]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/ExecutionEngine/RuntimeDyld/RuntimeDyld.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the MC-JIT runtime dynamic linker.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
24 #include <mutex>
25
26 #include <future>
27
28 using namespace llvm;
29 using namespace llvm::object;
30
31 #define DEBUG_TYPE "dyld"
32
33 namespace {
34
35 enum RuntimeDyldErrorCode {
36   GenericRTDyldError = 1
37 };
38
39 // FIXME: This class is only here to support the transition to llvm::Error. It
40 // will be removed once this transition is complete. Clients should prefer to
41 // deal with the Error value directly, rather than converting to error_code.
42 class RuntimeDyldErrorCategory : public std::error_category {
43 public:
44   const char *name() const noexcept override { return "runtimedyld"; }
45
46   std::string message(int Condition) const override {
47     switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
48       case GenericRTDyldError: return "Generic RuntimeDyld error";
49     }
50     llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
51   }
52 };
53
54 static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
55
56 }
57
58 char RuntimeDyldError::ID = 0;
59
60 void RuntimeDyldError::log(raw_ostream &OS) const {
61   OS << ErrMsg << "\n";
62 }
63
64 std::error_code RuntimeDyldError::convertToErrorCode() const {
65   return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
66 }
67
68 // Empty out-of-line virtual destructor as the key function.
69 RuntimeDyldImpl::~RuntimeDyldImpl() {}
70
71 // Pin LoadedObjectInfo's vtables to this file.
72 void RuntimeDyld::LoadedObjectInfo::anchor() {}
73
74 namespace llvm {
75
76 void RuntimeDyldImpl::registerEHFrames() {}
77
78 void RuntimeDyldImpl::deregisterEHFrames() {
79   MemMgr.deregisterEHFrames();
80 }
81
82 #ifndef NDEBUG
83 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
84   dbgs() << "----- Contents of section " << S.getName() << " " << State
85          << " -----";
86
87   if (S.getAddress() == nullptr) {
88     dbgs() << "\n          <section not emitted>\n";
89     return;
90   }
91
92   const unsigned ColsPerRow = 16;
93
94   uint8_t *DataAddr = S.getAddress();
95   uint64_t LoadAddr = S.getLoadAddress();
96
97   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
98   unsigned BytesRemaining = S.getSize();
99
100   if (StartPadding) {
101     dbgs() << "\n" << format("0x%016" PRIx64,
102                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
103     while (StartPadding--)
104       dbgs() << "   ";
105   }
106
107   while (BytesRemaining > 0) {
108     if ((LoadAddr & (ColsPerRow - 1)) == 0)
109       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
110
111     dbgs() << " " << format("%02x", *DataAddr);
112
113     ++DataAddr;
114     ++LoadAddr;
115     --BytesRemaining;
116   }
117
118   dbgs() << "\n";
119 }
120 #endif
121
122 // Resolve the relocations for all symbols we currently know about.
123 void RuntimeDyldImpl::resolveRelocations() {
124   std::lock_guard<sys::Mutex> locked(lock);
125
126   // Print out the sections prior to relocation.
127   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
128                  dumpSectionMemory(Sections[i], "before relocations"););
129
130   // First, resolve relocations associated with external symbols.
131   if (auto Err = resolveExternalSymbols()) {
132     HasError = true;
133     ErrorStr = toString(std::move(Err));
134   }
135
136   resolveLocalRelocations();
137
138   // Print out sections after relocation.
139   LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
140                  dumpSectionMemory(Sections[i], "after relocations"););
141 }
142
143 void RuntimeDyldImpl::resolveLocalRelocations() {
144   // Iterate over all outstanding relocations
145   for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
146     // The Section here (Sections[i]) refers to the section in which the
147     // symbol for the relocation is located.  The SectionID in the relocation
148     // entry provides the section to which the relocation will be applied.
149     int Idx = it->first;
150     uint64_t Addr = Sections[Idx].getLoadAddress();
151     LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
152                       << format("%p", (uintptr_t)Addr) << "\n");
153     resolveRelocationList(it->second, Addr);
154   }
155   Relocations.clear();
156 }
157
158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
159                                         uint64_t TargetAddress) {
160   std::lock_guard<sys::Mutex> locked(lock);
161   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
162     if (Sections[i].getAddress() == LocalAddress) {
163       reassignSectionAddress(i, TargetAddress);
164       return;
165     }
166   }
167   llvm_unreachable("Attempting to remap address of unknown section!");
168 }
169
170 static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
171                        uint64_t &Result) {
172   Expected<uint64_t> AddressOrErr = Sym.getAddress();
173   if (!AddressOrErr)
174     return AddressOrErr.takeError();
175   Result = *AddressOrErr - Sec.getAddress();
176   return Error::success();
177 }
178
179 Expected<RuntimeDyldImpl::ObjSectionToIDMap>
180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
181   std::lock_guard<sys::Mutex> locked(lock);
182
183   // Save information about our target
184   Arch = (Triple::ArchType)Obj.getArch();
185   IsTargetLittleEndian = Obj.isLittleEndian();
186   setMipsABI(Obj);
187
188   // Compute the memory size required to load all sections to be loaded
189   // and pass this information to the memory manager
190   if (MemMgr.needsToReserveAllocationSpace()) {
191     uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
192     uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
193     if (auto Err = computeTotalAllocSize(Obj,
194                                          CodeSize, CodeAlign,
195                                          RODataSize, RODataAlign,
196                                          RWDataSize, RWDataAlign))
197       return std::move(Err);
198     MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
199                                   RWDataSize, RWDataAlign);
200   }
201
202   // Used sections from the object file
203   ObjSectionToIDMap LocalSections;
204
205   // Common symbols requiring allocation, with their sizes and alignments
206   CommonSymbolList CommonSymbolsToAllocate;
207
208   uint64_t CommonSize = 0;
209   uint32_t CommonAlign = 0;
210
211   // First, collect all weak and common symbols. We need to know if stronger
212   // definitions occur elsewhere.
