]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/IR/Type.cpp
Merge OpenSSL 1.1.1i.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / IR / Type.cpp
1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Type class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/TypeSize.h"
30 #include <cassert>
31 #include <utility>
32
33 using namespace llvm;
34
35 //===----------------------------------------------------------------------===//
36 //                         Type Class Implementation
37 //===----------------------------------------------------------------------===//
38
39 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
40   switch (IDNumber) {
41   case VoidTyID      : return getVoidTy(C);
42   case HalfTyID      : return getHalfTy(C);
43   case BFloatTyID    : return getBFloatTy(C);
44   case FloatTyID     : return getFloatTy(C);
45   case DoubleTyID    : return getDoubleTy(C);
46   case X86_FP80TyID  : return getX86_FP80Ty(C);
47   case FP128TyID     : return getFP128Ty(C);
48   case PPC_FP128TyID : return getPPC_FP128Ty(C);
49   case LabelTyID     : return getLabelTy(C);
50   case MetadataTyID  : return getMetadataTy(C);
51   case X86_MMXTyID   : return getX86_MMXTy(C);
52   case TokenTyID     : return getTokenTy(C);
53   default:
54     return nullptr;
55   }
56 }
57
58 bool Type::isIntegerTy(unsigned Bitwidth) const {
59   return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
60 }
61
62 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
63   // Identity cast means no change so return true
64   if (this == Ty)
65     return true;
66
67   // They are not convertible unless they are at least first class types
68   if (!this->isFirstClassType() || !Ty->isFirstClassType())
69     return false;
70
71   // Vector -> Vector conversions are always lossless if the two vector types
72   // have the same size, otherwise not.
73   if (isa<VectorType>(this) && isa<VectorType>(Ty))
74     return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits();
75
76   //  64-bit fixed width vector types can be losslessly converted to x86mmx.
77   if (((isa<FixedVectorType>(this)) && Ty->isX86_MMXTy()) &&
78       getPrimitiveSizeInBits().getFixedSize() == 64)
79     return true;
80   if ((isX86_MMXTy() && isa<FixedVectorType>(Ty)) &&
81       Ty->getPrimitiveSizeInBits().getFixedSize() == 64)
82     return true;
83
84   // At this point we have only various mismatches of the first class types
85   // remaining and ptr->ptr. Just select the lossless conversions. Everything
86   // else is not lossless. Conservatively assume we can't losslessly convert
87   // between pointers with different address spaces.
88   if (auto *PTy = dyn_cast<PointerType>(this)) {
89     if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
90       return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
91     return false;
92   }
93   return false;  // Other types have no identity values
94 }
95
96 bool Type::isEmptyTy() const {
97   if (auto *ATy = dyn_cast<ArrayType>(this)) {
98     unsigned NumElements = ATy->getNumElements();
99     return NumElements == 0 || ATy->getElementType()->isEmptyTy();
100   }
101
102   if (auto *STy = dyn_cast<StructType>(this)) {
103     unsigned NumElements = STy->getNumElements();
104     for (unsigned i = 0; i < NumElements; ++i)
105       if (!STy->getElementType(i)->isEmptyTy())
106         return false;
107     return true;
108   }
109
110   return false;
111 }
112
113 TypeSize Type::getPrimitiveSizeInBits() const {
114   switch (getTypeID()) {
115   case Type::HalfTyID: return TypeSize::Fixed(16);
116   case Type::BFloatTyID: return TypeSize::Fixed(16);
117   case Type::FloatTyID: return TypeSize::Fixed(32);
118   case Type::DoubleTyID: return TypeSize::Fixed(64);
119   case Type::X86_FP80TyID: return TypeSize::Fixed(80);
120   case Type::FP128TyID: return TypeSize::Fixed(128);
121   case Type::PPC_FP128TyID: return TypeSize::Fixed(128);
122   case Type::X86_MMXTyID: return TypeSize::Fixed(64);
123   case Type::IntegerTyID:
124     return TypeSize::Fixed(cast<IntegerType>(this)->getBitWidth());
125   case Type::FixedVectorTyID:
126   case Type::ScalableVectorTyID: {
127     const VectorType *VTy = cast<VectorType>(this);
128     ElementCount EC = VTy->getElementCount();
129     TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits();
130     assert(!ETS.isScalable() && "Vector type should have fixed-width elements");
131     return {ETS.getFixedSize() * EC.Min, EC.Scalable};
132   }
133   default: return TypeSize::Fixed(0);
134   }
135 }
136
137 unsigned Type::getScalarSizeInBits() const {
138   // It is safe to assume that the scalar types have a fixed size.
