     if (I->Entry != DontCare) {
270       unsigned ib = bundles->getBundle(I->Number, false);
271       activate(ib);
272       nodes[ib].addBias(Freq, I->Entry);
273     }
274
275     // Live-out from block?
276     if (I->Exit != DontCare) {
277       unsigned ob = bundles->getBundle(I->Number, true);
278       activate(ob);
279       nodes[ob].addBias(Freq, I->Exit);
280     }
281   }
282 }
283
284 /// addPrefSpill - Same as addConstraints(PrefSpill)
285 void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) {
286   for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
287        I != E; ++I) {
288     BlockFrequency Freq = BlockFrequencies[*I];
289     if (Strong)
290       Freq += Freq;
291     unsigned ib = bundles->getBundle(*I, false);
292     unsigned ob = bundles->getBundle(*I, true);
293     activate(ib);
294     activate(ob);
295     nodes[ib].addBias(Freq, PrefSpill);
296     nodes[ob].addBias(Freq, PrefSpill);
297   }
298 }
299
300 void SpillPlacement::addLinks(ArrayRef<unsigned> Links) {
301   for (ArrayRef<unsigned>::iterator I = Links.begin(), E = Links.end(); I != E;
302        ++I) {
303     unsigned Number = *I;
304     unsigned ib = bundles->getBundle(Number, false);
305     unsigned ob = bundles->getBundle(Number, true);
306
307     // Ignore self-loops.
308     if (ib == ob)
309       continue;
310     activate(ib);
311     activate(ob);
312     BlockFrequency Freq = BlockFrequencies[Number];
313     nodes[ib].addLink(ob, Freq);
314     nodes[ob].addLink(ib, Freq);
315   }
316 }
317
318 bool SpillPlacement::scanActiveBundles() {
319   RecentPositive.clear();
320   for (unsigned n : ActiveNodes->set_bits()) {
321     update(n);
322     // A node that must spill, or a node without any links is not going to
323     // change its value ever again, so exclude it from iterations.
324     if (nodes[n].mustSpill())
325       continue;
326     if (nodes[n].preferReg())
327       RecentPositive.push_back(n);
328   }
329   return !RecentPositive.empty();
330 }
331
332 bool SpillPlacement::update(unsigned n) {
333   if (!nodes[n].update(nodes, Threshold))
334     return false;
335   nodes[n].getDissentingNeighbors(TodoList, nodes);
336   return true;
337 }
338
339 /// iterate - Repeatedly update the Hopfield nodes until stability or the
340 /// maximum number of iterations is reached.
341 void SpillPlacement::iterate() {
342   // We do not need to push those node in the todolist.
343   // They are already been proceeded as part of the previous iteration.
344   RecentPositive.clear();
345
346   // Since the last iteration, the todolist have been augmented by calls
347   // to addConstraints, addLinks, and co.
348   // Update the network energy starting at this new frontier.
349   // The call to ::update will add the nodes that changed into the todolist.
350   unsigned Limit = bundles->getNumBundles() * 10;
351   while(Limit-- > 0 && !TodoList.empty()) {
352     unsigned n = TodoList.pop_back_val();
353     if (!update(n))
354       continue;
355     if (nodes[n].preferReg())
356       RecentPositive.push_back(n);
357   }
358 }
359
360 void SpillPlacement::prepare(BitVector &RegBundles) {
361   RecentPositive.clear();
362   TodoList.clear();
363   // Reuse RegBundles as our ActiveNodes vector.
364   ActiveNodes = &RegBundles;
365   ActiveNodes->clear();
366   ActiveNodes->resize(bundles->getNumBundles());
367 }
368
369 bool
370 SpillPlacement::finish() {
371   assert(ActiveNodes && "Call prepare() first");
372
373   // Write preferences back to ActiveNodes.
374   bool Perfect = true;
375   for (unsigned n : ActiveNodes->set_bits())
376     if (!nodes[n].preferReg()) {
377       ActiveNodes->reset(n);
378       Perfect = false;
379     }
380   ActiveNodes = nullptr;
381   return Perfect;
382 }