213   JITSymbolResolver::LookupSet ResponsibilitySet;
214   {
215     JITSymbolResolver::LookupSet Symbols;
216     for (auto &Sym : Obj.symbols()) {
217       uint32_t Flags = Sym.getFlags();
218       if ((Flags & SymbolRef::SF_Common) || (Flags & SymbolRef::SF_Weak)) {
219         // Get symbol name.
220         if (auto NameOrErr = Sym.getName())
221           Symbols.insert(*NameOrErr);
222         else
223           return NameOrErr.takeError();
224       }
225     }
226
227     if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
228       ResponsibilitySet = std::move(*ResultOrErr);
229     else
230       return ResultOrErr.takeError();
231   }
232
233   // Parse symbols
234   LLVM_DEBUG(dbgs() << "Parse symbols:\n");
235   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
236        ++I) {
237     uint32_t Flags = I->getFlags();
238
239     // Skip undefined symbols.
240     if (Flags & SymbolRef::SF_Undefined)
241       continue;
242
243     // Get the symbol type.
244     object::SymbolRef::Type SymType;
245     if (auto SymTypeOrErr = I->getType())
246       SymType = *SymTypeOrErr;
247     else
248       return SymTypeOrErr.takeError();
249
250     // Get symbol name.
251     StringRef Name;
252     if (auto NameOrErr = I->getName())
253       Name = *NameOrErr;
254     else
255       return NameOrErr.takeError();
256
257     // Compute JIT symbol flags.
258     auto JITSymFlags = getJITSymbolFlags(*I);
259     if (!JITSymFlags)
260       return JITSymFlags.takeError();
261
262     // If this is a weak definition, check to see if there's a strong one.
263     // If there is, skip this symbol (we won't be providing it: the strong
264     // definition will). If there's no strong definition, make this definition
265     // strong.
266     if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
267       // First check whether there's already a definition in this instance.
268       if (GlobalSymbolTable.count(Name))
269         continue;
270
271       // If we're not responsible for this symbol, skip it.
272       if (!ResponsibilitySet.count(Name))
273         continue;
274
275       // Otherwise update the flags on the symbol to make this definition
276       // strong.
277       if (JITSymFlags->isWeak())
278         *JITSymFlags &= ~JITSymbolFlags::Weak;
279       if (JITSymFlags->isCommon()) {
280         *JITSymFlags &= ~JITSymbolFlags::Common;
281         uint32_t Align = I->getAlignment();
282         uint64_t Size = I->getCommonSize();
283         if (!CommonAlign)
284           CommonAlign = Align;
285         CommonSize = alignTo(CommonSize, Align) + Size;
286         CommonSymbolsToAllocate.push_back(*I);
287       }
288     }
289
290     if (Flags & SymbolRef::SF_Absolute &&
291         SymType != object::SymbolRef::ST_File) {
292       uint64_t Addr = 0;
293       if (auto AddrOrErr = I->getAddress())
294         Addr = *AddrOrErr;
295       else
296         return AddrOrErr.takeError();
297
298       unsigned SectionID = AbsoluteSymbolSection;
299
300       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
301                         << " SID: " << SectionID
302                         << " Offset: " << format("%p", (uintptr_t)Addr)
303                         << " flags: " << Flags << "\n");
304       GlobalSymbolTable[Name] = SymbolTableEntry(SectionID, Addr, *JITSymFlags);
305     } else if (SymType == object::SymbolRef::ST_Function ||
306                SymType == object::SymbolRef::ST_Data ||
307                SymType == object::SymbolRef::ST_Unknown ||
308                SymType == object::SymbolRef::ST_Other) {
309
310       section_iterator SI = Obj.section_end();
311       if (auto SIOrErr = I->getSection())
312         SI = *SIOrErr;
313       else
314         return SIOrErr.takeError();
315
316       if (SI == Obj.section_end())
317         continue;
318
319       // Get symbol offset.
320       uint64_t SectOffset;
321       if (auto Err = getOffset(*I, *SI, SectOffset))
322         return std::move(Err);
323
324       bool IsCode = SI->isText();
325       unsigned SectionID;
326       if (auto SectionIDOrErr =
327               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
328         SectionID = *SectionIDOrErr;
329       else
330         return SectionIDOrErr.takeError();
331
332       LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
333                         << " SID: " << SectionID
334                         << " Offset: " << format("%p", (uintptr_t)SectOffset)
335                         << " flags: " << Flags << "\n");
336       GlobalSymbolTable[Name] =
337           SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
338     }
339   }
340
341   // Allocate common symbols
342   if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
343                                    CommonAlign))
344     return std::move(Err);
345
346   // Parse and process relocations
347   LLVM_DEBUG(dbgs() << "Parse relocations:\n");
348   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
349        SI != SE; ++SI) {
350     StubMap Stubs;
351
352     Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
353     if (!RelSecOrErr)
354       return RelSecOrErr.takeError();
355
356     section_iterator RelocatedSection = *RelSecOrErr;
357     if (RelocatedSection == SE)
358       continue;
359
360     relocation_iterator I = SI->relocation_begin();
361     relocation_iterator E = SI->relocation_end();
362
363     if (I == E && !ProcessAllSections)
364       continue;
365
366     bool IsCode = RelocatedSection->isText();
367     unsigned SectionID = 0;
368     if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
369                                                 LocalSections))
370       SectionID = *SectionIDOrErr;
371     else
372       return SectionIDOrErr.takeError();
373
374     LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
375
376     for (; I != E;)
377       if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
378         I = *IOrErr;
379       else
380         return IOrErr.takeError();
381
382     // If there is a NotifyStubEmitted callback set, call it to register any
383     // stubs created for this section.
384     if (NotifyStubEmitted) {
385       StringRef FileName = Obj.getFileName();
386       StringRef SectionName = Sections[SectionID].getName();
387       for (auto &KV : Stubs) {
388
389         auto &VR = KV.first;
390         uint64_t StubAddr = KV.second;
391
392         // If this is a named stub, just call NotifyStubEmitted.
