]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/MC/MCAssembler.cpp
Merge r357222 from the clang1000-import branch:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / MC / MCAssembler.cpp
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSectionELF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/LEB128.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <cstring>
42 #include <tuple>
43 #include <utility>
44
45 using namespace llvm;
46
47 #define DEBUG_TYPE "assembler"
48
49 namespace {
50 namespace stats {
51
52 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
53 STATISTIC(EmittedRelaxableFragments,
54           "Number of emitted assembler fragments - relaxable");
55 STATISTIC(EmittedDataFragments,
56           "Number of emitted assembler fragments - data");
57 STATISTIC(EmittedCompactEncodedInstFragments,
58           "Number of emitted assembler fragments - compact encoded inst");
59 STATISTIC(EmittedAlignFragments,
60           "Number of emitted assembler fragments - align");
61 STATISTIC(EmittedFillFragments,
62           "Number of emitted assembler fragments - fill");
63 STATISTIC(EmittedOrgFragments,
64           "Number of emitted assembler fragments - org");
65 STATISTIC(evaluateFixup, "Number of evaluated fixups");
66 STATISTIC(FragmentLayouts, "Number of fragment layouts");
67 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
68 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
69 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
70 STATISTIC(PaddingFragmentsRelaxations,
71           "Number of Padding Fragments relaxations");
72 STATISTIC(PaddingFragmentsBytes,
73           "Total size of all padding from adding Fragments");
74
75 } // end namespace stats
76 } // end anonymous namespace
77
78 // FIXME FIXME FIXME: There are number of places in this file where we convert
79 // what is a 64-bit assembler value used for computation into a value in the
80 // object file, which may truncate it. We should detect that truncation where
81 // invalid and report errors back.
82
83 /* *** */
84
85 MCAssembler::MCAssembler(MCContext &Context,
86                          std::unique_ptr<MCAsmBackend> Backend,
87                          std::unique_ptr<MCCodeEmitter> Emitter,
88                          std::unique_ptr<MCObjectWriter> Writer)
89     : Context(Context), Backend(std::move(Backend)),
90       Emitter(std::move(Emitter)), Writer(std::move(Writer)),
91       BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
92       IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
93   VersionInfo.Major = 0; // Major version == 0 for "none specified"
94 }
95
96 MCAssembler::~MCAssembler() = default;
97
98 void MCAssembler::reset() {
99   Sections.clear();
100   Symbols.clear();
101   IndirectSymbols.clear();
102   DataRegions.clear();
103   LinkerOptions.clear();
104   FileNames.clear();
105   ThumbFuncs.clear();
106   BundleAlignSize = 0;
107   RelaxAll = false;
108   SubsectionsViaSymbols = false;
109   IncrementalLinkerCompatible = false;
110   ELFHeaderEFlags = 0;
111   LOHContainer.reset();
112   VersionInfo.Major = 0;
113   VersionInfo.SDKVersion = VersionTuple();
114
115   // reset objects owned by us
116   if (getBackendPtr())
117     getBackendPtr()->reset();
118   if (getEmitterPtr())
119     getEmitterPtr()->reset();
120   if (getWriterPtr())
121     getWriterPtr()->reset();
122   getLOHContainer().reset();
123 }
124
125 bool MCAssembler::registerSection(MCSection &Section) {
126   if (Section.isRegistered())
127     return false;
128   Sections.push_back(&Section);
129   Section.setIsRegistered(true);
130   return true;
131 }
132
133 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
134   if (ThumbFuncs.count(Symbol))
135     return true;
136
137   if (!Symbol->isVariable())
138     return false;
139
140   const MCExpr *Expr = Symbol->getVariableValue();
141
142   MCValue V;
143   if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
144     return false;
145
146   if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
147     return false;
148
149   const MCSymbolRefExpr *Ref = V.getSymA();
150   if (!Ref)
151     return false;
152
153   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
154     return false;
155
156   const MCSymbol &Sym = Ref->getSymbol();
157   if (!isThumbFunc(&Sym))
158     return false;
159
160   ThumbFuncs.insert(Symbol); // Cache it.
161   return true;
162 }
163
164 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
165   // Non-temporary labels should always be visible to the linker.
166   if (!Symbol.isTemporary())
167     return true;
168
169   // Absolute temporary labels are never visible.
170   if (!Symbol.isInSection())
171     return false;
172
173   if (Symbol.isUsedInReloc())
174     return true;
175
176   return false;
177 }
178
179 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
180   // Linker visible symbols define atoms.
181   if (isSymbolLinkerVisible(S))
182     return &S;
183
184   // Absolute and undefined symbols have no defining atom.
185   if (!S.isInSection())
186     return nullptr;
187
188   // Non-linker visible symbols in sections which can't be atomized have no
189   // defining atom.
