]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/CodeGen/SwitchLoweringUtils.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / CodeGen / SwitchLoweringUtils.cpp
1 //===- SwitchLoweringUtils.cpp - Switch Lowering --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains switch inst lowering optimizations and utilities for
10 // codegen, so that it can be used for both SelectionDAG and GlobalISel.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineJumpTableInfo.h"
15 #include "llvm/CodeGen/SwitchLoweringUtils.h"
16
17 using namespace llvm;
18 using namespace SwitchCG;
19
20 uint64_t SwitchCG::getJumpTableRange(const CaseClusterVector &Clusters,
21                                      unsigned First, unsigned Last) {
22   assert(Last >= First);
23   const APInt &LowCase = Clusters[First].Low->getValue();
24   const APInt &HighCase = Clusters[Last].High->getValue();
25   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
26
27   // FIXME: A range of consecutive cases has 100% density, but only requires one
28   // comparison to lower. We should discriminate against such consecutive ranges
29   // in jump tables.
30   return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
31 }
32
33 uint64_t
34 SwitchCG::getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases,
35                                unsigned First, unsigned Last) {
36   assert(Last >= First);
37   assert(TotalCases[Last] >= TotalCases[First]);
38   uint64_t NumCases =
39       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
40   return NumCases;
41 }
42
43 void SwitchCG::SwitchLowering::findJumpTables(CaseClusterVector &Clusters,
44                                               const SwitchInst *SI,
45                                               MachineBasicBlock *DefaultMBB) {
46 #ifndef NDEBUG
47   // Clusters must be non-empty, sorted, and only contain Range clusters.
48   assert(!Clusters.empty());
49   for (CaseCluster &C : Clusters)
50     assert(C.Kind == CC_Range);
51   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
52     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
53 #endif
54
55   assert(TLI && "TLI not set!");
56   if (!TLI->areJTsAllowed(SI->getParent()->getParent()))
57     return;
58
59   const unsigned MinJumpTableEntries = TLI->getMinimumJumpTableEntries();
60   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
61
62   // Bail if not enough cases.
63   const int64_t N = Clusters.size();
64   if (N < 2 || N < MinJumpTableEntries)
65     return;
66
67   // Accumulated number of cases in each cluster and those prior to it.
68   SmallVector<unsigned, 8> TotalCases(N);
69   for (unsigned i = 0; i < N; ++i) {
70     const APInt &Hi = Clusters[i].High->getValue();
71     const APInt &Lo = Clusters[i].Low->getValue();
72     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
73     if (i != 0)
74       TotalCases[i] += TotalCases[i - 1];
75   }
76
77   uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
78   uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
79   assert(NumCases < UINT64_MAX / 100);
80   assert(Range >= NumCases);
81
82   // Cheap case: the whole range may be suitable for jump table.
83   if (TLI->isSuitableForJumpTable(SI, NumCases, Range)) {
84     CaseCluster JTCluster;
85     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
86       Clusters[0] = JTCluster;
87       Clusters.resize(1);
88       return;
89     }
90   }
91
92   // The algorithm below is not suitable for -O0.
93   if (TM->getOptLevel() == CodeGenOpt::None)
94     return;
95
96   // Split Clusters into minimum number of dense partitions. The algorithm uses
97   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
98   // for the Case Statement'" (1994), but builds the MinPartitions array in
99   // reverse order to make it easier to reconstruct the partitions in ascending
100   // order. In the choice between two optimal partitionings, it picks the one
101   // which yields more jump tables.
102
103   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
104   SmallVector<unsigned, 8> MinPartitions(N);
105   // LastElement[i] is the last element of the partition starting at i.
106   SmallVector<unsigned, 8> LastElement(N);
107   // PartitionsScore[i] is used to break ties when choosing between two
108   // partitionings resulting in the same number of partitions.
109   SmallVector<unsigned, 8> PartitionsScore(N);
110   // For PartitionsScore, a small number of comparisons is considered as good as
111   // a jump table and a single comparison is considered better than a jump
112   // table.
113   enum PartitionScores : unsigned {
114     NoTable = 0,
115     Table = 1,
116     FewCases = 1,
117     SingleCase = 2
118   };
119
120   // Base case: There is only one way to partition Clusters[N-1].
121   MinPartitions[N - 1] = 1;
122   LastElement[N - 1] = N - 1;
123   PartitionsScore[N - 1] = PartitionScores::SingleCase;
124
125   // Note: loop indexes are signed to avoid underflow.
