]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/IR/Metadata.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / IR / Metadata.cpp
1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Metadata classes.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "LLVMContextImpl.h"
14 #include "MetadataImpl.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringMap.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/IR/Argument.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/TrackingMDRef.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/IR/ValueHandle.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MathExtras.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstddef>
53 #include <cstdint>
54 #include <iterator>
55 #include <tuple>
56 #include <type_traits>
57 #include <utility>
58 #include <vector>
59
60 using namespace llvm;
61
62 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
63     : Value(Ty, MetadataAsValueVal), MD(MD) {
64   track();
65 }
66
67 MetadataAsValue::~MetadataAsValue() {
68   getType()->getContext().pImpl->MetadataAsValues.erase(MD);
69   untrack();
70 }
71
72 /// Canonicalize metadata arguments to intrinsics.
73 ///
74 /// To support bitcode upgrades (and assembly semantic sugar) for \a
75 /// MetadataAsValue, we need to canonicalize certain metadata.
76 ///
77 ///   - nullptr is replaced by an empty MDNode.
78 ///   - An MDNode with a single null operand is replaced by an empty MDNode.
79 ///   - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
80 ///
81 /// This maintains readability of bitcode from when metadata was a type of
82 /// value, and these bridges were unnecessary.
83 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
84                                               Metadata *MD) {
85   if (!MD)
86     // !{}
87     return MDNode::get(Context, None);
88
89   // Return early if this isn't a single-operand MDNode.
90   auto *N = dyn_cast<MDNode>(MD);
91   if (!N || N->getNumOperands() != 1)
92     return MD;
93
94   if (!N->getOperand(0))
95     // !{}
96     return MDNode::get(Context, None);
97
98   if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
99     // Look through the MDNode.
100     return C;
101
102   return MD;
103 }
104
105 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
106   MD = canonicalizeMetadataForValue(Context, MD);
107   auto *&Entry = Context.pImpl->MetadataAsValues[MD];
108   if (!Entry)
109     Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
110   return Entry;
111 }
112
113 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
114                                               Metadata *MD) {
115   MD = canonicalizeMetadataForValue(Context, MD);
116   auto &Store = Context.pImpl->MetadataAsValues;
117   return Store.lookup(MD);
118 }
119
120 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
121   LLVMContext &Context = getContext();
122   MD = canonicalizeMetadataForValue(Context, MD);
123   auto &Store = Context.pImpl->MetadataAsValues;
124
125   // Stop tracking the old metadata.
126   Store.erase(this->MD);
127   untrack();
128   this->MD = nullptr;
129
130   // Start tracking MD, or RAUW if necessary.
131   auto *&Entry = Store[MD];
132   if (Entry) {
133     replaceAllUsesWith(Entry);
134     delete this;
135     return;
136   }
137
138   this->MD = MD;
139   track();
140   Entry = this;
141 }
142
143 void MetadataAsValue::track() {
144   if (MD)
145     MetadataTracking::track(&MD, *MD, *this);
146 }
147
148 void MetadataAsValue::untrack() {
149   if (MD)
150     MetadataTracking::untrack(MD);
151 }
152
153 bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
154   assert(Ref && "Expected live reference");
155   assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
156          "Reference without owner must be direct");
157   if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) {
158     R->addRef(Ref, Owner);
159     return true;
160   }
161   if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) {
162     assert(!PH->Use && "Placeholders can only be used once");
163     assert(!Owner && "Unexpected callback to owner");
164     PH->Use = static_cast<Metadata **>(Ref);
165     return true;
166   }
167   return false;
168 }
169
170 void MetadataTracking::untrack(void *Ref, Metadata &MD) {
171   assert(Ref && "Expected live reference");
172   if (auto *R = ReplaceableMetadataImpl::getIfExists(MD))
173     R->dropRef(Ref);
174   else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD))
175     PH->Use = nullptr;
176 }
177
178 bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
179   assert(Ref && "Expected live reference");
180   assert(New && "Expected live reference");
181   assert(Ref != New && "Expected change");
182   if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) {
183     R->moveRef(Ref, New, MD);
184     return true;
185   }
186   assert(!isa<DistinctMDOperandPlaceholder>(MD) &&
187          "Unexpected move of an MDOperand");
188   assert(!isReplaceable(MD) &&
189          "Expected un-replaceable metadata, since we didn't move a reference");
190   return false;
191 }
192
193 bool MetadataTracking::isReplaceable(const Metadata &MD) {
194   return ReplaceableMetadataImpl::isReplaceable(MD);
195 }
196
197 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
198   bool WasInserted =
199       UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
200           .second;
201   (void)WasInserted;
202   assert(WasInserted && "Expected to add a reference");
203
204   ++NextIndex;
205   assert(NextIndex != 0 && "Unexpected overflow");
206 }
207
208 void ReplaceableMetadataImpl::dropRef(void *Ref) {
209   bool WasErased = UseMap.erase(Ref);
210   (void)WasErased;
211   assert(WasErased && "Expected to drop a reference");
212 }
213
214 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
215                                       const Metadata &MD) {
216   auto I = UseMap.find(Ref);
217   assert(I != UseMap.end() && "Expected to move a reference");
218   auto OwnerAndIndex = I->second;
219   UseMap.erase(I);
220   bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
221   (void)WasInserted;
222   assert(WasInserted && "Expected to add a reference");
223
224   // Check that the references are direct if there's no owner.
225   (void)MD;
226   assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
227          "Reference without owner must be direct");
228   assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
229          "Reference without owner must be direct");
230 }
231
232 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
233   if (UseMap.empty())
234     return;
235
236   // Copy out uses since UseMap will get touched below.
237   using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
238   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
239   llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
240     return L.second.second < R.second.second;
241   });
242   for (const auto &Pair : Uses) {
243     // Check that this Ref hasn't disappeared after RAUW (when updating a
244     // previous Ref).