190   if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
191           *S.getFragment()->getParent()))
192     return nullptr;
193
194   // Otherwise, return the atom for the containing fragment.
195   return S.getFragment()->getAtom();
196 }
197
198 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
199                                 const MCFixup &Fixup, const MCFragment *DF,
200                                 MCValue &Target, uint64_t &Value,
201                                 bool &WasForced) const {
202   ++stats::evaluateFixup;
203
204   // FIXME: This code has some duplication with recordRelocation. We should
205   // probably merge the two into a single callback that tries to evaluate a
206   // fixup and records a relocation if one is needed.
207
208   // On error claim to have completely evaluated the fixup, to prevent any
209   // further processing from being done.
210   const MCExpr *Expr = Fixup.getValue();
211   MCContext &Ctx = getContext();
212   Value = 0;
213   WasForced = false;
214   if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
215     Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
216     return true;
217   }
218   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
219     if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
220       Ctx.reportError(Fixup.getLoc(),
221                       "unsupported subtraction of qualified symbol");
222       return true;
223     }
224   }
225
226   assert(getBackendPtr() && "Expected assembler backend");
227   bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
228                  MCFixupKindInfo::FKF_IsPCRel;
229
230   bool IsResolved = false;
231   if (IsPCRel) {
232     if (Target.getSymB()) {
233       IsResolved = false;
234     } else if (!Target.getSymA()) {
235       IsResolved = false;
236     } else {
237       const MCSymbolRefExpr *A = Target.getSymA();
238       const MCSymbol &SA = A->getSymbol();
239       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
240         IsResolved = false;
241       } else if (auto *Writer = getWriterPtr()) {
242         IsResolved = Writer->isSymbolRefDifferenceFullyResolvedImpl(
243             *this, SA, *DF, false, true);
244       }
245     }
246   } else {
247     IsResolved = Target.isAbsolute();
248   }
249
250   Value = Target.getConstant();
251
252   if (const MCSymbolRefExpr *A = Target.getSymA()) {
253     const MCSymbol &Sym = A->getSymbol();
254     if (Sym.isDefined())
255       Value += Layout.getSymbolOffset(Sym);
256   }
257   if (const MCSymbolRefExpr *B = Target.getSymB()) {
258     const MCSymbol &Sym = B->getSymbol();
259     if (Sym.isDefined())
260       Value -= Layout.getSymbolOffset(Sym);
261   }
262
263   bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
264                        MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
265   assert((ShouldAlignPC ? IsPCRel : true) &&
266     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
267
268   if (IsPCRel) {
269     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
270
271     // A number of ARM fixups in Thumb mode require that the effective PC
272     // address be determined as the 32-bit aligned version of the actual offset.
273     if (ShouldAlignPC) Offset &= ~0x3;
274     Value -= Offset;
275   }
276
277   // Let the backend force a relocation if needed.
278   if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
279     IsResolved = false;
280     WasForced = true;
281   }
282
283   return IsResolved;
284 }
285
286 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
287                                           const MCFragment &F) const {
288   assert(getBackendPtr() && "Requires assembler backend");
289   switch (F.getKind()) {
290   case MCFragment::FT_Data:
291     return cast<MCDataFragment>(F).getContents().size();
292   case MCFragment::FT_Relaxable:
293     return cast<MCRelaxableFragment>(F).getContents().size();
294   case MCFragment::FT_CompactEncodedInst:
295     return cast<MCCompactEncodedInstFragment>(F).getContents().size();
296   case MCFragment::FT_Fill: {
297     auto &FF = cast<MCFillFragment>(F);
298     int64_t NumValues = 0;
299     if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
300       getContext().reportError(FF.getLoc(),
301                                "expected assembly-time absolute expression");
302       return 0;
303     }
304     int64_t Size = NumValues * FF.getValueSize();
305     if (Size < 0) {
306       getContext().reportError(FF.getLoc(), "invalid number of bytes");
307       return 0;
308     }
309     return Size;
310   }
311
312   case MCFragment::FT_LEB:
313     return cast<MCLEBFragment>(F).getContents().size();
314
315   case MCFragment::FT_Padding:
316     return cast<MCPaddingFragment>(F).getSize();
317
318   case MCFragment::FT_SymbolId:
319     return 4;
320
321   case MCFragment::FT_Align: {
322     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
323     unsigned Offset = Layout.getFragmentOffset(&AF);
324     unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
325
326     // Insert extra Nops for code alignment if the target define
327     // shouldInsertExtraNopBytesForCodeAlign target hook.
328     if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() &&
329         getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
330       return Size;
331
332     // If we are padding with nops, force the padding to be larger than the
333     // minimum nop size.