126   for (int64_t i = N - 2; i >= 0; i--) {
127     // Find optimal partitioning of Clusters[i..N-1].
128     // Baseline: Put Clusters[i] into a partition on its own.
129     MinPartitions[i] = MinPartitions[i + 1] + 1;
130     LastElement[i] = i;
131     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
132
133     // Search for a solution that results in fewer partitions.
134     for (int64_t j = N - 1; j > i; j--) {
135       // Try building a partition from Clusters[i..j].
136       Range = getJumpTableRange(Clusters, i, j);
137       NumCases = getJumpTableNumCases(TotalCases, i, j);
138       assert(NumCases < UINT64_MAX / 100);
139       assert(Range >= NumCases);
140
141       if (TLI->isSuitableForJumpTable(SI, NumCases, Range)) {
142         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
143         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
144         int64_t NumEntries = j - i + 1;
145
146         if (NumEntries == 1)
147           Score += PartitionScores::SingleCase;
148         else if (NumEntries <= SmallNumberOfEntries)
149           Score += PartitionScores::FewCases;
150         else if (NumEntries >= MinJumpTableEntries)
151           Score += PartitionScores::Table;
152
153         // If this leads to fewer partitions, or to the same number of
154         // partitions with better score, it is a better partitioning.
155         if (NumPartitions < MinPartitions[i] ||
156             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
157           MinPartitions[i] = NumPartitions;
158           LastElement[i] = j;
159           PartitionsScore[i] = Score;
160         }
161       }
162     }
163   }
164
165   // Iterate over the partitions, replacing some with jump tables in-place.
166   unsigned DstIndex = 0;
167   for (unsigned First = 0, Last; First < N; First = Last + 1) {
168     Last = LastElement[First];
169     assert(Last >= First);
170     assert(DstIndex <= First);
171     unsigned NumClusters = Last - First + 1;
172
173     CaseCluster JTCluster;
174     if (NumClusters >= MinJumpTableEntries &&
175         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
176       Clusters[DstIndex++] = JTCluster;
177     } else {
178       for (unsigned I = First; I <= Last; ++I)
179         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
180     }
181   }
182   Clusters.resize(DstIndex);
183 }
184
185 bool SwitchCG::SwitchLowering::buildJumpTable(const CaseClusterVector &Clusters,
186                                               unsigned First, unsigned Last,
187                                               const SwitchInst *SI,
188                                               MachineBasicBlock *DefaultMBB,
189                                               CaseCluster &JTCluster) {
190   assert(First <= Last);
191
192   auto Prob = BranchProbability::getZero();
193   unsigned NumCmps = 0;
194   std::vector<MachineBasicBlock*> Table;
195   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
196
197   // Initialize probabilities in JTProbs.
198   for (unsigned I = First; I <= Last; ++I)
199     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
200
201   for (unsigned I = First; I <= Last; ++I) {
202     assert(Clusters[I].Kind == CC_Range);
203     Prob += Clusters[I].Prob;
204     const APInt &Low = Clusters[I].Low->getValue();
205     const APInt &High = Clusters[I].High->getValue();
206     NumCmps += (Low == High) ? 1 : 2;
207     if (I != First) {
208       // Fill the gap between this and the previous cluster.
209       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
210       assert(PreviousHigh.slt(Low));
211       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
212       for (uint64_t J = 0; J < Gap; J++)
213         Table.push_back(DefaultMBB);
214     }
215     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
216     for (uint64_t J = 0; J < ClusterSize; ++J)
217       Table.push_back(Clusters[I].MBB);
218     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
219   }
220
221   unsigned NumDests = JTProbs.size();
222   if (TLI->isSuitableForBitTests(NumDests, NumCmps,
223                                  Clusters[First].Low->getValue(),
224                                  Clusters[Last].High->getValue(), *DL)) {
225     // Clusters[First..Last] should be lowered as bit tests instead.
226     return false;
227   }
228
229   // Create the MBB that will load from and jump through the table.
230   // Note: We create it here, but it's not inserted into the function yet.
231   MachineFunction *CurMF = FuncInfo.MF;
232   MachineBasicBlock *JumpTableMBB =
233       CurMF->CreateMachineBasicBlock(SI->getParent());
234
235   // Add successors. Note: use table order for determinism.