393         if (VR.SymbolName) {
394           NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
395                             StubAddr);
396           continue;
397         }
398
399         // Otherwise we will have to try a reverse lookup on the globla symbol table.
400         for (auto &GSTMapEntry : GlobalSymbolTable) {
401           StringRef SymbolName = GSTMapEntry.first();
402           auto &GSTEntry = GSTMapEntry.second;
403           if (GSTEntry.getSectionID() == VR.SectionID &&
404               GSTEntry.getOffset() == VR.Offset) {
405             NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
406                               StubAddr);
407             break;
408           }
409         }
410       }
411     }
412   }
413
414   // Process remaining sections
415   if (ProcessAllSections) {
416     LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
417     for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
418          SI != SE; ++SI) {
419
420       /* Ignore already loaded sections */
421       if (LocalSections.find(*SI) != LocalSections.end())
422         continue;
423
424       bool IsCode = SI->isText();
425       if (auto SectionIDOrErr =
426               findOrEmitSection(Obj, *SI, IsCode, LocalSections))
427         LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
428       else
429         return SectionIDOrErr.takeError();
430     }
431   }
432
433   // Give the subclasses a chance to tie-up any loose ends.
434   if (auto Err = finalizeLoad(Obj, LocalSections))
435     return std::move(Err);
436
437 //   for (auto E : LocalSections)
438 //     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
439
440   return LocalSections;
441 }
442
443 // A helper method for computeTotalAllocSize.
444 // Computes the memory size required to allocate sections with the given sizes,
445 // assuming that all sections are allocated with the given alignment
446 static uint64_t
447 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
448                                  uint64_t Alignment) {
449   uint64_t TotalSize = 0;
450   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
451     uint64_t AlignedSize =
452         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
453     TotalSize += AlignedSize;
454   }
455   return TotalSize;
456 }
457
458 static bool isRequiredForExecution(const SectionRef Section) {
459   const ObjectFile *Obj = Section.getObject();
460   if (isa<object::ELFObjectFileBase>(Obj))
461     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
462   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
463     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
464     // Avoid loading zero-sized COFF sections.
465     // In PE files, VirtualSize gives the section size, and SizeOfRawData
466     // may be zero for sections with content. In Obj files, SizeOfRawData
467     // gives the section size, and VirtualSize is always zero. Hence
468     // the need to check for both cases below.
469     bool HasContent =
470         (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
471     bool IsDiscardable =
472         CoffSection->Characteristics &
473         (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
474     return HasContent && !IsDiscardable;
475   }
476
477   assert(isa<MachOObjectFile>(Obj));
478   return true;
479 }
480
481 static bool isReadOnlyData(const SectionRef Section) {
482   const ObjectFile *Obj = Section.getObject();
483   if (isa<object::ELFObjectFileBase>(Obj))
484     return !(ELFSectionRef(Section).getFlags() &
485              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
486   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
487     return ((COFFObj->getCOFFSection(Section)->Characteristics &
488              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
489              | COFF::IMAGE_SCN_MEM_READ
490              | COFF::IMAGE_SCN_MEM_WRITE))
491              ==
492              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
493              | COFF::IMAGE_SCN_MEM_READ));
494
495   assert(isa<MachOObjectFile>(Obj));
496   return false;
497 }
498
499 static bool isZeroInit(const SectionRef Section) {
500   const ObjectFile *Obj = Section.getObject();
501   if (isa<object::ELFObjectFileBase>(Obj))
502     return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
503   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
504     return COFFObj->getCOFFSection(Section)->Characteristics &
505             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
506
507   auto *MachO = cast<MachOObjectFile>(Obj);
508   unsigned SectionType = MachO->getSectionType(Section);
509   return SectionType == MachO::S_ZEROFILL ||
510          SectionType == MachO::S_GB_ZEROFILL;
511 }
512
513 // Compute an upper bound of the memory size that is required to load all
514 // sections
515 Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
516                                              uint64_t &CodeSize,
517                                              uint32_t &CodeAlign,
518                                              uint64_t &RODataSize,
519                                              uint32_t &RODataAlign,
520                                              uint64_t &RWDataSize,
521                                              uint32_t &RWDataAlign) {
522   // Compute the size of all sections required for execution
523   std::vector<uint64_t> CodeSectionSizes;
524   std::vector<uint64_t> ROSectionSizes;
525   std::vector<uint64_t> RWSectionSizes;
526
527   // Collect sizes of all sections to be loaded;
528   // also determine the max alignment of all sections
529   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
530        SI != SE; ++SI) {
531     const SectionRef &Section = *SI;
532
533     bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
534
535     // Consider only the sections that are required to be loaded for execution
536     if (IsRequired) {
537       uint64_t DataSize = Section.getSize();
538       uint64_t Alignment64 = Section.getAlignment();
539       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
540       bool IsCode = Section.isText();
541       bool IsReadOnly = isReadOnlyData(Section);
542
543       Expected<StringRef> NameOrErr = Section.getName();
544       if (!NameOrErr)
545         return NameOrErr.takeError();
546       StringRef Name = *NameOrErr;
547
548       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
549
550       uint64_t PaddingSize = 0;
551       if (Name == ".eh_frame")
552         PaddingSize += 4;
553       if (StubBufSize != 0)
554         PaddingSize += getStubAlignment() - 1;
555
556       uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
557
558       // The .eh_frame section (at least on Linux) needs an extra four bytes
559       // padded
560       // with zeroes added at the end.  For MachO objects, this section has a
561       // slightly different name, so this won't have any effect for MachO
562       // objects.