334     if (Size > 0 && AF.hasEmitNops()) {
335       while (Size % getBackend().getMinimumNopSize())
336         Size += AF.getAlignment();
337     }
338     if (Size > AF.getMaxBytesToEmit())
339       return 0;
340     return Size;
341   }
342
343   case MCFragment::FT_Org: {
344     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
345     MCValue Value;
346     if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
347       getContext().reportError(OF.getLoc(),
348                                "expected assembly-time absolute expression");
349         return 0;
350     }
351
352     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
353     int64_t TargetLocation = Value.getConstant();
354     if (const MCSymbolRefExpr *A = Value.getSymA()) {
355       uint64_t Val;
356       if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
357         getContext().reportError(OF.getLoc(), "expected absolute expression");
358         return 0;
359       }
360       TargetLocation += Val;
361     }
362     int64_t Size = TargetLocation - FragmentOffset;
363     if (Size < 0 || Size >= 0x40000000) {
364       getContext().reportError(
365           OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
366                            "' (at offset '" + Twine(FragmentOffset) + "')");
367       return 0;
368     }
369     return Size;
370   }
371
372   case MCFragment::FT_Dwarf:
373     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
374   case MCFragment::FT_DwarfFrame:
375     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
376   case MCFragment::FT_CVInlineLines:
377     return cast<MCCVInlineLineTableFragment>(F).getContents().size();
378   case MCFragment::FT_CVDefRange:
379     return cast<MCCVDefRangeFragment>(F).getContents().size();
380   case MCFragment::FT_Dummy:
381     llvm_unreachable("Should not have been added");
382   }
383
384   llvm_unreachable("invalid fragment kind");
385 }
386
387 void MCAsmLayout::layoutFragment(MCFragment *F) {
388   MCFragment *Prev = F->getPrevNode();
389
390   // We should never try to recompute something which is valid.
391   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
392   // We should never try to compute the fragment layout if its predecessor
393   // isn't valid.
394   assert((!Prev || isFragmentValid(Prev)) &&
395          "Attempt to compute fragment before its predecessor!");
396
397   ++stats::FragmentLayouts;
398
399   // Compute fragment offset and size.
400   if (Prev)
401     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
402   else
403     F->Offset = 0;
404   LastValidFragment[F->getParent()] = F;
405
406   // If bundling is enabled and this fragment has instructions in it, it has to
407   // obey the bundling restrictions. With padding, we'll have:
408   //
409   //
410   //        BundlePadding
411   //             |||
412   // -------------------------------------
413   //   Prev  |##########|       F        |
414   // -------------------------------------
415   //                    ^
416   //                    |
417   //                    F->Offset
418   //
419   // The fragment's offset will point to after the padding, and its computed
420   // size won't include the padding.
421   //
422   // When the -mc-relax-all flag is used, we optimize bundling by writting the
423   // padding directly into fragments when the instructions are emitted inside
424   // the streamer. When the fragment is larger than the bundle size, we need to
425   // ensure that it's bundle aligned. This means that if we end up with
426   // multiple fragments, we must emit bundle padding between fragments.
427   //
428   // ".align N" is an example of a directive that introduces multiple
429   // fragments. We could add a special case to handle ".align N" by emitting
430   // within-fragment padding (which would produce less padding when N is less
431   // than the bundle size), but for now we don't.
432   //
433   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
434     assert(isa<MCEncodedFragment>(F) &&
435            "Only MCEncodedFragment implementations have instructions");
436     MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
437     uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
438
439     if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
440       report_fatal_error("Fragment can't be larger than a bundle size");
441
442     uint64_t RequiredBundlePadding =
443         computeBundlePadding(Assembler, EF, EF->Offset, FSize);
444     if (RequiredBundlePadding > UINT8_MAX)
445       report_fatal_error("Padding cannot exceed 255 bytes");
446     EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
447     EF->Offset += RequiredBundlePadding;
448   }
449 }
450
451 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
452   bool New = !Symbol.isRegistered();
453   if (Created)
454     *Created = New;
455   if (New) {
456     Symbol.setIsRegistered(true);
457     Symbols.push_back(&Symbol);
458   }
459 }
460
461 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
462                                        const MCEncodedFragment &EF,
463                                        uint64_t FSize) const {
464   assert(getBackendPtr() && "Expected assembler backend");
465   // Should NOP padding be written out before this fragment?
466   unsigned BundlePadding = EF.getBundlePadding();
467   if (BundlePadding > 0) {
468     assert(isBundlingEnabled() &&
469            "Writing bundle padding with disabled bundling");
470     assert(EF.hasInstructions() &&
471            "Writing bundle padding for a fragment without instructions");
472
473     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
474     if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
475       // If the padding itself crosses a bundle boundary, it must be emitted
476       // in 2 pieces, since even nop instructions must not cross boundaries.
