]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/AArch64/AArch64InstrInfo.td
Merge upstream r948: fix race condition in openpam_ttyconv(3).
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / AArch64 / AArch64InstrInfo.td
1 //=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // AArch64 Instruction definitions.
10 //
11 //===----------------------------------------------------------------------===//
12
13 //===----------------------------------------------------------------------===//
14 // ARM Instruction Predicate Definitions.
15 //
16 def HasV8_1a         : Predicate<"Subtarget->hasV8_1aOps()">,
17                                  AssemblerPredicate<(all_of HasV8_1aOps), "armv8.1a">;
18 def HasV8_2a         : Predicate<"Subtarget->hasV8_2aOps()">,
19                                  AssemblerPredicate<(all_of HasV8_2aOps), "armv8.2a">;
20 def HasV8_3a         : Predicate<"Subtarget->hasV8_3aOps()">,
21                                  AssemblerPredicate<(all_of HasV8_3aOps), "armv8.3a">;
22 def HasV8_4a         : Predicate<"Subtarget->hasV8_4aOps()">,
23                                  AssemblerPredicate<(all_of HasV8_4aOps), "armv8.4a">;
24 def HasV8_5a         : Predicate<"Subtarget->hasV8_5aOps()">,
25                                  AssemblerPredicate<(all_of HasV8_5aOps), "armv8.5a">;
26 def HasV8_6a         : Predicate<"Subtarget->hasV8_6aOps()">,
27                                  AssemblerPredicate<(all_of HasV8_6aOps), "armv8.6a">;
28 def HasVH            : Predicate<"Subtarget->hasVH()">,
29                        AssemblerPredicate<(all_of FeatureVH), "vh">;
30
31 def HasLOR           : Predicate<"Subtarget->hasLOR()">,
32                        AssemblerPredicate<(all_of FeatureLOR), "lor">;
33
34 def HasPA            : Predicate<"Subtarget->hasPA()">,
35                        AssemblerPredicate<(all_of FeaturePA), "pa">;
36
37 def HasJS            : Predicate<"Subtarget->hasJS()">,
38                        AssemblerPredicate<(all_of FeatureJS), "jsconv">;
39
40 def HasCCIDX         : Predicate<"Subtarget->hasCCIDX()">,
41                        AssemblerPredicate<(all_of FeatureCCIDX), "ccidx">;
42
43 def HasComplxNum      : Predicate<"Subtarget->hasComplxNum()">,
44                        AssemblerPredicate<(all_of FeatureComplxNum), "complxnum">;
45
46 def HasNV            : Predicate<"Subtarget->hasNV()">,
47                        AssemblerPredicate<(all_of FeatureNV), "nv">;
48
49 def HasRASv8_4       : Predicate<"Subtarget->hasRASv8_4()">,
50                        AssemblerPredicate<(all_of FeatureRASv8_4), "rasv8_4">;
51
52 def HasMPAM          : Predicate<"Subtarget->hasMPAM()">,
53                        AssemblerPredicate<(all_of FeatureMPAM), "mpam">;
54
55 def HasDIT           : Predicate<"Subtarget->hasDIT()">,
56                        AssemblerPredicate<(all_of FeatureDIT), "dit">;
57
58 def HasTRACEV8_4         : Predicate<"Subtarget->hasTRACEV8_4()">,
59                        AssemblerPredicate<(all_of FeatureTRACEV8_4), "tracev8.4">;
60
61 def HasAM            : Predicate<"Subtarget->hasAM()">,
62                        AssemblerPredicate<(all_of FeatureAM), "am">;
63
64 def HasSEL2          : Predicate<"Subtarget->hasSEL2()">,
65                        AssemblerPredicate<(all_of FeatureSEL2), "sel2">;
66
67 def HasPMU           : Predicate<"Subtarget->hasPMU()">,
68                        AssemblerPredicate<(all_of FeaturePMU), "pmu">;
69
70 def HasTLB_RMI          : Predicate<"Subtarget->hasTLB_RMI()">,
71                        AssemblerPredicate<(all_of FeatureTLB_RMI), "tlb-rmi">;
72
73 def HasFMI           : Predicate<"Subtarget->hasFMI()">,
74                        AssemblerPredicate<(all_of FeatureFMI), "fmi">;
75
76 def HasRCPC_IMMO      : Predicate<"Subtarget->hasRCPCImm()">,
77                        AssemblerPredicate<(all_of FeatureRCPC_IMMO), "rcpc-immo">;
78
79 def HasFPARMv8       : Predicate<"Subtarget->hasFPARMv8()">,
80                                AssemblerPredicate<(all_of FeatureFPARMv8), "fp-armv8">;
81 def HasNEON          : Predicate<"Subtarget->hasNEON()">,
82                                  AssemblerPredicate<(all_of FeatureNEON), "neon">;
83 def HasCrypto        : Predicate<"Subtarget->hasCrypto()">,
84                                  AssemblerPredicate<(all_of FeatureCrypto), "crypto">;
85 def HasSM4           : Predicate<"Subtarget->hasSM4()">,
86                                  AssemblerPredicate<(all_of FeatureSM4), "sm4">;
87 def HasSHA3          : Predicate<"Subtarget->hasSHA3()">,
88                                  AssemblerPredicate<(all_of FeatureSHA3), "sha3">;
89 def HasSHA2          : Predicate<"Subtarget->hasSHA2()">,
90                                  AssemblerPredicate<(all_of FeatureSHA2), "sha2">;
91 def HasAES           : Predicate<"Subtarget->hasAES()">,
92                                  AssemblerPredicate<(all_of FeatureAES), "aes">;
93 def HasDotProd       : Predicate<"Subtarget->hasDotProd()">,
94                                  AssemblerPredicate<(all_of FeatureDotProd), "dotprod">;
95 def HasCRC           : Predicate<"Subtarget->hasCRC()">,
96                                  AssemblerPredicate<(all_of FeatureCRC), "crc">;
97 def HasLSE           : Predicate<"Subtarget->hasLSE()">,
98                                  AssemblerPredicate<(all_of FeatureLSE), "lse">;
99 def HasRAS           : Predicate<"Subtarget->hasRAS()">,
100                                  AssemblerPredicate<(all_of FeatureRAS), "ras">;
101 def HasRDM           : Predicate<"Subtarget->hasRDM()">,
102                                  AssemblerPredicate<(all_of FeatureRDM), "rdm">;
103 def HasPerfMon       : Predicate<"Subtarget->hasPerfMon()">;
104 def HasFullFP16      : Predicate<"Subtarget->hasFullFP16()">,
105                                  AssemblerPredicate<(all_of FeatureFullFP16), "fullfp16">;
106 def HasFP16FML       : Predicate<"Subtarget->hasFP16FML()">,
107                                  AssemblerPredicate<(all_of FeatureFP16FML), "fp16fml">;
108 def HasSPE           : Predicate<"Subtarget->hasSPE()">,
109                                  AssemblerPredicate<(all_of FeatureSPE), "spe">;
110 def HasFuseAES       : Predicate<"Subtarget->hasFuseAES()">,
111                                  AssemblerPredicate<(all_of FeatureFuseAES),
112                                  "fuse-aes">;
113 def HasSVE           : Predicate<"Subtarget->hasSVE()">,
114                                  AssemblerPredicate<(all_of FeatureSVE), "sve">;
115 def HasSVE2          : Predicate<"Subtarget->hasSVE2()">,
116                                  AssemblerPredicate<(all_of FeatureSVE2), "sve2">;
117 def HasSVE2AES       : Predicate<"Subtarget->hasSVE2AES()">,
118                                  AssemblerPredicate<(all_of FeatureSVE2AES), "sve2-aes">;
119 def HasSVE2SM4       : Predicate<"Subtarget->hasSVE2SM4()">,
120                                  AssemblerPredicate<(all_of FeatureSVE2SM4), "sve2-sm4">;
121 def HasSVE2SHA3      : Predicate<"Subtarget->hasSVE2SHA3()">,
122                                  AssemblerPredicate<(all_of FeatureSVE2SHA3), "sve2-sha3">;
123 def HasSVE2BitPerm   : Predicate<"Subtarget->hasSVE2BitPerm()">,
124                                  AssemblerPredicate<(all_of FeatureSVE2BitPerm), "sve2-bitperm">;
125 def HasRCPC          : Predicate<"Subtarget->hasRCPC()">,
126                                  AssemblerPredicate<(all_of FeatureRCPC), "rcpc">;
127 def HasAltNZCV       : Predicate<"Subtarget->hasAlternativeNZCV()">,
128                        AssemblerPredicate<(all_of FeatureAltFPCmp), "altnzcv">;
129 def HasFRInt3264     : Predicate<"Subtarget->hasFRInt3264()">,
130                        AssemblerPredicate<(all_of FeatureFRInt3264), "frint3264">;
131 def HasSB            : Predicate<"Subtarget->hasSB()">,
132                        AssemblerPredicate<(all_of FeatureSB), "sb">;
133 def HasPredRes      : Predicate<"Subtarget->hasPredRes()">,
134                        AssemblerPredicate<(all_of FeaturePredRes), "predres">;
135 def HasCCDP          : Predicate<"Subtarget->hasCCDP()">,
136                        AssemblerPredicate<(all_of FeatureCacheDeepPersist), "ccdp">;
137 def HasBTI           : Predicate<"Subtarget->hasBTI()">,
138                        AssemblerPredicate<(all_of FeatureBranchTargetId), "bti">;
139 def HasMTE           : Predicate<"Subtarget->hasMTE()">,
140                        AssemblerPredicate<(all_of FeatureMTE), "mte">;
141 def HasTME           : Predicate<"Subtarget->hasTME()">,
142                        AssemblerPredicate<(all_of FeatureTME), "tme">;
143 def HasETE           : Predicate<"Subtarget->hasETE()">,
144                        AssemblerPredicate<(all_of FeatureETE), "ete">;
145 def HasTRBE          : Predicate<"Subtarget->hasTRBE()">,
146                        AssemblerPredicate<(all_of FeatureTRBE), "trbe">;
147 def HasBF16          : Predicate<"Subtarget->hasBF16()">,
148                        AssemblerPredicate<(all_of FeatureBF16), "bf16">;
149 def HasMatMulInt8    : Predicate<"Subtarget->hasMatMulInt8()">,
150                        AssemblerPredicate<(all_of FeatureMatMulInt8), "i8mm">;
151 def HasMatMulFP32    : Predicate<"Subtarget->hasMatMulFP32()">,
152                        AssemblerPredicate<(all_of FeatureMatMulFP32), "f32mm">;
153 def HasMatMulFP64    : Predicate<"Subtarget->hasMatMulFP64()">,
154                        AssemblerPredicate<(all_of FeatureMatMulFP64), "f64mm">;
155 def IsLE             : Predicate<"Subtarget->isLittleEndian()">;
156 def IsBE             : Predicate<"!Subtarget->isLittleEndian()">;
157 def IsWindows        : Predicate<"Subtarget->isTargetWindows()">;
158 def UseExperimentalZeroingPseudos
159     : Predicate<"Subtarget->useExperimentalZeroingPseudos()">;
160 def UseAlternateSExtLoadCVTF32
161     : Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">;
162
163 def UseNegativeImmediates
164     : Predicate<"false">, AssemblerPredicate<(all_of (not FeatureNoNegativeImmediates)),
165                                              "NegativeImmediates">;
166
167 def AArch64LocalRecover : SDNode<"ISD::LOCAL_RECOVER",
168                                   SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>,
169                                                        SDTCisInt<1>]>>;
170
171
172 //===----------------------------------------------------------------------===//
173 // AArch64-specific DAG Nodes.
174 //
175
176 // SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
177 def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
178                                               [SDTCisSameAs<0, 2>,
179                                                SDTCisSameAs<0, 3>,
180                                                SDTCisInt<0>, SDTCisVT<1, i32>]>;
181
182 // SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
183 def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
184                                             [SDTCisSameAs<0, 1>,
185                                              SDTCisSameAs<0, 2>,
186                                              SDTCisInt<0>,
187                                              SDTCisVT<3, i32>]>;
188
189 // SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
190 def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
191                                             [SDTCisSameAs<0, 2>,
192                                              SDTCisSameAs<0, 3>,
193                                              SDTCisInt<0>,
194                                              SDTCisVT<1, i32>,
195                                              SDTCisVT<4, i32>]>;
196
197 def SDT_AArch64Brcond  : SDTypeProfile<0, 3,
198                                      [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
199                                       SDTCisVT<2, i32>]>;
200 def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
201 def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
202                                         SDTCisVT<2, OtherVT>]>;
203
204
205 def SDT_AArch64CSel  : SDTypeProfile<1, 4,
206                                    [SDTCisSameAs<0, 1>,
207                                     SDTCisSameAs<0, 2>,
208                                     SDTCisInt<3>,
209                                     SDTCisVT<4, i32>]>;
210 def SDT_AArch64CCMP : SDTypeProfile<1, 5,
211                                     [SDTCisVT<0, i32>,
212                                      SDTCisInt<1>,
213                                      SDTCisSameAs<1, 2>,
214                                      SDTCisInt<3>,
215                                      SDTCisInt<4>,
216                                      SDTCisVT<5, i32>]>;
217 def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
218                                      [SDTCisVT<0, i32>,
219                                       SDTCisFP<1>,
220                                       SDTCisSameAs<1, 2>,
221                                       SDTCisInt<3>,
222                                       SDTCisInt<4>,
223                                       SDTCisVT<5, i32>]>;
224 def SDT_AArch64FCmp   : SDTypeProfile<0, 2,
225                                    [SDTCisFP<0>,
226                                     SDTCisSameAs<0, 1>]>;
227 def SDT_AArch64Dup   : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
228 def SDT_AArch64DupLane   : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
229 def SDT_AArch64Insr  : SDTypeProfile<1, 2, [SDTCisVec<0>]>;
230 def SDT_AArch64Zip   : SDTypeProfile<1, 2, [SDTCisVec<0>,
231                                           SDTCisSameAs<0, 1>,
232                                           SDTCisSameAs<0, 2>]>;
233 def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
234 def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
235 def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
236                                            SDTCisInt<2>, SDTCisInt<3>]>;
237 def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
238 def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
239                                           SDTCisSameAs<0,2>, SDTCisInt<3>]>;
240 def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;
241
242 def SDT_AArch64vshiftinsert : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisInt<3>,
243                                                  SDTCisSameAs<0,1>,
244                                                  SDTCisSameAs<0,2>]>;
245
246 def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
247 def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>;
248 def SDT_AArch64fcmp  : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
249 def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
250                                            SDTCisSameAs<0,2>]>;
251 def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
252                                            SDTCisSameAs<0,2>,
253                                            SDTCisSameAs<0,3>]>;
254 def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
255 def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;
256
257 def SDT_AArch64ITOF  : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;
258
259 def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
260                                                  SDTCisPtrTy<1>]>;
261
262 def SDT_AArch64ldp : SDTypeProfile<2, 1, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
263 def SDT_AArch64stp : SDTypeProfile<0, 3, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
264 def SDT_AArch64stnp : SDTypeProfile<0, 3, [SDTCisVT<0, v4i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
265
266 // Generates the general dynamic sequences, i.e.
267 //  adrp  x0, :tlsdesc:var
268 //  ldr   x1, [x0, #:tlsdesc_lo12:var]
269 //  add   x0, x0, #:tlsdesc_lo12:var
270 //  .tlsdesccall var
271 //  blr   x1
272
273 // (the TPIDR_EL0 offset is put directly in X0, hence no "result" here)
274 // number of operands (the variable)
275 def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1,
276                                           [SDTCisPtrTy<0>]>;
277
278 def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4,
279                                         [SDTCisVT<0, i64>, SDTCisVT<1, i32>,
280                                          SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
281                                          SDTCisSameAs<1, 4>]>;
282
283 def SDT_AArch64TBL : SDTypeProfile<1, 2, [
284   SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisInt<2>
285 ]>;
286
287 // non-extending masked load fragment.
288 def nonext_masked_load :
289   PatFrag<(ops node:$ptr, node:$pred, node:$def),
290           (masked_ld node:$ptr, undef, node:$pred, node:$def), [{
291   return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD &&
292          cast<MaskedLoadSDNode>(N)->isUnindexed() &&
293          !cast<MaskedLoadSDNode>(N)->isNonTemporal();
294 }]>;
295 // sign extending masked load fragments.
296 def asext_masked_load :
297   PatFrag<(ops node:$ptr, node:$pred, node:$def),
298           (masked_ld node:$ptr, undef, node:$pred, node:$def),[{
299   return (cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD ||
300           cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD) &&
301          cast<MaskedLoadSDNode>(N)->isUnindexed();
302 }]>;
303 def asext_masked_load_i8 :
304   PatFrag<(ops node:$ptr, node:$pred, node:$def),
305           (asext_masked_load node:$ptr, node:$pred, node:$def), [{
306   return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
307 }]>;
308 def asext_masked_load_i16 :
309   PatFrag<(ops node:$ptr, node:$pred, node:$def),
310           (asext_masked_load node:$ptr, node:$pred, node:$def), [{
311   return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
312 }]>;
313 def asext_masked_load_i32 :
314   PatFrag<(ops node:$ptr, node:$pred, node:$def),
315           (asext_masked_load node:$ptr, node:$pred, node:$def), [{
316   return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
317 }]>;
318 // zero extending masked load fragments.
319 def zext_masked_load :
320   PatFrag<(ops node:$ptr, node:$pred, node:$def),
321           (masked_ld node:$ptr, undef, node:$pred, node:$def), [{
322   return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD &&
323          cast<MaskedLoadSDNode>(N)->isUnindexed();
324 }]>;
325 def zext_masked_load_i8 :
326   PatFrag<(ops node:$ptr, node:$pred, node:$def),
327           (zext_masked_load node:$ptr, node:$pred, node:$def), [{
328   return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
329 }]>;
330 def zext_masked_load_i16 :
331   PatFrag<(ops node:$ptr, node:$pred, node:$def),
332           (zext_masked_load node:$ptr, node:$pred, node:$def), [{
333   return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
334 }]>;
335 def zext_masked_load_i32 :
336   PatFrag<(ops node:$ptr, node:$pred, node:$def),
337           (zext_masked_load node:$ptr, node:$pred, node:$def), [{
338   return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
339 }]>;
340
341 def non_temporal_load :
342    PatFrag<(ops node:$ptr, node:$pred, node:$def),
343            (masked_ld node:$ptr, undef, node:$pred, node:$def), [{
344    return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD &&
345           cast<MaskedLoadSDNode>(N)->isUnindexed() &&
346           cast<MaskedLoadSDNode>(N)->isNonTemporal();
347 }]>;
348
349 // non-truncating masked store fragment.
350 def nontrunc_masked_store :
351   PatFrag<(ops node:$val, node:$ptr, node:$pred),
352           (masked_st node:$val, node:$ptr, undef, node:$pred), [{
353   return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
354          cast<MaskedStoreSDNode>(N)->isUnindexed() &&
355          !cast<MaskedStoreSDNode>(N)->isNonTemporal();
356 }]>;
357 // truncating masked store fragments.
358 def trunc_masked_store :
359   PatFrag<(ops node:$val, node:$ptr, node:$pred),
360           (masked_st node:$val, node:$ptr, undef, node:$pred), [{
361   return cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
362          cast<MaskedStoreSDNode>(N)->isUnindexed();
363 }]>;
364 def trunc_masked_store_i8 :
365   PatFrag<(ops node:$val, node:$ptr, node:$pred),
366           (trunc_masked_store node:$val, node:$ptr, node:$pred), [{
367   return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
368 }]>;
369 def trunc_masked_store_i16 :
370   PatFrag<(ops node:$val, node:$ptr, node:$pred),
371           (trunc_masked_store node:$val, node:$ptr, node:$pred), [{
372   return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
373 }]>;
374 def trunc_masked_store_i32 :
375   PatFrag<(ops node:$val, node:$ptr, node:$pred),
376           (trunc_masked_store node:$val, node:$ptr, node:$pred), [{
377   return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
378 }]>;
379
380 def non_temporal_store :
381   PatFrag<(ops node:$val, node:$ptr, node:$pred),
382           (masked_st node:$val, node:$ptr, undef, node:$pred), [{
383   return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
384          cast<MaskedStoreSDNode>(N)->isUnindexed() &&
385          cast<MaskedStoreSDNode>(N)->isNonTemporal();
386 }]>;
387
388 // Node definitions.
389 def AArch64adrp          : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>;
390 def AArch64adr           : SDNode<"AArch64ISD::ADR", SDTIntUnaryOp, []>;
391 def AArch64addlow        : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>;
392 def AArch64LOADgot       : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>;
393 def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START",
394                                 SDCallSeqStart<[ SDTCisVT<0, i32>,
395                                                  SDTCisVT<1, i32> ]>,
396                                 [SDNPHasChain, SDNPOutGlue]>;
397 def AArch64callseq_end   : SDNode<"ISD::CALLSEQ_END",
398                                 SDCallSeqEnd<[ SDTCisVT<0, i32>,
399                                                SDTCisVT<1, i32> ]>,
400                                 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
401 def AArch64call          : SDNode<"AArch64ISD::CALL",
402                                 SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
403                                 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
404                                  SDNPVariadic]>;
405 def AArch64brcond        : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond,
406                                 [SDNPHasChain]>;
407 def AArch64cbz           : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz,
408                                 [SDNPHasChain]>;
409 def AArch64cbnz           : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz,
410                                 [SDNPHasChain]>;
411 def AArch64tbz           : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz,
412                                 [SDNPHasChain]>;
413 def AArch64tbnz           : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz,
414                                 [SDNPHasChain]>;
415
416
417 def AArch64csel          : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>;
418 def AArch64csinv         : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>;
419 def AArch64csneg         : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>;
420 def AArch64csinc         : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>;
421 def AArch64retflag       : SDNode<"AArch64ISD::RET_FLAG", SDTNone,
422                                 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
423 def AArch64adc       : SDNode<"AArch64ISD::ADC",  SDTBinaryArithWithFlagsIn >;
424 def AArch64sbc       : SDNode<"AArch64ISD::SBC",  SDTBinaryArithWithFlagsIn>;
425 def AArch64add_flag  : SDNode<"AArch64ISD::ADDS",  SDTBinaryArithWithFlagsOut,
426                             [SDNPCommutative]>;
427 def AArch64sub_flag  : SDNode<"AArch64ISD::SUBS",  SDTBinaryArithWithFlagsOut>;
428 def AArch64and_flag  : SDNode<"AArch64ISD::ANDS",  SDTBinaryArithWithFlagsOut,
429                             [SDNPCommutative]>;
430 def AArch64adc_flag  : SDNode<"AArch64ISD::ADCS",  SDTBinaryArithWithFlagsInOut>;
431 def AArch64sbc_flag  : SDNode<"AArch64ISD::SBCS",  SDTBinaryArithWithFlagsInOut>;
432
433 def AArch64ccmp      : SDNode<"AArch64ISD::CCMP",  SDT_AArch64CCMP>;
434 def AArch64ccmn      : SDNode<"AArch64ISD::CCMN",  SDT_AArch64CCMP>;
435 def AArch64fccmp     : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;
436
437 def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
438
439 def AArch64fcmp         : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
440 def AArch64strict_fcmp  : SDNode<"AArch64ISD::STRICT_FCMP", SDT_AArch64FCmp,
441                                  [SDNPHasChain]>;
442 def AArch64strict_fcmpe : SDNode<"AArch64ISD::STRICT_FCMPE", SDT_AArch64FCmp,
443                                  [SDNPHasChain]>;
444 def AArch64any_fcmp     : PatFrags<(ops node:$lhs, node:$rhs),
445                                    [(AArch64strict_fcmp node:$lhs, node:$rhs),
446                                     (AArch64fcmp node:$lhs, node:$rhs)]>;
447
448 def AArch64dup       : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>;
449 def AArch64duplane8  : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>;
450 def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>;
451 def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>;
452 def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>;
453
454 def AArch64insr      : SDNode<"AArch64ISD::INSR", SDT_AArch64Insr>;
455
456 def AArch64zip1      : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>;
457 def AArch64zip2      : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>;
458 def AArch64uzp1      : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>;
459 def AArch64uzp2      : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>;
460 def AArch64trn1      : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>;
461 def AArch64trn2      : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>;
462
463 def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>;
464 def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>;
465 def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>;
466 def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>;
467 def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>;
468 def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>;
469 def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>;
470
471 def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>;
472 def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>;
473 def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>;
474 def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>;
475
476 def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>;
477 def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>;
478 def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>;
479 def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>;
480 def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>;
481 def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>;
482 def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>;
483 def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>;
484 def AArch64vsli : SDNode<"AArch64ISD::VSLI", SDT_AArch64vshiftinsert>;
485 def AArch64vsri : SDNode<"AArch64ISD::VSRI", SDT_AArch64vshiftinsert>;
486
487 def AArch64not: SDNode<"AArch64ISD::NOT", SDT_AArch64unvec>;
488 def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>;
489 def AArch64bsp: SDNode<"AArch64ISD::BSP", SDT_AArch64trivec>;
490
491 def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>;
492 def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>;
493 def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>;
494 def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>;
495 def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>;
496
497 def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>;
498 def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>;
499 def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>;
500
501 def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>;
502 def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>;
503 def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>;
504 def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>;
505 def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>;
506 def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
507                         (AArch64not (AArch64cmeqz (and node:$LHS, node:$RHS)))>;
508
509 def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>;
510 def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>;
511 def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>;
512 def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>;
513 def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>;
514
515 def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>;
516 def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>;
517
518 def AArch64neg : SDNode<"AArch64ISD::NEG", SDT_AArch64unvec>;
519
520 def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET,
521                   [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
522
523 def AArch64Prefetch        : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH,
524                                [SDNPHasChain, SDNPSideEffect]>;
525
526 def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>;
527 def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>;
528
529 def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ",
530                                     SDT_AArch64TLSDescCallSeq,
531                                     [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
532                                      SDNPVariadic]>;
533
534
535 def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
536                                  SDT_AArch64WrapperLarge>;
537
538 def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>;
539
540 def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
541                                     SDTCisSameAs<1, 2>]>;
542 def AArch64smull    : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>;
543 def AArch64umull    : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>;
544
545 def AArch64frecpe   : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>;
546 def AArch64frecps   : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>;
547 def AArch64frsqrte  : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>;
548 def AArch64frsqrts  : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>;
549
550 def AArch64saddv    : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>;
551 def AArch64uaddv    : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>;
552 def AArch64sminv    : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>;
553 def AArch64uminv    : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>;
554 def AArch64smaxv    : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>;
555 def AArch64umaxv    : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>;
556
557 def AArch64srhadd   : SDNode<"AArch64ISD::SRHADD", SDT_AArch64binvec>;
558 def AArch64urhadd   : SDNode<"AArch64ISD::URHADD", SDT_AArch64binvec>;
559
560 def SDT_AArch64SETTAG : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
561 def AArch64stg : SDNode<"AArch64ISD::STG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
562 def AArch64stzg : SDNode<"AArch64ISD::STZG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
563 def AArch64st2g : SDNode<"AArch64ISD::ST2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
564 def AArch64stz2g : SDNode<"AArch64ISD::STZ2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
565
566 def SDT_AArch64unpk : SDTypeProfile<1, 1, [
567     SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>
568 ]>;
569 def AArch64sunpkhi : SDNode<"AArch64ISD::SUNPKHI", SDT_AArch64unpk>;
570 def AArch64sunpklo : SDNode<"AArch64ISD::SUNPKLO", SDT_AArch64unpk>;
571 def AArch64uunpkhi : SDNode<"AArch64ISD::UUNPKHI", SDT_AArch64unpk>;
572 def AArch64uunpklo : SDNode<"AArch64ISD::UUNPKLO", SDT_AArch64unpk>;
573
574 def AArch64ldp : SDNode<"AArch64ISD::LDP", SDT_AArch64ldp, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
575 def AArch64stp : SDNode<"AArch64ISD::STP", SDT_AArch64stp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
576 def AArch64stnp : SDNode<"AArch64ISD::STNP", SDT_AArch64stnp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
577
578 def AArch64tbl : SDNode<"AArch64ISD::TBL", SDT_AArch64TBL>;
579
580 //===----------------------------------------------------------------------===//
581
582 //===----------------------------------------------------------------------===//
583
584 // AArch64 Instruction Predicate Definitions.