563       if (Name == ".eh_frame")
564         SectionSize += 4;
565
566       if (!SectionSize)
567         SectionSize = 1;
568
569       if (IsCode) {
570         CodeAlign = std::max(CodeAlign, Alignment);
571         CodeSectionSizes.push_back(SectionSize);
572       } else if (IsReadOnly) {
573         RODataAlign = std::max(RODataAlign, Alignment);
574         ROSectionSizes.push_back(SectionSize);
575       } else {
576         RWDataAlign = std::max(RWDataAlign, Alignment);
577         RWSectionSizes.push_back(SectionSize);
578       }
579     }
580   }
581
582   // Compute Global Offset Table size. If it is not zero we
583   // also update alignment, which is equal to a size of a
584   // single GOT entry.
585   if (unsigned GotSize = computeGOTSize(Obj)) {
586     RWSectionSizes.push_back(GotSize);
587     RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
588   }
589
590   // Compute the size of all common symbols
591   uint64_t CommonSize = 0;
592   uint32_t CommonAlign = 1;
593   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
594        ++I) {
595     uint32_t Flags = I->getFlags();
596     if (Flags & SymbolRef::SF_Common) {
597       // Add the common symbols to a list.  We'll allocate them all below.
598       uint64_t Size = I->getCommonSize();
599       uint32_t Align = I->getAlignment();
600       // If this is the first common symbol, use its alignment as the alignment
601       // for the common symbols section.
602       if (CommonSize == 0)
603         CommonAlign = Align;
604       CommonSize = alignTo(CommonSize, Align) + Size;
605     }
606   }
607   if (CommonSize != 0) {
608     RWSectionSizes.push_back(CommonSize);
609     RWDataAlign = std::max(RWDataAlign, CommonAlign);
610   }
611
612   // Compute the required allocation space for each different type of sections
613   // (code, read-only data, read-write data) assuming that all sections are
614   // allocated with the max alignment. Note that we cannot compute with the
615   // individual alignments of the sections, because then the required size
616   // depends on the order, in which the sections are allocated.
617   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
618   RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
619   RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
620
621   return Error::success();
622 }
623
624 // compute GOT size
625 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
626   size_t GotEntrySize = getGOTEntrySize();
627   if (!GotEntrySize)
628     return 0;
629
630   size_t GotSize = 0;
631   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
632        SI != SE; ++SI) {
633
634     for (const RelocationRef &Reloc : SI->relocations())
635       if (relocationNeedsGot(Reloc))
636         GotSize += GotEntrySize;
637   }
638
639   return GotSize;
640 }
641
642 // compute stub buffer size for the given section
643 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
644                                                     const SectionRef &Section) {
645   unsigned StubSize = getMaxStubSize();
646   if (StubSize == 0) {
647     return 0;
648   }
649   // FIXME: this is an inefficient way to handle this. We should computed the
650   // necessary section allocation size in loadObject by walking all the sections
651   // once.
652   unsigned StubBufSize = 0;
653   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
654        SI != SE; ++SI) {
655
656     Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
657     if (!RelSecOrErr)
658       report_fatal_error(toString(RelSecOrErr.takeError()));
659
660     section_iterator RelSecI = *RelSecOrErr;
661     if (!(RelSecI == Section))
662       continue;
663
664     for (const RelocationRef &Reloc : SI->relocations())
665       if (relocationNeedsStub(Reloc))
666         StubBufSize += StubSize;
667   }
668
669   // Get section data size and alignment
670   uint64_t DataSize = Section.getSize();
671   uint64_t Alignment64 = Section.getAlignment();
672
673   // Add stubbuf size alignment
674   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
675   unsigned StubAlignment = getStubAlignment();
676   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
677   if (StubAlignment > EndAlignment)
678     StubBufSize += StubAlignment - EndAlignment;
679   return StubBufSize;
680 }
681
682 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
683                                              unsigned Size) const {
684   uint64_t Result = 0;
685   if (IsTargetLittleEndian) {
686     Src += Size - 1;
687     while (Size--)
688       Result = (Result << 8) | *Src--;
689   } else
690     while (Size--)
691       Result = (Result << 8) | *Src++;
692
693   return Result;
694 }
695
696 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
697                                           unsigned Size) const {
698   if (IsTargetLittleEndian) {
699     while (Size--) {
700       *Dst++ = Value & 0xFF;
701       Value >>= 8;
702     }
703   } else {
704     Dst += Size - 1;
705     while (Size--) {
706       *Dst-- = Value & 0xFF;
707       Value >>= 8;
708     }
709   }
710 }
711
712 Expected<JITSymbolFlags>
713 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
714   return JITSymbolFlags::fromObjectSymbol(SR);
715 }
716
717 Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
718                                          CommonSymbolList &SymbolsToAllocate,
719                                          uint64_t CommonSize,
720                                          uint32_t CommonAlign) {
721   if (SymbolsToAllocate.empty())
722     return Error::success();
723
724   // Allocate memory for the section
725   unsigned SectionID = Sections.size();
726   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
727                                              "<common symbols>", false);
728   if (!Addr)
729     report_fatal_error("Unable to allocate memory for common symbols!");
730   uint64_t Offset = 0;
731   Sections.push_back(
732       SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
733   memset(Addr, 0, CommonSize);
734
735   LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
736                     << " new addr: " << format("%p", Addr)
737                     << " DataSize: " << CommonSize << "\n");
738
739   // Assign the address of each symbol
740   for (auto &Sym : SymbolsToAllocate) {
741     uint32_t Alignment = Sym.getAlignment();
742     uint64_t Size = Sym.getCommonSize();
743     StringRef Name;
744     if (auto NameOrErr = Sym.getName())
745       Name = *NameOrErr;
746     else
747       return NameOrErr.takeError();
748     if (Alignment) {
749       // This symbol has an alignment requirement.