477       //             v--------------v   <- BundleAlignSize
478       //        v---------v             <- BundlePadding
479       // ----------------------------
480       // | Prev |####|####|    F    |
481       // ----------------------------
482       //        ^-------------------^   <- TotalLength
483       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
484       if (!getBackend().writeNopData(OS, DistanceToBoundary))
485         report_fatal_error("unable to write NOP sequence of " +
486                            Twine(DistanceToBoundary) + " bytes");
487       BundlePadding -= DistanceToBoundary;
488     }
489     if (!getBackend().writeNopData(OS, BundlePadding))
490       report_fatal_error("unable to write NOP sequence of " +
491                          Twine(BundlePadding) + " bytes");
492   }
493 }
494
495 /// Write the fragment \p F to the output file.
496 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
497                           const MCAsmLayout &Layout, const MCFragment &F) {
498   // FIXME: Embed in fragments instead?
499   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
500
501   support::endianness Endian = Asm.getBackend().Endian;
502
503   if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
504     Asm.writeFragmentPadding(OS, *EF, FragmentSize);
505
506   // This variable (and its dummy usage) is to participate in the assert at
507   // the end of the function.
508   uint64_t Start = OS.tell();
509   (void) Start;
510
511   ++stats::EmittedFragments;
512
513   switch (F.getKind()) {
514   case MCFragment::FT_Align: {
515     ++stats::EmittedAlignFragments;
516     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
517     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
518
519     uint64_t Count = FragmentSize / AF.getValueSize();
520
521     // FIXME: This error shouldn't actually occur (the front end should emit
522     // multiple .align directives to enforce the semantics it wants), but is
523     // severe enough that we want to report it. How to handle this?
524     if (Count * AF.getValueSize() != FragmentSize)
525       report_fatal_error("undefined .align directive, value size '" +
526                         Twine(AF.getValueSize()) +
527                         "' is not a divisor of padding size '" +
528                         Twine(FragmentSize) + "'");
529
530     // See if we are aligning with nops, and if so do that first to try to fill
531     // the Count bytes.  Then if that did not fill any bytes or there are any
532     // bytes left to fill use the Value and ValueSize to fill the rest.
533     // If we are aligning with nops, ask that target to emit the right data.
534     if (AF.hasEmitNops()) {
535       if (!Asm.getBackend().writeNopData(OS, Count))
536         report_fatal_error("unable to write nop sequence of " +
537                           Twine(Count) + " bytes");
538       break;
539     }
540
541     // Otherwise, write out in multiples of the value size.
542     for (uint64_t i = 0; i != Count; ++i) {
543       switch (AF.getValueSize()) {
544       default: llvm_unreachable("Invalid size!");
545       case 1: OS << char(AF.getValue()); break;
546       case 2:
547         support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
548         break;
549       case 4:
550         support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
551         break;
552       case 8:
553         support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
554         break;
555       }
556     }
557     break;
558   }
559
560   case MCFragment::FT_Data:
561     ++stats::EmittedDataFragments;
562     OS << cast<MCDataFragment>(F).getContents();
563     break;
564
565   case MCFragment::FT_Relaxable:
566     ++stats::EmittedRelaxableFragments;
567     OS << cast<MCRelaxableFragment>(F).getContents();
568     break;
569
570   case MCFragment::FT_CompactEncodedInst:
571     ++stats::EmittedCompactEncodedInstFragments;
572     OS << cast<MCCompactEncodedInstFragment>(F).getContents();
573     break;
574
575   case MCFragment::FT_Fill: {
576     ++stats::EmittedFillFragments;
577     const MCFillFragment &FF = cast<MCFillFragment>(F);
578     uint64_t V = FF.getValue();
579     unsigned VSize = FF.getValueSize();
580     const unsigned MaxChunkSize = 16;
581     char Data[MaxChunkSize];
582     // Duplicate V into Data as byte vector to reduce number of
583     // writes done. As such, do endian conversion here.
584     for (unsigned I = 0; I != VSize; ++I) {
585       unsigned index = Endian == support::little ? I : (VSize - I - 1);
586       Data[I] = uint8_t(V >> (index * 8));
587     }
588     for (unsigned I = VSize; I < MaxChunkSize; ++I)
589       Data[I] = Data[I - VSize];
590
591     // Set to largest multiple of VSize in Data.
592     const unsigned NumPerChunk = MaxChunkSize / VSize;
593     // Set ChunkSize to largest multiple of VSize in Data
594     const unsigned ChunkSize = VSize * NumPerChunk;
595
596     // Do copies by chunk.
597     StringRef Ref(Data, ChunkSize);
598     for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
599       OS << Ref;
600
601     // do remainder if needed.