585 // We could compute these on a per-module basis but doing so requires accessing
586 // the Function object through the <Target>Subtarget and objections were raised
587 // to that (see post-commit review comments for r301750).
588 let RecomputePerFunction = 1 in {
589   def ForCodeSize   : Predicate<"shouldOptForSize(MF)">;
590   def NotForCodeSize   : Predicate<"!shouldOptForSize(MF)">;
591   // Avoid generating STRQro if it is slow, unless we're optimizing for code size.
592   def UseSTRQro : Predicate<"!Subtarget->isSTRQroSlow() || shouldOptForSize(MF)">;
593
594   def UseBTI : Predicate<[{ MF->getFunction().hasFnAttribute("branch-target-enforcement") }]>;
595   def NotUseBTI : Predicate<[{ !MF->getFunction().hasFnAttribute("branch-target-enforcement") }]>;
596
597   def SLSBLRMitigation : Predicate<[{ MF->getSubtarget<AArch64Subtarget>().hardenSlsBlr() }]>;
598   def NoSLSBLRMitigation : Predicate<[{ !MF->getSubtarget<AArch64Subtarget>().hardenSlsBlr() }]>;
599   // Toggles patterns which aren't beneficial in GlobalISel when we aren't
600   // optimizing. This allows us to selectively use patterns without impacting
601   // SelectionDAG's behaviour.
602   // FIXME: One day there will probably be a nicer way to check for this, but
603   // today is not that day.
604   def OptimizedGISelOrOtherSelector : Predicate<"!MF->getFunction().hasOptNone() || MF->getProperties().hasProperty(MachineFunctionProperties::Property::FailedISel) || !MF->getProperties().hasProperty(MachineFunctionProperties::Property::Legalized)">;
605 }
606
607 include "AArch64InstrFormats.td"
608 include "SVEInstrFormats.td"
609
610 //===----------------------------------------------------------------------===//
611
612 //===----------------------------------------------------------------------===//
613 // Miscellaneous instructions.
614 //===----------------------------------------------------------------------===//
615
616 let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
617 // We set Sched to empty list because we expect these instructions to simply get
618 // removed in most cases.
619 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
620                               [(AArch64callseq_start timm:$amt1, timm:$amt2)]>,
621                               Sched<[]>;
622 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
623                             [(AArch64callseq_end timm:$amt1, timm:$amt2)]>,
624                             Sched<[]>;
625 } // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1
626
627 let isReMaterializable = 1, isCodeGenOnly = 1 in {
628 // FIXME: The following pseudo instructions are only needed because remat
629 // cannot handle multiple instructions.  When that changes, they can be
630 // removed, along with the AArch64Wrapper node.
631
632 let AddedComplexity = 10 in
633 def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
634                      [(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>,
635               Sched<[WriteLDAdr]>;
636
637 // The MOVaddr instruction should match only when the add is not folded
638 // into a load or store address.
639 def MOVaddr
640     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
641              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi),
642                                             tglobaladdr:$low))]>,
643       Sched<[WriteAdrAdr]>;
644 def MOVaddrJT
645     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
646              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi),
647                                              tjumptable:$low))]>,
648       Sched<[WriteAdrAdr]>;
649 def MOVaddrCP
650     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
651              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi),
652                                              tconstpool:$low))]>,
653       Sched<[WriteAdrAdr]>;
654 def MOVaddrBA
655     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
656              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi),
657                                              tblockaddress:$low))]>,
658       Sched<[WriteAdrAdr]>;
659 def MOVaddrTLS
660     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
661              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi),
662                                             tglobaltlsaddr:$low))]>,
663       Sched<[WriteAdrAdr]>;
664 def MOVaddrEXT
665     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
666              [(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi),
667                                             texternalsym:$low))]>,
668       Sched<[WriteAdrAdr]>;
669 // Normally AArch64addlow either gets folded into a following ldr/str,
670 // or together with an adrp into MOVaddr above. For cases with TLS, it
671 // might appear without either of them, so allow lowering it into a plain
672 // add.
673 def ADDlowTLS
674     : Pseudo<(outs GPR64:$dst), (ins GPR64:$src, i64imm:$low),
675              [(set GPR64:$dst, (AArch64addlow GPR64:$src,
676                                             tglobaltlsaddr:$low))]>,
677       Sched<[WriteAdr]>;
678
679 } // isReMaterializable, isCodeGenOnly
680
681 def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr),
682           (LOADgot tglobaltlsaddr:$addr)>;
683
684 def : Pat<(AArch64LOADgot texternalsym:$addr),
685           (LOADgot texternalsym:$addr)>;
686
687 def : Pat<(AArch64LOADgot tconstpool:$addr),
688           (LOADgot tconstpool:$addr)>;
689
690 // 32-bit jump table destination is actually only 2 instructions since we can
691 // use the table itself as a PC-relative base. But optimization occurs after
692 // branch relaxation so be pessimistic.
693 let Size = 12, Constraints = "@earlyclobber $dst,@earlyclobber $scratch" in {
694 def JumpTableDest32 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
695                              (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
696                       Sched<[]>;
697 def JumpTableDest16 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
698                              (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
699                       Sched<[]>;
700 def JumpTableDest8 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
701                             (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
702                      Sched<[]>;
703 }
704
705 // Space-consuming pseudo to aid testing of placement and reachability
706 // algorithms. Immediate operand is the number of bytes this "instruction"
707 // occupies; register operands can be used to enforce dependency and constrain
708 // the scheduler.
709 let hasSideEffects = 1, mayLoad = 1, mayStore = 1 in
710 def SPACE : Pseudo<(outs GPR64:$Rd), (ins i32imm:$size, GPR64:$Rn),
711                    [(set GPR64:$Rd, (int_aarch64_space imm:$size, GPR64:$Rn))]>,
712             Sched<[]>;
713
714 let hasSideEffects = 1, isCodeGenOnly = 1 in {
715   def SpeculationSafeValueX
716       : Pseudo<(outs GPR64:$dst), (ins GPR64:$src), []>, Sched<[]>;
717   def SpeculationSafeValueW
718       : Pseudo<(outs GPR32:$dst), (ins GPR32:$src), []>, Sched<[]>;
719 }
720
721 // SpeculationBarrierEndBB must only be used after an unconditional control
722 // flow, i.e. after a terminator for which isBarrier is True.
723 let hasSideEffects = 1, isCodeGenOnly = 1, isTerminator = 1, isBarrier = 1 in {
724   def SpeculationBarrierISBDSBEndBB
725       : Pseudo<(outs), (ins), []>, Sched<[]>;
726   def SpeculationBarrierSBEndBB
727       : Pseudo<(outs), (ins), []>, Sched<[]>;
728 }
729
730 //===----------------------------------------------------------------------===//
731 // System instructions.
732 //===----------------------------------------------------------------------===//
733
734 def HINT : HintI<"hint">;
735 def : InstAlias<"nop",  (HINT 0b000)>;
736 def : InstAlias<"yield",(HINT 0b001)>;
737 def : InstAlias<"wfe",  (HINT 0b010)>;
738 def : InstAlias<"wfi",  (HINT 0b011)>;
739 def : InstAlias<"sev",  (HINT 0b100)>;
740 def : InstAlias<"sevl", (HINT 0b101)>;
741 def : InstAlias<"dgh",  (HINT 0b110)>;
742 def : InstAlias<"esb",  (HINT 0b10000)>, Requires<[HasRAS]>;
743 def : InstAlias<"csdb", (HINT 20)>;
744 // In order to be able to write readable assembly, LLVM should accept assembly
745 // inputs that use Branch Target Indentification mnemonics, even with BTI disabled.
746 // However, in order to be compatible with other assemblers (e.g. GAS), LLVM
747 // should not emit these mnemonics unless BTI is enabled.
748 def : InstAlias<"bti",  (HINT 32), 0>;
749 def : InstAlias<"bti $op", (HINT btihint_op:$op), 0>;
750 def : InstAlias<"bti",  (HINT 32)>, Requires<[HasBTI]>;
751 def : InstAlias<"bti $op", (HINT btihint_op:$op)>, Requires<[HasBTI]>;
752
753 // v8.2a Statistical Profiling extension
754 def : InstAlias<"psb $op",  (HINT psbhint_op:$op)>, Requires<[HasSPE]>;
755
756 // As far as LLVM is concerned this writes to the system's exclusive monitors.
757 let mayLoad = 1, mayStore = 1 in
758 def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;
759
760 // NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
761 // model patterns with sufficiently fine granularity.
762 let mayLoad = ?, mayStore = ? in {
763 def DMB   : CRmSystemI<barrier_op, 0b101, "dmb",
764                        [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>;
765
766 def DSB   : CRmSystemI<barrier_op, 0b100, "dsb",
767                        [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>;
768
769 def ISB   : CRmSystemI<barrier_op, 0b110, "isb",
770                        [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>;
771
772 def TSB   : CRmSystemI<barrier_op, 0b010, "tsb", []> {
773   let CRm        = 0b0010;
774   let Inst{12}   = 0;
775   let Predicates = [HasTRACEV8_4];
776 }
777 }
778
779 // ARMv8.2-A Dot Product
780 let Predicates = [HasDotProd] in {
781 defm SDOT : SIMDThreeSameVectorDot<0, 0, "sdot", int_aarch64_neon_sdot>;
782 defm UDOT : SIMDThreeSameVectorDot<1, 0, "udot", int_aarch64_neon_udot>;
783 defm SDOTlane : SIMDThreeSameVectorDotIndex<0, 0, 0b10, "sdot", int_aarch64_neon_sdot>;
784 defm UDOTlane : SIMDThreeSameVectorDotIndex<1, 0, 0b10, "udot", int_aarch64_neon_udot>;
785 }
786
787 // ARMv8.6-A BFloat
788 let Predicates = [HasBF16] in {
789 defm BFDOT       : SIMDThreeSameVectorBFDot<1, "bfdot">;
790 defm BF16DOTlane : SIMDThreeSameVectorBF16DotI<0, "bfdot">;
791 def BFMMLA       : SIMDThreeSameVectorBF16MatrixMul<"bfmmla">;
792 def BFMLALB      : SIMDBF16MLAL<0, "bfmlalb", int_aarch64_neon_bfmlalb>;
793 def BFMLALT      : SIMDBF16MLAL<1, "bfmlalt", int_aarch64_neon_bfmlalt>;
794 def BFMLALBIdx   : SIMDBF16MLALIndex<0, "bfmlalb", int_aarch64_neon_bfmlalb>;
795 def BFMLALTIdx   : SIMDBF16MLALIndex<1, "bfmlalt", int_aarch64_neon_bfmlalt>;
796 def BFCVTN       : SIMD_BFCVTN;
797 def BFCVTN2      : SIMD_BFCVTN2;
798 def BFCVT        : BF16ToSinglePrecision<"bfcvt">;
799 }
800
801 // ARMv8.6A AArch64 matrix multiplication
802 let Predicates = [HasMatMulInt8] in {
803 def  SMMLA : SIMDThreeSameVectorMatMul<0, 0, "smmla", int_aarch64_neon_smmla>;
804 def  UMMLA : SIMDThreeSameVectorMatMul<0, 1, "ummla", int_aarch64_neon_ummla>;
805 def USMMLA : SIMDThreeSameVectorMatMul<1, 0, "usmmla", int_aarch64_neon_usmmla>;
806 defm USDOT : SIMDThreeSameVectorDot<0, 1, "usdot", int_aarch64_neon_usdot>;
807 defm USDOTlane : SIMDThreeSameVectorDotIndex<0, 1, 0b10, "usdot", int_aarch64_neon_usdot>;
808
809 // sudot lane has a pattern where usdot is expected (there is no sudot).
810 // The second operand is used in the dup operation to repeat the indexed
811 // element.
812 class BaseSIMDSUDOTIndex<bit Q, string dst_kind, string lhs_kind,
813                          string rhs_kind, RegisterOperand RegType,
814                          ValueType AccumType, ValueType InputType>
815       : BaseSIMDThreeSameVectorDotIndex<Q, 0, 1, 0b00, "sudot", dst_kind,
816                                         lhs_kind, rhs_kind, RegType, AccumType,
817                                         InputType, null_frag> {
818   let Pattern = [(set (AccumType RegType:$dst),
819                       (AccumType (int_aarch64_neon_usdot (AccumType RegType:$Rd),
820                                  (InputType (bitconvert (AccumType
821                                     (AArch64duplane32 (v4i32 V128:$Rm),
822                                         VectorIndexS:$idx)))),
823                                  (InputType RegType:$Rn))))];
824 }
825
826 multiclass SIMDSUDOTIndex {
827   def v8i8  : BaseSIMDSUDOTIndex<0, ".2s", ".8b", ".4b", V64, v2i32, v8i8>;
828   def v16i8 : BaseSIMDSUDOTIndex<1, ".4s", ".16b", ".4b", V128, v4i32, v16i8>;
829 }
830
831 defm SUDOTlane : SIMDSUDOTIndex;
832
833 }
834
835 // ARMv8.2-A FP16 Fused Multiply-Add Long
836 let Predicates = [HasNEON, HasFP16FML] in {
837 defm FMLAL      : SIMDThreeSameVectorFML<0, 1, 0b001, "fmlal", int_aarch64_neon_fmlal>;
838 defm FMLSL      : SIMDThreeSameVectorFML<0, 1, 0b101, "fmlsl", int_aarch64_neon_fmlsl>;
839 defm FMLAL2     : SIMDThreeSameVectorFML<1, 0, 0b001, "fmlal2", int_aarch64_neon_fmlal2>;
840 defm FMLSL2     : SIMDThreeSameVectorFML<1, 0, 0b101, "fmlsl2", int_aarch64_neon_fmlsl2>;
841 defm FMLALlane  : SIMDThreeSameVectorFMLIndex<0, 0b0000, "fmlal", int_aarch64_neon_fmlal>;
842 defm FMLSLlane  : SIMDThreeSameVectorFMLIndex<0, 0b0100, "fmlsl", int_aarch64_neon_fmlsl>;
843 defm FMLAL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1000, "fmlal2", int_aarch64_neon_fmlal2>;
844 defm FMLSL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1100, "fmlsl2", int_aarch64_neon_fmlsl2>;
845 }
846
847 // Armv8.2-A Crypto extensions
848 let Predicates = [HasSHA3] in {
849 def SHA512H   : CryptoRRRTied<0b0, 0b00, "sha512h">;
850 def SHA512H2  : CryptoRRRTied<0b0, 0b01, "sha512h2">;
851 def SHA512SU0 : CryptoRRTied_2D<0b0, 0b00, "sha512su0">;
852 def SHA512SU1 : CryptoRRRTied_2D<0b0, 0b10, "sha512su1">;
853 def RAX1      : CryptoRRR_2D<0b0,0b11, "rax1">;
854 def EOR3      : CryptoRRRR_16B<0b00, "eor3">;
855 def BCAX      : CryptoRRRR_16B<0b01, "bcax">;
856 def XAR       : CryptoRRRi6<"xar">;
857 } // HasSHA3
858
859 let Predicates = [HasSM4] in {
860 def SM3TT1A   : CryptoRRRi2Tied<0b0, 0b00, "sm3tt1a">;
861 def SM3TT1B   : CryptoRRRi2Tied<0b0, 0b01, "sm3tt1b">;
862 def SM3TT2A   : CryptoRRRi2Tied<0b0, 0b10, "sm3tt2a">;
863 def SM3TT2B   : CryptoRRRi2Tied<0b0, 0b11, "sm3tt2b">;
864 def SM3SS1    : CryptoRRRR_4S<0b10, "sm3ss1">;
865 def SM3PARTW1 : CryptoRRRTied_4S<0b1, 0b00, "sm3partw1">;
866 def SM3PARTW2 : CryptoRRRTied_4S<0b1, 0b01, "sm3partw2">;
867 def SM4ENCKEY : CryptoRRR_4S<0b1, 0b10, "sm4ekey">;
868 def SM4E      : CryptoRRTied_4S<0b0, 0b01, "sm4e">;
869 } // HasSM4
870
871 let Predicates = [HasRCPC] in {
872   // v8.3 Release Consistent Processor Consistent support, optional in v8.2.
873   def LDAPRB  : RCPCLoad<0b00, "ldaprb", GPR32>;
874   def LDAPRH  : RCPCLoad<0b01, "ldaprh", GPR32>;
875   def LDAPRW  : RCPCLoad<0b10, "ldapr", GPR32>;
876   def LDAPRX  : RCPCLoad<0b11, "ldapr", GPR64>;
877 }
878
879 // v8.3a complex add and multiply-accumulate. No predicate here, that is done
880 // inside the multiclass as the FP16 versions need different predicates.
881 defm FCMLA : SIMDThreeSameVectorTiedComplexHSD<1, 0b110, complexrotateop,
882                                                "fcmla", null_frag>;
883 defm FCADD : SIMDThreeSameVectorComplexHSD<1, 0b111, complexrotateopodd,
884                                            "fcadd", null_frag>;
885 defm FCMLA : SIMDIndexedTiedComplexHSD<1, 0, 1, complexrotateop, "fcmla",
886                                        null_frag>;
887
888 let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in {
889   def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot90 (v4f16 V64:$Rn), (v4f16 V64:$Rm))),
890             (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 0))>;
891   def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot270 (v4f16 V64:$Rn), (v4f16 V64:$Rm))),
892             (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 1))>;
893   def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot90 (v8f16 V128:$Rn), (v8f16 V128:$Rm))),
894             (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 0))>;
895   def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot270 (v8f16 V128:$Rn), (v8f16 V128:$Rm))),
896             (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 1))>;
897 }
898 let Predicates = [HasComplxNum, HasNEON] in {
899   def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot90 (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
900             (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 0))>;
901   def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot270 (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
902             (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 1))>;
903   foreach Ty = [v4f32, v2f64] in {
904     def : Pat<(Ty (int_aarch64_neon_vcadd_rot90 (Ty V128:$Rn), (Ty V128:$Rm))),
905               (!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 0))>;
906     def : Pat<(Ty (int_aarch64_neon_vcadd_rot270 (Ty V128:$Rn), (Ty V128:$Rm))),
907               (!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 1))>;
908   }
909 }
910
911 // v8.3a Pointer Authentication
912 // These instructions inhabit part of the hint space and so can be used for
913 // armv8 targets. Keeping the old HINT mnemonic when compiling without PA is
914 // important for compatibility with other assemblers (e.g. GAS) when building
915 // software compatible with both CPUs that do or don't implement PA.
916 let Uses = [LR], Defs = [LR] in {
917   def PACIAZ   : SystemNoOperands<0b000, "hint\t#24">;
918   def PACIBZ   : SystemNoOperands<0b010, "hint\t#26">;
919   let isAuthenticated = 1 in {
920     def AUTIAZ   : SystemNoOperands<0b100, "hint\t#28">;
921     def AUTIBZ   : SystemNoOperands<0b110, "hint\t#30">;
922   }
923 }
924 let Uses = [LR, SP], Defs = [LR] in {
925   def PACIASP  : SystemNoOperands<0b001, "hint\t#25">;
926   def PACIBSP  : SystemNoOperands<0b011, "hint\t#27">;
927   let isAuthenticated = 1 in {
928     def AUTIASP  : SystemNoOperands<0b101, "hint\t#29">;
929     def AUTIBSP  : SystemNoOperands<0b111, "hint\t#31">;
930   }
931 }
932 let Uses = [X16, X17], Defs = [X17], CRm = 0b0001 in {
933   def PACIA1716  : SystemNoOperands<0b000, "hint\t#8">;
934   def PACIB1716  : SystemNoOperands<0b010, "hint\t#10">;
935   let isAuthenticated = 1 in {
936     def AUTIA1716  : SystemNoOperands<0b100, "hint\t#12">;
937     def AUTIB1716  : SystemNoOperands<0b110, "hint\t#14">;
938   }
939 }
940
941 let Uses = [LR], Defs = [LR], CRm = 0b0000 in {
942   def XPACLRI   : SystemNoOperands<0b111, "hint\t#7">;
943 }
944
945 // In order to be able to write readable assembly, LLVM should accept assembly
946 // inputs that use pointer authentication mnemonics, even with PA disabled.
947 // However, in order to be compatible with other assemblers (e.g. GAS), LLVM
948 // should not emit these mnemonics unless PA is enabled.
949 def : InstAlias<"paciaz", (PACIAZ), 0>;
950 def : InstAlias<"pacibz", (PACIBZ), 0>;
951 def : InstAlias<"autiaz", (AUTIAZ), 0>;
952 def : InstAlias<"autibz", (AUTIBZ), 0>;
953 def : InstAlias<"paciasp", (PACIASP), 0>;
954 def : InstAlias<"pacibsp", (PACIBSP), 0>;
955 def : InstAlias<"autiasp", (AUTIASP), 0>;
956 def : InstAlias<"autibsp", (AUTIBSP), 0>;
957 def : InstAlias<"pacia1716", (PACIA1716), 0>;
958 def : InstAlias<"pacib1716", (PACIB1716), 0>;
959 def : InstAlias<"autia1716", (AUTIA1716), 0>;
960 def : InstAlias<"autib1716", (AUTIB1716), 0>;
961 def : InstAlias<"xpaclri", (XPACLRI), 0>;
962
963 // These pointer authentication instructions require armv8.3a
964 let Predicates = [HasPA] in {
965
966   // When PA is enabled, a better mnemonic should be emitted.