245     if (!UseMap.count(Pair.first))
246       continue;
247
248     OwnerTy Owner = Pair.second.first;
249     if (!Owner) {
250       // Update unowned tracking references directly.
251       Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
252       Ref = MD;
253       if (MD)
254         MetadataTracking::track(Ref);
255       UseMap.erase(Pair.first);
256       continue;
257     }
258
259     // Check for MetadataAsValue.
260     if (Owner.is<MetadataAsValue *>()) {
261       Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
262       continue;
263     }
264
265     // There's a Metadata owner -- dispatch.
266     Metadata *OwnerMD = Owner.get<Metadata *>();
267     switch (OwnerMD->getMetadataID()) {
268 #define HANDLE_METADATA_LEAF(CLASS)                                            \
269   case Metadata::CLASS##Kind:                                                  \
270     cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD);                \
271     continue;
272 #include "llvm/IR/Metadata.def"
273     default:
274       llvm_unreachable("Invalid metadata subclass");
275     }
276   }
277   assert(UseMap.empty() && "Expected all uses to be replaced");
278 }
279
280 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
281   if (UseMap.empty())
282     return;
283
284   if (!ResolveUsers) {
285     UseMap.clear();
286     return;
287   }
288
289   // Copy out uses since UseMap could get touched below.
290   using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
291   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
292   llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
293     return L.second.second < R.second.second;
294   });
295   UseMap.clear();
296   for (const auto &Pair : Uses) {
297     auto Owner = Pair.second.first;
298     if (!Owner)
299       continue;
300     if (Owner.is<MetadataAsValue *>())
301       continue;
302
303     // Resolve MDNodes that point at this.
304     auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
305     if (!OwnerMD)
306       continue;
307     if (OwnerMD->isResolved())
308       continue;
309     OwnerMD->decrementUnresolvedOperandCount();
310   }
311 }
312
313 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) {
314   if (auto *N = dyn_cast<MDNode>(&MD))
315     return N->isResolved() ? nullptr : N->Context.getOrCreateReplaceableUses();
316   return dyn_cast<ValueAsMetadata>(&MD);
317 }
318
319 ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) {
320   if (auto *N = dyn_cast<MDNode>(&MD))
321     return N->isResolved() ? nullptr : N->Context.getReplaceableUses();
322   return dyn_cast<ValueAsMetadata>(&MD);
323 }
324
325 bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) {
326   if (auto *N = dyn_cast<MDNode>(&MD))
327     return !N->isResolved();
328   return dyn_cast<ValueAsMetadata>(&MD);
329 }
330
331 static DISubprogram *getLocalFunctionMetadata(Value *V) {
332   assert(V && "Expected value");
333   if (auto *A = dyn_cast<Argument>(V)) {
334     if (auto *Fn = A->getParent())
335       return Fn->getSubprogram();
336     return nullptr;
337   }
338
339   if (BasicBlock *BB = cast<Instruction>(V)->getParent()) {
340     if (auto *Fn = BB->getParent())
341       return Fn->getSubprogram();
342     return nullptr;
343   }
344
345   return nullptr;
346 }
347
348 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
349   assert(V && "Unexpected null Value");
350
351   auto &Context = V->getContext();
352   auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
353   if (!Entry) {
354     assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
355            "Expected constant or function-local value");
356     assert(!V->IsUsedByMD && "Expected this to be the only metadata use");
357     V->IsUsedByMD = true;
358     if (auto *C = dyn_cast<Constant>(V))
359       Entry = new ConstantAsMetadata(C);
360     else
361       Entry = new LocalAsMetadata(V);
362   }
363
364   return Entry;
365 }
366
367 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
368   assert(V && "Unexpected null Value");
369   return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
370 }
371
372 void ValueAsMetadata::handleDeletion(Value *V) {
373   assert(V && "Expected valid value");
374
375   auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
376   auto I = Store.find(V);
377   if (I == Store.end())
378     return;
379
380   // Remove old entry from the map.
381   ValueAsMetadata *MD = I->second;
382   assert(MD && "Expected valid metadata");
383   assert(MD->getValue() == V && "Expected valid mapping");
384   Store.erase(I);
385
386   // Delete the metadata.
387   MD->replaceAllUsesWith(nullptr);
388   delete MD;
389 }
390
391 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
392   assert(From && "Expected valid value");
393   assert(To && "Expected valid value");
394   assert(From != To && "Expected changed value");
395   assert(From->getType() == To->getType() && "Unexpected type change");
396
397   LLVMContext &Context = From->getType()->getContext();
398   auto &Store = Context.pImpl->ValuesAsMetadata;
399   auto I = Store.find(From);
400   if (I == Store.end()) {
401     assert(!From->IsUsedByMD && "Expected From not to be used by metadata");
402     return;
403   }
404
405   // Remove old entry from the map.
406   assert(From->IsUsedByMD && "Expected From to be used by metadata");
407   From->IsUsedByMD = false;
408   ValueAsMetadata *MD = I->second;
409   assert(MD && "Expected valid metadata");
410   assert(MD->getValue() == From && "Expected valid mapping");
411   Store.erase(I);
412
413   if (isa<LocalAsMetadata>(MD)) {
414     if (auto *C = dyn_cast<Constant>(To)) {
415       // Local became a constant.
416       MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
417       delete MD;
418       return;
419     }
420     if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) &&
421         getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) {
422       // DISubprogram changed.
423       MD->replaceAllUsesWith(nullptr);
424       delete MD;
425       return;
426     }
427   } else if (!isa<Constant>(To)) {
428     // Changed to function-local value.
429     MD->replaceAllUsesWith(nullptr);
430     delete MD;
431     return;
432   }
433
434   auto *&Entry = Store[To];
435   if (Entry) {
436     // The target already exists.
437     MD->replaceAllUsesWith(Entry);
438     delete MD;
439     return;
440   }
441
442   // Update MD in place (and update the map entry).
443   assert(!To->IsUsedByMD && "Expected this to be the only metadata use");
444   To->IsUsedByMD = true;
445   MD->V = To;
446   Entry = MD;
447 }
448
449 //===----------------------------------------------------------------------===//
450 // MDString implementation.