602     unsigned TrailingCount = FragmentSize % ChunkSize;
603     if (TrailingCount)
604       OS.write(Data, TrailingCount);
605     break;
606   }
607
608   case MCFragment::FT_LEB: {
609     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
610     OS << LF.getContents();
611     break;
612   }
613
614   case MCFragment::FT_Padding: {
615     if (!Asm.getBackend().writeNopData(OS, FragmentSize))
616       report_fatal_error("unable to write nop sequence of " +
617                          Twine(FragmentSize) + " bytes");
618     break;
619   }
620
621   case MCFragment::FT_SymbolId: {
622     const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
623     support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
624     break;
625   }
626
627   case MCFragment::FT_Org: {
628     ++stats::EmittedOrgFragments;
629     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
630
631     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
632       OS << char(OF.getValue());
633
634     break;
635   }
636
637   case MCFragment::FT_Dwarf: {
638     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
639     OS << OF.getContents();
640     break;
641   }
642   case MCFragment::FT_DwarfFrame: {
643     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
644     OS << CF.getContents();
645     break;
646   }
647   case MCFragment::FT_CVInlineLines: {
648     const auto &OF = cast<MCCVInlineLineTableFragment>(F);
649     OS << OF.getContents();
650     break;
651   }
652   case MCFragment::FT_CVDefRange: {
653     const auto &DRF = cast<MCCVDefRangeFragment>(F);
654     OS << DRF.getContents();
655     break;
656   }
657   case MCFragment::FT_Dummy:
658     llvm_unreachable("Should not have been added");
659   }
660
661   assert(OS.tell() - Start == FragmentSize &&
662          "The stream should advance by fragment size");
663 }
664
665 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
666                                    const MCAsmLayout &Layout) const {
667   assert(getBackendPtr() && "Expected assembler backend");
668
669   // Ignore virtual sections.
670   if (Sec->isVirtualSection()) {
671     assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
672
673     // Check that contents are only things legal inside a virtual section.
674     for (const MCFragment &F : *Sec) {
675       switch (F.getKind()) {
676       default: llvm_unreachable("Invalid fragment in virtual section!");
677       case MCFragment::FT_Data: {
678         // Check that we aren't trying to write a non-zero contents (or fixups)
679         // into a virtual section. This is to support clients which use standard
680         // directives to fill the contents of virtual sections.
681         const MCDataFragment &DF = cast<MCDataFragment>(F);
682         if (DF.fixup_begin() != DF.fixup_end())
683           report_fatal_error("cannot have fixups in virtual section!");
684         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
685           if (DF.getContents()[i]) {
686             if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
687               report_fatal_error("non-zero initializer found in section '" +
688                   ELFSec->getSectionName() + "'");
689             else
690               report_fatal_error("non-zero initializer found in virtual section");
691           }
692         break;
693       }
694       case MCFragment::FT_Align:
695         // Check that we aren't trying to write a non-zero value into a virtual
696         // section.
697         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
698                 cast<MCAlignFragment>(F).getValue() == 0) &&
699                "Invalid align in virtual section!");
700         break;
701       case MCFragment::FT_Fill:
702         assert((cast<MCFillFragment>(F).getValue() == 0) &&
703                "Invalid fill in virtual section!");
704         break;
705       }
706     }
707
708     return;
709   }
710
711   uint64_t Start = OS.tell();
712   (void)Start;
713
714   for (const MCFragment &F : *Sec)
715     writeFragment(OS, *this, Layout, F);
716
717   assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec));
718 }
719
720 std::tuple<MCValue, uint64_t, bool>
721 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
722                          const MCFixup &Fixup) {
723   // Evaluate the fixup.
724   MCValue Target;
725   uint64_t FixedValue;
726   bool WasForced;
727   bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
728                                   WasForced);
729   if (!IsResolved) {
730     // The fixup was unresolved, we need a relocation. Inform the object
731     // writer of the relocation, and give it an opportunity to adjust the
732     // fixup value if need be.
733     if (Target.getSymA() && Target.getSymB() &&
734         getBackend().requiresDiffExpressionRelocations()) {
735       // The fixup represents the difference between two symbols, which the
736       // backend has indicated must be resolved at link time. Split up the fixup
737       // into two relocations, one for the add, and one for the sub, and emit
738       // both of these. The constant will be associated with the add half of the
739       // expression.
740       MCFixup FixupAdd = MCFixup::createAddFor(Fixup);
741       MCValue TargetAdd =
742           MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
743       getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd,
744                                    FixedValue);
745       MCFixup FixupSub = MCFixup::createSubFor(Fixup);
746       MCValue TargetSub = MCValue::get(Target.getSymB());
747       getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub,
748                                    FixedValue);
749     } else {
750       getWriter().recordRelocation(*this, Layout, &F, Fixup, Target,
751                                    FixedValue);
752     }
753   }
754   return std::make_tuple(Target, FixedValue, IsResolved);
755 }
756
757 void MCAssembler::layout(MCAsmLayout &Layout) {
758   assert(getBackendPtr() && "Expected assembler backend");
759   DEBUG_WITH_TYPE("mc-dump", {
760       errs() << "assembler backend - pre-layout\n--\n";
761       dump(); });
762
763   // Create dummy fragments and assign section ordinals.