139   return getScalarType()->getPrimitiveSizeInBits().getFixedSize();
140 }
141
142 int Type::getFPMantissaWidth() const {
143   if (auto *VTy = dyn_cast<VectorType>(this))
144     return VTy->getElementType()->getFPMantissaWidth();
145   assert(isFloatingPointTy() && "Not a floating point type!");
146   if (getTypeID() == HalfTyID) return 11;
147   if (getTypeID() == BFloatTyID) return 8;
148   if (getTypeID() == FloatTyID) return 24;
149   if (getTypeID() == DoubleTyID) return 53;
150   if (getTypeID() == X86_FP80TyID) return 64;
151   if (getTypeID() == FP128TyID) return 113;
152   assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
153   return -1;
154 }
155
156 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
157   if (auto *ATy = dyn_cast<ArrayType>(this))
158     return ATy->getElementType()->isSized(Visited);
159
160   if (auto *VTy = dyn_cast<VectorType>(this))
161     return VTy->getElementType()->isSized(Visited);
162
163   return cast<StructType>(this)->isSized(Visited);
164 }
165
166 //===----------------------------------------------------------------------===//
167 //                          Primitive 'Type' data
168 //===----------------------------------------------------------------------===//
169
170 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
171 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
172 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
173 Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; }
174 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
175 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
176 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
177 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
178 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
179 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
180 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
181 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
182
183 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
184 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
185 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
186 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
187 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
188 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
189
190 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
191   return IntegerType::get(C, N);
192 }
193
194 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
195   return getHalfTy(C)->getPointerTo(AS);
196 }
197
198 PointerType *Type::getBFloatPtrTy(LLVMContext &C, unsigned AS) {
199   return getBFloatTy(C)->getPointerTo(AS);
200 }
201
202 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
203   return getFloatTy(C)->getPointerTo(AS);
204 }
205
206 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
207   return getDoubleTy(C)->getPointerTo(AS);
208 }
209
210 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
211   return getX86_FP80Ty(C)->getPointerTo(AS);
212 }
213
214 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
215   return getFP128Ty(C)->getPointerTo(AS);
216 }
217
218 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
219   return getPPC_FP128Ty(C)->getPointerTo(AS);
220 }
221
222 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
223   return getX86_MMXTy(C)->getPointerTo(AS);
224 }
225
226 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
227   return getIntNTy(C, N)->getPointerTo(AS);
228 }
229
230 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
231   return getInt1Ty(C)->getPointerTo(AS);
232 }
233
234 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
235   return getInt8Ty(C)->getPointerTo(AS);
236 }
237
238 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
239   return getInt16Ty(C)->getPointerTo(AS);
240 }
241
242 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
243   return getInt32Ty(C)->getPointerTo(AS);
244 }
245
246 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
247   return getInt64Ty(C)->getPointerTo(AS);
248 }
249
250 //===----------------------------------------------------------------------===//
251 //                       IntegerType Implementation
252 //===----------------------------------------------------------------------===//
253
254 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
255   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
256   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
257
258   // Check for the built-in integer types
259   switch (NumBits) {
260   case   1: return cast<IntegerType>(Type::getInt1Ty(C));
261   case   8: return cast<IntegerType>(Type::getInt8Ty(C));
262   case  16: return cast<IntegerType>(Type::getInt16Ty(C));
263   case  32: return cast<IntegerType>(Type::getInt32Ty(C));
264   case  64: return cast<IntegerType>(Type::getInt64Ty(C));
265   case 128: return cast<IntegerType>(Type::getInt128Ty(C));
266   default:
267     break;
268   }
269
270   IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
271
272   if (!Entry)
273     Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
274
275   return Entry;