451 //
452
453 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
454   auto &Store = Context.pImpl->MDStringCache;
455   auto I = Store.try_emplace(Str);
456   auto &MapEntry = I.first->getValue();
457   if (!I.second)
458     return &MapEntry;
459   MapEntry.Entry = &*I.first;
460   return &MapEntry;
461 }
462
463 StringRef MDString::getString() const {
464   assert(Entry && "Expected to find string map entry");
465   return Entry->first();
466 }
467
468 //===----------------------------------------------------------------------===//
469 // MDNode implementation.
470 //
471
472 // Assert that the MDNode types will not be unaligned by the objects
473 // prepended to them.
474 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
475   static_assert(                                                               \
476       alignof(uint64_t) >= alignof(CLASS),                                     \
477       "Alignment is insufficient after objects prepended to " #CLASS);
478 #include "llvm/IR/Metadata.def"
479
480 void *MDNode::operator new(size_t Size, unsigned NumOps) {
481   size_t OpSize = NumOps * sizeof(MDOperand);
482   // uint64_t is the most aligned type we need support (ensured by static_assert
483   // above)
484   OpSize = alignTo(OpSize, alignof(uint64_t));
485   void *Ptr = reinterpret_cast<char *>(::operator new(OpSize + Size)) + OpSize;
486   MDOperand *O = static_cast<MDOperand *>(Ptr);
487   for (MDOperand *E = O - NumOps; O != E; --O)
488     (void)new (O - 1) MDOperand;
489   return Ptr;
490 }
491
492 // Repress memory sanitization, due to use-after-destroy by operator
493 // delete. Bug report 24578 identifies this issue.
494 LLVM_NO_SANITIZE_MEMORY_ATTRIBUTE void MDNode::operator delete(void *Mem) {
495   MDNode *N = static_cast<MDNode *>(Mem);
496   size_t OpSize = N->NumOperands * sizeof(MDOperand);
497   OpSize = alignTo(OpSize, alignof(uint64_t));
498
499   MDOperand *O = static_cast<MDOperand *>(Mem);
500   for (MDOperand *E = O - N->NumOperands; O != E; --O)
501     (O - 1)->~MDOperand();
502   ::operator delete(reinterpret_cast<char *>(Mem) - OpSize);
503 }
504
505 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
506                ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
507     : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
508       NumUnresolved(0), Context(Context) {
509   unsigned Op = 0;
510   for (Metadata *MD : Ops1)
511     setOperand(Op++, MD);
512   for (Metadata *MD : Ops2)
513     setOperand(Op++, MD);
514
515   if (!isUniqued())
516     return;
517
518   // Count the unresolved operands.  If there are any, RAUW support will be
519   // added lazily on first reference.
520   countUnresolvedOperands();
521 }
522
523 TempMDNode MDNode::clone() const {
524   switch (getMetadataID()) {
525   default:
526     llvm_unreachable("Invalid MDNode subclass");
527 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
528   case CLASS##Kind:                                                            \
529     return cast<CLASS>(this)->cloneImpl();
530 #include "llvm/IR/Metadata.def"
531   }
532 }
533
534 static bool isOperandUnresolved(Metadata *Op) {
535   if (auto *N = dyn_cast_or_null<MDNode>(Op))
536     return !N->isResolved();
537   return false;
538 }
539
540 void MDNode::countUnresolvedOperands() {
541   assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
542   assert(isUniqued() && "Expected this to be uniqued");
543   NumUnresolved = count_if(operands(), isOperandUnresolved);
544 }
545
546 void MDNode::makeUniqued() {
547   assert(isTemporary() && "Expected this to be temporary");
548   assert(!isResolved() && "Expected this to be unresolved");
549
550   // Enable uniquing callbacks.
551   for (auto &Op : mutable_operands())
552     Op.reset(Op.get(), this);
553
554   // Make this 'uniqued'.
555   Storage = Uniqued;
556   countUnresolvedOperands();
557   if (!NumUnresolved) {
558     dropReplaceableUses();
559     assert(isResolved() && "Expected this to be resolved");
560   }
561
562   assert(isUniqued() && "Expected this to be uniqued");
563 }
564
565 void MDNode::makeDistinct() {
566   assert(isTemporary() && "Expected this to be temporary");
567   assert(!isResolved() && "Expected this to be unresolved");
568
569   // Drop RAUW support and store as a distinct node.
570   dropReplaceableUses();
571   storeDistinctInContext();
572
573   assert(isDistinct() && "Expected this to be distinct");
574   assert(isResolved() && "Expected this to be resolved");
575 }
576
577 void MDNode::resolve() {
578   assert(isUniqued() && "Expected this to be uniqued");
579   assert(!isResolved() && "Expected this to be unresolved");
580
581   NumUnresolved = 0;
582   dropReplaceableUses();
583
584   assert(isResolved() && "Expected this to be resolved");
585 }
586
587 void MDNode::dropReplaceableUses() {
588   assert(!NumUnresolved && "Unexpected unresolved operand");
589
590   // Drop any RAUW support.
591   if (Context.hasReplaceableUses())
592     Context.takeReplaceableUses()->resolveAllUses();
593 }
594
595 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
596   assert(isUniqued() && "Expected this to be uniqued");
597   assert(NumUnresolved != 0 && "Expected unresolved operands");
598
599   // Check if an operand was resolved.
600   if (!isOperandUnresolved(Old)) {
601     if (isOperandUnresolved(New))
602       // An operand was un-resolved!
603       ++NumUnresolved;
604   } else if (!isOperandUnresolved(New))
605     decrementUnresolvedOperandCount();
606 }
607
608 void MDNode::decrementUnresolvedOperandCount() {
609   assert(!isResolved() && "Expected this to be unresolved");
610   if (isTemporary())
611     return;
612
613   assert(isUniqued() && "Expected this to be uniqued");
614   if (--NumUnresolved)
615     return;
616
617   // Last unresolved operand has just been resolved.