764   unsigned SectionIndex = 0;
765   for (MCSection &Sec : *this) {
766     // Create dummy fragments to eliminate any empty sections, this simplifies
767     // layout.
768     if (Sec.getFragmentList().empty())
769       new MCDataFragment(&Sec);
770
771     Sec.setOrdinal(SectionIndex++);
772   }
773
774   // Assign layout order indices to sections and fragments.
775   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
776     MCSection *Sec = Layout.getSectionOrder()[i];
777     Sec->setLayoutOrder(i);
778
779     unsigned FragmentIndex = 0;
780     for (MCFragment &Frag : *Sec)
781       Frag.setLayoutOrder(FragmentIndex++);
782   }
783
784   // Layout until everything fits.
785   while (layoutOnce(Layout))
786     if (getContext().hadError())
787       return;
788
789   DEBUG_WITH_TYPE("mc-dump", {
790       errs() << "assembler backend - post-relaxation\n--\n";
791       dump(); });
792
793   // Finalize the layout, including fragment lowering.
794   finishLayout(Layout);
795
796   DEBUG_WITH_TYPE("mc-dump", {
797       errs() << "assembler backend - final-layout\n--\n";
798       dump(); });
799
800   // Allow the object writer a chance to perform post-layout binding (for
801   // example, to set the index fields in the symbol data).
802   getWriter().executePostLayoutBinding(*this, Layout);
803
804   // Evaluate and apply the fixups, generating relocation entries as necessary.
805   for (MCSection &Sec : *this) {
806     for (MCFragment &Frag : Sec) {
807       // Data and relaxable fragments both have fixups.  So only process
808       // those here.
809       // FIXME: Is there a better way to do this?  MCEncodedFragmentWithFixups
810       // being templated makes this tricky.
811       if (isa<MCEncodedFragment>(&Frag) &&
812           isa<MCCompactEncodedInstFragment>(&Frag))
813         continue;
814       if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag) &&
815           !isa<MCAlignFragment>(&Frag))
816         continue;
817       ArrayRef<MCFixup> Fixups;
818       MutableArrayRef<char> Contents;
819       const MCSubtargetInfo *STI = nullptr;
820       if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
821         Fixups = FragWithFixups->getFixups();
822         Contents = FragWithFixups->getContents();
823         STI = FragWithFixups->getSubtargetInfo();
824         assert(!FragWithFixups->hasInstructions() || STI != nullptr);
825       } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
826         Fixups = FragWithFixups->getFixups();
827         Contents = FragWithFixups->getContents();
828         STI = FragWithFixups->getSubtargetInfo();
829         assert(!FragWithFixups->hasInstructions() || STI != nullptr);
830       } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
831         Fixups = FragWithFixups->getFixups();
832         Contents = FragWithFixups->getContents();
833       } else if (auto *FragWithFixups = dyn_cast<MCDwarfLineAddrFragment>(&Frag)) {
834         Fixups = FragWithFixups->getFixups();
835         Contents = FragWithFixups->getContents();
836       } else if (auto *AF = dyn_cast<MCAlignFragment>(&Frag)) {
837         // Insert fixup type for code alignment if the target define
838         // shouldInsertFixupForCodeAlign target hook.
839         if (Sec.UseCodeAlign() && AF->hasEmitNops()) {
840           getBackend().shouldInsertFixupForCodeAlign(*this, Layout, *AF);
841         }
842         continue;
843       } else if (auto *FragWithFixups =
844                      dyn_cast<MCDwarfCallFrameFragment>(&Frag)) {
845         Fixups = FragWithFixups->getFixups();
846         Contents = FragWithFixups->getContents();
847       } else
848         llvm_unreachable("Unknown fragment with fixups!");
849       for (const MCFixup &Fixup : Fixups) {
850         uint64_t FixedValue;
851         bool IsResolved;
852         MCValue Target;
853         std::tie(Target, FixedValue, IsResolved) =
854             handleFixup(Layout, Frag, Fixup);
855         getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
856                                 IsResolved, STI);
857       }
858     }
859   }
860 }
861
862 void MCAssembler::Finish() {
863   // Create the layout object.
864   MCAsmLayout Layout(*this);
865   layout(Layout);
866
867   // Write the object file.
868   stats::ObjectBytes += getWriter().writeObject(*this, Layout);
869 }
870
871 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
872                                        const MCRelaxableFragment *DF,
873                                        const MCAsmLayout &Layout) const {
874   assert(getBackendPtr() && "Expected assembler backend");
875   MCValue Target;
876   uint64_t Value;
877   bool WasForced;
878   bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
879   if (Target.getSymA() &&
880       Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
881       Fixup.getKind() == FK_Data_1)
882     return false;
883   return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
884                                                    Layout, WasForced);
885 }
886
887 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
888                                           const MCAsmLayout &Layout) const {
889   assert(getBackendPtr() && "Expected assembler backend");
890   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
891   // are intentionally pushing out inst fragments, or because we relaxed a
892   // previous instruction to one that doesn't need relaxation.