967   def : InstAlias<"paciaz", (PACIAZ), 1>;
968   def : InstAlias<"pacibz", (PACIBZ), 1>;
969   def : InstAlias<"autiaz", (AUTIAZ), 1>;
970   def : InstAlias<"autibz", (AUTIBZ), 1>;
971   def : InstAlias<"paciasp", (PACIASP), 1>;
972   def : InstAlias<"pacibsp", (PACIBSP), 1>;
973   def : InstAlias<"autiasp", (AUTIASP), 1>;
974   def : InstAlias<"autibsp", (AUTIBSP), 1>;
975   def : InstAlias<"pacia1716", (PACIA1716), 1>;
976   def : InstAlias<"pacib1716", (PACIB1716), 1>;
977   def : InstAlias<"autia1716", (AUTIA1716), 1>;
978   def : InstAlias<"autib1716", (AUTIB1716), 1>;
979   def : InstAlias<"xpaclri", (XPACLRI), 1>;
980
981   multiclass SignAuth<bits<3> prefix, bits<3> prefix_z, string asm> {
982     def IA   : SignAuthOneData<prefix, 0b00, !strconcat(asm, "ia")>;
983     def IB   : SignAuthOneData<prefix, 0b01, !strconcat(asm, "ib")>;
984     def DA   : SignAuthOneData<prefix, 0b10, !strconcat(asm, "da")>;
985     def DB   : SignAuthOneData<prefix, 0b11, !strconcat(asm, "db")>;
986     def IZA  : SignAuthZero<prefix_z, 0b00, !strconcat(asm, "iza")>;
987     def DZA  : SignAuthZero<prefix_z, 0b10, !strconcat(asm, "dza")>;
988     def IZB  : SignAuthZero<prefix_z, 0b01, !strconcat(asm, "izb")>;
989     def DZB  : SignAuthZero<prefix_z, 0b11, !strconcat(asm, "dzb")>;
990   }
991
992   defm PAC : SignAuth<0b000, 0b010, "pac">;
993   defm AUT : SignAuth<0b001, 0b011, "aut">;
994
995   def XPACI : SignAuthZero<0b100, 0b00, "xpaci">;
996   def XPACD : SignAuthZero<0b100, 0b01, "xpacd">;
997   def PACGA : SignAuthTwoOperand<0b1100, "pacga", null_frag>;
998
999   // Combined Instructions
1000   let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1  in {
1001     def BRAA    : AuthBranchTwoOperands<0, 0, "braa">;
1002     def BRAB    : AuthBranchTwoOperands<0, 1, "brab">;
1003   }
1004   let isCall = 1, Defs = [LR], Uses = [SP] in {
1005     def BLRAA   : AuthBranchTwoOperands<1, 0, "blraa">;
1006     def BLRAB   : AuthBranchTwoOperands<1, 1, "blrab">;
1007   }
1008
1009   let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1  in {
1010     def BRAAZ   : AuthOneOperand<0b000, 0, "braaz">;
1011     def BRABZ   : AuthOneOperand<0b000, 1, "brabz">;
1012   }
1013   let isCall = 1, Defs = [LR], Uses = [SP] in {
1014     def BLRAAZ  : AuthOneOperand<0b001, 0, "blraaz">;
1015     def BLRABZ  : AuthOneOperand<0b001, 1, "blrabz">;
1016   }
1017
1018   let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
1019     def RETAA   : AuthReturn<0b010, 0, "retaa">;
1020     def RETAB   : AuthReturn<0b010, 1, "retab">;
1021     def ERETAA  : AuthReturn<0b100, 0, "eretaa">;
1022     def ERETAB  : AuthReturn<0b100, 1, "eretab">;
1023   }
1024
1025   defm LDRAA  : AuthLoad<0, "ldraa", simm10Scaled>;
1026   defm LDRAB  : AuthLoad<1, "ldrab", simm10Scaled>;
1027
1028 }
1029
1030 // v8.3a floating point conversion for javascript
1031 let Predicates = [HasJS, HasFPARMv8] in
1032 def FJCVTZS  : BaseFPToIntegerUnscaled<0b01, 0b11, 0b110, FPR64, GPR32,
1033                                       "fjcvtzs",
1034                                       [(set GPR32:$Rd,
1035                                          (int_aarch64_fjcvtzs FPR64:$Rn))]> {
1036   let Inst{31} = 0;
1037 } // HasJS, HasFPARMv8
1038
1039 // v8.4 Flag manipulation instructions
1040 let Predicates = [HasFMI] in {
1041 def CFINV : SimpleSystemI<0, (ins), "cfinv", "">, Sched<[WriteSys]> {
1042   let Inst{20-5} = 0b0000001000000000;
1043 }
1044 def SETF8  : BaseFlagManipulation<0, 0, (ins GPR32:$Rn), "setf8", "{\t$Rn}">;
1045 def SETF16 : BaseFlagManipulation<0, 1, (ins GPR32:$Rn), "setf16", "{\t$Rn}">;
1046 def RMIF   : FlagRotate<(ins GPR64:$Rn, uimm6:$imm, imm0_15:$mask), "rmif",
1047                         "{\t$Rn, $imm, $mask}">;
1048 } // HasFMI
1049
1050 // v8.5 flag manipulation instructions
1051 let Predicates = [HasAltNZCV], Uses = [NZCV], Defs = [NZCV] in {
1052
1053 def XAFLAG : PstateWriteSimple<(ins), "xaflag", "">, Sched<[WriteSys]> {
1054   let Inst{18-16} = 0b000;
1055   let Inst{11-8} = 0b0000;
1056   let Unpredictable{11-8} = 0b1111;
1057   let Inst{7-5} = 0b001;
1058 }
1059
1060 def AXFLAG : PstateWriteSimple<(ins), "axflag", "">, Sched<[WriteSys]> {
1061   let Inst{18-16} = 0b000;
1062   let Inst{11-8} = 0b0000;
1063   let Unpredictable{11-8} = 0b1111;
1064   let Inst{7-5} = 0b010;
1065 }
1066 } // HasAltNZCV
1067
1068
1069 // Armv8.5-A speculation barrier
1070 def SB : SimpleSystemI<0, (ins), "sb", "">, Sched<[]> {
1071   let Inst{20-5} = 0b0001100110000111;
1072   let Unpredictable{11-8} = 0b1111;
1073   let Predicates = [HasSB];
1074   let hasSideEffects = 1;
1075 }
1076
1077 def : InstAlias<"clrex", (CLREX 0xf)>;
1078 def : InstAlias<"isb", (ISB 0xf)>;
1079 def : InstAlias<"ssbb", (DSB 0)>;
1080 def : InstAlias<"pssbb", (DSB 4)>;
1081
1082 def MRS    : MRSI;
1083 def MSR    : MSRI;
1084 def MSRpstateImm1 : MSRpstateImm0_1;
1085 def MSRpstateImm4 : MSRpstateImm0_15;
1086
1087 // The thread pointer (on Linux, at least, where this has been implemented) is
1088 // TPIDR_EL0.
1089 def MOVbaseTLS : Pseudo<(outs GPR64:$dst), (ins),
1090                        [(set GPR64:$dst, AArch64threadpointer)]>, Sched<[WriteSys]>;
1091
1092 let Uses = [ X9 ], Defs = [ X16, X17, LR, NZCV ] in {
1093 def HWASAN_CHECK_MEMACCESS : Pseudo<
1094   (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo),
1095   [(int_hwasan_check_memaccess X9, GPR64noip:$ptr, (i32 timm:$accessinfo))]>,
1096   Sched<[]>;
1097 def HWASAN_CHECK_MEMACCESS_SHORTGRANULES : Pseudo<
1098   (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo),
1099   [(int_hwasan_check_memaccess_shortgranules X9, GPR64noip:$ptr, (i32 timm:$accessinfo))]>,
1100   Sched<[]>;
1101 }
1102
1103 // The cycle counter PMC register is PMCCNTR_EL0.
1104 let Predicates = [HasPerfMon] in
1105 def : Pat<(readcyclecounter), (MRS 0xdce8)>;
1106
1107 // FPCR register
1108 def : Pat<(i64 (int_aarch64_get_fpcr)), (MRS 0xda20)>;
1109
1110 // Generic system instructions
1111 def SYSxt  : SystemXtI<0, "sys">;
1112 def SYSLxt : SystemLXtI<1, "sysl">;
1113
1114 def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
1115                 (SYSxt imm0_7:$op1, sys_cr_op:$Cn,
1116                  sys_cr_op:$Cm, imm0_7:$op2, XZR)>;
1117
1118
1119 let Predicates = [HasTME] in {
1120
1121 def TSTART : TMSystemI<0b0000, "tstart",
1122                       [(set GPR64:$Rt, (int_aarch64_tstart))]>;
1123
1124 def TCOMMIT : TMSystemINoOperand<0b0000, "tcommit", [(int_aarch64_tcommit)]>;
1125
1126 def TCANCEL : TMSystemException<0b011, "tcancel",
1127                                 [(int_aarch64_tcancel i64_imm0_65535:$imm)]>;
1128
1129 def TTEST : TMSystemI<0b0001, "ttest", [(set GPR64:$Rt, (int_aarch64_ttest))]> {
1130   let mayLoad = 0;
1131   let mayStore = 0;
1132 }
1133 } // HasTME
1134
1135 //===----------------------------------------------------------------------===//
1136 // Move immediate instructions.
1137 //===----------------------------------------------------------------------===//
1138
1139 defm MOVK : InsertImmediate<0b11, "movk">;
1140 defm MOVN : MoveImmediate<0b00, "movn">;
1141
1142 let PostEncoderMethod = "fixMOVZ" in
1143 defm MOVZ : MoveImmediate<0b10, "movz">;
1144
1145 // First group of aliases covers an implicit "lsl #0".
1146 def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, i32_imm0_65535:$imm, 0), 0>;
1147 def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, i32_imm0_65535:$imm, 0), 0>;
1148 def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, i32_imm0_65535:$imm, 0)>;
1149 def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, i32_imm0_65535:$imm, 0)>;
1150 def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, i32_imm0_65535:$imm, 0)>;
1151 def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, i32_imm0_65535:$imm, 0)>;
1152
1153 // Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax.
1154 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>;
1155 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>;
1156 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>;
1157 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>;
1158
1159 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>;
1160 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>;
1161 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>;
1162 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>;
1163
1164 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g3:$sym, 48), 0>;
1165 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g2:$sym, 32), 0>;
1166 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g1:$sym, 16), 0>;
1167 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g0:$sym, 0), 0>;
1168
1169 def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>;
1170 def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>;
1171
1172 def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>;
1173 def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>;
1174
1175 def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g1:$sym, 16), 0>;
1176 def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g0:$sym, 0), 0>;
1177
1178 // Final group of aliases covers true "mov $Rd, $imm" cases.
1179 multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR,
1180                           int width, int shift> {
1181   def _asmoperand : AsmOperandClass {
1182     let Name = basename # width # "_lsl" # shift # "MovAlias";
1183     let PredicateMethod = "is" # basename # "MovAlias<" # width # ", "
1184                                # shift # ">";
1185     let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">";
1186   }
1187
1188   def _movimm : Operand<i32> {
1189     let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand");
1190   }
1191
1192   def : InstAlias<"mov $Rd, $imm",
1193                   (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>;
1194 }
1195
1196 defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>;
1197 defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>;
1198
1199 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>;
1200 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>;
1201 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>;
1202 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>;
1203
1204 defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>;
1205 defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>;
1206
1207 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>;
1208 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>;
1209 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>;
1210 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>;
1211
1212 let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
1213     isAsCheapAsAMove = 1 in {
1214 // FIXME: The following pseudo instructions are only needed because remat
1215 // cannot handle multiple instructions.  When that changes, we can select
1216 // directly to the real instructions and get rid of these pseudos.
1217
1218 def MOVi32imm
1219     : Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
1220              [(set GPR32:$dst, imm:$src)]>,
1221       Sched<[WriteImm]>;
1222 def MOVi64imm
1223     : Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
1224              [(set GPR64:$dst, imm:$src)]>,
1225       Sched<[WriteImm]>;
1226 } // isReMaterializable, isCodeGenOnly
1227
1228 // If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
1229 // eventual expansion code fewer bits to worry about getting right. Marshalling
1230 // the types is a little tricky though:
1231 def i64imm_32bit : ImmLeaf<i64, [{
1232   return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
1233 }]>;
1234
1235 def s64imm_32bit : ImmLeaf<i64, [{
1236   int64_t Imm64 = static_cast<int64_t>(Imm);
1237   return Imm64 >= std::numeric_limits<int32_t>::min() &&
1238          Imm64 <= std::numeric_limits<int32_t>::max();
1239 }]>;
1240
1241 def trunc_imm : SDNodeXForm<imm, [{
1242   return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32);
1243 }]>;
1244
1245 def gi_trunc_imm : GICustomOperandRenderer<"renderTruncImm">,
1246   GISDNodeXFormEquiv<trunc_imm>;
1247
1248 let Predicates = [OptimizedGISelOrOtherSelector] in {
1249 // The SUBREG_TO_REG isn't eliminated at -O0, which can result in pointless
1250 // copies.
1251 def : Pat<(i64 i64imm_32bit:$src),
1252           (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
1253 }
1254
1255 // Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model).
1256 def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
1257 return CurDAG->getTargetConstant(
1258   N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32);
1259 }]>;
1260
1261 def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
1262 return CurDAG->getTargetConstant(
1263   N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64);
1264 }]>;
1265
1266
1267 def : Pat<(f32 fpimm:$in),
1268   (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>;
1269 def : Pat<(f64 fpimm:$in),
1270   (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>;
1271
1272
1273 // Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
1274 // sequences.
1275 def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
1276                              tglobaladdr:$g1, tglobaladdr:$g0),
1277           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g0, 0),
1278                                   tglobaladdr:$g1, 16),
1279                           tglobaladdr:$g2, 32),
1280                   tglobaladdr:$g3, 48)>;
1281
1282 def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
1283                              tblockaddress:$g1, tblockaddress:$g0),
1284           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g0, 0),
1285                                   tblockaddress:$g1, 16),
1286                           tblockaddress:$g2, 32),
1287                   tblockaddress:$g3, 48)>;
1288
1289 def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2,
1290                              tconstpool:$g1, tconstpool:$g0),
1291           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g0, 0),
1292                                   tconstpool:$g1, 16),
1293                           tconstpool:$g2, 32),
1294                   tconstpool:$g3, 48)>;
1295
1296 def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2,
1297                              tjumptable:$g1, tjumptable:$g0),
1298           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g0, 0),
1299                                   tjumptable:$g1, 16),
1300                           tjumptable:$g2, 32),
1301                   tjumptable:$g3, 48)>;
1302
1303
1304 //===----------------------------------------------------------------------===//
1305 // Arithmetic instructions.
1306 //===----------------------------------------------------------------------===//
1307
1308 // Add/subtract with carry.
1309 defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>;
1310 defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>;
1311
1312 def : InstAlias<"ngc $dst, $src",  (SBCWr  GPR32:$dst, WZR, GPR32:$src)>;
1313 def : InstAlias<"ngc $dst, $src",  (SBCXr  GPR64:$dst, XZR, GPR64:$src)>;
1314 def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
1315 def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;
1316
1317 // Add/subtract
1318 defm ADD : AddSub<0, "add", "sub", add>;
1319 defm SUB : AddSub<1, "sub", "add">;
1320
1321 def : InstAlias<"mov $dst, $src",
1322                 (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>;
1323 def : InstAlias<"mov $dst, $src",
1324                 (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>;
1325 def : InstAlias<"mov $dst, $src",
1326                 (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>;
1327 def : InstAlias<"mov $dst, $src",
1328                 (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>;
1329
1330 defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">;
1331 defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">;
1332
1333 // Use SUBS instead of SUB to enable CSE between SUBS and SUB.
1334 def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
1335           (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
1336 def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
1337           (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
1338 def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
1339           (SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
1340 def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
1341           (SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
1342 def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
1343           (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
1344 def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
1345           (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
1346 let AddedComplexity = 1 in {
1347 def : Pat<(sub GPR32sp:$R2, arith_extended_reg32_i32:$R3),
1348           (SUBSWrx GPR32sp:$R2, arith_extended_reg32_i32:$R3)>;
1349 def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64_i64:$R3),
1350           (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64_i64:$R3)>;
1351 }
1352
1353 // Because of the immediate format for add/sub-imm instructions, the
1354 // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
1355 //  These patterns capture that transformation.
1356 let AddedComplexity = 1 in {
1357 def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
1358           (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
1359 def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
1360           (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
1361 def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
1362           (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
1363 def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
1364           (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
1365 }
1366
1367 // Because of the immediate format for add/sub-imm instructions, the
1368 // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
1369 //  These patterns capture that transformation.
1370 let AddedComplexity = 1 in {
1371 def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
1372           (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
1373 def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
1374           (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
1375 def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
1376           (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
1377 def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
1378           (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
1379 }
1380
1381 def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
1382 def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
1383 def : InstAlias<"neg $dst, $src$shift",
1384                 (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
1385 def : InstAlias<"neg $dst, $src$shift",
1386                 (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
1387
1388 def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
1389 def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
1390 def : InstAlias<"negs $dst, $src$shift",
1391                 (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
1392 def : InstAlias<"negs $dst, $src$shift",
1393                 (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
1394
1395
1396 // Unsigned/Signed divide
1397 defm UDIV : Div<0, "udiv", udiv>;
1398 defm SDIV : Div<1, "sdiv", sdiv>;
1399
1400 def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr GPR32:$Rn, GPR32:$Rm)>;
1401 def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr GPR64:$Rn, GPR64:$Rm)>;
1402 def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr GPR32:$Rn, GPR32:$Rm)>;
1403 def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr GPR64:$Rn, GPR64:$Rm)>;
1404
1405 // Variable shift
1406 defm ASRV : Shift<0b10, "asr", sra>;
1407 defm LSLV : Shift<0b00, "lsl", shl>;
1408 defm LSRV : Shift<0b01, "lsr", srl>;
1409 defm RORV : Shift<0b11, "ror", rotr>;
1410
1411 def : ShiftAlias<"asrv", ASRVWr, GPR32>;
1412 def : ShiftAlias<"asrv", ASRVXr, GPR64>;
1413 def : ShiftAlias<"lslv", LSLVWr, GPR32>;
1414 def : ShiftAlias<"lslv", LSLVXr, GPR64>;
1415 def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
1416 def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
1417 def : ShiftAlias<"rorv", RORVWr, GPR32>;
1418 def : ShiftAlias<"rorv", RORVXr, GPR64>;
1419
1420 // Multiply-add
1421 let AddedComplexity = 5 in {
1422 defm MADD : MulAccum<0, "madd", add>;
1423 defm MSUB : MulAccum<1, "msub", sub>;
1424
1425 def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
1426           (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
1427 def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
1428           (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
1429
1430 def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
1431           (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
1432 def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
1433           (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
1434 def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)),
1435           (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
1436 def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)),
1437           (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
1438 } // AddedComplexity = 5
1439
1440 let AddedComplexity = 5 in {
1441 def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
1442 def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
1443 def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
1444 def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;
1445
1446 def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
1447           (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
1448 def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
1449           (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
1450
1451 def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
1452           (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
1453 def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
1454           (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
1455
1456 def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))),
1457           (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1458 def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))),
1459           (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1460 def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))),
1461           (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
1462                      (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1463
1464 def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
1465           (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1466 def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
1467           (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1468 def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))),
1469           (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
1470                      (MOVi32imm (trunc_imm imm:$C)), XZR)>;
1471
1472 def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)),
1473           (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1474 def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)),
1475           (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1476 def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)),
1477                     GPR64:$Ra)),
1478           (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
1479                      (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1480
1481 def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
1482           (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1483 def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
1484           (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1485 def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32),
1486                                     (s64imm_32bit:$C)))),
1487           (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
1488                      (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
1489 } // AddedComplexity = 5
1490
1491 def : MulAccumWAlias<"mul", MADDWrrr>;
1492 def : MulAccumXAlias<"mul", MADDXrrr>;
1493 def : MulAccumWAlias<"mneg", MSUBWrrr>;
1494 def : MulAccumXAlias<"mneg", MSUBXrrr>;
1495 def : WideMulAccumAlias<"smull", SMADDLrrr>;
1496 def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
1497 def : WideMulAccumAlias<"umull", UMADDLrrr>;
1498 def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;
1499
1500 // Multiply-high
1501 def SMULHrr : MulHi<0b010, "smulh", mulhs>;
1502 def UMULHrr : MulHi<0b110, "umulh", mulhu>;
1503
1504 // CRC32
1505 def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">;
1506 def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">;
1507 def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">;
1508 def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">;
1509
1510 def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">;
1511 def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">;
1512 def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">;
1513 def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">;
1514
1515 // v8.1 atomic CAS
1516 defm CAS   : CompareAndSwap<0, 0, "">;
1517 defm CASA  : CompareAndSwap<1, 0, "a">;
1518 defm CASL  : CompareAndSwap<0, 1, "l">;
1519 defm CASAL : CompareAndSwap<1, 1, "al">;
1520
1521 // v8.1 atomic CASP
1522 defm CASP   : CompareAndSwapPair<0, 0, "">;
1523 defm CASPA  : CompareAndSwapPair<1, 0, "a">;
1524 defm CASPL  : CompareAndSwapPair<0, 1, "l">;
1525 defm CASPAL : CompareAndSwapPair<1, 1, "al">;
1526
1527 // v8.1 atomic SWP
1528 defm SWP   : Swap<0, 0, "">;
1529 defm SWPA  : Swap<1, 0, "a">;
1530 defm SWPL  : Swap<0, 1, "l">;
1531 defm SWPAL : Swap<1, 1, "al">;
1532
1533 // v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register)
1534 defm LDADD   : LDOPregister<0b000, "add", 0, 0, "">;
1535 defm LDADDA  : LDOPregister<0b000, "add", 1, 0, "a">;
1536 defm LDADDL  : LDOPregister<0b000, "add", 0, 1, "l">;
1537 defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">;
1538
1539 defm LDCLR   : LDOPregister<0b001, "clr", 0, 0, "">;
1540 defm LDCLRA  : LDOPregister<0b001, "clr", 1, 0, "a">;
1541 defm LDCLRL  : LDOPregister<0b001, "clr", 0, 1, "l">;
1542 defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">;
1543
1544 defm LDEOR   : LDOPregister<0b010, "eor", 0, 0, "">;
1545 defm LDEORA  : LDOPregister<0b010, "eor", 1, 0, "a">;
1546 defm LDEORL  : LDOPregister<0b010, "eor", 0, 1, "l">;
1547 defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">;
1548
1549 defm LDSET   : LDOPregister<0b011, "set", 0, 0, "">;
1550 defm LDSETA  : LDOPregister<0b011, "set", 1, 0, "a">;
1551 defm LDSETL  : LDOPregister<0b011, "set", 0, 1, "l">;
1552 defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">;
1553
1554 defm LDSMAX   : LDOPregister<0b100, "smax", 0, 0, "">;
1555 defm LDSMAXA  : LDOPregister<0b100, "smax", 1, 0, "a">;
1556 defm LDSMAXL  : LDOPregister<0b100, "smax", 0, 1, "l">;
1557 defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">;
1558
1559 defm LDSMIN   : LDOPregister<0b101, "smin", 0, 0, "">;
1560 defm LDSMINA  : LDOPregister<0b101, "smin", 1, 0, "a">;
1561 defm LDSMINL  : LDOPregister<0b101, "smin", 0, 1, "l">;
1562 defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">;
1563
1564 defm LDUMAX   : LDOPregister<0b110, "umax", 0, 0, "">;
1565 defm LDUMAXA  : LDOPregister<0b110, "umax", 1, 0, "a">;
1566 defm LDUMAXL  : LDOPregister<0b110, "umax", 0, 1, "l">;
1567 defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">;
1568
1569 defm LDUMIN   : LDOPregister<0b111, "umin", 0, 0, "">;
1570 defm LDUMINA  : LDOPregister<0b111, "umin", 1, 0, "a">;
1571 defm LDUMINL  : LDOPregister<0b111, "umin", 0, 1, "l">;
1572 defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">;
1573
1574 // v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR"
1575 defm : STOPregister<"stadd","LDADD">; // STADDx
1576 defm : STOPregister<"stclr","LDCLR">; // STCLRx
1577 defm : STOPregister<"steor","LDEOR">; // STEORx
1578 defm : STOPregister<"stset","LDSET">; // STSETx
1579 defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx
1580 defm : STOPregister<"stsmin","LDSMIN">;// STSMINx
1581 defm : STOPregister<"stumax","LDUMAX">;// STUMAXx
1582 defm : STOPregister<"stumin","LDUMIN">;// STUMINx
1583
1584 // v8.5 Memory Tagging Extension
1585 let Predicates = [HasMTE] in {
1586
1587 def IRG   : BaseTwoOperand<0b0100, GPR64sp, "irg", int_aarch64_irg, GPR64sp, GPR64>,
1588             Sched<[]>{
1589   let Inst{31} = 1;
1590 }
1591 def GMI   : BaseTwoOperand<0b0101, GPR64, "gmi", int_aarch64_gmi, GPR64sp>, Sched<[]>{
1592   let Inst{31} = 1;
1593   let isNotDuplicable = 1;
1594 }
1595 def ADDG  : AddSubG<0, "addg", null_frag>;
1596 def SUBG  : AddSubG<1, "subg", null_frag>;
1597
1598 def : InstAlias<"irg $dst, $src", (IRG GPR64sp:$dst, GPR64sp:$src, XZR), 1>;
1599
1600 def SUBP : SUBP<0, "subp", int_aarch64_subp>, Sched<[]>;
1601 def SUBPS : SUBP<1, "subps", null_frag>, Sched<[]>{
1602   let Defs = [NZCV];
1603 }
1604
1605 def : InstAlias<"cmpp $lhs, $rhs", (SUBPS XZR, GPR64sp:$lhs, GPR64sp:$rhs), 0>;
1606
1607 def LDG : MemTagLoad<"ldg", "\t$Rt, [$Rn, $offset]">;
1608
1609 def : Pat<(int_aarch64_addg (am_indexedu6s128 GPR64sp:$Rn, uimm6s16:$imm6), imm0_15:$imm4),
1610           (ADDG GPR64sp:$Rn, imm0_63:$imm6, imm0_15:$imm4)>;
1611 def : Pat<(int_aarch64_ldg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn,  simm9s16:$offset)),
1612           (LDG GPR64:$Rt, GPR64sp:$Rn,  simm9s16:$offset)>;
1613
1614 def : InstAlias<"ldg $Rt, [$Rn]", (LDG GPR64:$Rt, GPR64sp:$Rn, 0), 1>;
1615
1616 def LDGM : MemTagVector<1, "ldgm", "\t$Rt, [$Rn]",
1617                    (outs GPR64:$Rt), (ins GPR64sp:$Rn)>;
1618 def STGM : MemTagVector<0, "stgm", "\t$Rt, [$Rn]",
1619                    (outs), (ins GPR64:$Rt, GPR64sp:$Rn)>;
1620 def STZGM : MemTagVector<0, "stzgm", "\t$Rt, [$Rn]",
1621                    (outs), (ins GPR64:$Rt, GPR64sp:$Rn)> {
1622   let Inst{23} = 0;
1623 }
1624
1625 defm STG   : MemTagStore<0b00, "stg">;
1626 defm STZG  : MemTagStore<0b01, "stzg">;
1627 defm ST2G  : MemTagStore<0b10, "st2g">;
1628 defm STZ2G : MemTagStore<0b11, "stz2g">;
1629
1630 def : Pat<(AArch64stg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
1631           (STGOffset $Rn, $Rm, $imm)>;
1632 def : Pat<(AArch64stzg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
1633           (STZGOffset $Rn, $Rm, $imm)>;
1634 def : Pat<(AArch64st2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
1635           (ST2GOffset $Rn, $Rm, $imm)>;
1636 def : Pat<(AArch64stz2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
1637           (STZ2GOffset $Rn, $Rm, $imm)>;
1638
1639 defm STGP     : StorePairOffset <0b01, 0, GPR64z, simm7s16, "stgp">;
1640 def  STGPpre  : StorePairPreIdx <0b01, 0, GPR64z, simm7s16, "stgp">;
1641 def  STGPpost : StorePairPostIdx<0b01, 0, GPR64z, simm7s16, "stgp">;
1642
1643 def : Pat<(int_aarch64_stg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)),
1644           (STGOffset GPR64:$Rt, GPR64sp:$Rn,  simm9s16:$offset)>;
1645
1646 def : Pat<(int_aarch64_stgp (am_indexed7s128 GPR64sp:$Rn, simm7s16:$imm), GPR64:$Rt, GPR64:$Rt2),
1647           (STGPi $Rt, $Rt2, $Rn, $imm)>;
1648
1649 def IRGstack
1650     : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rsp, GPR64:$Rm), []>,
1651       Sched<[]>;
1652 def TAGPstack
1653     : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rn, uimm6s16:$imm6, GPR64sp:$Rm, imm0_15:$imm4), []>,
1654       Sched<[]>;
1655
1656 // Explicit SP in the first operand prevents ShrinkWrap optimization
1657 // from leaving this instruction out of the stack frame. When IRGstack
1658 // is transformed into IRG, this operand is replaced with the actual
1659 // register / expression for the tagged base pointer of the current function.