236   SmallPtrSet<MachineBasicBlock *, 8> Done;
237   for (MachineBasicBlock *Succ : Table) {
238     if (Done.count(Succ))
239       continue;
240     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
241     Done.insert(Succ);
242   }
243   JumpTableMBB->normalizeSuccProbs();
244
245   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI->getJumpTableEncoding())
246                      ->createJumpTableIndex(Table);
247
248   // Set up the jump table info.
249   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
250   JumpTableHeader JTH(Clusters[First].Low->getValue(),
251                       Clusters[Last].High->getValue(), SI->getCondition(),
252                       nullptr, false);
253   JTCases.emplace_back(std::move(JTH), std::move(JT));
254
255   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
256                                      JTCases.size() - 1, Prob);
257   return true;
258 }
259
260 void SwitchCG::SwitchLowering::findBitTestClusters(CaseClusterVector &Clusters,
261                                                    const SwitchInst *SI) {
262   // Partition Clusters into as few subsets as possible, where each subset has a
263   // range that fits in a machine word and has <= 3 unique destinations.
264
265 #ifndef NDEBUG
266   // Clusters must be sorted and contain Range or JumpTable clusters.
267   assert(!Clusters.empty());
268   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
269   for (const CaseCluster &C : Clusters)
270     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
271   for (unsigned i = 1; i < Clusters.size(); ++i)
272     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
273 #endif
274
275   // The algorithm below is not suitable for -O0.
276   if (TM->getOptLevel() == CodeGenOpt::None)
277     return;
278
279   // If target does not have legal shift left, do not emit bit tests at all.
280   EVT PTy = TLI->getPointerTy(*DL);
281   if (!TLI->isOperationLegal(ISD::SHL, PTy))
282     return;
283
284   int BitWidth = PTy.getSizeInBits();
285   const int64_t N = Clusters.size();
286
287   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
288   SmallVector<unsigned, 8> MinPartitions(N);
289   // LastElement[i] is the last element of the partition starting at i.
290   SmallVector<unsigned, 8> LastElement(N);
291
292   // FIXME: This might not be the best algorithm for finding bit test clusters.
293
294   // Base case: There is only one way to partition Clusters[N-1].
295   MinPartitions[N - 1] = 1;
296   LastElement[N - 1] = N - 1;
297
298   // Note: loop indexes are signed to avoid underflow.
299   for (int64_t i = N - 2; i >= 0; --i) {
300     // Find optimal partitioning of Clusters[i..N-1].
301     // Baseline: Put Clusters[i] into a partition on its own.
302     MinPartitions[i] = MinPartitions[i + 1] + 1;
303     LastElement[i] = i;
304
305     // Search for a solution that results in fewer partitions.
306     // Note: the search is limited by BitWidth, reducing time complexity.
307     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
308       // Try building a partition from Clusters[i..j].
309
310       // Check the range.
311       if (!TLI->rangeFitsInWord(Clusters[i].Low->getValue(),
312                                 Clusters[j].High->getValue(), *DL))
313         continue;
314
315       // Check nbr of destinations and cluster types.
316       // FIXME: This works, but doesn't seem very efficient.
317       bool RangesOnly = true;
318       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
319       for (int64_t k = i; k <= j; k++) {
320         if (Clusters[k].Kind != CC_Range) {
321           RangesOnly = false;
322           break;
323         }
324         Dests.set(Clusters[k].MBB->getNumber());
325       }
326       if (!RangesOnly || Dests.count() > 3)
327         break;
328
329       // Check if it's a better partition.
330       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
331       if (NumPartitions < MinPartitions[i]) {
332         // Found a better partition.
333         MinPartitions[i] = NumPartitions;
334         LastElement[i] = j;
335       }
336     }
337   }
338
339   // Iterate over the partitions, replacing with bit-test clusters in-place.