618   dropReplaceableUses();
619   assert(isResolved() && "Expected this to become resolved");
620 }
621
622 void MDNode::resolveCycles() {
623   if (isResolved())
624     return;
625
626   // Resolve this node immediately.
627   resolve();
628
629   // Resolve all operands.
630   for (const auto &Op : operands()) {
631     auto *N = dyn_cast_or_null<MDNode>(Op);
632     if (!N)
633       continue;
634
635     assert(!N->isTemporary() &&
636            "Expected all forward declarations to be resolved");
637     if (!N->isResolved())
638       N->resolveCycles();
639   }
640 }
641
642 static bool hasSelfReference(MDNode *N) {
643   for (Metadata *MD : N->operands())
644     if (MD == N)
645       return true;
646   return false;
647 }
648
649 MDNode *MDNode::replaceWithPermanentImpl() {
650   switch (getMetadataID()) {
651   default:
652     // If this type isn't uniquable, replace with a distinct node.
653     return replaceWithDistinctImpl();
654
655 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
656   case CLASS##Kind:                                                            \
657     break;
658 #include "llvm/IR/Metadata.def"
659   }
660
661   // Even if this type is uniquable, self-references have to be distinct.
662   if (hasSelfReference(this))
663     return replaceWithDistinctImpl();
664   return replaceWithUniquedImpl();
665 }
666
667 MDNode *MDNode::replaceWithUniquedImpl() {
668   // Try to uniquify in place.
669   MDNode *UniquedNode = uniquify();
670
671   if (UniquedNode == this) {
672     makeUniqued();
673     return this;
674   }
675
676   // Collision, so RAUW instead.
677   replaceAllUsesWith(UniquedNode);
678   deleteAsSubclass();
679   return UniquedNode;
680 }
681
682 MDNode *MDNode::replaceWithDistinctImpl() {
683   makeDistinct();
684   return this;
685 }
686
687 void MDTuple::recalculateHash() {
688   setHash(MDTupleInfo::KeyTy::calculateHash(this));
689 }
690
691 void MDNode::dropAllReferences() {
692   for (unsigned I = 0, E = NumOperands; I != E; ++I)
693     setOperand(I, nullptr);
694   if (Context.hasReplaceableUses()) {
695     Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
696     (void)Context.takeReplaceableUses();
697   }
698 }
699
700 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
701   unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
702   assert(Op < getNumOperands() && "Expected valid operand");
703
704   if (!isUniqued()) {
705     // This node is not uniqued.  Just set the operand and be done with it.
706     setOperand(Op, New);
707     return;
708   }
709
710   // This node is uniqued.
711   eraseFromStore();
712
713   Metadata *Old = getOperand(Op);
714   setOperand(Op, New);
715
716   // Drop uniquing for self-reference cycles and deleted constants.
717   if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) {
718     if (!isResolved())
719       resolve();
720     storeDistinctInContext();
721     return;
722   }
723
724   // Re-unique the node.
725   auto *Uniqued = uniquify();
726   if (Uniqued == this) {
727     if (!isResolved())
728       resolveAfterOperandChange(Old, New);
729     return;
730   }
731
732   // Collision.
733   if (!isResolved()) {
734     // Still unresolved, so RAUW.
735     //
736     // First, clear out all operands to prevent any recursion (similar to
737     // dropAllReferences(), but we still need the use-list).
738     for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
739       setOperand(O, nullptr);
740     if (Context.hasReplaceableUses())
741       Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
742     deleteAsSubclass();
743     return;
744   }
745
746   // Store in non-uniqued form if RAUW isn't possible.
747   storeDistinctInContext();
748 }
749
750 void MDNode::deleteAsSubclass() {
751   switch (getMetadataID()) {
752   default:
753     llvm_unreachable("Invalid subclass of MDNode");
754 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
755   case CLASS##Kind:                                                            \
756     delete cast<CLASS>(this);                                                  \
757     break;
758 #include "llvm/IR/Metadata.def"
759   }
760 }
761
762 template <class T, class InfoT>
763 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
764   if (T *U = getUniqued(Store, N))
765     return U;
766
767   Store.insert(N);
768   return N;
769 }
770
771 template <class NodeTy> struct MDNode::HasCachedHash {
772   using Yes = char[1];
773   using No = char[2];
774   template <class U, U Val> struct SFINAE {};
775
776   template <class U>
777   static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
778   template <class U> static No &check(...);
779
780   static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
781 };
782
783 MDNode *MDNode::uniquify() {
784   assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
785
786   // Try to insert into uniquing store.
787   switch (getMetadataID()) {
788   default:
789     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
790 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
791   case CLASS##Kind: {                                                          \
792     CLASS *SubclassThis = cast<CLASS>(this);                                   \
793     std::integral_constant<bool, HasCachedHash<CLASS>::value>                  \
794         ShouldRecalculateHash;                                                 \
795     dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash);              \
796     return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s);           \
797   }
798 #include "llvm/IR/Metadata.def"
799   }
800 }
801
802 void MDNode::eraseFromStore() {
803   switch (getMetadataID()) {
804   default:
805     llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
806 #define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS)                                    \
807   case CLASS##Kind:                                                            \
808     getContext().pImpl->CLASS##s.erase(cast<CLASS>(this));                     \
809     break;
810 #include "llvm/IR/Metadata.def"
811   }
812 }
813
814 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
815                           StorageType Storage, bool ShouldCreate) {
816   unsigned Hash = 0;
817   if (Storage == Uniqued) {
818     MDTupleInfo::KeyTy Key(MDs);
819     if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
820       return N;
821     if (!ShouldCreate)
822       return nullptr;
823     Hash = Key.getHash();
824   } else {
825     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
826   }
827
828   return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
829                    Storage, Context.pImpl->MDTuples);
830 }
831
832 void MDNode::deleteTemporary(MDNode *N) {
833   assert(N->isTemporary() && "Expected temporary node");
834   N->replaceAllUsesWith(nullptr);
835   N->deleteAsSubclass();
836 }
837
838 void MDNode::storeDistinctInContext() {
839   assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses");
840   assert(!NumUnresolved && "Unexpected unresolved nodes");
841   Storage = Distinct;
842   assert(isResolved() && "Expected this to be resolved");
843
844   // Reset the hash.