750       uint64_t AlignOffset =
751           offsetToAlignment((uint64_t)Addr, Align(Alignment));
752       Addr += AlignOffset;
753       Offset += AlignOffset;
754     }
755     auto JITSymFlags = getJITSymbolFlags(Sym);
756
757     if (!JITSymFlags)
758       return JITSymFlags.takeError();
759
760     LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
761                       << format("%p", Addr) << "\n");
762     GlobalSymbolTable[Name] =
763         SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
764     Offset += Size;
765     Addr += Size;
766   }
767
768   return Error::success();
769 }
770
771 Expected<unsigned>
772 RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
773                              const SectionRef &Section,
774                              bool IsCode) {
775   StringRef data;
776   uint64_t Alignment64 = Section.getAlignment();
777
778   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
779   unsigned PaddingSize = 0;
780   unsigned StubBufSize = 0;
781   bool IsRequired = isRequiredForExecution(Section);
782   bool IsVirtual = Section.isVirtual();
783   bool IsZeroInit = isZeroInit(Section);
784   bool IsReadOnly = isReadOnlyData(Section);
785   uint64_t DataSize = Section.getSize();
786
787   // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
788   // while being more "polite".  Other formats do not support 0-aligned sections
789   // anyway, so we should guarantee that the alignment is always at least 1.
790   Alignment = std::max(1u, Alignment);
791
792   Expected<StringRef> NameOrErr = Section.getName();
793   if (!NameOrErr)
794     return NameOrErr.takeError();
795   StringRef Name = *NameOrErr;
796
797   StubBufSize = computeSectionStubBufSize(Obj, Section);
798
799   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
800   // with zeroes added at the end.  For MachO objects, this section has a
801   // slightly different name, so this won't have any effect for MachO objects.
802   if (Name == ".eh_frame")
803     PaddingSize = 4;
804
805   uintptr_t Allocate;
806   unsigned SectionID = Sections.size();
807   uint8_t *Addr;
808   const char *pData = nullptr;
809
810   // If this section contains any bits (i.e. isn't a virtual or bss section),
811   // grab a reference to them.
812   if (!IsVirtual && !IsZeroInit) {
813     // In either case, set the location of the unrelocated section in memory,
814     // since we still process relocations for it even if we're not applying them.
815     if (Expected<StringRef> E = Section.getContents())
816       data = *E;
817     else
818       return E.takeError();
819     pData = data.data();
820   }
821
822   // If there are any stubs then the section alignment needs to be at least as
823   // high as stub alignment or padding calculations may by incorrect when the
824   // section is remapped.
825   if (StubBufSize != 0) {
826     Alignment = std::max(Alignment, getStubAlignment());
827     PaddingSize += getStubAlignment() - 1;
828   }
829
830   // Some sections, such as debug info, don't need to be loaded for execution.
831   // Process those only if explicitly requested.
832   if (IsRequired || ProcessAllSections) {
833     Allocate = DataSize + PaddingSize + StubBufSize;
834     if (!Allocate)
835       Allocate = 1;
836     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
837                                                Name)
838                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
839                                                Name, IsReadOnly);
840     if (!Addr)
841       report_fatal_error("Unable to allocate section memory!");
842
843     // Zero-initialize or copy the data from the image
844     if (IsZeroInit || IsVirtual)
845       memset(Addr, 0, DataSize);
846     else
847       memcpy(Addr, pData, DataSize);
848
849     // Fill in any extra bytes we allocated for padding
850     if (PaddingSize != 0) {
851       memset(Addr + DataSize, 0, PaddingSize);
852       // Update the DataSize variable to include padding.
853       DataSize += PaddingSize;
854
855       // Align DataSize to stub alignment if we have any stubs (PaddingSize will
856       // have been increased above to account for this).
857       if (StubBufSize > 0)
858         DataSize &= -(uint64_t)getStubAlignment();
859     }
860
861     LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
862                       << Name << " obj addr: " << format("%p", pData)
863                       << " new addr: " << format("%p", Addr) << " DataSize: "
864                       << DataSize << " StubBufSize: " << StubBufSize
865                       << " Allocate: " << Allocate << "\n");
866   } else {
867     // Even if we didn't load the section, we need to record an entry for it
868     // to handle later processing (and by 'handle' I mean don't do anything
869     // with these sections).
870     Allocate = 0;
871     Addr = nullptr;
872     LLVM_DEBUG(
873         dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
874                << " obj addr: " << format("%p", data.data()) << " new addr: 0"
875                << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
876                << " Allocate: " << Allocate << "\n");
877   }
878
879   Sections.push_back(
880       SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
881
882   // Debug info sections are linked as if their load address was zero
883   if (!IsRequired)
884     Sections.back().setLoadAddress(0);
885
886   return SectionID;
887 }
888
889 Expected<unsigned>
890 RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
891                                    const SectionRef &Section,
892                                    bool IsCode,
893                                    ObjSectionToIDMap &LocalSections) {
894
895   unsigned SectionID = 0;
896   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
897   if (i != LocalSections.end())
898     SectionID = i->second;
899   else {
900     if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
901       SectionID = *SectionIDOrErr;
902     else
903       return SectionIDOrErr.takeError();
904     LocalSections[Section] = SectionID;
905   }
906   return SectionID;
907 }
908
909 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
910                                               unsigned SectionID) {
911   Relocations[SectionID].push_back(RE);
912 }
913
914 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
915                                              StringRef SymbolName) {
916   // Relocation by symbol.  If the symbol is found in the global symbol table,
917   // create an appropriate section relocation.  Otherwise, add it to
918   // ExternalSymbolRelocations.
919   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
920   if (Loc == GlobalSymbolTable.end()) {
921     ExternalSymbolRelocations[SymbolName].push_back(RE);
922   } else {
923     // Copy the RE since we want to modify its addend.
924     RelocationEntry RECopy = RE;
925     const auto &SymInfo = Loc->second;
926     RECopy.Addend += SymInfo.getOffset();
927     Relocations[SymInfo.getSectionID()].push_back(RECopy);
928   }
929 }
930
931 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
932                                              unsigned AbiVariant) {
933   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
934       Arch == Triple::aarch64_32) {
935     // This stub has to be able to access the full address space,
936     // since symbol lookup won't necessarily find a handy, in-range,
937     // PLT stub for functions which could be anywhere.