276 }
277
278 bool IntegerType::isPowerOf2ByteWidth() const {
279   unsigned BitWidth = getBitWidth();
280   return (BitWidth > 7) && isPowerOf2_32(BitWidth);
281 }
282
283 APInt IntegerType::getMask() const {
284   return APInt::getAllOnesValue(getBitWidth());
285 }
286
287 //===----------------------------------------------------------------------===//
288 //                       FunctionType Implementation
289 //===----------------------------------------------------------------------===//
290
291 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
292                            bool IsVarArgs)
293   : Type(Result->getContext(), FunctionTyID) {
294   Type **SubTys = reinterpret_cast<Type**>(this+1);
295   assert(isValidReturnType(Result) && "invalid return type for function");
296   setSubclassData(IsVarArgs);
297
298   SubTys[0] = Result;
299
300   for (unsigned i = 0, e = Params.size(); i != e; ++i) {
301     assert(isValidArgumentType(Params[i]) &&
302            "Not a valid type for function argument!");
303     SubTys[i+1] = Params[i];
304   }
305
306   ContainedTys = SubTys;
307   NumContainedTys = Params.size() + 1; // + 1 for result type
308 }
309
310 // This is the factory function for the FunctionType class.
311 FunctionType *FunctionType::get(Type *ReturnType,
312                                 ArrayRef<Type*> Params, bool isVarArg) {
313   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
314   const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
315   FunctionType *FT;
316   // Since we only want to allocate a fresh function type in case none is found
317   // and we don't want to perform two lookups (one for checking if existent and
318   // one for inserting the newly allocated one), here we instead lookup based on
319   // Key and update the reference to the function type in-place to a newly
320   // allocated one if not found.
321   auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
322   if (Insertion.second) {
323     // The function type was not found. Allocate one and update FunctionTypes
324     // in-place.
325     FT = (FunctionType *)pImpl->Alloc.Allocate(
326         sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
327         alignof(FunctionType));
328     new (FT) FunctionType(ReturnType, Params, isVarArg);
329     *Insertion.first = FT;
330   } else {
331     // The function type was found. Just return it.
332     FT = *Insertion.first;
333   }
334   return FT;
335 }
336
337 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
338   return get(Result, None, isVarArg);
339 }
340
341 bool FunctionType::isValidReturnType(Type *RetTy) {
342   return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
343   !RetTy->isMetadataTy();
344 }
345
346 bool FunctionType::isValidArgumentType(Type *ArgTy) {
347   return ArgTy->isFirstClassType();
348 }
349
350 //===----------------------------------------------------------------------===//
351 //                       StructType Implementation
352 //===----------------------------------------------------------------------===//
353
354 // Primitive Constructors.
355
356 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
357                             bool isPacked) {
358   LLVMContextImpl *pImpl = Context.pImpl;
359   const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
360
361   StructType *ST;
362   // Since we only want to allocate a fresh struct type in case none is found
363   // and we don't want to perform two lookups (one for checking if existent and
364   // one for inserting the newly allocated one), here we instead lookup based on
365   // Key and update the reference to the struct type in-place to a newly
366   // allocated one if not found.
367   auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
368   if (Insertion.second) {
369     // The struct type was not found. Allocate one and update AnonStructTypes
370     // in-place.
371     ST = new (Context.pImpl->Alloc) StructType(Context);
372     ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
373     ST->setBody(ETypes, isPacked);
374     *Insertion.first = ST;
375   } else {
376     // The struct type was found. Just return it.
377     ST = *Insertion.first;
378   }
379
380   return ST;
381 }
382
383 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
384   assert(isOpaque() && "Struct body already set!");
385
386   setSubclassData(getSubclassData() | SCDB_HasBody);
387   if (isPacked)
388     setSubclassData(getSubclassData() | SCDB_Packed);
389
390   NumContainedTys = Elements.size();
391
392   if (Elements.empty()) {
393     ContainedTys = nullptr;
394     return;
395   }
396
397   ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
398 }
399
400 void StructType::setName(StringRef Name) {
401   if (Name == getName()) return;
402
403   StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
404
405   using EntryTy = StringMap<StructType *>::MapEntryTy;
406
407   // If this struct already had a name, remove its symbol table entry. Don't
408   // delete the data yet because it may be part of the new name.