1660 def : Pat<(int_aarch64_irg_sp i64:$Rm), (IRGstack SP, i64:$Rm)>;
1661
1662 // Large STG to be expanded into a loop. $sz is the size, $Rn is start address.
1663 // $Rn_wback is one past the end of the range. $Rm is the loop counter.
1664 let isCodeGenOnly=1, mayStore=1 in {
1665 def STGloop_wback
1666     : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn),
1667              [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >,
1668       Sched<[WriteAdr, WriteST]>;
1669
1670 def STZGloop_wback
1671     : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn),
1672              [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >,
1673       Sched<[WriteAdr, WriteST]>;
1674
1675 // A variant of the above where $Rn2 is an independent register not tied to the input register $Rn.
1676 // Their purpose is to use a FrameIndex operand as $Rn (which of course can not be written back).
1677 def STGloop
1678     : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn),
1679              [], "@earlyclobber $Rn2,@earlyclobber $Rm" >,
1680       Sched<[WriteAdr, WriteST]>;
1681
1682 def STZGloop
1683     : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn),
1684              [], "@earlyclobber $Rn2,@earlyclobber $Rm" >,
1685       Sched<[WriteAdr, WriteST]>;
1686 }
1687
1688 } // Predicates = [HasMTE]
1689
1690 //===----------------------------------------------------------------------===//
1691 // Logical instructions.
1692 //===----------------------------------------------------------------------===//
1693
1694 // (immediate)
1695 defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">;
1696 defm AND  : LogicalImm<0b00, "and", and, "bic">;
1697 defm EOR  : LogicalImm<0b10, "eor", xor, "eon">;
1698 defm ORR  : LogicalImm<0b01, "orr", or, "orn">;
1699
1700 // FIXME: these aliases *are* canonical sometimes (when movz can't be
1701 // used). Actually, it seems to be working right now, but putting logical_immXX
1702 // here is a bit dodgy on the AsmParser side too.
1703 def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
1704                                           logical_imm32:$imm), 0>;
1705 def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
1706                                           logical_imm64:$imm), 0>;
1707
1708
1709 // (register)
1710 defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>;
1711 defm BICS : LogicalRegS<0b11, 1, "bics",
1712                         BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>;
1713 defm AND  : LogicalReg<0b00, 0, "and", and>;
1714 defm BIC  : LogicalReg<0b00, 1, "bic",
1715                        BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
1716 defm EON  : LogicalReg<0b10, 1, "eon",
1717                        BinOpFrag<(not (xor node:$LHS, node:$RHS))>>;
1718 defm EOR  : LogicalReg<0b10, 0, "eor", xor>;
1719 defm ORN  : LogicalReg<0b01, 1, "orn",
1720                        BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
1721 defm ORR  : LogicalReg<0b01, 0, "orr", or>;
1722
1723 def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>;
1724 def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>;
1725
1726 def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>;
1727 def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>;
1728
1729 def : InstAlias<"mvn $Wd, $Wm$sh",
1730                 (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>;
1731 def : InstAlias<"mvn $Xd, $Xm$sh",
1732                 (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>;
1733
1734 def : InstAlias<"tst $src1, $src2",
1735                 (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>;
1736 def : InstAlias<"tst $src1, $src2",
1737                 (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>;
1738
1739 def : InstAlias<"tst $src1, $src2",
1740                         (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>;
1741 def : InstAlias<"tst $src1, $src2",
1742                         (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>;
1743
1744 def : InstAlias<"tst $src1, $src2$sh",
1745                (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>;
1746 def : InstAlias<"tst $src1, $src2$sh",
1747                (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>;
1748
1749
1750 def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
1751 def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;
1752
1753
1754 //===----------------------------------------------------------------------===//
1755 // One operand data processing instructions.
1756 //===----------------------------------------------------------------------===//
1757
1758 defm CLS    : OneOperandData<0b101, "cls">;
1759 defm CLZ    : OneOperandData<0b100, "clz", ctlz>;
1760 defm RBIT   : OneOperandData<0b000, "rbit", bitreverse>;
1761
1762 def  REV16Wr : OneWRegData<0b001, "rev16",
1763                                   UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
1764 def  REV16Xr : OneXRegData<0b001, "rev16", null_frag>;
1765
1766 def : Pat<(cttz GPR32:$Rn),
1767           (CLZWr (RBITWr GPR32:$Rn))>;
1768 def : Pat<(cttz GPR64:$Rn),
1769           (CLZXr (RBITXr GPR64:$Rn))>;
1770 def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
1771                 (i32 1))),
1772           (CLSWr GPR32:$Rn)>;
1773 def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
1774                 (i64 1))),
1775           (CLSXr GPR64:$Rn)>;
1776 def : Pat<(int_aarch64_cls GPR32:$Rn), (CLSWr GPR32:$Rn)>;
1777 def : Pat<(int_aarch64_cls64 GPR64:$Rm), (EXTRACT_SUBREG (CLSXr GPR64:$Rm), sub_32)>;
1778
1779 // Unlike the other one operand instructions, the instructions with the "rev"
1780 // mnemonic do *not* just different in the size bit, but actually use different
1781 // opcode bits for the different sizes.
1782 def REVWr   : OneWRegData<0b010, "rev", bswap>;
1783 def REVXr   : OneXRegData<0b011, "rev", bswap>;
1784 def REV32Xr : OneXRegData<0b010, "rev32",
1785                                  UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;
1786
1787 def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>;
1788
1789 // The bswap commutes with the rotr so we want a pattern for both possible
1790 // orders.
1791 def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
1792 def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
1793
1794 //===----------------------------------------------------------------------===//
1795 // Bitfield immediate extraction instruction.
1796 //===----------------------------------------------------------------------===//
1797 let hasSideEffects = 0 in
1798 defm EXTR : ExtractImm<"extr">;
1799 def : InstAlias<"ror $dst, $src, $shift",
1800             (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
1801 def : InstAlias<"ror $dst, $src, $shift",
1802             (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
1803
1804 def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
1805           (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
1806 def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
1807           (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
1808
1809 //===----------------------------------------------------------------------===//
1810 // Other bitfield immediate instructions.
1811 //===----------------------------------------------------------------------===//
1812 let hasSideEffects = 0 in {
1813 defm BFM  : BitfieldImmWith2RegArgs<0b01, "bfm">;
1814 defm SBFM : BitfieldImm<0b00, "sbfm">;
1815 defm UBFM : BitfieldImm<0b10, "ubfm">;
1816 }
1817
1818 def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
1819   uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
1820   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1821 }]>;
1822
1823 def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
1824   uint64_t enc = 31 - N->getZExtValue();
1825   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1826 }]>;
1827
1828 // min(7, 31 - shift_amt)
1829 def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
1830   uint64_t enc = 31 - N->getZExtValue();
1831   enc = enc > 7 ? 7 : enc;
1832   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1833 }]>;
1834
1835 // min(15, 31 - shift_amt)
1836 def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
1837   uint64_t enc = 31 - N->getZExtValue();
1838   enc = enc > 15 ? 15 : enc;
1839   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1840 }]>;
1841
1842 def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
1843   uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
1844   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1845 }]>;
1846
1847 def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
1848   uint64_t enc = 63 - N->getZExtValue();
1849   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1850 }]>;
1851
1852 // min(7, 63 - shift_amt)
1853 def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
1854   uint64_t enc = 63 - N->getZExtValue();
1855   enc = enc > 7 ? 7 : enc;
1856   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1857 }]>;
1858
1859 // min(15, 63 - shift_amt)
1860 def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
1861   uint64_t enc = 63 - N->getZExtValue();
1862   enc = enc > 15 ? 15 : enc;
1863   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1864 }]>;
1865
1866 // min(31, 63 - shift_amt)
1867 def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
1868   uint64_t enc = 63 - N->getZExtValue();
1869   enc = enc > 31 ? 31 : enc;
1870   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
1871 }]>;
1872
1873 def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
1874           (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
1875                               (i64 (i32shift_b imm0_31:$imm)))>;
1876 def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
1877           (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
1878                               (i64 (i64shift_b imm0_63:$imm)))>;
1879
1880 let AddedComplexity = 10 in {
1881 def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
1882           (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
1883 def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
1884           (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
1885 }
1886
1887 def : InstAlias<"asr $dst, $src, $shift",
1888                 (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
1889 def : InstAlias<"asr $dst, $src, $shift",
1890                 (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
1891 def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
1892 def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
1893 def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
1894 def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
1895 def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
1896
1897 def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
1898           (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
1899 def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
1900           (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
1901
1902 def : InstAlias<"lsr $dst, $src, $shift",
1903                 (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
1904 def : InstAlias<"lsr $dst, $src, $shift",
1905                 (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
1906 def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
1907 def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
1908 def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
1909 def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
1910 def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
1911
1912 //===----------------------------------------------------------------------===//
1913 // Conditional comparison instructions.
1914 //===----------------------------------------------------------------------===//
1915 defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
1916 defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;
1917
1918 //===----------------------------------------------------------------------===//
1919 // Conditional select instructions.
1920 //===----------------------------------------------------------------------===//
1921 defm CSEL  : CondSelect<0, 0b00, "csel">;
1922
1923 def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
1924 defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
1925 defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
1926 defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;
1927
1928 def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1929           (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1930 def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1931           (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1932 def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1933           (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1934 def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1935           (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1936 def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
1937           (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
1938 def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
1939           (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
1940
1941 def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
1942           (CSINCWr WZR, WZR, (i32 imm:$cc))>;
1943 def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
1944           (CSINCXr XZR, XZR, (i32 imm:$cc))>;
1945 def : Pat<(AArch64csel GPR32:$tval, (i32 1), (i32 imm:$cc), NZCV),
1946           (CSINCWr GPR32:$tval, WZR, (i32 imm:$cc))>;
1947 def : Pat<(AArch64csel GPR64:$tval, (i64 1), (i32 imm:$cc), NZCV),
1948           (CSINCXr GPR64:$tval, XZR, (i32 imm:$cc))>;
1949 def : Pat<(AArch64csel (i32 1), GPR32:$fval, (i32 imm:$cc), NZCV),
1950           (CSINCWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1951 def : Pat<(AArch64csel (i64 1), GPR64:$fval, (i32 imm:$cc), NZCV),
1952           (CSINCXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1953 def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
1954           (CSINVWr WZR, WZR, (i32 imm:$cc))>;
1955 def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
1956           (CSINVXr XZR, XZR, (i32 imm:$cc))>;
1957 def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV),
1958           (CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>;
1959 def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV),
1960           (CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>;
1961 def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV),
1962           (CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1963 def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV),
1964           (CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
1965
1966 // The inverse of the condition code from the alias instruction is what is used
1967 // in the aliased instruction. The parser all ready inverts the condition code
1968 // for these aliases.
1969 def : InstAlias<"cset $dst, $cc",
1970                 (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
1971 def : InstAlias<"cset $dst, $cc",
1972                 (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
1973
1974 def : InstAlias<"csetm $dst, $cc",
1975                 (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
1976 def : InstAlias<"csetm $dst, $cc",
1977                 (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
1978
1979 def : InstAlias<"cinc $dst, $src, $cc",
1980                 (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1981 def : InstAlias<"cinc $dst, $src, $cc",
1982                 (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1983
1984 def : InstAlias<"cinv $dst, $src, $cc",
1985                 (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1986 def : InstAlias<"cinv $dst, $src, $cc",
1987                 (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1988
1989 def : InstAlias<"cneg $dst, $src, $cc",
1990                 (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
1991 def : InstAlias<"cneg $dst, $src, $cc",
1992                 (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
1993
1994 //===----------------------------------------------------------------------===//
1995 // PC-relative instructions.
1996 //===----------------------------------------------------------------------===//
1997 let isReMaterializable = 1 in {
1998 let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
1999 def ADR  : ADRI<0, "adr", adrlabel,
2000                 [(set GPR64:$Xd, (AArch64adr tglobaladdr:$label))]>;
2001 } // hasSideEffects = 0
2002
2003 def ADRP : ADRI<1, "adrp", adrplabel,
2004                 [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
2005 } // isReMaterializable = 1
2006
2007 // page address of a constant pool entry, block address
2008 def : Pat<(AArch64adr tconstpool:$cp), (ADR tconstpool:$cp)>;
2009 def : Pat<(AArch64adr tblockaddress:$cp), (ADR tblockaddress:$cp)>;
2010 def : Pat<(AArch64adr texternalsym:$sym), (ADR texternalsym:$sym)>;
2011 def : Pat<(AArch64adr tjumptable:$sym), (ADR tjumptable:$sym)>;
2012 def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
2013 def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
2014 def : Pat<(AArch64adrp texternalsym:$sym), (ADRP texternalsym:$sym)>;
2015
2016 //===----------------------------------------------------------------------===//
2017 // Unconditional branch (register) instructions.
2018 //===----------------------------------------------------------------------===//
2019
2020 let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
2021 def RET  : BranchReg<0b0010, "ret", []>;
2022 def DRPS : SpecialReturn<0b0101, "drps">;
2023 def ERET : SpecialReturn<0b0100, "eret">;
2024 } // isReturn = 1, isTerminator = 1, isBarrier = 1
2025
2026 // Default to the LR register.
2027 def : InstAlias<"ret", (RET LR)>;
2028
2029 let isCall = 1, Defs = [LR], Uses = [SP] in {
2030   def BLR : BranchReg<0b0001, "blr", []>;
2031   def BLRNoIP : Pseudo<(outs), (ins GPR64noip:$Rn), []>,
2032                 Sched<[WriteBrReg]>,
2033                 PseudoInstExpansion<(BLR GPR64:$Rn)>;
2034 } // isCall
2035
2036 def : Pat<(AArch64call GPR64:$Rn),
2037           (BLR GPR64:$Rn)>,
2038       Requires<[NoSLSBLRMitigation]>;
2039 def : Pat<(AArch64call GPR64noip:$Rn),
2040           (BLRNoIP GPR64noip:$Rn)>,
2041       Requires<[SLSBLRMitigation]>;
2042
2043 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
2044 def BR  : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
2045 } // isBranch, isTerminator, isBarrier, isIndirectBranch
2046
2047 // Create a separate pseudo-instruction for codegen to use so that we don't
2048 // flag lr as used in every function. It'll be restored before the RET by the
2049 // epilogue if it's legitimately used.
2050 def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]>,
2051                    Sched<[WriteBrReg]> {
2052   let isTerminator = 1;
2053   let isBarrier = 1;
2054   let isReturn = 1;
2055 }
2056
2057 // This is a directive-like pseudo-instruction. The purpose is to insert an
2058 // R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
2059 // (which in the usual case is a BLR).
2060 let hasSideEffects = 1 in
2061 def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> {
2062   let AsmString = ".tlsdesccall $sym";
2063 }
2064
2065 // Pseudo instruction to tell the streamer to emit a 'B' character into the
2066 // augmentation string.
2067 def EMITBKEY : Pseudo<(outs), (ins), []>, Sched<[]> {}
2068
2069 // FIXME: maybe the scratch register used shouldn't be fixed to X1?
2070 // FIXME: can "hasSideEffects be dropped?
2071 let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1,
2072     isCodeGenOnly = 1 in
2073 def TLSDESC_CALLSEQ
2074     : Pseudo<(outs), (ins i64imm:$sym),
2075              [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>,
2076       Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>;
2077 def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym),
2078           (TLSDESC_CALLSEQ texternalsym:$sym)>;
2079
2080 //===----------------------------------------------------------------------===//
2081 // Conditional branch (immediate) instruction.
2082 //===----------------------------------------------------------------------===//
2083 def Bcc : BranchCond;
2084
2085 //===----------------------------------------------------------------------===//
2086 // Compare-and-branch instructions.
2087 //===----------------------------------------------------------------------===//
2088 defm CBZ  : CmpBranch<0, "cbz", AArch64cbz>;
2089 defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>;
2090
2091 //===----------------------------------------------------------------------===//
2092 // Test-bit-and-branch instructions.
2093 //===----------------------------------------------------------------------===//
2094 defm TBZ  : TestBranch<0, "tbz", AArch64tbz>;
2095 defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>;
2096
2097 //===----------------------------------------------------------------------===//
2098 // Unconditional branch (immediate) instructions.
2099 //===----------------------------------------------------------------------===//
2100 let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
2101 def B  : BranchImm<0, "b", [(br bb:$addr)]>;
2102 } // isBranch, isTerminator, isBarrier
2103
2104 let isCall = 1, Defs = [LR], Uses = [SP] in {
2105 def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>;
2106 } // isCall
2107 def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>;
2108
2109 //===----------------------------------------------------------------------===//
2110 // Exception generation instructions.
2111 //===----------------------------------------------------------------------===//
2112 let isTrap = 1 in {
2113 def BRK   : ExceptionGeneration<0b001, 0b00, "brk">;
2114 }
2115 def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
2116 def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
2117 def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
2118 def HLT   : ExceptionGeneration<0b010, 0b00, "hlt">;
2119 def HVC   : ExceptionGeneration<0b000, 0b10, "hvc">;
2120 def SMC   : ExceptionGeneration<0b000, 0b11, "smc">;
2121 def SVC   : ExceptionGeneration<0b000, 0b01, "svc">;
2122
2123 // DCPSn defaults to an immediate operand of zero if unspecified.
2124 def : InstAlias<"dcps1", (DCPS1 0)>;
2125 def : InstAlias<"dcps2", (DCPS2 0)>;
2126 def : InstAlias<"dcps3", (DCPS3 0)>;
2127
2128 def UDF : UDFType<0, "udf">;
2129
2130 //===----------------------------------------------------------------------===//
2131 // Load instructions.
2132 //===----------------------------------------------------------------------===//
2133
2134 // Pair (indexed, offset)
2135 defm LDPW : LoadPairOffset<0b00, 0, GPR32z, simm7s4, "ldp">;
2136 defm LDPX : LoadPairOffset<0b10, 0, GPR64z, simm7s8, "ldp">;
2137 defm LDPS : LoadPairOffset<0b00, 1, FPR32Op, simm7s4, "ldp">;
2138 defm LDPD : LoadPairOffset<0b01, 1, FPR64Op, simm7s8, "ldp">;
2139 defm LDPQ : LoadPairOffset<0b10, 1, FPR128Op, simm7s16, "ldp">;
2140
2141 defm LDPSW : LoadPairOffset<0b01, 0, GPR64z, simm7s4, "ldpsw">;
2142
2143 // Pair (pre-indexed)
2144 def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
2145 def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
2146 def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
2147 def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
2148 def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
2149
2150 def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
2151
2152 // Pair (post-indexed)
2153 def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
2154 def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
2155 def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
2156 def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
2157 def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;
2158
2159 def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;
2160
2161
2162 // Pair (no allocate)
2163 defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32z, simm7s4, "ldnp">;
2164 defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64z, simm7s8, "ldnp">;
2165 defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32Op, simm7s4, "ldnp">;
2166 defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64Op, simm7s8, "ldnp">;
2167 defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128Op, simm7s16, "ldnp">;
2168
2169 def : Pat<(AArch64ldp (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
2170           (LDPXi GPR64sp:$Rn, simm7s8:$offset)>;
2171
2172 //---
2173 // (register offset)
2174 //---
2175
2176 // Integer
2177 defm LDRBB : Load8RO<0b00,  0, 0b01, GPR32, "ldrb", i32, zextloadi8>;
2178 defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>;
2179 defm LDRW  : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>;
2180 defm LDRX  : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>;
2181
2182 // Floating-point
2183 defm LDRB : Load8RO<0b00,   1, 0b01, FPR8Op,   "ldr", untyped, load>;
2184 defm LDRH : Load16RO<0b01,  1, 0b01, FPR16Op,  "ldr", f16, load>;
2185 defm LDRS : Load32RO<0b10,  1, 0b01, FPR32Op,  "ldr", f32, load>;
2186 defm LDRD : Load64RO<0b11,  1, 0b01, FPR64Op,  "ldr", f64, load>;
2187 defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128Op, "ldr", f128, load>;
2188
2189 // Load sign-extended half-word
2190 defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>;
2191 defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>;
2192
2193 // Load sign-extended byte
2194 defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>;
2195 defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>;
2196
2197 // Load sign-extended word
2198 defm LDRSW  : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>;
2199
2200 // Pre-fetch.
2201 defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">;
2202
2203 // For regular load, we do not have any alignment requirement.
2204 // Thus, it is safe to directly map the vector loads with interesting
2205 // addressing modes.
2206 // FIXME: We could do the same for bitconvert to floating point vectors.
2207 multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop,
2208                               ValueType ScalTy, ValueType VecTy,
2209                               Instruction LOADW, Instruction LOADX,
2210                               SubRegIndex sub> {
2211   def : Pat<(VecTy (scalar_to_vector (ScalTy
2212               (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))),
2213             (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
2214                            (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset),
2215                            sub)>;
2216
2217   def : Pat<(VecTy (scalar_to_vector (ScalTy
2218               (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))),
2219             (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
2220                            (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset),
2221                            sub)>;
2222 }
2223
2224 let AddedComplexity = 10 in {
2225 defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v8i8,  LDRBroW, LDRBroX, bsub>;
2226 defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v16i8, LDRBroW, LDRBroX, bsub>;
2227
2228 defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
2229 defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;
2230
2231 defm : ScalToVecROLoadPat<ro16, load,       i32, v4f16, LDRHroW, LDRHroX, hsub>;
2232 defm : ScalToVecROLoadPat<ro16, load,       i32, v8f16, LDRHroW, LDRHroX, hsub>;
2233
2234 defm : ScalToVecROLoadPat<ro32, load,       i32, v2i32, LDRSroW, LDRSroX, ssub>;
2235 defm : ScalToVecROLoadPat<ro32, load,       i32, v4i32, LDRSroW, LDRSroX, ssub>;
2236
2237 defm : ScalToVecROLoadPat<ro32, load,       f32, v2f32, LDRSroW, LDRSroX, ssub>;
2238 defm : ScalToVecROLoadPat<ro32, load,       f32, v4f32, LDRSroW, LDRSroX, ssub>;
2239
2240 defm : ScalToVecROLoadPat<ro64, load,       i64, v2i64, LDRDroW, LDRDroX, dsub>;
2241
2242 defm : ScalToVecROLoadPat<ro64, load,       f64, v2f64, LDRDroW, LDRDroX, dsub>;
2243
2244
2245 def : Pat <(v1i64 (scalar_to_vector (i64
2246                       (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
2247                                            ro_Wextend64:$extend))))),
2248            (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
2249
2250 def : Pat <(v1i64 (scalar_to_vector (i64
2251                       (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
2252                                            ro_Xextend64:$extend))))),
2253            (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
2254 }
2255
2256 // Match all load 64 bits width whose type is compatible with FPR64
2257 multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy,
2258                         Instruction LOADW, Instruction LOADX> {
2259
2260   def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
2261             (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2262
2263   def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
2264             (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2265 }
2266
2267 let AddedComplexity = 10 in {
2268 let Predicates = [IsLE] in {
2269   // We must do vector loads with LD1 in big-endian.
2270   defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>;
2271   defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
2272   defm : VecROLoadPat<ro64, v8i8,  LDRDroW, LDRDroX>;
2273   defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
2274   defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>;
2275   defm : VecROLoadPat<ro64, v4bf16, LDRDroW, LDRDroX>;
2276 }
2277
2278 defm : VecROLoadPat<ro64, v1i64,  LDRDroW, LDRDroX>;
2279 defm : VecROLoadPat<ro64, v1f64,  LDRDroW, LDRDroX>;
2280
2281 // Match all load 128 bits width whose type is compatible with FPR128
2282 let Predicates = [IsLE] in {
2283   // We must do vector loads with LD1 in big-endian.
2284   defm : VecROLoadPat<ro128, v2i64,  LDRQroW, LDRQroX>;
2285   defm : VecROLoadPat<ro128, v2f64,  LDRQroW, LDRQroX>;
2286   defm : VecROLoadPat<ro128, v4i32,  LDRQroW, LDRQroX>;
2287   defm : VecROLoadPat<ro128, v4f32,  LDRQroW, LDRQroX>;
2288   defm : VecROLoadPat<ro128, v8i16,  LDRQroW, LDRQroX>;
2289   defm : VecROLoadPat<ro128, v8f16,  LDRQroW, LDRQroX>;
2290   defm : VecROLoadPat<ro128, v8bf16,  LDRQroW, LDRQroX>;
2291   defm : VecROLoadPat<ro128, v16i8,  LDRQroW, LDRQroX>;
2292 }
2293 } // AddedComplexity = 10
2294
2295 // zextload -> i64
2296 multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop,
2297                             Instruction INSTW, Instruction INSTX> {
2298   def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
2299             (SUBREG_TO_REG (i64 0),
2300                            (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
2301                            sub_32)>;
2302
2303   def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
2304             (SUBREG_TO_REG (i64 0),
2305                            (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
2306                            sub_32)>;
2307 }
2308
2309 let AddedComplexity = 10 in {
2310   defm : ExtLoadTo64ROPat<ro8,  zextloadi8,  LDRBBroW, LDRBBroX>;
2311   defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>;
2312   defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW,  LDRWroX>;
2313
2314   // zextloadi1 -> zextloadi8
2315   defm : ExtLoadTo64ROPat<ro8,  zextloadi1,  LDRBBroW, LDRBBroX>;
2316
2317   // extload -> zextload
2318   defm : ExtLoadTo64ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
2319   defm : ExtLoadTo64ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
2320   defm : ExtLoadTo64ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
2321
2322   // extloadi1 -> zextloadi8
2323   defm : ExtLoadTo64ROPat<ro8,  extloadi1,   LDRBBroW, LDRBBroX>;
2324 }
2325
2326
2327 // zextload -> i64
2328 multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop,
2329                             Instruction INSTW, Instruction INSTX> {
2330   def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
2331             (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2332
2333   def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
2334             (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2335
2336 }
2337
2338 let AddedComplexity = 10 in {
2339   // extload -> zextload
2340   defm : ExtLoadTo32ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
2341   defm : ExtLoadTo32ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
2342   defm : ExtLoadTo32ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
2343
2344   // zextloadi1 -> zextloadi8
2345   defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
2346 }
2347
2348 //---
2349 // (unsigned immediate)
2350 //---
2351 defm LDRX : LoadUI<0b11, 0, 0b01, GPR64z, uimm12s8, "ldr",
2352                    [(set GPR64z:$Rt,
2353                          (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
2354 defm LDRW : LoadUI<0b10, 0, 0b01, GPR32z, uimm12s4, "ldr",
2355                    [(set GPR32z:$Rt,
2356                          (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
2357 defm LDRB : LoadUI<0b00, 1, 0b01, FPR8Op, uimm12s1, "ldr",
2358                    [(set FPR8Op:$Rt,
2359                          (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>;
2360 defm LDRH : LoadUI<0b01, 1, 0b01, FPR16Op, uimm12s2, "ldr",
2361                    [(set (f16 FPR16Op:$Rt),
2362                          (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>;
2363 defm LDRS : LoadUI<0b10, 1, 0b01, FPR32Op, uimm12s4, "ldr",
2364                    [(set (f32 FPR32Op:$Rt),
2365                          (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
2366 defm LDRD : LoadUI<0b11, 1, 0b01, FPR64Op, uimm12s8, "ldr",
2367                    [(set (f64 FPR64Op:$Rt),
2368                          (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
2369 defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128Op, uimm12s16, "ldr",
2370                  [(set (f128 FPR128Op:$Rt),
2371                        (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>;
2372
2373 // bf16 load pattern
2374 def : Pat <(bf16 (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
2375            (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
2376
2377 // For regular load, we do not have any alignment requirement.