938     // Stub can use ip0 (== x16) to calculate address
939     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
940     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
941     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
942     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
943     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
944
945     return Addr;
946   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
947     // TODO: There is only ARM far stub now. We should add the Thumb stub,
948     // and stubs for branches Thumb - ARM and ARM - Thumb.
949     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
950     return Addr + 4;
951   } else if (IsMipsO32ABI || IsMipsN32ABI) {
952     // 0:   3c190000        lui     t9,%hi(addr).
953     // 4:   27390000        addiu   t9,t9,%lo(addr).
954     // 8:   03200008        jr      t9.
955     // c:   00000000        nop.
956     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
957     const unsigned NopInstr = 0x0;
958     unsigned JrT9Instr = 0x03200008;
959     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
960         (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
961       JrT9Instr = 0x03200009;
962
963     writeBytesUnaligned(LuiT9Instr, Addr, 4);
964     writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
965     writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
966     writeBytesUnaligned(NopInstr, Addr + 12, 4);
967     return Addr;
968   } else if (IsMipsN64ABI) {
969     // 0:   3c190000        lui     t9,%highest(addr).
970     // 4:   67390000        daddiu  t9,t9,%higher(addr).
971     // 8:   0019CC38        dsll    t9,t9,16.
972     // c:   67390000        daddiu  t9,t9,%hi(addr).
973     // 10:  0019CC38        dsll    t9,t9,16.
974     // 14:  67390000        daddiu  t9,t9,%lo(addr).
975     // 18:  03200008        jr      t9.
976     // 1c:  00000000        nop.
977     const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
978                    DsllT9Instr = 0x19CC38;
979     const unsigned NopInstr = 0x0;
980     unsigned JrT9Instr = 0x03200008;
981     if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
982       JrT9Instr = 0x03200009;
983
984     writeBytesUnaligned(LuiT9Instr, Addr, 4);
985     writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
986     writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
987     writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
988     writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
989     writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
990     writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
991     writeBytesUnaligned(NopInstr, Addr + 28, 4);
992     return Addr;
993   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
994     // Depending on which version of the ELF ABI is in use, we need to
995     // generate one of two variants of the stub.  They both start with
996     // the same sequence to load the target address into r12.
997     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
998     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
999     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
1000     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
1001     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
1002     if (AbiVariant == 2) {
1003       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1004       // The address is already in r12 as required by the ABI.  Branch to it.
1005       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
1006       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
1007       writeInt32BE(Addr+28, 0x4E800420); // bctr
1008     } else {
1009       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1010       // Load the function address on r11 and sets it to control register. Also
1011       // loads the function TOC in r2 and environment pointer to r11.
1012       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
1013       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
1014       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
1015       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
1016       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
1017       writeInt32BE(Addr+40, 0x4E800420); // bctr
1018     }
1019     return Addr;
1020   } else if (Arch == Triple::systemz) {
1021     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
1022     writeInt16BE(Addr+2,  0x0000);
1023     writeInt16BE(Addr+4,  0x0004);
1024     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
1025     // 8-byte address stored at Addr + 8
1026     return Addr;
1027   } else if (Arch == Triple::x86_64) {
1028     *Addr      = 0xFF; // jmp
1029     *(Addr+1)  = 0x25; // rip
1030     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1031   } else if (Arch == Triple::x86) {
1032     *Addr      = 0xE9; // 32-bit pc-relative jump.
1033   }
1034   return Addr;
1035 }
1036
1037 // Assign an address to a symbol name and resolve all the relocations
1038 // associated with it.
1039 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
1040                                              uint64_t Addr) {
1041   // The address to use for relocation resolution is not
1042   // the address of the local section buffer. We must be doing
1043   // a remote execution environment of some sort. Relocations can't
1044   // be applied until all the sections have been moved.  The client must
1045   // trigger this with a call to MCJIT::finalize() or
1046   // RuntimeDyld::resolveRelocations().
1047   //
1048   // Addr is a uint64_t because we can't assume the pointer width
1049   // of the target is the same as that of the host. Just use a generic
1050   // "big enough" type.
1051   LLVM_DEBUG(
1052       dbgs() << "Reassigning address for section " << SectionID << " ("
1053              << Sections[SectionID].getName() << "): "
1054              << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
1055              << " -> " << format("0x%016" PRIx64, Addr) << "\n");
1056   Sections[SectionID].setLoadAddress(Addr);
1057 }
1058
1059 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
1060                                             uint64_t Value) {
1061   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1062     const RelocationEntry &RE = Relocs[i];
1063     // Ignore relocations for sections that were not loaded
1064     if (Sections[RE.SectionID].getAddress() == nullptr)
1065       continue;
1066     resolveRelocation(RE, Value);
1067   }
1068 }
1069
1070 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1071     const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
1072   while (!ExternalSymbolRelocations.empty()) {
1073
1074     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
1075
1076     StringRef Name = i->first();
1077     if (Name.size() == 0) {
1078       // This is an absolute symbol, use an address of zero.
1079       LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1080                         << "\n");
1081       RelocationList &Relocs = i->second;
1082       resolveRelocationList(Relocs, 0);
1083     } else {
1084       uint64_t Addr = 0;
1085       JITSymbolFlags Flags;
1086       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
1087       if (Loc == GlobalSymbolTable.end()) {
1088         auto RRI = ExternalSymbolMap.find(Name);
1089         assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
1090         Addr = RRI->second.getAddress();
1091         Flags = RRI->second.getFlags();
1092         // The call to getSymbolAddress may have caused additional modules to
1093         // be loaded, which may have added new entries to the
1094         // ExternalSymbolRelocations map.  Consquently, we need to update our
1095         // iterator.  This is also why retrieval of the relocation list
1096         // associated with this symbol is deferred until below this point.
1097         // New entries may have been added to the relocation list.