409   if (SymbolTableEntry)
410     SymbolTable.remove((EntryTy *)SymbolTableEntry);
411
412   // If this is just removing the name, we're done.
413   if (Name.empty()) {
414     if (SymbolTableEntry) {
415       // Delete the old string data.
416       ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
417       SymbolTableEntry = nullptr;
418     }
419     return;
420   }
421
422   // Look up the entry for the name.
423   auto IterBool =
424       getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
425
426   // While we have a name collision, try a random rename.
427   if (!IterBool.second) {
428     SmallString<64> TempStr(Name);
429     TempStr.push_back('.');
430     raw_svector_ostream TmpStream(TempStr);
431     unsigned NameSize = Name.size();
432
433     do {
434       TempStr.resize(NameSize + 1);
435       TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
436
437       IterBool = getContext().pImpl->NamedStructTypes.insert(
438           std::make_pair(TmpStream.str(), this));
439     } while (!IterBool.second);
440   }
441
442   // Delete the old string data.
443   if (SymbolTableEntry)
444     ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
445   SymbolTableEntry = &*IterBool.first;
446 }
447
448 //===----------------------------------------------------------------------===//
449 // StructType Helper functions.
450
451 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
452   StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
453   if (!Name.empty())
454     ST->setName(Name);
455   return ST;
456 }
457
458 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
459   return get(Context, None, isPacked);
460 }
461
462 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
463                                StringRef Name, bool isPacked) {
464   StructType *ST = create(Context, Name);
465   ST->setBody(Elements, isPacked);
466   return ST;
467 }
468
469 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
470   return create(Context, Elements, StringRef());
471 }
472
473 StructType *StructType::create(LLVMContext &Context) {
474   return create(Context, StringRef());
475 }
476
477 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
478                                bool isPacked) {
479   assert(!Elements.empty() &&
480          "This method may not be invoked with an empty list");
481   return create(Elements[0]->getContext(), Elements, Name, isPacked);
482 }
483
484 StructType *StructType::create(ArrayRef<Type*> Elements) {
485   assert(!Elements.empty() &&
486          "This method may not be invoked with an empty list");
487   return create(Elements[0]->getContext(), Elements, StringRef());
488 }
489
490 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
491   if ((getSubclassData() & SCDB_IsSized) != 0)
492     return true;
493   if (isOpaque())
494     return false;
495
496   if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
497     return false;
498
499   // Okay, our struct is sized if all of the elements are, but if one of the
500   // elements is opaque, the struct isn't sized *yet*, but may become sized in
501   // the future, so just bail out without caching.
502   for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
503     if (!(*I)->isSized(Visited))
504       return false;
505
506   // Here we cheat a bit and cast away const-ness. The goal is to memoize when
507   // we find a sized type, as types can only move from opaque to sized, not the
508   // other way.
509   const_cast<StructType*>(this)->setSubclassData(
510     getSubclassData() | SCDB_IsSized);
511   return true;
512 }
513
514 StringRef StructType::getName() const {
515   assert(!isLiteral() && "Literal structs never have names");
516   if (!SymbolTableEntry) return StringRef();
517
518   return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
519 }
520
521 bool StructType::isValidElementType(Type *ElemTy) {
522   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
523          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
524          !ElemTy->isTokenTy() && !isa<ScalableVectorType>(ElemTy);
525 }
526
527 bool StructType::isLayoutIdentical(StructType *Other) const {
528   if (this == Other) return true;
529
530   if (isPacked() != Other->isPacked())
531     return false;
532
533   return elements() == Other->elements();
534 }
535
536 StructType *Module::getTypeByName(StringRef Name) const {
537   return getContext().pImpl->NamedStructTypes.lookup(Name);
538 }
539
540 Type *StructType::getTypeAtIndex(const Value *V) const {
541   unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
542   assert(indexValid(Idx) && "Invalid structure index!");
543   return getElementType(Idx);
544 }
545
546 bool StructType::indexValid(const Value *V) const {
547   // Structure indexes require (vectors of) 32-bit integer constants.  In the
548   // vector case all of the indices must be equal.