2378 // Thus, it is safe to directly map the vector loads with interesting
2379 // addressing modes.
2380 // FIXME: We could do the same for bitconvert to floating point vectors.
2381 def : Pat <(v8i8 (scalar_to_vector (i32
2382                (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
2383            (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
2384                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
2385 def : Pat <(v16i8 (scalar_to_vector (i32
2386                (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
2387            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
2388                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
2389 def : Pat <(v4i16 (scalar_to_vector (i32
2390                (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
2391            (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
2392                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
2393 def : Pat <(v8i16 (scalar_to_vector (i32
2394                (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
2395            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
2396                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
2397 def : Pat <(v2i32 (scalar_to_vector (i32
2398                (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
2399            (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
2400                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
2401 def : Pat <(v4i32 (scalar_to_vector (i32
2402                (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
2403            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
2404                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
2405 def : Pat <(v1i64 (scalar_to_vector (i64
2406                (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
2407            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2408 def : Pat <(v2i64 (scalar_to_vector (i64
2409                (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
2410            (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
2411                           (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>;
2412
2413 // Match all load 64 bits width whose type is compatible with FPR64
2414 let Predicates = [IsLE] in {
2415   // We must use LD1 to perform vector loads in big-endian.
2416   def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2417             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2418   def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2419             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2420   def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2421             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2422   def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2423             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2424   def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2425             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2426   def : Pat<(v4bf16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2427             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2428 }
2429 def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2430           (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2431 def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
2432           (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
2433
2434 // Match all load 128 bits width whose type is compatible with FPR128
2435 let Predicates = [IsLE] in {
2436   // We must use LD1 to perform vector loads in big-endian.
2437   def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2438             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2439   def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2440             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2441   def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2442             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2443   def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2444             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2445   def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2446             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2447   def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2448             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2449   def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2450             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2451   def : Pat<(v8bf16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2452             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2453 }
2454 def : Pat<(f128  (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
2455           (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
2456
2457 defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh",
2458                     [(set GPR32:$Rt,
2459                           (zextloadi16 (am_indexed16 GPR64sp:$Rn,
2460                                                      uimm12s2:$offset)))]>;
2461 defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb",
2462                     [(set GPR32:$Rt,
2463                           (zextloadi8 (am_indexed8 GPR64sp:$Rn,
2464                                                    uimm12s1:$offset)))]>;
2465 // zextload -> i64
2466 def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2467     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
2468 def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
2469     (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
2470
2471 // zextloadi1 -> zextloadi8
2472 def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2473           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
2474 def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2475     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
2476
2477 // extload -> zextload
2478 def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
2479           (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
2480 def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2481           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
2482 def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2483           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
2484 def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
2485     (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
2486 def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
2487     (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
2488 def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2489     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
2490 def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
2491     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
2492
2493 // load sign-extended half-word
2494 defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh",
2495                      [(set GPR32:$Rt,
2496                            (sextloadi16 (am_indexed16 GPR64sp:$Rn,
2497                                                       uimm12s2:$offset)))]>;
2498 defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh",
2499                      [(set GPR64:$Rt,
2500                            (sextloadi16 (am_indexed16 GPR64sp:$Rn,
2501                                                       uimm12s2:$offset)))]>;
2502
2503 // load sign-extended byte
2504 defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb",
2505                      [(set GPR32:$Rt,
2506                            (sextloadi8 (am_indexed8 GPR64sp:$Rn,
2507                                                     uimm12s1:$offset)))]>;
2508 defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb",
2509                      [(set GPR64:$Rt,
2510                            (sextloadi8 (am_indexed8 GPR64sp:$Rn,
2511                                                     uimm12s1:$offset)))]>;
2512
2513 // load sign-extended word
2514 defm LDRSW  : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw",
2515                      [(set GPR64:$Rt,
2516                            (sextloadi32 (am_indexed32 GPR64sp:$Rn,
2517                                                       uimm12s4:$offset)))]>;
2518
2519 // load zero-extended word
2520 def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
2521       (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
2522
2523 // Pre-fetch.
2524 def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
2525                         [(AArch64Prefetch imm:$Rt,
2526                                         (am_indexed64 GPR64sp:$Rn,
2527                                                       uimm12s8:$offset))]>;
2528
2529 def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>;
2530
2531 //---
2532 // (literal)
2533
2534 def alignedglobal : PatLeaf<(iPTR iPTR:$label), [{
2535   if (auto *G = dyn_cast<GlobalAddressSDNode>(N)) {
2536     const DataLayout &DL = MF->getDataLayout();
2537     Align Align = G->getGlobal()->getPointerAlignment(DL);
2538     return Align >= 4 && G->getOffset() % 4 == 0;
2539   }
2540   if (auto *C = dyn_cast<ConstantPoolSDNode>(N))
2541     return C->getAlign() >= 4 && C->getOffset() % 4 == 0;
2542   return false;
2543 }]>;
2544
2545 def LDRWl : LoadLiteral<0b00, 0, GPR32z, "ldr",
2546   [(set GPR32z:$Rt, (load (AArch64adr alignedglobal:$label)))]>;
2547 def LDRXl : LoadLiteral<0b01, 0, GPR64z, "ldr",
2548   [(set GPR64z:$Rt, (load (AArch64adr alignedglobal:$label)))]>;
2549 def LDRSl : LoadLiteral<0b00, 1, FPR32Op, "ldr",
2550   [(set (f32 FPR32Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
2551 def LDRDl : LoadLiteral<0b01, 1, FPR64Op, "ldr",
2552   [(set (f64 FPR64Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
2553 def LDRQl : LoadLiteral<0b10, 1, FPR128Op, "ldr",
2554   [(set (f128 FPR128Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
2555
2556 // load sign-extended word
2557 def LDRSWl : LoadLiteral<0b10, 0, GPR64z, "ldrsw",
2558   [(set GPR64z:$Rt, (sextloadi32 (AArch64adr alignedglobal:$label)))]>;
2559
2560 let AddedComplexity = 20 in {
2561 def : Pat<(i64 (zextloadi32 (AArch64adr alignedglobal:$label))),
2562         (SUBREG_TO_REG (i64 0), (LDRWl $label), sub_32)>;
2563 }
2564
2565 // prefetch
2566 def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
2567 //                   [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>;
2568
2569 //---
2570 // (unscaled immediate)
2571 defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64z, "ldur",
2572                     [(set GPR64z:$Rt,
2573                           (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
2574 defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32z, "ldur",
2575                     [(set GPR32z:$Rt,
2576                           (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
2577 defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8Op, "ldur",
2578                     [(set FPR8Op:$Rt,
2579                           (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2580 defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16Op, "ldur",
2581                     [(set (f16 FPR16Op:$Rt),
2582                           (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2583 defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32Op, "ldur",
2584                     [(set (f32 FPR32Op:$Rt),
2585                           (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
2586 defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64Op, "ldur",
2587                     [(set (f64 FPR64Op:$Rt),
2588                           (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
2589 defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128Op, "ldur",
2590                     [(set (f128 FPR128Op:$Rt),
2591                           (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>;
2592
2593 defm LDURHH
2594     : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh",
2595              [(set GPR32:$Rt,
2596                     (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2597 defm LDURBB
2598     : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb",
2599              [(set GPR32:$Rt,
2600                     (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2601
2602 // Match all load 64 bits width whose type is compatible with FPR64
2603 let Predicates = [IsLE] in {
2604   def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2605             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2606   def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2607             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2608   def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2609             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2610   def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2611             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2612   def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2613             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2614 }
2615 def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2616           (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2617 def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
2618           (LDURDi GPR64sp:$Rn, simm9:$offset)>;
2619
2620 // Match all load 128 bits width whose type is compatible with FPR128
2621 let Predicates = [IsLE] in {
2622   def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2623             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2624   def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2625             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2626   def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2627             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2628   def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2629             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2630   def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2631             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2632   def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2633             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2634   def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
2635             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
2636 }
2637
2638 //  anyext -> zext
2639 def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2640           (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
2641 def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2642           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
2643 def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2644           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
2645 def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
2646     (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2647 def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2648     (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2649 def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2650     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2651 def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2652     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2653 // unscaled zext
2654 def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2655           (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
2656 def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2657           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
2658 def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2659           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
2660 def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
2661     (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2662 def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2663     (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2664 def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2665     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2666 def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2667     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2668
2669
2670 //---
2671 // LDR mnemonics fall back to LDUR for negative or unaligned offsets.
2672
2673 // Define new assembler match classes as we want to only match these when
2674 // the don't otherwise match the scaled addressing mode for LDR/STR. Don't
2675 // associate a DiagnosticType either, as we want the diagnostic for the
2676 // canonical form (the scaled operand) to take precedence.
2677 class SImm9OffsetOperand<int Width> : AsmOperandClass {
2678   let Name = "SImm9OffsetFB" # Width;
2679   let PredicateMethod = "isSImm9OffsetFB<" # Width # ">";
2680   let RenderMethod = "addImmOperands";
2681 }
2682
2683 def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>;
2684 def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>;
2685 def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>;
2686 def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>;
2687 def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>;
2688
2689 def simm9_offset_fb8 : Operand<i64> {
2690   let ParserMatchClass = SImm9OffsetFB8Operand;
2691 }
2692 def simm9_offset_fb16 : Operand<i64> {
2693   let ParserMatchClass = SImm9OffsetFB16Operand;
2694 }
2695 def simm9_offset_fb32 : Operand<i64> {
2696   let ParserMatchClass = SImm9OffsetFB32Operand;
2697 }
2698 def simm9_offset_fb64 : Operand<i64> {
2699   let ParserMatchClass = SImm9OffsetFB64Operand;
2700 }
2701 def simm9_offset_fb128 : Operand<i64> {
2702   let ParserMatchClass = SImm9OffsetFB128Operand;
2703 }
2704
2705 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2706                 (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2707 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2708                 (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2709 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2710                 (LDURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2711 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2712                 (LDURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2713 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2714                 (LDURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2715 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2716                 (LDURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
2717 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
2718                (LDURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
2719
2720 // zextload -> i64
2721 def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
2722   (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2723 def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
2724   (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
2725
2726 // load sign-extended half-word
2727 defm LDURSHW
2728     : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh",
2729                [(set GPR32:$Rt,
2730                     (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2731 defm LDURSHX
2732     : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh",
2733               [(set GPR64:$Rt,
2734                     (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
2735
2736 // load sign-extended byte
2737 defm LDURSBW
2738     : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb",
2739                 [(set GPR32:$Rt,
2740                       (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2741 defm LDURSBX
2742     : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb",
2743                 [(set GPR64:$Rt,
2744                       (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
2745
2746 // load sign-extended word
2747 defm LDURSW
2748     : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw",
2749               [(set GPR64:$Rt,
2750                     (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
2751
2752 // zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
2753 def : InstAlias<"ldrb $Rt, [$Rn, $offset]",
2754                 (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2755 def : InstAlias<"ldrh $Rt, [$Rn, $offset]",
2756                 (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2757 def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
2758                 (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2759 def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
2760                 (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
2761 def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
2762                 (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2763 def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
2764                 (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
2765 def : InstAlias<"ldrsw $Rt, [$Rn, $offset]",
2766                 (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
2767
2768 // Pre-fetch.
2769 defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
2770                   [(AArch64Prefetch imm:$Rt,
2771                                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
2772
2773 //---
2774 // (unscaled immediate, unprivileged)
2775 defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
2776 defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;
2777
2778 defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
2779 defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;
2780
2781 // load sign-extended half-word
2782 defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
2783 defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;
2784
2785 // load sign-extended byte
2786 defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
2787 defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;
2788
2789 // load sign-extended word
2790 defm LDTRSW  : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;
2791
2792 //---
2793 // (immediate pre-indexed)
2794 def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32z, "ldr">;
2795 def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64z, "ldr">;
2796 def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8Op,  "ldr">;
2797 def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
2798 def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
2799 def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
2800 def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
2801
2802 // load sign-extended half-word
2803 def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
2804 def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
2805
2806 // load sign-extended byte
2807 def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
2808 def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
2809
2810 // load zero-extended byte
2811 def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
2812 def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
2813
2814 // load sign-extended word
2815 def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
2816
2817 //---
2818 // (immediate post-indexed)
2819 def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32z, "ldr">;
2820 def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64z, "ldr">;
2821 def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8Op,  "ldr">;
2822 def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
2823 def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
2824 def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
2825 def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128Op, "ldr">;
2826
2827 // load sign-extended half-word
2828 def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
2829 def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;
2830
2831 // load sign-extended byte
2832 def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
2833 def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;
2834
2835 // load zero-extended byte
2836 def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
2837 def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32z, "ldrh">;
2838
2839 // load sign-extended word
2840 def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;
2841
2842 //===----------------------------------------------------------------------===//
2843 // Store instructions.
2844 //===----------------------------------------------------------------------===//
2845
2846 // Pair (indexed, offset)
2847 // FIXME: Use dedicated range-checked addressing mode operand here.
2848 defm STPW : StorePairOffset<0b00, 0, GPR32z, simm7s4, "stp">;
2849 defm STPX : StorePairOffset<0b10, 0, GPR64z, simm7s8, "stp">;
2850 defm STPS : StorePairOffset<0b00, 1, FPR32Op, simm7s4, "stp">;
2851 defm STPD : StorePairOffset<0b01, 1, FPR64Op, simm7s8, "stp">;
2852 defm STPQ : StorePairOffset<0b10, 1, FPR128Op, simm7s16, "stp">;
2853
2854 // Pair (pre-indexed)
2855 def STPWpre : StorePairPreIdx<0b00, 0, GPR32z, simm7s4, "stp">;
2856 def STPXpre : StorePairPreIdx<0b10, 0, GPR64z, simm7s8, "stp">;
2857 def STPSpre : StorePairPreIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
2858 def STPDpre : StorePairPreIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
2859 def STPQpre : StorePairPreIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
2860
2861 // Pair (pre-indexed)
2862 def STPWpost : StorePairPostIdx<0b00, 0, GPR32z, simm7s4, "stp">;
2863 def STPXpost : StorePairPostIdx<0b10, 0, GPR64z, simm7s8, "stp">;
2864 def STPSpost : StorePairPostIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
2865 def STPDpost : StorePairPostIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
2866 def STPQpost : StorePairPostIdx<0b10, 1, FPR128Op, simm7s16, "stp">;
2867
2868 // Pair (no allocate)
2869 defm STNPW : StorePairNoAlloc<0b00, 0, GPR32z, simm7s4, "stnp">;
2870 defm STNPX : StorePairNoAlloc<0b10, 0, GPR64z, simm7s8, "stnp">;
2871 defm STNPS : StorePairNoAlloc<0b00, 1, FPR32Op, simm7s4, "stnp">;
2872 defm STNPD : StorePairNoAlloc<0b01, 1, FPR64Op, simm7s8, "stnp">;
2873 defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128Op, simm7s16, "stnp">;
2874
2875 def : Pat<(AArch64stp GPR64z:$Rt, GPR64z:$Rt2, (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
2876           (STPXi GPR64z:$Rt, GPR64z:$Rt2, GPR64sp:$Rn, simm7s8:$offset)>;
2877
2878 def : Pat<(AArch64stnp FPR128:$Rt, FPR128:$Rt2, (am_indexed7s128 GPR64sp:$Rn, simm7s16:$offset)),
2879           (STNPQi FPR128:$Rt, FPR128:$Rt2, GPR64sp:$Rn, simm7s16:$offset)>;
2880
2881
2882 //---
2883 // (Register offset)
2884
2885 // Integer
2886 defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>;
2887 defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>;
2888 defm STRW  : Store32RO<0b10, 0, 0b00, GPR32, "str",  i32, store>;
2889 defm STRX  : Store64RO<0b11, 0, 0b00, GPR64, "str",  i64, store>;
2890
2891
2892 // Floating-point
2893 defm STRB : Store8RO< 0b00,  1, 0b00, FPR8Op,   "str", untyped, store>;
2894 defm STRH : Store16RO<0b01,  1, 0b00, FPR16Op,  "str", f16,     store>;
2895 defm STRS : Store32RO<0b10,  1, 0b00, FPR32Op,  "str", f32,     store>;
2896 defm STRD : Store64RO<0b11,  1, 0b00, FPR64Op,  "str", f64,     store>;
2897 defm STRQ : Store128RO<0b00, 1, 0b10, FPR128Op, "str", f128,    store>;
2898
2899 let Predicates = [UseSTRQro], AddedComplexity = 10 in {
2900   def : Pat<(store (f128 FPR128:$Rt),
2901                         (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm,
2902                                         ro_Wextend128:$extend)),
2903             (STRQroW FPR128:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)>;
2904   def : Pat<(store (f128 FPR128:$Rt),
2905                         (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm,
2906                                         ro_Xextend128:$extend)),
2907             (STRQroX FPR128:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Wextend128:$extend)>;
2908 }
2909
2910 multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop,
2911                                  Instruction STRW, Instruction STRX> {
2912
2913   def : Pat<(storeop GPR64:$Rt,
2914                      (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2915             (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32),
2916                   GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2917
2918   def : Pat<(storeop GPR64:$Rt,
2919                      (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2920             (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32),
2921                   GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2922 }
2923
2924 let AddedComplexity = 10 in {
2925   // truncstore i64
2926   defm : TruncStoreFrom64ROPat<ro8,  truncstorei8,  STRBBroW, STRBBroX>;
2927   defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>;
2928   defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW,  STRWroX>;
2929 }
2930
2931 multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR,
2932                          Instruction STRW, Instruction STRX> {
2933   def : Pat<(store (VecTy FPR:$Rt),
2934                    (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2935             (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2936
2937   def : Pat<(store (VecTy FPR:$Rt),
2938                    (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2939             (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2940 }
2941
2942 let AddedComplexity = 10 in {
2943 // Match all store 64 bits width whose type is compatible with FPR64
2944 let Predicates = [IsLE] in {
2945   // We must use ST1 to store vectors in big-endian.
2946   defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>;
2947   defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
2948   defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
2949   defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
2950   defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>;
2951   defm : VecROStorePat<ro64, v4bf16, FPR64, STRDroW, STRDroX>;
2952 }
2953
2954 defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
2955 defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>;
2956
2957 // Match all store 128 bits width whose type is compatible with FPR128
2958 let Predicates = [IsLE, UseSTRQro] in {
2959   // We must use ST1 to store vectors in big-endian.
2960   defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>;
2961   defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>;
2962   defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>;
2963   defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
2964   defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
2965   defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
2966   defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>;
2967   defm : VecROStorePat<ro128, v8bf16, FPR128, STRQroW, STRQroX>;
2968 }
2969 } // AddedComplexity = 10
2970
2971 // Match stores from lane 0 to the appropriate subreg's store.
2972 multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop,
2973                               ValueType VecTy, ValueType STy,
2974                               SubRegIndex SubRegIdx,
2975                               Instruction STRW, Instruction STRX> {
2976
2977   def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
2978                      (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
2979             (STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2980                   GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
2981
2982   def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
2983                      (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
2984             (STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
2985                   GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
2986 }
2987
2988 let AddedComplexity = 19 in {
2989   defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>;
2990   defm : VecROStoreLane0Pat<ro16,         store, v8f16, f16, hsub, STRHroW, STRHroX>;
2991   defm : VecROStoreLane0Pat<ro32,         store, v4i32, i32, ssub, STRSroW, STRSroX>;
2992   defm : VecROStoreLane0Pat<ro32,         store, v4f32, f32, ssub, STRSroW, STRSroX>;
2993   defm : VecROStoreLane0Pat<ro64,         store, v2i64, i64, dsub, STRDroW, STRDroX>;
2994   defm : VecROStoreLane0Pat<ro64,         store, v2f64, f64, dsub, STRDroW, STRDroX>;
2995 }
2996
2997 //---
2998 // (unsigned immediate)
2999 defm STRX : StoreUIz<0b11, 0, 0b00, GPR64z, uimm12s8, "str",
3000                    [(store GPR64z:$Rt,
3001                             (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
3002 defm STRW : StoreUIz<0b10, 0, 0b00, GPR32z, uimm12s4, "str",
3003                     [(store GPR32z:$Rt,
3004                             (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
3005 defm STRB : StoreUI<0b00, 1, 0b00, FPR8Op, uimm12s1, "str",
3006                     [(store FPR8Op:$Rt,
3007                             (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>;
3008 defm STRH : StoreUI<0b01, 1, 0b00, FPR16Op, uimm12s2, "str",
3009                     [(store (f16 FPR16Op:$Rt),
3010                             (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>;
3011 defm STRS : StoreUI<0b10, 1, 0b00, FPR32Op, uimm12s4, "str",
3012                     [(store (f32 FPR32Op:$Rt),
3013                             (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
3014 defm STRD : StoreUI<0b11, 1, 0b00, FPR64Op, uimm12s8, "str",
3015                     [(store (f64 FPR64Op:$Rt),
3016                             (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
3017 defm STRQ : StoreUI<0b00, 1, 0b10, FPR128Op, uimm12s16, "str", []>;
3018
3019 defm STRHH : StoreUIz<0b01, 0, 0b00, GPR32z, uimm12s2, "strh",
3020                      [(truncstorei16 GPR32z:$Rt,
3021                                      (am_indexed16 GPR64sp:$Rn,
3022                                                    uimm12s2:$offset))]>;
3023 defm STRBB : StoreUIz<0b00, 0, 0b00, GPR32z, uimm12s1,  "strb",
3024                      [(truncstorei8 GPR32z:$Rt,
3025                                     (am_indexed8 GPR64sp:$Rn,
3026                                                  uimm12s1:$offset))]>;
3027
3028 // bf16 store pattern
3029 def : Pat<(store (bf16 FPR16Op:$Rt),
3030                  (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
3031           (STRHui FPR16:$Rt, GPR64sp:$Rn, uimm12s2:$offset)>;
3032
3033 let AddedComplexity = 10 in {
3034
3035 // Match all store 64 bits width whose type is compatible with FPR64
3036 def : Pat<(store (v1i64 FPR64:$Rt),
3037                  (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3038           (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3039 def : Pat<(store (v1f64 FPR64:$Rt),
3040                  (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3041           (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3042
3043 let Predicates = [IsLE] in {
3044   // We must use ST1 to store vectors in big-endian.
3045   def : Pat<(store (v2f32 FPR64:$Rt),
3046                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3047             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3048   def : Pat<(store (v8i8 FPR64:$Rt),
3049                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3050             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3051   def : Pat<(store (v4i16 FPR64:$Rt),
3052                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3053             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3054   def : Pat<(store (v2i32 FPR64:$Rt),
3055                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3056             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3057   def : Pat<(store (v4f16 FPR64:$Rt),
3058                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3059             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3060   def : Pat<(store (v4bf16 FPR64:$Rt),
3061                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
3062             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
3063 }
3064
3065 // Match all store 128 bits width whose type is compatible with FPR128
3066 def : Pat<(store (f128  FPR128:$Rt),
3067                  (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3068           (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3069
3070 let Predicates = [IsLE] in {
3071   // We must use ST1 to store vectors in big-endian.
3072   def : Pat<(store (v4f32 FPR128:$Rt),
3073                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3074             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3075   def : Pat<(store (v2f64 FPR128:$Rt),
3076                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3077             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3078   def : Pat<(store (v16i8 FPR128:$Rt),
3079                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3080             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3081   def : Pat<(store (v8i16 FPR128:$Rt),
3082                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3083             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3084   def : Pat<(store (v4i32 FPR128:$Rt),
3085                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3086             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3087   def : Pat<(store (v2i64 FPR128:$Rt),
3088                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3089             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3090   def : Pat<(store (v8f16 FPR128:$Rt),
3091                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3092             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3093   def : Pat<(store (v8bf16 FPR128:$Rt),
3094                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
3095             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
3096 }
3097
3098 // truncstore i64
3099 def : Pat<(truncstorei32 GPR64:$Rt,
3100                          (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)),
3101   (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>;
3102 def : Pat<(truncstorei16 GPR64:$Rt,
3103                          (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
3104   (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>;
3105 def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)),
3106   (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>;
3107
3108 } // AddedComplexity = 10
3109
3110 // Match stores from lane 0 to the appropriate subreg's store.