893   if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
894     return false;
895
896   for (const MCFixup &Fixup : F->getFixups())
897     if (fixupNeedsRelaxation(Fixup, F, Layout))
898       return true;
899
900   return false;
901 }
902
903 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
904                                    MCRelaxableFragment &F) {
905   assert(getEmitterPtr() &&
906          "Expected CodeEmitter defined for relaxInstruction");
907   if (!fragmentNeedsRelaxation(&F, Layout))
908     return false;
909
910   ++stats::RelaxedInstructions;
911
912   // FIXME-PERF: We could immediately lower out instructions if we can tell
913   // they are fully resolved, to avoid retesting on later passes.
914
915   // Relax the fragment.
916
917   MCInst Relaxed;
918   getBackend().relaxInstruction(F.getInst(), *F.getSubtargetInfo(), Relaxed);
919
920   // Encode the new instruction.
921   //
922   // FIXME-PERF: If it matters, we could let the target do this. It can
923   // probably do so more efficiently in many cases.
924   SmallVector<MCFixup, 4> Fixups;
925   SmallString<256> Code;
926   raw_svector_ostream VecOS(Code);
927   getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
928
929   // Update the fragment.
930   F.setInst(Relaxed);
931   F.getContents() = Code;
932   F.getFixups() = Fixups;
933
934   return true;
935 }
936
937 bool MCAssembler::relaxPaddingFragment(MCAsmLayout &Layout,
938                                        MCPaddingFragment &PF) {
939   assert(getBackendPtr() && "Expected assembler backend");
940   uint64_t OldSize = PF.getSize();
941   if (!getBackend().relaxFragment(&PF, Layout))
942     return false;
943   uint64_t NewSize = PF.getSize();
944
945   ++stats::PaddingFragmentsRelaxations;
946   stats::PaddingFragmentsBytes += NewSize;
947   stats::PaddingFragmentsBytes -= OldSize;
948   return true;
949 }
950
951 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
952   uint64_t OldSize = LF.getContents().size();
953   int64_t Value;
954   bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
955   if (!Abs)
956     report_fatal_error("sleb128 and uleb128 expressions must be absolute");
957   SmallString<8> &Data = LF.getContents();
958   Data.clear();
959   raw_svector_ostream OSE(Data);
960   // The compiler can generate EH table assembly that is impossible to assemble
961   // without either adding padding to an LEB fragment or adding extra padding
962   // to a later alignment fragment. To accommodate such tables, relaxation can
963   // only increase an LEB fragment size here, not decrease it. See PR35809.
964   if (LF.isSigned())
965     encodeSLEB128(Value, OSE, OldSize);
966   else
967     encodeULEB128(Value, OSE, OldSize);
968   return OldSize != LF.getContents().size();
969 }
970
971 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
972                                      MCDwarfLineAddrFragment &DF) {
973   MCContext &Context = Layout.getAssembler().getContext();
974   uint64_t OldSize = DF.getContents().size();
975   int64_t AddrDelta;
976   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
977   assert(Abs && "We created a line delta with an invalid expression");
978   (void)Abs;
979   int64_t LineDelta;
980   LineDelta = DF.getLineDelta();
981   SmallVectorImpl<char> &Data = DF.getContents();
982   Data.clear();
983   raw_svector_ostream OSE(Data);
984   DF.getFixups().clear();
985
986   if (!getBackend().requiresDiffExpressionRelocations()) {
987     MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
988                             AddrDelta, OSE);
989   } else {
990     uint32_t Offset;
991     uint32_t Size;
992     bool SetDelta = MCDwarfLineAddr::FixedEncode(Context,
993                                                  getDWARFLinetableParams(),
994                                                  LineDelta, AddrDelta,
995                                                  OSE, &Offset, &Size);
996     // Add Fixups for address delta or new address.