845   switch (getMetadataID()) {
846   default:
847     llvm_unreachable("Invalid subclass of MDNode");
848 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
849   case CLASS##Kind: {                                                          \
850     std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
851     dispatchResetHash(cast<CLASS>(this), ShouldResetHash);                     \
852     break;                                                                     \
853   }
854 #include "llvm/IR/Metadata.def"
855   }
856
857   getContext().pImpl->DistinctMDNodes.push_back(this);
858 }
859
860 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
861   if (getOperand(I) == New)
862     return;
863
864   if (!isUniqued()) {
865     setOperand(I, New);
866     return;
867   }
868
869   handleChangedOperand(mutable_begin() + I, New);
870 }
871
872 void MDNode::setOperand(unsigned I, Metadata *New) {
873   assert(I < NumOperands);
874   mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
875 }
876
877 /// Get a node or a self-reference that looks like it.
878 ///
879 /// Special handling for finding self-references, for use by \a
880 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
881 /// when self-referencing nodes were still uniqued.  If the first operand has
882 /// the same operands as \c Ops, return the first operand instead.
883 static MDNode *getOrSelfReference(LLVMContext &Context,
884                                   ArrayRef<Metadata *> Ops) {
885   if (!Ops.empty())
886     if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
887       if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
888         for (unsigned I = 1, E = Ops.size(); I != E; ++I)
889           if (Ops[I] != N->getOperand(I))
890             return MDNode::get(Context, Ops);
891         return N;
892       }
893
894   return MDNode::get(Context, Ops);
895 }
896
897 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
898   if (!A)
899     return B;
900   if (!B)
901     return A;
902
903   SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
904   MDs.insert(B->op_begin(), B->op_end());
905
906   // FIXME: This preserves long-standing behaviour, but is it really the right
907   // behaviour?  Or was that an unintended side-effect of node uniquing?
908   return getOrSelfReference(A->getContext(), MDs.getArrayRef());
909 }
910
911 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
912   if (!A || !B)
913     return nullptr;
914
915   SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
916   SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end());
917   MDs.remove_if([&](Metadata *MD) { return !is_contained(BSet, MD); });
918
919   // FIXME: This preserves long-standing behaviour, but is it really the right
920   // behaviour?  Or was that an unintended side-effect of node uniquing?
921   return getOrSelfReference(A->getContext(), MDs.getArrayRef());
922 }
923
924 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
925   if (!A || !B)
926     return nullptr;
927
928   return concatenate(A, B);
929 }
930
931 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
932   if (!A || !B)
933     return nullptr;
934
935   APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
936   APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
937   if (AVal.compare(BVal) == APFloat::cmpLessThan)
938     return A;
939   return B;
940 }
941
942 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
943   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
944 }
945
946 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
947   return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
948 }
949
950 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
951                           ConstantInt *Low, ConstantInt *High) {
952   ConstantRange NewRange(Low->getValue(), High->getValue());
953   unsigned Size = EndPoints.size();
954   APInt LB = EndPoints[Size - 2]->getValue();
955   APInt LE = EndPoints[Size - 1]->getValue();
956   ConstantRange LastRange(LB, LE);
957   if (canBeMerged(NewRange, LastRange)) {
958     ConstantRange Union = LastRange.unionWith(NewRange);
959     Type *Ty = High->getType();
960     EndPoints[Size - 2] =
961         cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
962     EndPoints[Size - 1] =
963         cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
964     return true;
965   }
966   return false;
967 }
968
969 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
970                      ConstantInt *Low, ConstantInt *High) {
971   if (!EndPoints.empty())
972     if (tryMergeRange(EndPoints, Low, High))
973       return;
974
975   EndPoints.push_back(Low);
976   EndPoints.push_back(High);
977 }
978
979 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
980   // Given two ranges, we want to compute the union of the ranges. This
981   // is slightly complicated by having to combine the intervals and merge
982   // the ones that overlap.
983
984   if (!A || !B)
985     return nullptr;
986
987   if (A == B)
988     return A;
989
990   // First, walk both lists in order of the lower boundary of each interval.
991   // At each step, try to merge the new interval to the last one we adedd.
992   SmallVector<ConstantInt *, 4> EndPoints;
993   int AI = 0;
994   int BI = 0;
995   int AN = A->getNumOperands() / 2;
996   int BN = B->getNumOperands() / 2;
997   while (AI < AN && BI < BN) {
998     ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
999     ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
1000
1001     if (ALow->getValue().slt(BLow->getValue())) {
1002       addRange(EndPoints, ALow,
1003                mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1004       ++AI;
1005     } else {
1006       addRange(EndPoints, BLow,
1007                mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1008       ++BI;
1009     }
1010   }
1011   while (AI < AN) {
1012     addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
1013              mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
1014     ++AI;
1015   }
1016   while (BI < BN) {
1017     addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
1018              mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
1019     ++BI;
1020   }
1021
1022   // If we have more than 2 ranges (4 endpoints) we have to try to merge
1023   // the last and first ones.
1024   unsigned Size = EndPoints.size();
1025   if (Size > 4) {
1026     ConstantInt *FB = EndPoints[0];
1027     ConstantInt *FE = EndPoints[1];
1028     if (tryMergeRange(EndPoints, FB, FE)) {
1029       for (unsigned i = 0; i < Size - 2; ++i) {
1030         EndPoints[i] = EndPoints[i + 2];
1031       }
1032       EndPoints.resize(Size - 2);
1033     }
1034   }
1035
1036   // If in the end we have a single range, it is possible that it is now the
1037   // full range. Just drop the metadata in that case.