3111 multiclass VecStoreLane0Pat<Operand UIAddrMode, SDPatternOperator storeop,
3112                             ValueType VTy, ValueType STy,
3113                             SubRegIndex SubRegIdx, Operand IndexType,
3114                             Instruction STR> {
3115   def : Pat<(storeop (STy (vector_extract (VTy VecListOne128:$Vt), 0)),
3116                      (UIAddrMode GPR64sp:$Rn, IndexType:$offset)),
3117             (STR (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
3118                  GPR64sp:$Rn, IndexType:$offset)>;
3119 }
3120
3121 let AddedComplexity = 19 in {
3122   defm : VecStoreLane0Pat<am_indexed16, truncstorei16, v8i16, i32, hsub, uimm12s2, STRHui>;
3123   defm : VecStoreLane0Pat<am_indexed16,         store, v8f16, f16, hsub, uimm12s2, STRHui>;
3124   defm : VecStoreLane0Pat<am_indexed32,         store, v4i32, i32, ssub, uimm12s4, STRSui>;
3125   defm : VecStoreLane0Pat<am_indexed32,         store, v4f32, f32, ssub, uimm12s4, STRSui>;
3126   defm : VecStoreLane0Pat<am_indexed64,         store, v2i64, i64, dsub, uimm12s8, STRDui>;
3127   defm : VecStoreLane0Pat<am_indexed64,         store, v2f64, f64, dsub, uimm12s8, STRDui>;
3128 }
3129
3130 //---
3131 // (unscaled immediate)
3132 defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64z, "stur",
3133                          [(store GPR64z:$Rt,
3134                                  (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
3135 defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32z, "stur",
3136                          [(store GPR32z:$Rt,
3137                                  (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
3138 defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8Op, "stur",
3139                          [(store FPR8Op:$Rt,
3140                                  (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
3141 defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16Op, "stur",
3142                          [(store (f16 FPR16Op:$Rt),
3143                                  (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
3144 defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32Op, "stur",
3145                          [(store (f32 FPR32Op:$Rt),
3146                                  (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
3147 defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64Op, "stur",
3148                          [(store (f64 FPR64Op:$Rt),
3149                                  (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
3150 defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128Op, "stur",
3151                          [(store (f128 FPR128Op:$Rt),
3152                                  (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>;
3153 defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32z, "sturh",
3154                          [(truncstorei16 GPR32z:$Rt,
3155                                  (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
3156 defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32z, "sturb",
3157                          [(truncstorei8 GPR32z:$Rt,
3158                                   (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
3159
3160 // Armv8.4 Weaker Release Consistency enhancements
3161 //         LDAPR & STLR with Immediate Offset instructions
3162 let Predicates = [HasRCPC_IMMO] in {
3163 defm STLURB     : BaseStoreUnscaleV84<"stlurb",  0b00, 0b00, GPR32>;
3164 defm STLURH     : BaseStoreUnscaleV84<"stlurh",  0b01, 0b00, GPR32>;
3165 defm STLURW     : BaseStoreUnscaleV84<"stlur",   0b10, 0b00, GPR32>;
3166 defm STLURX     : BaseStoreUnscaleV84<"stlur",   0b11, 0b00, GPR64>;
3167 defm LDAPURB    : BaseLoadUnscaleV84<"ldapurb",  0b00, 0b01, GPR32>;
3168 defm LDAPURSBW  : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b11, GPR32>;
3169 defm LDAPURSBX  : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b10, GPR64>;
3170 defm LDAPURH    : BaseLoadUnscaleV84<"ldapurh",  0b01, 0b01, GPR32>;
3171 defm LDAPURSHW  : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b11, GPR32>;
3172 defm LDAPURSHX  : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b10, GPR64>;
3173 defm LDAPUR     : BaseLoadUnscaleV84<"ldapur",   0b10, 0b01, GPR32>;
3174 defm LDAPURSW   : BaseLoadUnscaleV84<"ldapursw", 0b10, 0b10, GPR64>;
3175 defm LDAPURX    : BaseLoadUnscaleV84<"ldapur",   0b11, 0b01, GPR64>;
3176 }
3177
3178 // Match all store 64 bits width whose type is compatible with FPR64
3179 def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3180           (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3181 def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3182           (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3183
3184 let AddedComplexity = 10 in {
3185
3186 let Predicates = [IsLE] in {
3187   // We must use ST1 to store vectors in big-endian.
3188   def : Pat<(store (v2f32 FPR64:$Rt),
3189                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3190             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3191   def : Pat<(store (v8i8 FPR64:$Rt),
3192                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3193             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3194   def : Pat<(store (v4i16 FPR64:$Rt),
3195                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3196             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3197   def : Pat<(store (v2i32 FPR64:$Rt),
3198                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3199             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3200   def : Pat<(store (v4f16 FPR64:$Rt),
3201                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3202             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3203   def : Pat<(store (v4bf16 FPR64:$Rt),
3204                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
3205             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3206 }
3207
3208 // Match all store 128 bits width whose type is compatible with FPR128
3209 def : Pat<(store (f128 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3210           (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3211
3212 let Predicates = [IsLE] in {
3213   // We must use ST1 to store vectors in big-endian.
3214   def : Pat<(store (v4f32 FPR128:$Rt),
3215                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3216             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3217   def : Pat<(store (v2f64 FPR128:$Rt),
3218                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3219             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3220   def : Pat<(store (v16i8 FPR128:$Rt),
3221                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3222             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3223   def : Pat<(store (v8i16 FPR128:$Rt),
3224                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3225             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3226   def : Pat<(store (v4i32 FPR128:$Rt),
3227                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3228             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3229   def : Pat<(store (v2i64 FPR128:$Rt),
3230                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3231             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3232   def : Pat<(store (v2f64 FPR128:$Rt),
3233                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3234             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3235   def : Pat<(store (v8f16 FPR128:$Rt),
3236                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3237             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3238   def : Pat<(store (v8bf16 FPR128:$Rt),
3239                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
3240             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
3241 }
3242
3243 } // AddedComplexity = 10
3244
3245 // unscaled i64 truncating stores
3246 def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
3247   (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
3248 def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
3249   (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
3250 def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
3251   (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
3252
3253 // Match stores from lane 0 to the appropriate subreg's store.
3254 multiclass VecStoreULane0Pat<SDPatternOperator StoreOp,
3255                              ValueType VTy, ValueType STy,
3256                              SubRegIndex SubRegIdx, Instruction STR> {
3257   defm : VecStoreLane0Pat<am_unscaled128, StoreOp, VTy, STy, SubRegIdx, simm9, STR>;
3258 }
3259
3260 let AddedComplexity = 19 in {
3261   defm : VecStoreULane0Pat<truncstorei16, v8i16, i32, hsub, STURHi>;
3262   defm : VecStoreULane0Pat<store,         v8f16, f16, hsub, STURHi>;
3263   defm : VecStoreULane0Pat<store,         v4i32, i32, ssub, STURSi>;
3264   defm : VecStoreULane0Pat<store,         v4f32, f32, ssub, STURSi>;
3265   defm : VecStoreULane0Pat<store,         v2i64, i64, dsub, STURDi>;
3266   defm : VecStoreULane0Pat<store,         v2f64, f64, dsub, STURDi>;
3267 }
3268
3269 //---
3270 // STR mnemonics fall back to STUR for negative or unaligned offsets.
3271 def : InstAlias<"str $Rt, [$Rn, $offset]",
3272                 (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
3273 def : InstAlias<"str $Rt, [$Rn, $offset]",
3274                 (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
3275 def : InstAlias<"str $Rt, [$Rn, $offset]",
3276                 (STURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
3277 def : InstAlias<"str $Rt, [$Rn, $offset]",
3278                 (STURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
3279 def : InstAlias<"str $Rt, [$Rn, $offset]",
3280                 (STURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
3281 def : InstAlias<"str $Rt, [$Rn, $offset]",
3282                 (STURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
3283 def : InstAlias<"str $Rt, [$Rn, $offset]",
3284                 (STURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
3285
3286 def : InstAlias<"strb $Rt, [$Rn, $offset]",
3287                 (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
3288 def : InstAlias<"strh $Rt, [$Rn, $offset]",
3289                 (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
3290
3291 //---
3292 // (unscaled immediate, unprivileged)
3293 defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
3294 defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;
3295
3296 defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
3297 defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;
3298
3299 //---
3300 // (immediate pre-indexed)
3301 def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32z, "str",  pre_store, i32>;
3302 def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64z, "str",  pre_store, i64>;
3303 def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8Op,  "str",  pre_store, untyped>;
3304 def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16Op, "str",  pre_store, f16>;
3305 def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32Op, "str",  pre_store, f32>;
3306 def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64Op, "str",  pre_store, f64>;
3307 def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128Op, "str", pre_store, f128>;
3308
3309 def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32z, "strb", pre_truncsti8,  i32>;
3310 def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32z, "strh", pre_truncsti16, i32>;
3311
3312 // truncstore i64
3313 def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3314   (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3315            simm9:$off)>;
3316 def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3317   (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3318             simm9:$off)>;
3319 def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3320   (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3321             simm9:$off)>;
3322
3323 def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3324           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3325 def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3326           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3327 def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3328           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3329 def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3330           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3331 def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3332           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3333 def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3334           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3335 def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3336           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3337
3338 def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3339           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3340 def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3341           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3342 def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3343           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3344 def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3345           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3346 def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3347           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3348 def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3349           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3350 def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3351           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3352
3353 //---
3354 // (immediate post-indexed)
3355 def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32z,  "str", post_store, i32>;
3356 def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64z,  "str", post_store, i64>;
3357 def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8Op,   "str", post_store, untyped>;
3358 def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16Op,  "str", post_store, f16>;
3359 def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32Op,  "str", post_store, f32>;
3360 def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64Op,  "str", post_store, f64>;
3361 def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128Op, "str", post_store, f128>;
3362
3363 def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32z, "strb", post_truncsti8, i32>;
3364 def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32z, "strh", post_truncsti16, i32>;
3365
3366 // truncstore i64
3367 def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3368   (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3369             simm9:$off)>;
3370 def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3371   (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3372              simm9:$off)>;
3373 def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
3374   (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
3375              simm9:$off)>;
3376
3377 def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3378           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3379 def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3380           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3381 def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3382           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3383 def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3384           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3385 def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3386           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3387 def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3388           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3389 def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
3390           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
3391
3392 def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3393           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3394 def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3395           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3396 def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3397           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3398 def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3399           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3400 def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3401           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3402 def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3403           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3404 def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
3405           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
3406
3407 //===----------------------------------------------------------------------===//
3408 // Load/store exclusive instructions.
3409 //===----------------------------------------------------------------------===//
3410
3411 def LDARW  : LoadAcquire   <0b10, 1, 1, 0, 1, GPR32, "ldar">;
3412 def LDARX  : LoadAcquire   <0b11, 1, 1, 0, 1, GPR64, "ldar">;
3413 def LDARB  : LoadAcquire   <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
3414 def LDARH  : LoadAcquire   <0b01, 1, 1, 0, 1, GPR32, "ldarh">;
3415
3416 def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
3417 def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
3418 def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
3419 def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;
3420
3421 def LDXRW  : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
3422 def LDXRX  : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
3423 def LDXRB  : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
3424 def LDXRH  : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;
3425
3426 def STLRW  : StoreRelease  <0b10, 1, 0, 0, 1, GPR32, "stlr">;
3427 def STLRX  : StoreRelease  <0b11, 1, 0, 0, 1, GPR64, "stlr">;
3428 def STLRB  : StoreRelease  <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
3429 def STLRH  : StoreRelease  <0b01, 1, 0, 0, 1, GPR32, "stlrh">;
3430
3431 def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
3432 def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
3433 def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
3434 def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;
3435
3436 def STXRW  : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
3437 def STXRX  : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
3438 def STXRB  : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
3439 def STXRH  : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;
3440
3441 def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
3442 def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;
3443
3444 def LDXPW  : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
3445 def LDXPX  : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;
3446
3447 def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
3448 def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;
3449
3450 def STXPW  : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
3451 def STXPX  : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;
3452
3453 let Predicates = [HasLOR] in {
3454   // v8.1a "Limited Order Region" extension load-acquire instructions
3455   def LDLARW  : LoadAcquire   <0b10, 1, 1, 0, 0, GPR32, "ldlar">;
3456   def LDLARX  : LoadAcquire   <0b11, 1, 1, 0, 0, GPR64, "ldlar">;
3457   def LDLARB  : LoadAcquire   <0b00, 1, 1, 0, 0, GPR32, "ldlarb">;
3458   def LDLARH  : LoadAcquire   <0b01, 1, 1, 0, 0, GPR32, "ldlarh">;
3459
3460   // v8.1a "Limited Order Region" extension store-release instructions
3461   def STLLRW  : StoreRelease   <0b10, 1, 0, 0, 0, GPR32, "stllr">;
3462   def STLLRX  : StoreRelease   <0b11, 1, 0, 0, 0, GPR64, "stllr">;
3463   def STLLRB  : StoreRelease   <0b00, 1, 0, 0, 0, GPR32, "stllrb">;
3464   def STLLRH  : StoreRelease   <0b01, 1, 0, 0, 0, GPR32, "stllrh">;
3465 }
3466
3467 //===----------------------------------------------------------------------===//
3468 // Scaled floating point to integer conversion instructions.
3469 //===----------------------------------------------------------------------===//
3470
3471 defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>;
3472 defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>;
3473 defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>;
3474 defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>;
3475 defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>;
3476 defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>;
3477 defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>;
3478 defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>;
3479 defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>;
3480 defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>;
3481 defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>;
3482 defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>;
3483
3484 multiclass FPToIntegerIntPats<Intrinsic round, string INST> {
3485   def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>;
3486   def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>;
3487   def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>;
3488   def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>;
3489   def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>;
3490   def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>;
3491
3492   def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))),
3493             (!cast<Instruction>(INST # SWHri) $Rn, $scale)>;
3494   def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))),
3495             (!cast<Instruction>(INST # SXHri) $Rn, $scale)>;
3496   def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))),
3497             (!cast<Instruction>(INST # SWSri) $Rn, $scale)>;
3498   def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))),
3499             (!cast<Instruction>(INST # SXSri) $Rn, $scale)>;
3500   def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))),
3501             (!cast<Instruction>(INST # SWDri) $Rn, $scale)>;
3502   def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))),
3503             (!cast<Instruction>(INST # SXDri) $Rn, $scale)>;
3504 }
3505
3506 defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">;
3507 defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">;
3508
3509 multiclass FPToIntegerPats<SDNode to_int, SDNode round, string INST> {
3510   def : Pat<(i32 (to_int (round f32:$Rn))),
3511             (!cast<Instruction>(INST # UWSr) f32:$Rn)>;
3512   def : Pat<(i64 (to_int (round f32:$Rn))),
3513             (!cast<Instruction>(INST # UXSr) f32:$Rn)>;
3514   def : Pat<(i32 (to_int (round f64:$Rn))),
3515             (!cast<Instruction>(INST # UWDr) f64:$Rn)>;
3516   def : Pat<(i64 (to_int (round f64:$Rn))),
3517             (!cast<Instruction>(INST # UXDr) f64:$Rn)>;
3518 }
3519
3520 defm : FPToIntegerPats<fp_to_sint, fceil,  "FCVTPS">;
3521 defm : FPToIntegerPats<fp_to_uint, fceil,  "FCVTPU">;
3522 defm : FPToIntegerPats<fp_to_sint, ffloor, "FCVTMS">;
3523 defm : FPToIntegerPats<fp_to_uint, ffloor, "FCVTMU">;
3524 defm : FPToIntegerPats<fp_to_sint, ftrunc, "FCVTZS">;
3525 defm : FPToIntegerPats<fp_to_uint, ftrunc, "FCVTZU">;
3526 defm : FPToIntegerPats<fp_to_sint, fround, "FCVTAS">;
3527 defm : FPToIntegerPats<fp_to_uint, fround, "FCVTAU">;
3528
3529 let Predicates = [HasFullFP16] in {
3530   def : Pat<(i32 (lround f16:$Rn)),
3531             (!cast<Instruction>(FCVTASUWHr) f16:$Rn)>;
3532   def : Pat<(i64 (lround f16:$Rn)),
3533             (!cast<Instruction>(FCVTASUXHr) f16:$Rn)>;
3534   def : Pat<(i64 (llround f16:$Rn)),
3535             (!cast<Instruction>(FCVTASUXHr) f16:$Rn)>;
3536 }
3537 def : Pat<(i32 (lround f32:$Rn)),
3538           (!cast<Instruction>(FCVTASUWSr) f32:$Rn)>;
3539 def : Pat<(i32 (lround f64:$Rn)),
3540           (!cast<Instruction>(FCVTASUWDr) f64:$Rn)>;
3541 def : Pat<(i64 (lround f32:$Rn)),
3542           (!cast<Instruction>(FCVTASUXSr) f32:$Rn)>;
3543 def : Pat<(i64 (lround f64:$Rn)),
3544           (!cast<Instruction>(FCVTASUXDr) f64:$Rn)>;
3545 def : Pat<(i64 (llround f32:$Rn)),
3546           (!cast<Instruction>(FCVTASUXSr) f32:$Rn)>;
3547 def : Pat<(i64 (llround f64:$Rn)),
3548           (!cast<Instruction>(FCVTASUXDr) f64:$Rn)>;
3549
3550 //===----------------------------------------------------------------------===//
3551 // Scaled integer to floating point conversion instructions.
3552 //===----------------------------------------------------------------------===//
3553
3554 defm SCVTF : IntegerToFP<0, "scvtf", any_sint_to_fp>;
3555 defm UCVTF : IntegerToFP<1, "ucvtf", any_uint_to_fp>;
3556
3557 //===----------------------------------------------------------------------===//
3558 // Unscaled integer to floating point conversion instruction.
3559 //===----------------------------------------------------------------------===//
3560
3561 defm FMOV : UnscaledConversion<"fmov">;
3562
3563 // Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable
3564 let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1 in {
3565 def FMOVH0 : Pseudo<(outs FPR16:$Rd), (ins), [(set f16:$Rd, (fpimm0))]>,
3566     Sched<[WriteF]>, Requires<[HasFullFP16]>;
3567 def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>,
3568     Sched<[WriteF]>;
3569 def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>,
3570     Sched<[WriteF]>;
3571 }
3572 // Similarly add aliases
3573 def : InstAlias<"fmov $Rd, #0.0", (FMOVWHr FPR16:$Rd, WZR), 0>,
3574     Requires<[HasFullFP16]>;
3575 def : InstAlias<"fmov $Rd, #0.0", (FMOVWSr FPR32:$Rd, WZR), 0>;
3576 def : InstAlias<"fmov $Rd, #0.0", (FMOVXDr FPR64:$Rd, XZR), 0>;
3577
3578 //===----------------------------------------------------------------------===//
3579 // Floating point conversion instruction.
3580 //===----------------------------------------------------------------------===//
3581
3582 defm FCVT : FPConversion<"fcvt">;
3583
3584 //===----------------------------------------------------------------------===//
3585 // Floating point single operand instructions.
3586 //===----------------------------------------------------------------------===//
3587
3588 defm FABS   : SingleOperandFPData<0b0001, "fabs", fabs>;
3589 defm FMOV   : SingleOperandFPData<0b0000, "fmov">;
3590 defm FNEG   : SingleOperandFPData<0b0010, "fneg", fneg>;
3591 defm FRINTA : SingleOperandFPData<0b1100, "frinta", fround>;
3592 defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
3593 defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
3594 defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_aarch64_neon_frintn>;
3595 defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;
3596
3597 def : Pat<(v1f64 (int_aarch64_neon_frintn (v1f64 FPR64:$Rn))),
3598           (FRINTNDr FPR64:$Rn)>;
3599
3600 defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
3601 defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;
3602
3603 let SchedRW = [WriteFDiv] in {
3604 defm FSQRT  : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
3605 }
3606
3607 let Predicates = [HasFRInt3264] in {
3608   defm FRINT32Z : FRIntNNT<0b00, "frint32z">;
3609   defm FRINT64Z : FRIntNNT<0b10, "frint64z">;
3610   defm FRINT32X : FRIntNNT<0b01, "frint32x">;
3611   defm FRINT64X : FRIntNNT<0b11, "frint64x">;
3612 } // HasFRInt3264
3613
3614 let Predicates = [HasFullFP16] in {
3615   def : Pat<(i32 (lrint f16:$Rn)),
3616             (FCVTZSUWHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
3617   def : Pat<(i64 (lrint f16:$Rn)),
3618             (FCVTZSUXHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
3619   def : Pat<(i64 (llrint f16:$Rn)),
3620             (FCVTZSUXHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
3621 }
3622 def : Pat<(i32 (lrint f32:$Rn)),
3623           (FCVTZSUWSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
3624 def : Pat<(i32 (lrint f64:$Rn)),
3625           (FCVTZSUWDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
3626 def : Pat<(i64 (lrint f32:$Rn)),
3627           (FCVTZSUXSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
3628 def : Pat<(i64 (lrint f64:$Rn)),
3629           (FCVTZSUXDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
3630 def : Pat<(i64 (llrint f32:$Rn)),
3631           (FCVTZSUXSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
3632 def : Pat<(i64 (llrint f64:$Rn)),
3633           (FCVTZSUXDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
3634
3635 //===----------------------------------------------------------------------===//
3636 // Floating point two operand instructions.
3637 //===----------------------------------------------------------------------===//
3638
3639 defm FADD   : TwoOperandFPData<0b0010, "fadd", fadd>;
3640 let SchedRW = [WriteFDiv] in {
3641 defm FDIV   : TwoOperandFPData<0b0001, "fdiv", fdiv>;
3642 }
3643 defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>;
3644 defm FMAX   : TwoOperandFPData<0b0100, "fmax", fmaximum>;
3645 defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>;
3646 defm FMIN   : TwoOperandFPData<0b0101, "fmin", fminimum>;
3647 let SchedRW = [WriteFMul] in {
3648 defm FMUL   : TwoOperandFPData<0b0000, "fmul", fmul>;
3649 defm FNMUL  : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
3650 }
3651 defm FSUB   : TwoOperandFPData<0b0011, "fsub", fsub>;
3652
3653 def : Pat<(v1f64 (fmaximum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3654           (FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
3655 def : Pat<(v1f64 (fminimum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3656           (FMINDrr FPR64:$Rn, FPR64:$Rm)>;
3657 def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3658           (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
3659 def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
3660           (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;
3661
3662 //===----------------------------------------------------------------------===//
3663 // Floating point three operand instructions.
3664 //===----------------------------------------------------------------------===//
3665
3666 defm FMADD  : ThreeOperandFPData<0, 0, "fmadd", fma>;
3667 defm FMSUB  : ThreeOperandFPData<0, 1, "fmsub",
3668      TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
3669 defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
3670      TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
3671 defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
3672      TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;
3673
3674 // The following def pats catch the case where the LHS of an FMA is negated.
3675 // The TriOpFrag above catches the case where the middle operand is negated.
3676
3677 // N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
3678 // the NEON variant.
3679
3680 // Here we handle first -(a + b*c) for FNMADD:
3681
3682 let Predicates = [HasNEON, HasFullFP16] in
3683 def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, FPR16:$Ra)),
3684           (FMSUBHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;
3685
3686 def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
3687           (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
3688
3689 def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
3690           (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
3691
3692 // Now it's time for "(-a) + (-b)*c"
3693
3694 let Predicates = [HasNEON, HasFullFP16] in
3695 def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, (fneg FPR16:$Ra))),
3696           (FNMADDHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;
3697
3698 def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
3699           (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
3700
3701 def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
3702           (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
3703
3704 // And here "(-a) + b*(-c)"
3705
3706 let Predicates = [HasNEON, HasFullFP16] in
3707 def : Pat<(f16 (fma FPR16:$Rn, (fneg FPR16:$Rm), (fneg FPR16:$Ra))),
3708           (FNMADDHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;
3709
3710 def : Pat<(f32 (fma FPR32:$Rn, (fneg FPR32:$Rm), (fneg FPR32:$Ra))),
3711           (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
3712
3713 def : Pat<(f64 (fma FPR64:$Rn, (fneg FPR64:$Rm), (fneg FPR64:$Ra))),
3714           (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
3715
3716 //===----------------------------------------------------------------------===//
3717 // Floating point comparison instructions.
3718 //===----------------------------------------------------------------------===//
3719
3720 defm FCMPE : FPComparison<1, "fcmpe", AArch64strict_fcmpe>;
3721 defm FCMP  : FPComparison<0, "fcmp", AArch64any_fcmp>;
3722
3723 //===----------------------------------------------------------------------===//
3724 // Floating point conditional comparison instructions.
3725 //===----------------------------------------------------------------------===//
3726
3727 defm FCCMPE : FPCondComparison<1, "fccmpe">;
3728 defm FCCMP  : FPCondComparison<0, "fccmp", AArch64fccmp>;
3729
3730 //===----------------------------------------------------------------------===//
3731 // Floating point conditional select instruction.
3732 //===----------------------------------------------------------------------===//
3733
3734 defm FCSEL : FPCondSelect<"fcsel">;
3735
3736 // CSEL instructions providing f128 types need to be handled by a
3737 // pseudo-instruction since the eventual code will need to introduce basic
3738 // blocks and control flow.
3739 def F128CSEL : Pseudo<(outs FPR128:$Rd),
3740                       (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
3741                       [(set (f128 FPR128:$Rd),
3742                             (AArch64csel FPR128:$Rn, FPR128:$Rm,
3743                                        (i32 imm:$cond), NZCV))]> {
3744   let Uses = [NZCV];
3745   let usesCustomInserter = 1;
3746   let hasNoSchedulingInfo = 1;
3747 }
3748
3749 //===----------------------------------------------------------------------===//
3750 // Instructions used for emitting unwind opcodes on ARM64 Windows.
3751 //===----------------------------------------------------------------------===//
3752 let isPseudo = 1 in {
3753   def SEH_StackAlloc : Pseudo<(outs), (ins i32imm:$size), []>, Sched<[]>;
3754   def SEH_SaveFPLR : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
3755   def SEH_SaveFPLR_X : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
3756   def SEH_SaveReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
3757   def SEH_SaveReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
3758   def SEH_SaveRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
3759   def SEH_SaveRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
3760   def SEH_SaveFReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
3761   def SEH_SaveFReg_X :  Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
3762   def SEH_SaveFRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
3763   def SEH_SaveFRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
3764   def SEH_SetFP : Pseudo<(outs), (ins), []>, Sched<[]>;
3765   def SEH_AddFP : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
3766   def SEH_Nop : Pseudo<(outs), (ins), []>, Sched<[]>;
3767   def SEH_PrologEnd : Pseudo<(outs), (ins), []>, Sched<[]>;
3768   def SEH_EpilogStart : Pseudo<(outs), (ins), []>, Sched<[]>;
3769   def SEH_EpilogEnd : Pseudo<(outs), (ins), []>, Sched<[]>;
3770 }
3771
3772 // Pseudo instructions for Windows EH
3773 //===----------------------------------------------------------------------===//
3774 let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
3775     isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1, isPseudo = 1 in {
3776    def CLEANUPRET : Pseudo<(outs), (ins), [(cleanupret)]>, Sched<[]>;
3777    let usesCustomInserter = 1 in
3778      def CATCHRET : Pseudo<(outs), (ins am_brcond:$dst, am_brcond:$src), [(catchret bb:$dst, bb:$src)]>,
3779                     Sched<[]>;
3780 }
3781
3782 //===----------------------------------------------------------------------===//
3783 // Floating point immediate move.