1098         i = ExternalSymbolRelocations.find(Name);
1099       } else {
1100         // We found the symbol in our global table.  It was probably in a
1101         // Module that we loaded previously.
1102         const auto &SymInfo = Loc->second;
1103         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
1104                SymInfo.getOffset();
1105         Flags = SymInfo.getFlags();
1106       }
1107
1108       // FIXME: Implement error handling that doesn't kill the host program!
1109       if (!Addr)
1110         report_fatal_error("Program used external function '" + Name +
1111                            "' which could not be resolved!");
1112
1113       // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1114       // manually and we shouldn't resolve its relocations.
1115       if (Addr != UINT64_MAX) {
1116
1117         // Tweak the address based on the symbol flags if necessary.
1118         // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1119         // if the target symbol is Thumb.
1120         Addr = modifyAddressBasedOnFlags(Addr, Flags);
1121
1122         LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
1123                           << format("0x%lx", Addr) << "\n");
1124         // This list may have been updated when we called getSymbolAddress, so
1125         // don't change this code to get the list earlier.
1126         RelocationList &Relocs = i->second;
1127         resolveRelocationList(Relocs, Addr);
1128       }
1129     }
1130
1131     ExternalSymbolRelocations.erase(i);
1132   }
1133 }
1134
1135 Error RuntimeDyldImpl::resolveExternalSymbols() {
1136   StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
1137
1138   // Resolution can trigger emission of more symbols, so iterate until
1139   // we've resolved *everything*.
1140   {
1141     JITSymbolResolver::LookupSet ResolvedSymbols;
1142
1143     while (true) {
1144       JITSymbolResolver::LookupSet NewSymbols;
1145
1146       for (auto &RelocKV : ExternalSymbolRelocations) {
1147         StringRef Name = RelocKV.first();
1148         if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
1149             !ResolvedSymbols.count(Name))
1150           NewSymbols.insert(Name);
1151       }
1152
1153       if (NewSymbols.empty())
1154         break;
1155
1156 #ifdef _MSC_VER
1157       using ExpectedLookupResult =
1158           MSVCPExpected<JITSymbolResolver::LookupResult>;
1159 #else
1160       using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
1161 #endif
1162
1163       auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
1164       auto NewSymbolsF = NewSymbolsP->get_future();
1165       Resolver.lookup(NewSymbols,
1166                       [=](Expected<JITSymbolResolver::LookupResult> Result) {
1167                         NewSymbolsP->set_value(std::move(Result));
1168                       });
1169
1170       auto NewResolverResults = NewSymbolsF.get();
1171
1172       if (!NewResolverResults)
1173         return NewResolverResults.takeError();
1174
1175       assert(NewResolverResults->size() == NewSymbols.size() &&
1176              "Should have errored on unresolved symbols");
1177
1178       for (auto &RRKV : *NewResolverResults) {
1179         assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
1180         ExternalSymbolMap.insert(RRKV);
1181         ResolvedSymbols.insert(RRKV.first);
1182       }
1183     }
1184   }
1185
1186   applyExternalSymbolRelocations(ExternalSymbolMap);
1187
1188   return Error::success();
1189 }
1190
1191 void RuntimeDyldImpl::finalizeAsync(
1192     std::unique_ptr<RuntimeDyldImpl> This,
1193     unique_function<void(Error)> OnEmitted,
1194     std::unique_ptr<MemoryBuffer> UnderlyingBuffer) {
1195
1196   auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
1197   auto PostResolveContinuation =
1198       [SharedThis, OnEmitted = std::move(OnEmitted),
1199        UnderlyingBuffer = std::move(UnderlyingBuffer)](
1200           Expected<JITSymbolResolver::LookupResult> Result) mutable {
1201         if (!Result) {
1202           OnEmitted(Result.takeError());
1203           return;
1204         }
1205
1206         /// Copy the result into a StringMap, where the keys are held by value.
1207         StringMap<JITEvaluatedSymbol> Resolved;
1208         for (auto &KV : *Result)
1209           Resolved[KV.first] = KV.second;
1210
1211         SharedThis->applyExternalSymbolRelocations(Resolved);
1212         SharedThis->resolveLocalRelocations();
1213         SharedThis->registerEHFrames();
1214         std::string ErrMsg;
1215         if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
1216           OnEmitted(make_error<StringError>(std::move(ErrMsg),
1217                                             inconvertibleErrorCode()));
1218         else
1219           OnEmitted(Error::success());
1220       };
1221
1222   JITSymbolResolver::LookupSet Symbols;
1223
1224   for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
1225     StringRef Name = RelocKV.first();
1226     assert(!Name.empty() && "Symbol has no name?");
1227     assert(!SharedThis->GlobalSymbolTable.count(Name) &&
1228            "Name already processed. RuntimeDyld instances can not be re-used "
1229            "when finalizing with finalizeAsync.");
1230     Symbols.insert(Name);
1231   }
1232
1233   if (!Symbols.empty()) {
1234     SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
1235   } else
1236     PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
1237 }
1238
1239 //===----------------------------------------------------------------------===//
1240 // RuntimeDyld class implementation
1241
1242 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1243                                           const object::SectionRef &Sec) const {
1244
1245   auto I = ObjSecToIDMap.find(Sec);
1246   if (I != ObjSecToIDMap.end())
1247     return RTDyld.Sections[I->second].getLoadAddress();
1248
1249   return 0;
1250 }
1251
1252 void RuntimeDyld::MemoryManager::anchor() {}
1253 void JITSymbolResolver::anchor() {}
1254 void LegacyJITSymbolResolver::anchor() {}
1255
1256 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
1257                          JITSymbolResolver &Resolver)
1258     : MemMgr(MemMgr), Resolver(Resolver) {
1259   // FIXME: There's a potential issue lurking here if a single instance of
1260   // RuntimeDyld is used to load multiple objects.  The current implementation
1261   // associates a single memory manager with a RuntimeDyld instance.  Even
1262   // though the public class spawns a new 'impl' instance for each load,
1263   // they share a single memory manager.  This can become a problem when page
1264   // permissions are applied.