1038   if (EndPoints.size() == 2) {
1039     ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
1040     if (Range.isFullSet())
1041       return nullptr;
1042   }
1043
1044   SmallVector<Metadata *, 4> MDs;
1045   MDs.reserve(EndPoints.size());
1046   for (auto *I : EndPoints)
1047     MDs.push_back(ConstantAsMetadata::get(I));
1048   return MDNode::get(A->getContext(), MDs);
1049 }
1050
1051 MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
1052   if (!A || !B)
1053     return nullptr;
1054
1055   ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
1056   ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
1057   if (AVal->getZExtValue() < BVal->getZExtValue())
1058     return A;
1059   return B;
1060 }
1061
1062 //===----------------------------------------------------------------------===//
1063 // NamedMDNode implementation.
1064 //
1065
1066 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
1067   return *(SmallVector<TrackingMDRef, 4> *)Operands;
1068 }
1069
1070 NamedMDNode::NamedMDNode(const Twine &N)
1071     : Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {}
1072
1073 NamedMDNode::~NamedMDNode() {
1074   dropAllReferences();
1075   delete &getNMDOps(Operands);
1076 }
1077
1078 unsigned NamedMDNode::getNumOperands() const {
1079   return (unsigned)getNMDOps(Operands).size();
1080 }
1081
1082 MDNode *NamedMDNode::getOperand(unsigned i) const {
1083   assert(i < getNumOperands() && "Invalid Operand number!");
1084   auto *N = getNMDOps(Operands)[i].get();
1085   return cast_or_null<MDNode>(N);
1086 }
1087
1088 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
1089
1090 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
1091   assert(I < getNumOperands() && "Invalid operand number");
1092   getNMDOps(Operands)[I].reset(New);
1093 }
1094
1095 void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); }
1096
1097 void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); }
1098
1099 StringRef NamedMDNode::getName() const { return StringRef(Name); }
1100
1101 //===----------------------------------------------------------------------===//
1102 // Instruction Metadata method implementations.
1103 //
1104 void MDAttachmentMap::set(unsigned ID, MDNode &MD) {
1105   for (auto &I : Attachments)
1106     if (I.first == ID) {
1107       I.second.reset(&MD);
1108       return;
1109     }
1110   Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID),
1111                            std::make_tuple(&MD));
1112 }
1113
1114 bool MDAttachmentMap::erase(unsigned ID) {
1115   if (empty())
1116     return false;
1117
1118   // Common case is one/last value.
1119   if (Attachments.back().first == ID) {
1120     Attachments.pop_back();
1121     return true;
1122   }
1123
1124   for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E;
1125        ++I)
1126     if (I->first == ID) {
1127       *I = std::move(Attachments.back());
1128       Attachments.pop_back();
1129       return true;
1130     }
1131
1132   return false;
1133 }
1134
1135 MDNode *MDAttachmentMap::lookup(unsigned ID) const {
1136   for (const auto &I : Attachments)
1137     if (I.first == ID)
1138       return I.second;
1139   return nullptr;
1140 }
1141
1142 void MDAttachmentMap::getAll(
1143     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1144   Result.append(Attachments.begin(), Attachments.end());
1145
1146   // Sort the resulting array so it is stable.
1147   if (Result.size() > 1)
1148     array_pod_sort(Result.begin(), Result.end());
1149 }
1150
1151 void MDGlobalAttachmentMap::insert(unsigned ID, MDNode &MD) {
1152   Attachments.push_back({ID, TrackingMDNodeRef(&MD)});
1153 }
1154
1155 MDNode *MDGlobalAttachmentMap::lookup(unsigned ID) const {
1156   for (const auto &A : Attachments)
1157     if (A.MDKind == ID)
1158       return A.Node;
1159   return nullptr;
1160 }
1161
1162 void MDGlobalAttachmentMap::get(unsigned ID,
1163                                 SmallVectorImpl<MDNode *> &Result) const {
1164   for (const auto &A : Attachments)
1165     if (A.MDKind == ID)
1166       Result.push_back(A.Node);
1167 }
1168
1169 bool MDGlobalAttachmentMap::erase(unsigned ID) {
1170   auto I = std::remove_if(Attachments.begin(), Attachments.end(),
1171                           [ID](const Attachment &A) { return A.MDKind == ID; });
1172   bool Changed = I != Attachments.end();
1173   Attachments.erase(I, Attachments.end());
1174   return Changed;
1175 }
1176
1177 void MDGlobalAttachmentMap::getAll(
1178     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1179   for (const auto &A : Attachments)
1180     Result.emplace_back(A.MDKind, A.Node);
1181
1182   // Sort the resulting array so it is stable with respect to metadata IDs. We
1183   // need to preserve the original insertion order though.
1184   llvm::stable_sort(Result, less_first());
1185 }
1186
1187 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1188   if (!Node && !hasMetadata())
1189     return;
1190   setMetadata(getContext().getMDKindID(Kind), Node);
1191 }
1192
1193 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1194   return getMetadataImpl(getContext().getMDKindID(Kind));
1195 }
1196
1197 void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
1198   if (!hasMetadataHashEntry())
1199     return; // Nothing to remove!
1200
1201   auto &InstructionMetadata = getContext().pImpl->InstructionMetadata;
1202
1203   SmallSet<unsigned, 4> KnownSet;
1204   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1205   if (KnownSet.empty()) {
1206     // Just drop our entry at the store.
1207     InstructionMetadata.erase(this);
1208     setHasMetadataHashEntry(false);
1209     return;
1210   }
1211
1212   auto &Info = InstructionMetadata[this];
1213   Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
1214     return !KnownSet.count(I.first);
1215   });
1216
1217   if (Info.empty()) {
1218     // Drop our entry at the store.
1219     InstructionMetadata.erase(this);
1220     setHasMetadataHashEntry(false);
1221   }
1222 }
1223
1224 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1225   if (!Node && !hasMetadata())
1226     return;
1227
1228   // Handle 'dbg' as a special case since it is not stored in the hash table.