3784 //===----------------------------------------------------------------------===//
3785
3786 let isReMaterializable = 1 in {
3787 defm FMOV : FPMoveImmediate<"fmov">;
3788 }
3789
3790 //===----------------------------------------------------------------------===//
3791 // Advanced SIMD two vector instructions.
3792 //===----------------------------------------------------------------------===//
3793
3794 defm UABDL   : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
3795                                           int_aarch64_neon_uabd>;
3796 // Match UABDL in log2-shuffle patterns.
3797 def : Pat<(abs (v8i16 (sub (zext (v8i8 V64:$opA)),
3798                            (zext (v8i8 V64:$opB))))),
3799           (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
3800 def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
3801                (v8i16 (add (sub (zext (v8i8 V64:$opA)),
3802                                 (zext (v8i8 V64:$opB))),
3803                            (AArch64vashr v8i16:$src, (i32 15))))),
3804           (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
3805 def : Pat<(abs (v8i16 (sub (zext (extract_high_v16i8 V128:$opA)),
3806                            (zext (extract_high_v16i8 V128:$opB))))),
3807           (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
3808 def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
3809                (v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)),
3810                                 (zext (extract_high_v16i8 V128:$opB))),
3811                            (AArch64vashr v8i16:$src, (i32 15))))),
3812           (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
3813 def : Pat<(abs (v4i32 (sub (zext (v4i16 V64:$opA)),
3814                            (zext (v4i16 V64:$opB))))),
3815           (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>;
3816 def : Pat<(abs (v4i32 (sub (zext (extract_high_v8i16 V128:$opA)),
3817                            (zext (extract_high_v8i16 V128:$opB))))),
3818           (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>;
3819 def : Pat<(abs (v2i64 (sub (zext (v2i32 V64:$opA)),
3820                            (zext (v2i32 V64:$opB))))),
3821           (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>;
3822 def : Pat<(abs (v2i64 (sub (zext (extract_high_v4i32 V128:$opA)),
3823                            (zext (extract_high_v4i32 V128:$opB))))),
3824           (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>;
3825
3826 defm ABS    : SIMDTwoVectorBHSD<0, 0b01011, "abs", abs>;
3827 defm CLS    : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
3828 defm CLZ    : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
3829 defm CMEQ   : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
3830 defm CMGE   : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>;
3831 defm CMGT   : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>;
3832 defm CMLE   : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>;
3833 defm CMLT   : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>;
3834 defm CNT    : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
3835 defm FABS   : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;
3836
3837 defm FCMEQ  : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
3838 defm FCMGE  : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
3839 defm FCMGT  : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
3840 defm FCMLE  : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
3841 defm FCMLT  : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
3842 defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>;
3843 defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>;
3844 defm FCVTL  : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
3845 def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))),
3846           (FCVTLv4i16 V64:$Rn)>;
3847 def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
3848                                                               (i64 4)))),
3849           (FCVTLv8i16 V128:$Rn)>;
3850 def : Pat<(v2f64 (fpextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;
3851
3852 def : Pat<(v4f32 (fpextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>;
3853
3854 defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
3855 defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
3856 defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
3857 defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>;
3858 defm FCVTN  : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
3859 def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
3860           (FCVTNv4i16 V128:$Rn)>;
3861 def : Pat<(concat_vectors V64:$Rd,
3862                           (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
3863           (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
3864 def : Pat<(v2f32 (fpround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
3865 def : Pat<(v4f16 (fpround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>;
3866 def : Pat<(concat_vectors V64:$Rd, (v2f32 (fpround (v2f64 V128:$Rn)))),
3867           (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
3868 defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
3869 defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>;
3870 defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
3871                                         int_aarch64_neon_fcvtxn>;
3872 defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
3873 defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;
3874
3875 def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>;
3876 def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>;
3877 def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>;
3878 def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>;
3879 def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>;
3880
3881 def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>;
3882 def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>;
3883 def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>;
3884 def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>;
3885 def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>;
3886
3887 defm FNEG   : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
3888 defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>;
3889 defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", fround>;
3890 defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
3891 defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
3892 defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_aarch64_neon_frintn>;
3893 defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
3894 defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
3895 defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;
3896
3897 let Predicates = [HasFRInt3264] in {
3898   defm FRINT32Z : FRIntNNTVector<0, 0, "frint32z">;
3899   defm FRINT64Z : FRIntNNTVector<0, 1, "frint64z">;
3900   defm FRINT32X : FRIntNNTVector<1, 0, "frint32x">;
3901   defm FRINT64X : FRIntNNTVector<1, 1, "frint64x">;
3902 } // HasFRInt3264
3903
3904 defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>;
3905 defm FSQRT  : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
3906 defm NEG    : SIMDTwoVectorBHSD<1, 0b01011, "neg",
3907                                UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
3908 defm NOT    : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
3909 // Aliases for MVN -> NOT.
3910 def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}",
3911                 (NOTv8i8 V64:$Vd, V64:$Vn)>;
3912 def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}",
3913                 (NOTv16i8 V128:$Vd, V128:$Vn)>;
3914
3915 def : Pat<(AArch64neg (v8i8  V64:$Rn)),  (NEGv8i8  V64:$Rn)>;
3916 def : Pat<(AArch64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>;
3917 def : Pat<(AArch64neg (v4i16 V64:$Rn)),  (NEGv4i16 V64:$Rn)>;
3918 def : Pat<(AArch64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>;
3919 def : Pat<(AArch64neg (v2i32 V64:$Rn)),  (NEGv2i32 V64:$Rn)>;
3920 def : Pat<(AArch64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>;
3921 def : Pat<(AArch64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>;
3922
3923 def : Pat<(AArch64not (v8i8 V64:$Rn)),   (NOTv8i8  V64:$Rn)>;
3924 def : Pat<(AArch64not (v16i8 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3925 def : Pat<(AArch64not (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3926 def : Pat<(AArch64not (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3927 def : Pat<(AArch64not (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3928 def : Pat<(AArch64not (v1i64 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3929 def : Pat<(AArch64not (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3930 def : Pat<(AArch64not (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3931
3932 def : Pat<(vnot (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3933 def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3934 def : Pat<(vnot (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
3935 def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3936 def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
3937
3938 defm RBIT   : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_aarch64_neon_rbit>;
3939 defm REV16  : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>;
3940 defm REV32  : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>;
3941 defm REV64  : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>;
3942 defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
3943        BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >;
3944 defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>;
3945 defm SCVTF  : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
3946 defm SHLL   : SIMDVectorLShiftLongBySizeBHS;
3947 defm SQABS  : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
3948 defm SQNEG  : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
3949 defm SQXTN  : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>;
3950 defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>;
3951 defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>;
3952 defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
3953        BinOpFrag<(add node:$LHS, (int_aarch64_neon_uaddlp node:$RHS))> >;
3954 defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp",
3955                     int_aarch64_neon_uaddlp>;
3956 defm UCVTF  : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
3957 defm UQXTN  : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>;
3958 defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>;
3959 defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>;
3960 defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
3961 defm XTN    : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
3962
3963 def : Pat<(v4f16  (AArch64rev32 V64:$Rn)),  (REV32v4i16 V64:$Rn)>;
3964 def : Pat<(v4f16  (AArch64rev64 V64:$Rn)),  (REV64v4i16 V64:$Rn)>;
3965 def : Pat<(v4bf16 (AArch64rev32 V64:$Rn)),  (REV32v4i16 V64:$Rn)>;
3966 def : Pat<(v4bf16 (AArch64rev64 V64:$Rn)),  (REV64v4i16 V64:$Rn)>;
3967 def : Pat<(v8f16  (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
3968 def : Pat<(v8f16  (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
3969 def : Pat<(v8bf16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
3970 def : Pat<(v8bf16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
3971 def : Pat<(v2f32  (AArch64rev64 V64:$Rn)),  (REV64v2i32 V64:$Rn)>;
3972 def : Pat<(v4f32  (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
3973
3974 // Patterns for vector long shift (by element width). These need to match all
3975 // three of zext, sext and anyext so it's easier to pull the patterns out of the
3976 // definition.
3977 multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
3978   def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
3979             (SHLLv8i8 V64:$Rn)>;
3980   def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
3981             (SHLLv16i8 V128:$Rn)>;
3982   def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
3983             (SHLLv4i16 V64:$Rn)>;
3984   def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
3985             (SHLLv8i16 V128:$Rn)>;
3986   def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
3987             (SHLLv2i32 V64:$Rn)>;
3988   def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
3989             (SHLLv4i32 V128:$Rn)>;
3990 }
3991
3992 defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
3993 defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
3994 defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;
3995
3996 //===----------------------------------------------------------------------===//
3997 // Advanced SIMD three vector instructions.
3998 //===----------------------------------------------------------------------===//
3999
4000 defm ADD     : SIMDThreeSameVector<0, 0b10000, "add", add>;
4001 defm ADDP    : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>;
4002 defm CMEQ    : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>;
4003 defm CMGE    : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>;
4004 defm CMGT    : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>;
4005 defm CMHI    : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>;
4006 defm CMHS    : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>;
4007 defm CMTST   : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>;
4008 defm FABD    : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>;
4009 let Predicates = [HasNEON] in {
4010 foreach VT = [ v2f32, v4f32, v2f64 ] in
4011 def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
4012 }
4013 let Predicates = [HasNEON, HasFullFP16] in {
4014 foreach VT = [ v4f16, v8f16 ] in
4015 def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
4016 }
4017 defm FACGE   : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>;
4018 defm FACGT   : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>;
4019 defm FADDP   : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_faddp>;
4020 defm FADD    : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>;
4021 defm FCMEQ   : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
4022 defm FCMGE   : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
4023 defm FCMGT   : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
4024 defm FDIV    : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>;
4025 defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>;
4026 defm FMAXNM  : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>;
4027 defm FMAXP   : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>;
4028 defm FMAX    : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaximum>;
4029 defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>;
4030 defm FMINNM  : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>;
4031 defm FMINP   : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>;
4032 defm FMIN    : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminimum>;
4033
4034 // NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
4035 // instruction expects the addend first, while the fma intrinsic puts it last.
4036 defm FMLA     : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla",
4037             TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
4038 defm FMLS     : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls",
4039             TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
4040
4041 // The following def pats catch the case where the LHS of an FMA is negated.
4042 // The TriOpFrag above catches the case where the middle operand is negated.
4043 def : Pat<(v2f32 (fma (fneg V64:$Rn), V64:$Rm, V64:$Rd)),
4044           (FMLSv2f32 V64:$Rd, V64:$Rn, V64:$Rm)>;
4045
4046 def : Pat<(v4f32 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
4047           (FMLSv4f32 V128:$Rd, V128:$Rn, V128:$Rm)>;
4048
4049 def : Pat<(v2f64 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
4050           (FMLSv2f64 V128:$Rd, V128:$Rn, V128:$Rm)>;
4051
4052 defm FMULX    : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>;
4053 defm FMUL     : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>;
4054 defm FRECPS   : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>;
4055 defm FRSQRTS  : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>;
4056 defm FSUB     : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>;
4057
4058 // MLA and MLS are generated in MachineCombine
4059 defm MLA      : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla", null_frag>;
4060 defm MLS      : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls", null_frag>;
4061
4062 defm MUL      : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
4063 defm PMUL     : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>;
4064 defm SABA     : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
4065       TriOpFrag<(add node:$LHS, (int_aarch64_neon_sabd node:$MHS, node:$RHS))> >;
4066 defm SABD     : SIMDThreeSameVectorBHS<0,0b01110,"sabd", int_aarch64_neon_sabd>;
4067 defm SHADD    : SIMDThreeSameVectorBHS<0,0b00000,"shadd", int_aarch64_neon_shadd>;
4068 defm SHSUB    : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>;
4069 defm SMAXP    : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>;
4070 defm SMAX     : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>;
4071 defm SMINP    : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>;
4072 defm SMIN     : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>;
4073 defm SQADD    : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>;
4074 defm SQDMULH  : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>;
4075 defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>;
4076 defm SQRSHL   : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>;
4077 defm SQSHL    : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>;
4078 defm SQSUB    : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>;
4079 defm SRHADD   : SIMDThreeSameVectorBHS<0,0b00010,"srhadd", AArch64srhadd>;
4080 defm SRSHL    : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>;
4081 defm SSHL     : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>;
4082 defm SUB      : SIMDThreeSameVector<1,0b10000,"sub", sub>;
4083 defm UABA     : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
4084       TriOpFrag<(add node:$LHS, (int_aarch64_neon_uabd node:$MHS, node:$RHS))> >;
4085 defm UABD     : SIMDThreeSameVectorBHS<1,0b01110,"uabd", int_aarch64_neon_uabd>;
4086 defm UHADD    : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", int_aarch64_neon_uhadd>;
4087 defm UHSUB    : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>;
4088 defm UMAXP    : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>;
4089 defm UMAX     : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>;
4090 defm UMINP    : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>;
4091 defm UMIN     : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>;
4092 defm UQADD    : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>;
4093 defm UQRSHL   : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>;
4094 defm UQSHL    : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>;
4095 defm UQSUB    : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>;
4096 defm URHADD   : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", AArch64urhadd>;
4097 defm URSHL    : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>;
4098 defm USHL     : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>;
4099 defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah",
4100                                                   int_aarch64_neon_sqadd>;
4101 defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh",
4102                                                     int_aarch64_neon_sqsub>;
4103
4104 // Extra saturate patterns, other than the intrinsics matches above
4105 defm : SIMDThreeSameVectorExtraPatterns<"SQADD", saddsat>;
4106 defm : SIMDThreeSameVectorExtraPatterns<"UQADD", uaddsat>;
4107 defm : SIMDThreeSameVectorExtraPatterns<"SQSUB", ssubsat>;
4108 defm : SIMDThreeSameVectorExtraPatterns<"UQSUB", usubsat>;
4109
4110 defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
4111 defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
4112                                   BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
4113 defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
4114 defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
4115                                   BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
4116 defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;
4117
4118 // Pseudo bitwise select pattern BSP.
4119 // It is expanded into BSL/BIT/BIF after register allocation.
4120 defm BSP : SIMDLogicalThreeVectorPseudo<TriOpFrag<(or (and node:$LHS, node:$MHS),
4121                                                       (and (vnot node:$LHS), node:$RHS))>>;
4122 defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl">;
4123 defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>;
4124 defm BIF : SIMDLogicalThreeVectorTied<1, 0b11, "bif">;
4125
4126 def : Pat<(AArch64bsp (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
4127           (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
4128 def : Pat<(AArch64bsp (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
4129           (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
4130 def : Pat<(AArch64bsp (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
4131           (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
4132 def : Pat<(AArch64bsp (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
4133           (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
4134
4135 def : Pat<(AArch64bsp (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
4136           (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
4137 def : Pat<(AArch64bsp (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
4138           (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
4139 def : Pat<(AArch64bsp (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
4140           (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
4141 def : Pat<(AArch64bsp (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
4142           (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
4143
4144 def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
4145                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>;
4146 def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}",
4147                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
4148 def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}",
4149                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
4150 def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}",
4151                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
4152
4153 def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}",
4154                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>;
4155 def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}",
4156                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
4157 def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}",
4158                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
4159 def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}",
4160                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
4161
4162 def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
4163                 "|cmls.8b\t$dst, $src1, $src2}",
4164                 (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
4165 def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
4166                 "|cmls.16b\t$dst, $src1, $src2}",
4167                 (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
4168 def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
4169                 "|cmls.4h\t$dst, $src1, $src2}",
4170                 (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
4171 def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
4172                 "|cmls.8h\t$dst, $src1, $src2}",
4173                 (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
4174 def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
4175                 "|cmls.2s\t$dst, $src1, $src2}",
4176                 (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
4177 def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
4178                 "|cmls.4s\t$dst, $src1, $src2}",
4179                 (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
4180 def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
4181                 "|cmls.2d\t$dst, $src1, $src2}",
4182                 (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
4183
4184 def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
4185                 "|cmlo.8b\t$dst, $src1, $src2}",
4186                 (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
4187 def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
4188                 "|cmlo.16b\t$dst, $src1, $src2}",
4189                 (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
4190 def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
4191                 "|cmlo.4h\t$dst, $src1, $src2}",
4192                 (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
4193 def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
4194                 "|cmlo.8h\t$dst, $src1, $src2}",
4195                 (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
4196 def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
4197                 "|cmlo.2s\t$dst, $src1, $src2}",
4198                 (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
4199 def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
4200                 "|cmlo.4s\t$dst, $src1, $src2}",
4201                 (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
4202 def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
4203                 "|cmlo.2d\t$dst, $src1, $src2}",
4204                 (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
4205
4206 def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
4207                 "|cmle.8b\t$dst, $src1, $src2}",
4208                 (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
4209 def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
4210                 "|cmle.16b\t$dst, $src1, $src2}",
4211                 (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
4212 def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
4213                 "|cmle.4h\t$dst, $src1, $src2}",
4214                 (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
4215 def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
4216                 "|cmle.8h\t$dst, $src1, $src2}",
4217                 (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
4218 def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
4219                 "|cmle.2s\t$dst, $src1, $src2}",
4220                 (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
4221 def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
4222                 "|cmle.4s\t$dst, $src1, $src2}",
4223                 (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
4224 def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
4225                 "|cmle.2d\t$dst, $src1, $src2}",
4226                 (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
4227
4228 def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
4229                 "|cmlt.8b\t$dst, $src1, $src2}",
4230                 (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
4231 def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
4232                 "|cmlt.16b\t$dst, $src1, $src2}",
4233                 (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
4234 def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
4235                 "|cmlt.4h\t$dst, $src1, $src2}",
4236                 (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
4237 def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
4238                 "|cmlt.8h\t$dst, $src1, $src2}",
4239                 (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
4240 def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
4241                 "|cmlt.2s\t$dst, $src1, $src2}",
4242                 (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
4243 def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
4244                 "|cmlt.4s\t$dst, $src1, $src2}",
4245                 (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
4246 def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
4247                 "|cmlt.2d\t$dst, $src1, $src2}",
4248                 (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
4249
4250 let Predicates = [HasNEON, HasFullFP16] in {
4251 def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" #
4252                 "|fcmle.4h\t$dst, $src1, $src2}",
4253                 (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
4254 def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" #
4255                 "|fcmle.8h\t$dst, $src1, $src2}",
4256                 (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
4257 }
4258 def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
4259                 "|fcmle.2s\t$dst, $src1, $src2}",
4260                 (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
4261 def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
4262                 "|fcmle.4s\t$dst, $src1, $src2}",
4263                 (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
4264 def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
4265                 "|fcmle.2d\t$dst, $src1, $src2}",
4266                 (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
4267
4268 let Predicates = [HasNEON, HasFullFP16] in {
4269 def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" #
4270                 "|fcmlt.4h\t$dst, $src1, $src2}",
4271                 (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
4272 def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" #
4273                 "|fcmlt.8h\t$dst, $src1, $src2}",
4274                 (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
4275 }
4276 def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
4277                 "|fcmlt.2s\t$dst, $src1, $src2}",
4278                 (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
4279 def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
4280                 "|fcmlt.4s\t$dst, $src1, $src2}",
4281                 (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
4282 def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
4283                 "|fcmlt.2d\t$dst, $src1, $src2}",
4284                 (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
4285
4286 let Predicates = [HasNEON, HasFullFP16] in {
4287 def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" #
4288                 "|facle.4h\t$dst, $src1, $src2}",
4289                 (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
4290 def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" #
4291                 "|facle.8h\t$dst, $src1, $src2}",
4292                 (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
4293 }
4294 def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
4295                 "|facle.2s\t$dst, $src1, $src2}",
4296                 (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
4297 def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
4298                 "|facle.4s\t$dst, $src1, $src2}",
4299                 (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
4300 def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
4301                 "|facle.2d\t$dst, $src1, $src2}",
4302                 (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
4303
4304 let Predicates = [HasNEON, HasFullFP16] in {
4305 def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" #
4306                 "|faclt.4h\t$dst, $src1, $src2}",
4307                 (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
4308 def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" #
4309                 "|faclt.8h\t$dst, $src1, $src2}",
4310                 (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
4311 }
4312 def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
4313                 "|faclt.2s\t$dst, $src1, $src2}",
4314                 (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
4315 def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
4316                 "|faclt.4s\t$dst, $src1, $src2}",
4317                 (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
4318 def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
4319                 "|faclt.2d\t$dst, $src1, $src2}",
4320                 (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
4321
4322 //===----------------------------------------------------------------------===//
4323 // Advanced SIMD three scalar instructions.
4324 //===----------------------------------------------------------------------===//
4325
4326 defm ADD      : SIMDThreeScalarD<0, 0b10000, "add", add>;
4327 defm CMEQ     : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>;
4328 defm CMGE     : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>;
4329 defm CMGT     : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>;
4330 defm CMHI     : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>;
4331 defm CMHS     : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>;
4332 defm CMTST    : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>;
4333 defm FABD     : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>;
4334 def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
4335           (FABD64 FPR64:$Rn, FPR64:$Rm)>;
4336 let Predicates = [HasFullFP16] in {
4337 def : Pat<(fabs (fsub f16:$Rn, f16:$Rm)), (FABD16 f16:$Rn, f16:$Rm)>;
4338 }
4339 def : Pat<(fabs (fsub f32:$Rn, f32:$Rm)), (FABD32 f32:$Rn, f32:$Rm)>;
4340 def : Pat<(fabs (fsub f64:$Rn, f64:$Rm)), (FABD64 f64:$Rn, f64:$Rm)>;
4341 defm FACGE    : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge",
4342                                      int_aarch64_neon_facge>;
4343 defm FACGT    : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt",
4344                                      int_aarch64_neon_facgt>;
4345 defm FCMEQ    : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
4346 defm FCMGE    : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
4347 defm FCMGT    : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
4348 defm FMULX    : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx>;
4349 defm FRECPS   : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps>;
4350 defm FRSQRTS  : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts>;
4351 defm SQADD    : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>;
4352 defm SQDMULH  : SIMDThreeScalarHS<  0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>;
4353 defm SQRDMULH : SIMDThreeScalarHS<  1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
4354 defm SQRSHL   : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>;
4355 defm SQSHL    : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>;
4356 defm SQSUB    : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>;
4357 defm SRSHL    : SIMDThreeScalarD<   0, 0b01010, "srshl", int_aarch64_neon_srshl>;
4358 defm SSHL     : SIMDThreeScalarD<   0, 0b01000, "sshl", int_aarch64_neon_sshl>;
4359 defm SUB      : SIMDThreeScalarD<   1, 0b10000, "sub", sub>;
4360 defm UQADD    : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>;
4361 defm UQRSHL   : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>;
4362 defm UQSHL    : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>;
4363 defm UQSUB    : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>;
4364 defm URSHL    : SIMDThreeScalarD<   1, 0b01010, "urshl", int_aarch64_neon_urshl>;
4365 defm USHL     : SIMDThreeScalarD<   1, 0b01000, "ushl", int_aarch64_neon_ushl>;
4366 let Predicates = [HasRDM] in {
4367   defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">;
4368   defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">;
4369   def : Pat<(i32 (int_aarch64_neon_sqadd
4370                    (i32 FPR32:$Rd),
4371                    (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
4372                                                    (i32 FPR32:$Rm))))),
4373             (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
4374   def : Pat<(i32 (int_aarch64_neon_sqsub
4375                    (i32 FPR32:$Rd),
4376                    (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
4377                                                    (i32 FPR32:$Rm))))),
4378             (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
4379 }
4380
4381 def : InstAlias<"cmls $dst, $src1, $src2",
4382                 (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4383 def : InstAlias<"cmle $dst, $src1, $src2",
4384                 (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4385 def : InstAlias<"cmlo $dst, $src1, $src2",
4386                 (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4387 def : InstAlias<"cmlt $dst, $src1, $src2",
4388                 (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4389 def : InstAlias<"fcmle $dst, $src1, $src2",
4390                 (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
4391 def : InstAlias<"fcmle $dst, $src1, $src2",
4392                 (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4393 def : InstAlias<"fcmlt $dst, $src1, $src2",
4394                 (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
4395 def : InstAlias<"fcmlt $dst, $src1, $src2",
4396                 (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4397 def : InstAlias<"facle $dst, $src1, $src2",
4398                 (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
4399 def : InstAlias<"facle $dst, $src1, $src2",
4400                 (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4401 def : InstAlias<"faclt $dst, $src1, $src2",
4402                 (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
4403 def : InstAlias<"faclt $dst, $src1, $src2",
4404                 (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
4405
4406 //===----------------------------------------------------------------------===//
4407 // Advanced SIMD three scalar instructions (mixed operands).
4408 //===----------------------------------------------------------------------===//
4409 defm SQDMULL  : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
4410                                        int_aarch64_neon_sqdmulls_scalar>;
4411 defm SQDMLAL  : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
4412 defm SQDMLSL  : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;
4413
4414 def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd),
4415                    (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
4416                                                         (i32 FPR32:$Rm))))),
4417           (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
4418 def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd),
4419                    (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
4420                                                         (i32 FPR32:$Rm))))),
4421           (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
4422
4423 //===----------------------------------------------------------------------===//
4424 // Advanced SIMD two scalar instructions.