1265   Dyld = nullptr;
1266   ProcessAllSections = false;
1267 }
1268
1269 RuntimeDyld::~RuntimeDyld() {}
1270
1271 static std::unique_ptr<RuntimeDyldCOFF>
1272 createRuntimeDyldCOFF(
1273                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1274                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1275                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1276   std::unique_ptr<RuntimeDyldCOFF> Dyld =
1277     RuntimeDyldCOFF::create(Arch, MM, Resolver);
1278   Dyld->setProcessAllSections(ProcessAllSections);
1279   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1280   return Dyld;
1281 }
1282
1283 static std::unique_ptr<RuntimeDyldELF>
1284 createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1285                      JITSymbolResolver &Resolver, bool ProcessAllSections,
1286                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1287   std::unique_ptr<RuntimeDyldELF> Dyld =
1288       RuntimeDyldELF::create(Arch, MM, Resolver);
1289   Dyld->setProcessAllSections(ProcessAllSections);
1290   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1291   return Dyld;
1292 }
1293
1294 static std::unique_ptr<RuntimeDyldMachO>
1295 createRuntimeDyldMachO(
1296                      Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
1297                      JITSymbolResolver &Resolver,
1298                      bool ProcessAllSections,
1299                      RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
1300   std::unique_ptr<RuntimeDyldMachO> Dyld =
1301     RuntimeDyldMachO::create(Arch, MM, Resolver);
1302   Dyld->setProcessAllSections(ProcessAllSections);
1303   Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
1304   return Dyld;
1305 }
1306
1307 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
1308 RuntimeDyld::loadObject(const ObjectFile &Obj) {
1309   if (!Dyld) {
1310     if (Obj.isELF())
1311       Dyld =
1312           createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
1313                                MemMgr, Resolver, ProcessAllSections,
1314                                std::move(NotifyStubEmitted));
1315     else if (Obj.isMachO())
1316       Dyld = createRuntimeDyldMachO(
1317                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1318                ProcessAllSections, std::move(NotifyStubEmitted));
1319     else if (Obj.isCOFF())
1320       Dyld = createRuntimeDyldCOFF(
1321                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
1322                ProcessAllSections, std::move(NotifyStubEmitted));
1323     else
1324       report_fatal_error("Incompatible object format!");
1325   }
1326
1327   if (!Dyld->isCompatibleFile(Obj))
1328     report_fatal_error("Incompatible object format!");
1329
1330   auto LoadedObjInfo = Dyld->loadObject(Obj);
1331   MemMgr.notifyObjectLoaded(*this, Obj);
1332   return LoadedObjInfo;
1333 }
1334
1335 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
1336   if (!Dyld)
1337     return nullptr;
1338   return Dyld->getSymbolLocalAddress(Name);
1339 }
1340
1341 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
1342   assert(Dyld && "No RuntimeDyld instance attached");
1343   return Dyld->getSymbolSectionID(Name);
1344 }
1345
1346 JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
1347   if (!Dyld)
1348     return nullptr;
1349   return Dyld->getSymbol(Name);
1350 }
1351
1352 std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
1353   if (!Dyld)
1354     return std::map<StringRef, JITEvaluatedSymbol>();
1355   return Dyld->getSymbolTable();
1356 }
1357
1358 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
1359
1360 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
1361   Dyld->reassignSectionAddress(SectionID, Addr);
1362 }
1363
1364 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
1365                                     uint64_t TargetAddress) {
1366   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
1367 }
1368
1369 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
1370
1371 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
1372
1373 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1374   bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
1375   MemMgr.FinalizationLocked = true;
1376   resolveRelocations();
1377   registerEHFrames();
1378   if (!MemoryFinalizationLocked) {
1379     MemMgr.finalizeMemory();
1380     MemMgr.FinalizationLocked = false;
1381   }
1382 }
1383
1384 StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
1385   assert(Dyld && "No Dyld instance attached");
1386   return Dyld->getSectionContent(SectionID);
1387 }
1388
1389 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
1390   assert(Dyld && "No Dyld instance attached");
1391   return Dyld->getSectionLoadAddress(SectionID);
1392 }
1393
1394 void RuntimeDyld::registerEHFrames() {
1395   if (Dyld)
1396     Dyld->registerEHFrames();
1397 }
1398
1399 void RuntimeDyld::deregisterEHFrames() {
1400   if (Dyld)
1401     Dyld->deregisterEHFrames();
1402 }
1403 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1404 // so that we can re-use RuntimeDyld's implementation without twisting the
1405 // interface any further for ORC's purposes.
1406 void jitLinkForORC(object::ObjectFile &Obj,
1407                    std::unique_ptr<MemoryBuffer> UnderlyingBuffer,
1408                    RuntimeDyld::MemoryManager &MemMgr,
1409                    JITSymbolResolver &Resolver, bool ProcessAllSections,
1410                    unique_function<Error(
1411                        std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObj,
1412                        std::map<StringRef, JITEvaluatedSymbol>)>
1413                        OnLoaded,
1414                    unique_function<void(Error)> OnEmitted) {
1415
1416   RuntimeDyld RTDyld(MemMgr, Resolver);
1417   RTDyld.setProcessAllSections(ProcessAllSections);
1418
1419   auto Info = RTDyld.loadObject(Obj);
1420
1421   if (RTDyld.hasError()) {
1422     OnEmitted(make_error<StringError>(RTDyld.getErrorString(),
1423                                       inconvertibleErrorCode()));
1424     return;
1425   }
1426
1427   if (auto Err = OnLoaded(std::move(Info), RTDyld.getSymbolTable()))
1428     OnEmitted(std::move(Err));
1429
1430   RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
1431                                  std::move(UnderlyingBuffer));
1432 }
1433
1434 } // end namespace llvm