1229   if (KindID == LLVMContext::MD_dbg) {
1230     DbgLoc = DebugLoc(Node);
1231     return;
1232   }
1233
1234   // Handle the case when we're adding/updating metadata on an instruction.
1235   if (Node) {
1236     auto &Info = getContext().pImpl->InstructionMetadata[this];
1237     assert(!Info.empty() == hasMetadataHashEntry() &&
1238            "HasMetadata bit is wonked");
1239     if (Info.empty())
1240       setHasMetadataHashEntry(true);
1241     Info.set(KindID, *Node);
1242     return;
1243   }
1244
1245   // Otherwise, we're removing metadata from an instruction.
1246   assert((hasMetadataHashEntry() ==
1247           (getContext().pImpl->InstructionMetadata.count(this) > 0)) &&
1248          "HasMetadata bit out of date!");
1249   if (!hasMetadataHashEntry())
1250     return; // Nothing to remove!
1251   auto &Info = getContext().pImpl->InstructionMetadata[this];
1252
1253   // Handle removal of an existing value.
1254   Info.erase(KindID);
1255
1256   if (!Info.empty())
1257     return;
1258
1259   getContext().pImpl->InstructionMetadata.erase(this);
1260   setHasMetadataHashEntry(false);
1261 }
1262
1263 void Instruction::setAAMetadata(const AAMDNodes &N) {
1264   setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1265   setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct);
1266   setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1267   setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1268 }
1269
1270 MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
1271   // Handle 'dbg' as a special case since it is not stored in the hash table.
1272   if (KindID == LLVMContext::MD_dbg)
1273     return DbgLoc.getAsMDNode();
1274
1275   if (!hasMetadataHashEntry())
1276     return nullptr;
1277   auto &Info = getContext().pImpl->InstructionMetadata[this];
1278   assert(!Info.empty() && "bit out of sync with hash table");
1279
1280   return Info.lookup(KindID);
1281 }
1282
1283 void Instruction::getAllMetadataImpl(
1284     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1285   Result.clear();
1286
1287   // Handle 'dbg' as a special case since it is not stored in the hash table.
1288   if (DbgLoc) {
1289     Result.push_back(
1290         std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1291     if (!hasMetadataHashEntry())
1292       return;
1293   }
1294
1295   assert(hasMetadataHashEntry() &&
1296          getContext().pImpl->InstructionMetadata.count(this) &&
1297          "Shouldn't have called this");
1298   const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
1299   assert(!Info.empty() && "Shouldn't have called this");
1300   Info.getAll(Result);
1301 }
1302
1303 void Instruction::getAllMetadataOtherThanDebugLocImpl(
1304     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1305   Result.clear();
1306   assert(hasMetadataHashEntry() &&
1307          getContext().pImpl->InstructionMetadata.count(this) &&
1308          "Shouldn't have called this");
1309   const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
1310   assert(!Info.empty() && "Shouldn't have called this");
1311   Info.getAll(Result);
1312 }
1313
1314 bool Instruction::extractProfMetadata(uint64_t &TrueVal,
1315                                       uint64_t &FalseVal) const {
1316   assert(
1317       (getOpcode() == Instruction::Br || getOpcode() == Instruction::Select) &&
1318       "Looking for branch weights on something besides branch or select");
1319
1320   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
1321   if (!ProfileData || ProfileData->getNumOperands() != 3)
1322     return false;
1323
1324   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
1325   if (!ProfDataName || !ProfDataName->getString().equals("branch_weights"))
1326     return false;
1327
1328   auto *CITrue = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1));
1329   auto *CIFalse = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2));
1330   if (!CITrue || !CIFalse)
1331     return false;
1332
1333   TrueVal = CITrue->getValue().getZExtValue();
1334   FalseVal = CIFalse->getValue().getZExtValue();
1335
1336   return true;
1337 }
1338
1339 bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const {
1340   assert((getOpcode() == Instruction::Br ||
1341           getOpcode() == Instruction::Select ||
1342           getOpcode() == Instruction::Call ||
1343           getOpcode() == Instruction::Invoke ||
1344           getOpcode() == Instruction::Switch) &&
1345          "Looking for branch weights on something besides branch");
1346
1347   TotalVal = 0;
1348   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
1349   if (!ProfileData)
1350     return false;
1351
1352   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
1353   if (!ProfDataName)
1354     return false;
1355
1356   if (ProfDataName->getString().equals("branch_weights")) {
1357     TotalVal = 0;
1358     for (unsigned i = 1; i < ProfileData->getNumOperands(); i++) {
1359       auto *V = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i));
1360       if (!V)
1361         return false;
1362       TotalVal += V->getValue().getZExtValue();
1363     }
1364     return true;
1365   } else if (ProfDataName->getString().equals("VP") &&
1366              ProfileData->getNumOperands() > 3) {
1367     TotalVal = mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(2))
1368                    ->getValue()
1369                    .getZExtValue();
1370     return true;
1371   }
1372   return false;
1373 }
1374
1375 void Instruction::clearMetadataHashEntries() {
1376   assert(hasMetadataHashEntry() && "Caller should check");
1377   getContext().pImpl->InstructionMetadata.erase(this);
1378   setHasMetadataHashEntry(false);
1379 }
1380
1381 void GlobalObject::getMetadata(unsigned KindID,
1382                                SmallVectorImpl<MDNode *> &MDs) const {
1383   if (hasMetadata())
1384     getContext().pImpl->GlobalObjectMetadata[this].get(KindID, MDs);
1385 }
1386
1387 void GlobalObject::getMetadata(StringRef Kind,
1388                                SmallVectorImpl<MDNode *> &MDs) const {
1389   if (hasMetadata())
1390     getMetadata(getContext().getMDKindID(Kind), MDs);
1391 }
1392
1393 void GlobalObject::addMetadata(unsigned KindID, MDNode &MD) {
1394   if (!hasMetadata())
1395     setHasMetadataHashEntry(true);
1396
1397   getContext().pImpl->GlobalObjectMetadata[this].insert(KindID, MD);
1398 }
1399
1400 void GlobalObject::addMetadata(StringRef Kind, MDNode &MD) {
1401   addMetadata(getContext().getMDKindID(Kind), MD);
1402 }
1403
1404 bool GlobalObject::eraseMetadata(unsigned KindID) {
1405   // Nothing to unset.