997     const MCExpr *FixupExpr;
998     if (SetDelta) {
999       FixupExpr = &DF.getAddrDelta();
1000     } else {
1001       const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta());
1002       FixupExpr = ABE->getLHS();
1003     }
1004     DF.getFixups().push_back(
1005         MCFixup::create(Offset, FixupExpr,
1006                         MCFixup::getKindForSize(Size, false /*isPCRel*/)));
1007   }
1008
1009   return OldSize != Data.size();
1010 }
1011
1012 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1013                                               MCDwarfCallFrameFragment &DF) {
1014   MCContext &Context = Layout.getAssembler().getContext();
1015   uint64_t OldSize = DF.getContents().size();
1016   int64_t AddrDelta;
1017   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1018   assert(Abs && "We created call frame with an invalid expression");
1019   (void) Abs;
1020   SmallVectorImpl<char> &Data = DF.getContents();
1021   Data.clear();
1022   raw_svector_ostream OSE(Data);
1023   DF.getFixups().clear();
1024
1025   if (getBackend().requiresDiffExpressionRelocations()) {
1026     uint32_t Offset;
1027     uint32_t Size;
1028     MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE, &Offset,
1029                                           &Size);
1030     if (Size) {
1031       DF.getFixups().push_back(MCFixup::create(
1032           Offset, &DF.getAddrDelta(),
1033           MCFixup::getKindForSizeInBits(Size /*In bits.*/, false /*isPCRel*/)));
1034     }
1035   } else {
1036     MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1037   }
1038
1039   return OldSize != Data.size();
1040 }
1041
1042 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
1043                                          MCCVInlineLineTableFragment &F) {
1044   unsigned OldSize = F.getContents().size();
1045   getContext().getCVContext().encodeInlineLineTable(Layout, F);
1046   return OldSize != F.getContents().size();
1047 }
1048
1049 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
1050                                   MCCVDefRangeFragment &F) {
1051   unsigned OldSize = F.getContents().size();
1052   getContext().getCVContext().encodeDefRange(Layout, F);
1053   return OldSize != F.getContents().size();
1054 }
1055
1056 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1057   // Holds the first fragment which needed relaxing during this layout. It will
1058   // remain NULL if none were relaxed.
1059   // When a fragment is relaxed, all the fragments following it should get
1060   // invalidated because their offset is going to change.
1061   MCFragment *FirstRelaxedFragment = nullptr;
1062
1063   // Attempt to relax all the fragments in the section.
1064   for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
1065     // Check if this is a fragment that needs relaxation.
1066     bool RelaxedFrag = false;
1067     switch(I->getKind()) {
1068     default:
1069       break;
1070     case MCFragment::FT_Relaxable:
1071       assert(!getRelaxAll() &&
1072              "Did not expect a MCRelaxableFragment in RelaxAll mode");
1073       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1074       break;
1075     case MCFragment::FT_Dwarf:
1076       RelaxedFrag = relaxDwarfLineAddr(Layout,
1077                                        *cast<MCDwarfLineAddrFragment>(I));
1078       break;
1079     case MCFragment::FT_DwarfFrame:
1080       RelaxedFrag =
1081         relaxDwarfCallFrameFragment(Layout,
1082                                     *cast<MCDwarfCallFrameFragment>(I));
1083       break;
1084     case MCFragment::FT_LEB:
1085       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1086       break;
1087     case MCFragment::FT_Padding:
1088       RelaxedFrag = relaxPaddingFragment(Layout, *cast<MCPaddingFragment>(I));
1089       break;
1090     case MCFragment::FT_CVInlineLines:
1091       RelaxedFrag =
1092           relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
1093       break;
1094     case MCFragment::FT_CVDefRange:
1095       RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
1096       break;
1097     }
1098     if (RelaxedFrag && !FirstRelaxedFragment)
1099       FirstRelaxedFragment = &*I;
1100   }
1101   if (FirstRelaxedFragment) {
1102     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1103     return true;
1104   }
1105   return false;
1106 }
1107
1108 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1109   ++stats::RelaxationSteps;
1110
1111   bool WasRelaxed = false;
1112   for (iterator it = begin(), ie = end(); it != ie; ++it) {
1113     MCSection &Sec = *it;
1114     while (layoutSectionOnce(Layout, Sec))
1115       WasRelaxed = true;
1116   }
1117
1118   return WasRelaxed;
1119 }
1120
1121 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1122   assert(getBackendPtr() && "Expected assembler backend");
1123   // The layout is done. Mark every fragment as valid.
1124   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1125     MCSection &Section = *Layout.getSectionOrder()[i];
1126     Layout.getFragmentOffset(&*Section.rbegin());
1127     computeFragmentSize(Layout, *Section.rbegin());
1128   }
1129   getBackend().finishLayout(*this, Layout);
1130 }
1131
1132 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1133 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1134   raw_ostream &OS = errs();
1135
1136   OS << "<MCAssembler\n";
1137   OS << "  Sections:[\n    ";
1138   for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
1139     if (it != begin()) OS << ",\n    ";
1140     it->dump();
1141   }
1142   OS << "],\n";
1143   OS << "  Symbols:[";
1144
1145   for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1146     if (it != symbol_begin()) OS << ",\n           ";
1147     OS << "(";
1148     it->dump();
1149     OS << ", Index:" << it->getIndex() << ", ";
1150     OS << ")";
1151   }
1152   OS << "]>\n";
1153 }
1154 #endif