340   unsigned DstIndex = 0;
341   for (unsigned First = 0, Last; First < N; First = Last + 1) {
342     Last = LastElement[First];
343     assert(First <= Last);
344     assert(DstIndex <= First);
345
346     CaseCluster BitTestCluster;
347     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
348       Clusters[DstIndex++] = BitTestCluster;
349     } else {
350       size_t NumClusters = Last - First + 1;
351       std::memmove(&Clusters[DstIndex], &Clusters[First],
352                    sizeof(Clusters[0]) * NumClusters);
353       DstIndex += NumClusters;
354     }
355   }
356   Clusters.resize(DstIndex);
357 }
358
359 bool SwitchCG::SwitchLowering::buildBitTests(CaseClusterVector &Clusters,
360                                              unsigned First, unsigned Last,
361                                              const SwitchInst *SI,
362                                              CaseCluster &BTCluster) {
363   assert(First <= Last);
364   if (First == Last)
365     return false;
366
367   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
368   unsigned NumCmps = 0;
369   for (int64_t I = First; I <= Last; ++I) {
370     assert(Clusters[I].Kind == CC_Range);
371     Dests.set(Clusters[I].MBB->getNumber());
372     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
373   }
374   unsigned NumDests = Dests.count();
375
376   APInt Low = Clusters[First].Low->getValue();
377   APInt High = Clusters[Last].High->getValue();
378   assert(Low.slt(High));
379
380   if (!TLI->isSuitableForBitTests(NumDests, NumCmps, Low, High, *DL))
381     return false;
382
383   APInt LowBound;
384   APInt CmpRange;
385
386   const int BitWidth = TLI->getPointerTy(*DL).getSizeInBits();
387   assert(TLI->rangeFitsInWord(Low, High, *DL) &&
388          "Case range must fit in bit mask!");
389
390   // Check if the clusters cover a contiguous range such that no value in the
391   // range will jump to the default statement.
392   bool ContiguousRange = true;
393   for (int64_t I = First + 1; I <= Last; ++I) {
394     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
395       ContiguousRange = false;
396       break;
397     }
398   }
399
400   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
401     // Optimize the case where all the case values fit in a word without having
402     // to subtract minValue. In this case, we can optimize away the subtraction.
403     LowBound = APInt::getNullValue(Low.getBitWidth());
404     CmpRange = High;
405     ContiguousRange = false;
406   } else {
407     LowBound = Low;
408     CmpRange = High - Low;
409   }
410
411   CaseBitsVector CBV;
412   auto TotalProb = BranchProbability::getZero();
413   for (unsigned i = First; i <= Last; ++i) {
414     // Find the CaseBits for this destination.
415     unsigned j;
416     for (j = 0; j < CBV.size(); ++j)
417       if (CBV[j].BB == Clusters[i].MBB)
418         break;
419     if (j == CBV.size())
420       CBV.push_back(
421           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
422     CaseBits *CB = &CBV[j];
423
424     // Update Mask, Bits and ExtraProb.
425     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
426     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
427     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
428     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
429     CB->Bits += Hi - Lo + 1;
430     CB->ExtraProb += Clusters[i].Prob;
431     TotalProb += Clusters[i].Prob;
432   }
433
434   BitTestInfo BTI;
435   llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
436     // Sort by probability first, number of bits second, bit mask third.
437     if (a.ExtraProb != b.ExtraProb)
438       return a.ExtraProb > b.ExtraProb;
439     if (a.Bits != b.Bits)
440       return a.Bits > b.Bits;
441     return a.Mask < b.Mask;
442   });
443
444   for (auto &CB : CBV) {
445     MachineBasicBlock *BitTestBB =
446         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
447     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
448   }
449   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
450                             SI->getCondition(), -1U, MVT::Other, false,
451                             ContiguousRange, nullptr, nullptr, std::move(BTI),
452                             TotalProb);
453
454   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
455                                     BitTestCases.size() - 1, TotalProb);
456   return true;
457 }
458
459 void SwitchCG::sortAndRangeify(CaseClusterVector &Clusters) {
460 #ifndef NDEBUG
461   for (const CaseCluster &CC : Clusters)
462     assert(CC.Low == CC.High && "Input clusters must be single-case");
463 #endif
464
465   llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
466     return a.Low->getValue().slt(b.Low->getValue());
467   });
468
469   // Merge adjacent clusters with the same destination.
470   const unsigned N = Clusters.size();
471   unsigned DstIndex = 0;
472   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
473     CaseCluster &CC = Clusters[SrcIndex];
474     const ConstantInt *CaseVal = CC.Low;
475     MachineBasicBlock *Succ = CC.MBB;
476
477     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
478         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
479       // If this case has the same successor and is a neighbour, merge it into
480       // the previous cluster.
481       Clusters[DstIndex - 1].High = CaseVal;
482       Clusters[DstIndex - 1].Prob += CC.Prob;
483     } else {
484       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
485                    sizeof(Clusters[SrcIndex]));
486     }
487   }
488   Clusters.resize(DstIndex);
489 }