549   if (!V->getType()->isIntOrIntVectorTy(32))
550     return false;
551   if (isa<ScalableVectorType>(V->getType()))
552     return false;
553   const Constant *C = dyn_cast<Constant>(V);
554   if (C && V->getType()->isVectorTy())
555     C = C->getSplatValue();
556   const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
557   return CU && CU->getZExtValue() < getNumElements();
558 }
559
560 //===----------------------------------------------------------------------===//
561 //                           ArrayType Implementation
562 //===----------------------------------------------------------------------===//
563
564 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
565     : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType),
566       NumElements(NumEl) {
567   ContainedTys = &ContainedType;
568   NumContainedTys = 1;
569 }
570
571 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
572   assert(isValidElementType(ElementType) && "Invalid type for array element!");
573
574   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
575   ArrayType *&Entry =
576     pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
577
578   if (!Entry)
579     Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
580   return Entry;
581 }
582
583 bool ArrayType::isValidElementType(Type *ElemTy) {
584   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
585          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
586          !ElemTy->isTokenTy() && !isa<ScalableVectorType>(ElemTy);
587 }
588
589 //===----------------------------------------------------------------------===//
590 //                          VectorType Implementation
591 //===----------------------------------------------------------------------===//
592
593 VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID)
594     : Type(ElType->getContext(), TID), ContainedType(ElType),
595       ElementQuantity(EQ) {
596   ContainedTys = &ContainedType;
597   NumContainedTys = 1;
598 }
599
600 VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
601   if (EC.Scalable)
602     return ScalableVectorType::get(ElementType, EC.Min);
603   else
604     return FixedVectorType::get(ElementType, EC.Min);
605 }
606
607 bool VectorType::isValidElementType(Type *ElemTy) {
608   return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
609          ElemTy->isPointerTy();
610 }
611
612 //===----------------------------------------------------------------------===//
613 //                        FixedVectorType Implementation
614 //===----------------------------------------------------------------------===//
615
616 FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) {
617   assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0");
618   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
619                                             "be an integer, floating point, or "
620                                             "pointer type.");
621
622   ElementCount EC(NumElts, false);
623
624   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
625   VectorType *&Entry = ElementType->getContext()
626                            .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
627
628   if (!Entry)
629     Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts);
630   return cast<FixedVectorType>(Entry);
631 }
632
633 //===----------------------------------------------------------------------===//
634 //                       ScalableVectorType Implementation
635 //===----------------------------------------------------------------------===//
636
637 ScalableVectorType *ScalableVectorType::get(Type *ElementType,
638                                             unsigned MinNumElts) {
639   assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0");
640   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
641                                             "be an integer, floating point, or "
642                                             "pointer type.");
643
644   ElementCount EC(MinNumElts, true);
645
646   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
647   VectorType *&Entry = ElementType->getContext()
648                            .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
649
650   if (!Entry)
651     Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts);
652   return cast<ScalableVectorType>(Entry);
653 }
654
655 //===----------------------------------------------------------------------===//
656 //                         PointerType Implementation
657 //===----------------------------------------------------------------------===//
658
659 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
660   assert(EltTy && "Can't get a pointer to <null> type!");
661   assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
662
663   LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
664
665   // Since AddressSpace #0 is the common case, we special case it.
666   PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
667      : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
668
669   if (!Entry)
670     Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
671   return Entry;
672 }
673
674 PointerType::PointerType(Type *E, unsigned AddrSpace)
675   : Type(E->getContext(), PointerTyID), PointeeTy(E) {
676   ContainedTys = &PointeeTy;
677   NumContainedTys = 1;
678   setSubclassData(AddrSpace);
679 }
680
681 PointerType *Type::getPointerTo(unsigned addrs) const {
682   return PointerType::get(const_cast<Type*>(this), addrs);
683 }
684
685 bool PointerType::isValidElementType(Type *ElemTy) {
686   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
687          !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
688 }
689
690 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
691   return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
692 }