1406   if (!hasMetadata())
1407     return false;
1408
1409   auto &Store = getContext().pImpl->GlobalObjectMetadata[this];
1410   bool Changed = Store.erase(KindID);
1411   if (Store.empty())
1412     clearMetadata();
1413   return Changed;
1414 }
1415
1416 void GlobalObject::getAllMetadata(
1417     SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1418   MDs.clear();
1419
1420   if (!hasMetadata())
1421     return;
1422
1423   getContext().pImpl->GlobalObjectMetadata[this].getAll(MDs);
1424 }
1425
1426 void GlobalObject::clearMetadata() {
1427   if (!hasMetadata())
1428     return;
1429   getContext().pImpl->GlobalObjectMetadata.erase(this);
1430   setHasMetadataHashEntry(false);
1431 }
1432
1433 void GlobalObject::setMetadata(unsigned KindID, MDNode *N) {
1434   eraseMetadata(KindID);
1435   if (N)
1436     addMetadata(KindID, *N);
1437 }
1438
1439 void GlobalObject::setMetadata(StringRef Kind, MDNode *N) {
1440   setMetadata(getContext().getMDKindID(Kind), N);
1441 }
1442
1443 MDNode *GlobalObject::getMetadata(unsigned KindID) const {
1444   if (hasMetadata())
1445     return getContext().pImpl->GlobalObjectMetadata[this].lookup(KindID);
1446   return nullptr;
1447 }
1448
1449 MDNode *GlobalObject::getMetadata(StringRef Kind) const {
1450   return getMetadata(getContext().getMDKindID(Kind));
1451 }
1452
1453 void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) {
1454   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
1455   Other->getAllMetadata(MDs);
1456   for (auto &MD : MDs) {
1457     // We need to adjust the type metadata offset.
1458     if (Offset != 0 && MD.first == LLVMContext::MD_type) {
1459       auto *OffsetConst = cast<ConstantInt>(
1460           cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue());
1461       Metadata *TypeId = MD.second->getOperand(1);
1462       auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get(
1463           OffsetConst->getType(), OffsetConst->getValue() + Offset));
1464       addMetadata(LLVMContext::MD_type,
1465                   *MDNode::get(getContext(), {NewOffsetMD, TypeId}));
1466       continue;
1467     }
1468     // If an offset adjustment was specified we need to modify the DIExpression
1469     // to prepend the adjustment:
1470     // !DIExpression(DW_OP_plus, Offset, [original expr])
1471     auto *Attachment = MD.second;
1472     if (Offset != 0 && MD.first == LLVMContext::MD_dbg) {
1473       DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment);
1474       DIExpression *E = nullptr;
1475       if (!GV) {
1476         auto *GVE = cast<DIGlobalVariableExpression>(Attachment);
1477         GV = GVE->getVariable();
1478         E = GVE->getExpression();
1479       }
1480       ArrayRef<uint64_t> OrigElements;
1481       if (E)
1482         OrigElements = E->getElements();
1483       std::vector<uint64_t> Elements(OrigElements.size() + 2);
1484       Elements[0] = dwarf::DW_OP_plus_uconst;
1485       Elements[1] = Offset;
1486       llvm::copy(OrigElements, Elements.begin() + 2);
1487       E = DIExpression::get(getContext(), Elements);
1488       Attachment = DIGlobalVariableExpression::get(getContext(), GV, E);
1489     }
1490     addMetadata(MD.first, *Attachment);
1491   }
1492 }
1493
1494 void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) {
1495   addMetadata(
1496       LLVMContext::MD_type,
1497       *MDTuple::get(getContext(),
1498                     {ConstantAsMetadata::get(ConstantInt::get(
1499                          Type::getInt64Ty(getContext()), Offset)),
1500                      TypeID}));
1501 }
1502
1503 void GlobalObject::addVCallVisibilityMetadata(VCallVisibility Visibility) {
1504   addMetadata(LLVMContext::MD_vcall_visibility,
1505               *MDNode::get(getContext(),
1506                            {ConstantAsMetadata::get(ConstantInt::get(
1507                                Type::getInt64Ty(getContext()), Visibility))}));
1508 }
1509
1510 GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const {
1511   if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) {
1512     uint64_t Val = cast<ConstantInt>(
1513                        cast<ConstantAsMetadata>(MD->getOperand(0))->getValue())
1514                        ->getZExtValue();
1515     assert(Val <= 2 && "unknown vcall visibility!");
1516     return (VCallVisibility)Val;
1517   }
1518   return VCallVisibility::VCallVisibilityPublic;
1519 }
1520
1521 void Function::setSubprogram(DISubprogram *SP) {
1522   setMetadata(LLVMContext::MD_dbg, SP);
1523 }
1524
1525 DISubprogram *Function::getSubprogram() const {
1526   return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
1527 }
1528
1529 bool Function::isDebugInfoForProfiling() const {
1530   if (DISubprogram *SP = getSubprogram()) {
1531     if (DICompileUnit *CU = SP->getUnit()) {
1532       return CU->getDebugInfoForProfiling();
1533     }
1534   }
1535   return false;
1536 }
1537
1538 void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) {
1539   addMetadata(LLVMContext::MD_dbg, *GV);
1540 }
1541
1542 void GlobalVariable::getDebugInfo(
1543     SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const {
1544   SmallVector<MDNode *, 1> MDs;
1545   getMetadata(LLVMContext::MD_dbg, MDs);
1546   for (MDNode *MD : MDs)
1547     GVs.push_back(cast<DIGlobalVariableExpression>(MD));
1548 }