4425 //===----------------------------------------------------------------------===//
4426
4427 defm ABS    : SIMDTwoScalarD<    0, 0b01011, "abs", abs>;
4428 defm CMEQ   : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>;
4429 defm CMGE   : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>;
4430 defm CMGT   : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>;
4431 defm CMLE   : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>;
4432 defm CMLT   : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>;
4433 defm FCMEQ  : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
4434 defm FCMGE  : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
4435 defm FCMGT  : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
4436 defm FCMLE  : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
4437 defm FCMLT  : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
4438 defm FCVTAS : SIMDFPTwoScalar<   0, 0, 0b11100, "fcvtas">;
4439 defm FCVTAU : SIMDFPTwoScalar<   1, 0, 0b11100, "fcvtau">;
4440 defm FCVTMS : SIMDFPTwoScalar<   0, 0, 0b11011, "fcvtms">;
4441 defm FCVTMU : SIMDFPTwoScalar<   1, 0, 0b11011, "fcvtmu">;
4442 defm FCVTNS : SIMDFPTwoScalar<   0, 0, 0b11010, "fcvtns">;
4443 defm FCVTNU : SIMDFPTwoScalar<   1, 0, 0b11010, "fcvtnu">;
4444 defm FCVTPS : SIMDFPTwoScalar<   0, 1, 0b11010, "fcvtps">;
4445 defm FCVTPU : SIMDFPTwoScalar<   1, 1, 0b11010, "fcvtpu">;
4446 def  FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
4447 defm FCVTZS : SIMDFPTwoScalar<   0, 1, 0b11011, "fcvtzs">;
4448 defm FCVTZU : SIMDFPTwoScalar<   1, 1, 0b11011, "fcvtzu">;
4449 defm FRECPE : SIMDFPTwoScalar<   0, 1, 0b11101, "frecpe">;
4450 defm FRECPX : SIMDFPTwoScalar<   0, 1, 0b11111, "frecpx">;
4451 defm FRSQRTE : SIMDFPTwoScalar<  1, 1, 0b11101, "frsqrte">;
4452 defm NEG    : SIMDTwoScalarD<    1, 0b01011, "neg",
4453                                  UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
4454 defm SCVTF  : SIMDFPTwoScalarCVT<   0, 0, 0b11101, "scvtf", AArch64sitof>;
4455 defm SQABS  : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
4456 defm SQNEG  : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
4457 defm SQXTN  : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>;
4458 defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>;
4459 defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
4460                                      int_aarch64_neon_suqadd>;
4461 defm UCVTF  : SIMDFPTwoScalarCVT<   1, 0, 0b11101, "ucvtf", AArch64uitof>;
4462 defm UQXTN  : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>;
4463 defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
4464                                     int_aarch64_neon_usqadd>;
4465
4466 def : Pat<(AArch64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>;
4467
4468 def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))),
4469           (FCVTASv1i64 FPR64:$Rn)>;
4470 def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))),
4471           (FCVTAUv1i64 FPR64:$Rn)>;
4472 def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))),
4473           (FCVTMSv1i64 FPR64:$Rn)>;
4474 def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))),
4475           (FCVTMUv1i64 FPR64:$Rn)>;
4476 def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))),
4477           (FCVTNSv1i64 FPR64:$Rn)>;
4478 def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))),
4479           (FCVTNUv1i64 FPR64:$Rn)>;
4480 def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))),
4481           (FCVTPSv1i64 FPR64:$Rn)>;
4482 def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))),
4483           (FCVTPUv1i64 FPR64:$Rn)>;
4484
4485 def : Pat<(f16 (int_aarch64_neon_frecpe (f16 FPR16:$Rn))),
4486           (FRECPEv1f16 FPR16:$Rn)>;
4487 def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))),
4488           (FRECPEv1i32 FPR32:$Rn)>;
4489 def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))),
4490           (FRECPEv1i64 FPR64:$Rn)>;
4491 def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))),
4492           (FRECPEv1i64 FPR64:$Rn)>;
4493
4494 def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))),
4495           (FRECPEv1i32 FPR32:$Rn)>;
4496 def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))),
4497           (FRECPEv2f32 V64:$Rn)>;
4498 def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))),
4499           (FRECPEv4f32 FPR128:$Rn)>;
4500 def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))),
4501           (FRECPEv1i64 FPR64:$Rn)>;
4502 def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))),
4503           (FRECPEv1i64 FPR64:$Rn)>;
4504 def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))),
4505           (FRECPEv2f64 FPR128:$Rn)>;
4506
4507 def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
4508           (FRECPS32 FPR32:$Rn, FPR32:$Rm)>;
4509 def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
4510           (FRECPSv2f32 V64:$Rn, V64:$Rm)>;
4511 def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
4512           (FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>;
4513 def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
4514           (FRECPS64 FPR64:$Rn, FPR64:$Rm)>;
4515 def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
4516           (FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>;
4517
4518 def : Pat<(f16 (int_aarch64_neon_frecpx (f16 FPR16:$Rn))),
4519           (FRECPXv1f16 FPR16:$Rn)>;
4520 def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))),
4521           (FRECPXv1i32 FPR32:$Rn)>;
4522 def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))),
4523           (FRECPXv1i64 FPR64:$Rn)>;
4524
4525 def : Pat<(f16 (int_aarch64_neon_frsqrte (f16 FPR16:$Rn))),
4526           (FRSQRTEv1f16 FPR16:$Rn)>;
4527 def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))),
4528           (FRSQRTEv1i32 FPR32:$Rn)>;
4529 def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))),
4530           (FRSQRTEv1i64 FPR64:$Rn)>;
4531 def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))),
4532           (FRSQRTEv1i64 FPR64:$Rn)>;
4533
4534 def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))),
4535           (FRSQRTEv1i32 FPR32:$Rn)>;
4536 def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))),
4537           (FRSQRTEv2f32 V64:$Rn)>;
4538 def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))),
4539           (FRSQRTEv4f32 FPR128:$Rn)>;
4540 def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))),
4541           (FRSQRTEv1i64 FPR64:$Rn)>;
4542 def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))),
4543           (FRSQRTEv1i64 FPR64:$Rn)>;
4544 def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))),
4545           (FRSQRTEv2f64 FPR128:$Rn)>;
4546
4547 def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
4548           (FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>;
4549 def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
4550           (FRSQRTSv2f32 V64:$Rn, V64:$Rm)>;
4551 def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
4552           (FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>;
4553 def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
4554           (FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>;
4555 def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
4556           (FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>;
4557
4558 // If an integer is about to be converted to a floating point value,
4559 // just load it on the floating point unit.
4560 // Here are the patterns for 8 and 16-bits to float.
4561 // 8-bits -> float.
4562 multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy,
4563                              SDPatternOperator loadop, Instruction UCVTF,
4564                              ROAddrMode ro, Instruction LDRW, Instruction LDRX,
4565                              SubRegIndex sub> {
4566   def : Pat<(DstTy (uint_to_fp (SrcTy
4567                      (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm,
4568                                       ro.Wext:$extend))))),
4569            (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
4570                                  (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
4571                                  sub))>;
4572
4573   def : Pat<(DstTy (uint_to_fp (SrcTy
4574                      (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm,
4575                                       ro.Wext:$extend))))),
4576            (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
4577                                  (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
4578                                  sub))>;
4579 }
4580
4581 defm : UIntToFPROLoadPat<f32, i32, zextloadi8,
4582                          UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>;
4583 def : Pat <(f32 (uint_to_fp (i32
4584                (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
4585            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
4586                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
4587 def : Pat <(f32 (uint_to_fp (i32
4588                      (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
4589            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
4590                           (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
4591 // 16-bits -> float.
4592 defm : UIntToFPROLoadPat<f32, i32, zextloadi16,
4593                          UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>;
4594 def : Pat <(f32 (uint_to_fp (i32
4595                   (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
4596            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
4597                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
4598 def : Pat <(f32 (uint_to_fp (i32
4599                   (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
4600            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
4601                           (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
4602 // 32-bits are handled in target specific dag combine:
4603 // performIntToFpCombine.
4604 // 64-bits integer to 32-bits floating point, not possible with
4605 // UCVTF on floating point registers (both source and destination
4606 // must have the same size).
4607
4608 // Here are the patterns for 8, 16, 32, and 64-bits to double.
4609 // 8-bits -> double.
4610 defm : UIntToFPROLoadPat<f64, i32, zextloadi8,
4611                          UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>;
4612 def : Pat <(f64 (uint_to_fp (i32
4613                     (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
4614            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4615                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
4616 def : Pat <(f64 (uint_to_fp (i32
4617                   (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
4618            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4619                           (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
4620 // 16-bits -> double.
4621 defm : UIntToFPROLoadPat<f64, i32, zextloadi16,
4622                          UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>;
4623 def : Pat <(f64 (uint_to_fp (i32
4624                   (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
4625            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4626                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
4627 def : Pat <(f64 (uint_to_fp (i32
4628                   (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
4629            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4630                           (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
4631 // 32-bits -> double.
4632 defm : UIntToFPROLoadPat<f64, i32, load,
4633                          UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>;
4634 def : Pat <(f64 (uint_to_fp (i32
4635                   (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
4636            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4637                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>;
4638 def : Pat <(f64 (uint_to_fp (i32
4639                   (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))),
4640            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
4641                           (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>;
4642 // 64-bits -> double are handled in target specific dag combine:
4643 // performIntToFpCombine.
4644
4645 //===----------------------------------------------------------------------===//
4646 // Advanced SIMD three different-sized vector instructions.
4647 //===----------------------------------------------------------------------===//
4648
4649 defm ADDHN  : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>;
4650 defm SUBHN  : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>;
4651 defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>;
4652 defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>;
4653 defm PMULL  : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>;
4654 defm SABAL  : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
4655                                              int_aarch64_neon_sabd>;
4656 defm SABDL   : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
4657                                           int_aarch64_neon_sabd>;
4658 defm SADDL   : SIMDLongThreeVectorBHS<   0, 0b0000, "saddl",
4659             BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
4660 defm SADDW   : SIMDWideThreeVectorBHS<   0, 0b0001, "saddw",
4661                  BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
4662 defm SMLAL   : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
4663     TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
4664 defm SMLSL   : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
4665     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
4666 defm SMULL   : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>;
4667 defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
4668                                                int_aarch64_neon_sqadd>;
4669 defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
4670                                                int_aarch64_neon_sqsub>;
4671 defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
4672                                      int_aarch64_neon_sqdmull>;
4673 defm SSUBL   : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
4674                  BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
4675 defm SSUBW   : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
4676                  BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
4677 defm UABAL   : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
4678                                               int_aarch64_neon_uabd>;
4679 defm UADDL   : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
4680                  BinOpFrag<(add (zext node:$LHS), (zext node:$RHS))>>;
4681 defm UADDW   : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
4682                  BinOpFrag<(add node:$LHS, (zext node:$RHS))>>;
4683 defm UMLAL   : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
4684     TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
4685 defm UMLSL   : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
4686     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
4687 defm UMULL   : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>;
4688 defm USUBL   : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
4689                  BinOpFrag<(sub (zext node:$LHS), (zext node:$RHS))>>;
4690 defm USUBW   : SIMDWideThreeVectorBHS<   1, 0b0011, "usubw",
4691                  BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>;
4692
4693 // Additional patterns for SMULL and UMULL
4694 multiclass Neon_mul_widen_patterns<SDPatternOperator opnode,
4695   Instruction INST8B, Instruction INST4H, Instruction INST2S> {
4696   def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
4697             (INST8B V64:$Rn, V64:$Rm)>;
4698   def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
4699             (INST4H V64:$Rn, V64:$Rm)>;
4700   def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
4701             (INST2S V64:$Rn, V64:$Rm)>;
4702 }
4703
4704 defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16,
4705   SMULLv4i16_v4i32, SMULLv2i32_v2i64>;
4706 defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16,
4707   UMULLv4i16_v4i32, UMULLv2i32_v2i64>;
4708
4709 // Patterns for smull2/umull2.
4710 multiclass Neon_mul_high_patterns<SDPatternOperator opnode,
4711   Instruction INST8B, Instruction INST4H, Instruction INST2S> {
4712   def : Pat<(v8i16 (opnode (extract_high_v16i8 V128:$Rn),
4713                            (extract_high_v16i8 V128:$Rm))),
4714              (INST8B V128:$Rn, V128:$Rm)>;
4715   def : Pat<(v4i32 (opnode (extract_high_v8i16 V128:$Rn),
4716                            (extract_high_v8i16 V128:$Rm))),
4717              (INST4H V128:$Rn, V128:$Rm)>;
4718   def : Pat<(v2i64 (opnode (extract_high_v4i32 V128:$Rn),
4719                            (extract_high_v4i32 V128:$Rm))),
4720              (INST2S V128:$Rn, V128:$Rm)>;
4721 }
4722
4723 defm : Neon_mul_high_patterns<AArch64smull, SMULLv16i8_v8i16,
4724   SMULLv8i16_v4i32, SMULLv4i32_v2i64>;
4725 defm : Neon_mul_high_patterns<AArch64umull, UMULLv16i8_v8i16,
4726   UMULLv8i16_v4i32, UMULLv4i32_v2i64>;
4727
4728 // Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL
4729 multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode,
4730   Instruction INST8B, Instruction INST4H, Instruction INST2S> {
4731   def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
4732             (INST8B V128:$Rd, V64:$Rn, V64:$Rm)>;
4733   def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
4734             (INST4H V128:$Rd, V64:$Rn, V64:$Rm)>;
4735   def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
4736             (INST2S  V128:$Rd, V64:$Rn, V64:$Rm)>;
4737 }
4738
4739 defm : Neon_mulacc_widen_patterns<
4740   TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
4741   SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
4742 defm : Neon_mulacc_widen_patterns<
4743   TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
4744   UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
4745 defm : Neon_mulacc_widen_patterns<
4746   TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
4747   SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
4748 defm : Neon_mulacc_widen_patterns<
4749   TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
4750   UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
4751
4752 // Patterns for 64-bit pmull
4753 def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
4754           (PMULLv1i64 V64:$Rn, V64:$Rm)>;
4755 def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)),
4756                                     (extractelt (v2i64 V128:$Rm), (i64 1))),
4757           (PMULLv2i64 V128:$Rn, V128:$Rm)>;
4758
4759 // CodeGen patterns for addhn and subhn instructions, which can actually be
4760 // written in LLVM IR without too much difficulty.
4761
4762 // ADDHN
4763 def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
4764           (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
4765 def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
4766                                            (i32 16))))),
4767           (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
4768 def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
4769                                            (i32 32))))),
4770           (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
4771 def : Pat<(concat_vectors (v8i8 V64:$Rd),
4772                           (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm),
4773                                                     (i32 8))))),
4774           (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
4775                             V128:$Rn, V128:$Rm)>;
4776 def : Pat<(concat_vectors (v4i16 V64:$Rd),
4777                           (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
4778                                                     (i32 16))))),
4779           (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
4780                             V128:$Rn, V128:$Rm)>;
4781 def : Pat<(concat_vectors (v2i32 V64:$Rd),
4782                           (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
4783                                                     (i32 32))))),
4784           (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
4785                             V128:$Rn, V128:$Rm)>;
4786
4787 // SUBHN
4788 def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
4789           (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
4790 def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
4791                                            (i32 16))))),
4792           (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
4793 def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
4794                                            (i32 32))))),
4795           (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
4796 def : Pat<(concat_vectors (v8i8 V64:$Rd),
4797                           (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
4798                                                     (i32 8))))),
4799           (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
4800                             V128:$Rn, V128:$Rm)>;
4801 def : Pat<(concat_vectors (v4i16 V64:$Rd),
4802                           (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
4803                                                     (i32 16))))),
4804           (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
4805                             V128:$Rn, V128:$Rm)>;
4806 def : Pat<(concat_vectors (v2i32 V64:$Rd),
4807                           (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
4808                                                     (i32 32))))),
4809           (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
4810                             V128:$Rn, V128:$Rm)>;
4811
4812 //----------------------------------------------------------------------------
4813 // AdvSIMD bitwise extract from vector instruction.
4814 //----------------------------------------------------------------------------
4815
4816 defm EXT : SIMDBitwiseExtract<"ext">;
4817
4818 def AdjustExtImm : SDNodeXForm<imm, [{
4819   return CurDAG->getTargetConstant(8 + N->getZExtValue(), SDLoc(N), MVT::i32);
4820 }]>;
4821 multiclass ExtPat<ValueType VT64, ValueType VT128, int N> {
4822   def : Pat<(VT64 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
4823             (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
4824   def : Pat<(VT128 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
4825             (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
4826   // We use EXT to handle extract_subvector to copy the upper 64-bits of a
4827   // 128-bit vector.
4828   def : Pat<(VT64 (extract_subvector V128:$Rn, (i64 N))),
4829             (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
4830   // A 64-bit EXT of two halves of the same 128-bit register can be done as a
4831   // single 128-bit EXT.
4832   def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 0)),
4833                               (extract_subvector V128:$Rn, (i64 N)),
4834                               (i32 imm:$imm))),
4835             (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, imm:$imm), dsub)>;
4836   // A 64-bit EXT of the high half of a 128-bit register can be done using a
4837   // 128-bit EXT of the whole register with an adjustment to the immediate. The
4838   // top half of the other operand will be unset, but that doesn't matter as it
4839   // will not be used.
4840   def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 N)),
4841                               V64:$Rm,
4842                               (i32 imm:$imm))),
4843             (EXTRACT_SUBREG (EXTv16i8 V128:$Rn,
4844                                       (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
4845                                       (AdjustExtImm imm:$imm)), dsub)>;
4846 }
4847
4848 defm : ExtPat<v8i8, v16i8, 8>;
4849 defm : ExtPat<v4i16, v8i16, 4>;
4850 defm : ExtPat<v4f16, v8f16, 4>;
4851 defm : ExtPat<v4bf16, v8bf16, 4>;
4852 defm : ExtPat<v2i32, v4i32, 2>;
4853 defm : ExtPat<v2f32, v4f32, 2>;
4854 defm : ExtPat<v1i64, v2i64, 1>;
4855 defm : ExtPat<v1f64, v2f64, 1>;
4856
4857 //----------------------------------------------------------------------------
4858 // AdvSIMD zip vector
4859 //----------------------------------------------------------------------------
4860
4861 defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>;
4862 defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>;
4863 defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>;
4864 defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>;
4865 defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>;
4866 defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>;
4867
4868 //----------------------------------------------------------------------------
4869 // AdvSIMD TBL/TBX instructions
4870 //----------------------------------------------------------------------------
4871
4872 defm TBL : SIMDTableLookup<    0, "tbl">;
4873 defm TBX : SIMDTableLookupTied<1, "tbx">;
4874
4875 def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
4876           (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
4877 def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
4878           (TBLv16i8One V128:$Ri, V128:$Rn)>;
4879
4880 def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd),
4881                   (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
4882           (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
4883 def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd),
4884                    (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
4885           (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;
4886
4887
4888 //----------------------------------------------------------------------------
4889 // AdvSIMD scalar CPY instruction
4890 //----------------------------------------------------------------------------
4891
4892 defm CPY : SIMDScalarCPY<"cpy">;
4893
4894 //----------------------------------------------------------------------------
4895 // AdvSIMD scalar pairwise instructions
4896 //----------------------------------------------------------------------------
4897
4898 defm ADDP    : SIMDPairwiseScalarD<0, 0b11011, "addp">;
4899 defm FADDP   : SIMDFPPairwiseScalar<0, 0b01101, "faddp">;
4900 defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">;
4901 defm FMAXP   : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">;
4902 defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">;
4903 defm FMINP   : SIMDFPPairwiseScalar<1, 0b01111, "fminp">;
4904 def : Pat<(v2i64 (AArch64saddv V128:$Rn)),
4905           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
4906 def : Pat<(v2i64 (AArch64uaddv V128:$Rn)),
4907           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
4908 def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))),
4909           (FADDPv2i32p V64:$Rn)>;
4910 def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))),
4911           (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
4912 def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))),
4913           (FADDPv2i64p V128:$Rn)>;
4914 def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))),
4915           (FMAXNMPv2i32p V64:$Rn)>;
4916 def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))),
4917           (FMAXNMPv2i64p V128:$Rn)>;
4918 def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))),
4919           (FMAXPv2i32p V64:$Rn)>;
4920 def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))),
4921           (FMAXPv2i64p V128:$Rn)>;
4922 def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))),
4923           (FMINNMPv2i32p V64:$Rn)>;
4924 def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))),
4925           (FMINNMPv2i64p V128:$Rn)>;
4926 def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))),
4927           (FMINPv2i32p V64:$Rn)>;
4928 def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))),
4929           (FMINPv2i64p V128:$Rn)>;
4930
4931 //----------------------------------------------------------------------------
4932 // AdvSIMD INS/DUP instructions
4933 //----------------------------------------------------------------------------
4934
4935 def DUPv8i8gpr  : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>;
4936 def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>;
4937 def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>;
4938 def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>;
4939 def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>;
4940 def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>;
4941 def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>;
4942
4943 def DUPv2i64lane : SIMDDup64FromElement;
4944 def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
4945 def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
4946 def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
4947 def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
4948 def DUPv8i8lane  : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
4949 def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;
4950
4951 // DUP from a 64-bit register to a 64-bit register is just a copy
4952 def : Pat<(v1i64 (AArch64dup (i64 GPR64:$Rn))),
4953           (COPY_TO_REGCLASS GPR64:$Rn, FPR64)>;
4954 def : Pat<(v1f64 (AArch64dup (f64 FPR64:$Rn))),
4955           (COPY_TO_REGCLASS FPR64:$Rn, FPR64)>;
4956
4957 def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))),
4958           (v2f32 (DUPv2i32lane
4959             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
4960             (i64 0)))>;
4961 def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))),
4962           (v4f32 (DUPv4i32lane
4963             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
4964             (i64 0)))>;
4965 def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
4966           (v2f64 (DUPv2i64lane
4967             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
4968             (i64 0)))>;
4969 def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))),
4970           (v4f16 (DUPv4i16lane
4971             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
4972             (i64 0)))>;
4973 def : Pat<(v4bf16 (AArch64dup (bf16 FPR16:$Rn))),
4974           (v4bf16 (DUPv4i16lane
4975             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
4976             (i64 0)))>;
4977 def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))),
4978           (v8f16 (DUPv8i16lane
4979             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
4980             (i64 0)))>;
4981 def : Pat<(v8bf16 (AArch64dup (bf16 FPR16:$Rn))),
4982           (v8bf16 (DUPv8i16lane
4983             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
4984             (i64 0)))>;
4985
4986 def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
4987           (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
4988 def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
4989           (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
4990
4991 def : Pat<(v4bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)),
4992           (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
4993 def : Pat<(v8bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)),
4994           (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
4995
4996 def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
4997           (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
4998 def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
4999          (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
5000 def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
5001           (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;
5002
5003 // If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane
5004 // instruction even if the types don't match: we just have to remap the lane
5005 // carefully. N.b. this trick only applies to truncations.
5006 def VecIndex_x2 : SDNodeXForm<imm, [{
5007   return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64);
5008 }]>;
5009 def VecIndex_x4 : SDNodeXForm<imm, [{
5010   return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64);
5011 }]>;
5012 def VecIndex_x8 : SDNodeXForm<imm, [{
5013   return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64);
5014 }]>;
5015
5016 multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
5017                             ValueType Src128VT, ValueType ScalVT,
5018                             Instruction DUP, SDNodeXForm IdxXFORM> {
5019   def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
5020                                                      imm:$idx)))),
5021             (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
5022
5023   def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
5024                                                      imm:$idx)))),
5025             (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
5026 }
5027
5028 defm : DUPWithTruncPats<v8i8,   v4i16, v8i16, i32, DUPv8i8lane,  VecIndex_x2>;
5029 defm : DUPWithTruncPats<v8i8,   v2i32, v4i32, i32, DUPv8i8lane,  VecIndex_x4>;
5030 defm : DUPWithTruncPats<v4i16,  v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;
5031
5032 defm : DUPWithTruncPats<v16i8,  v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
5033 defm : DUPWithTruncPats<v16i8,  v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
5034 defm : DUPWithTruncPats<v8i16,  v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;
5035
5036 multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
5037                                SDNodeXForm IdxXFORM> {
5038   def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn),
5039                                                          imm:$idx))))),
5040             (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
5041
5042   def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn),
5043                                                        imm:$idx))))),
5044             (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
5045 }
5046
5047 defm : DUPWithTrunci64Pats<v8i8,  DUPv8i8lane,   VecIndex_x8>;
5048 defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane,  VecIndex_x4>;
5049 defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane,  VecIndex_x2>;
5050
5051 defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
5052 defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
5053 defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;
5054
5055 // SMOV and UMOV definitions, with some extra patterns for convenience
5056 defm SMOV : SMov;
5057 defm UMOV : UMov;
5058
5059 def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
5060           (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
5061 def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
5062           (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
5063 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
5064           (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
5065 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
5066           (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
5067 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
5068           (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
5069 def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
5070           (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;
5071
5072 def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn),
5073             VectorIndexB:$idx)))), i8),
5074           (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
5075 def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn),
5076             VectorIndexH:$idx)))), i16),
5077           (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
5078
5079 // Extracting i8 or i16 elements will have the zero-extend transformed to
5080 // an 'and' mask by type legalization since neither i8 nor i16 are legal types
5081 // for AArch64. Match these patterns here since UMOV already zeroes out the high
5082 // bits of the destination register.
5083 def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
5084                (i32 0xff)),
5085           (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
5086 def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
5087                (i32 0xffff)),
5088           (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;
5089
5090 defm INS : SIMDIns;
5091
5092 def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
5093           (SUBREG_TO_REG (i32 0),
5094                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
5095 def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
5096           (SUBREG_TO_REG (i32 0),
5097                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
5098
5099 def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
5100           (SUBREG_TO_REG (i32 0),
5101                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
5102 def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
5103           (SUBREG_TO_REG (i32 0),
5104                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
5105
5106 def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
5107           (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5108 def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
5109           (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5110
5111 def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
5112           (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5113 def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
5114           (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5115
5116 def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
5117             (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
5118                                   (i32 FPR32:$Rn), ssub))>;
5119 def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
5120             (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
5121                                   (i32 FPR32:$Rn), ssub))>;
5122
5123 def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
5124             (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
5125                                   (i64 FPR64:$Rn), dsub))>;
5126
5127 def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
5128           (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5129 def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
5130           (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5131
5132 def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
5133           (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5134 def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
5135           (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
5136
5137 def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
5138           (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
5139 def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
5140           (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
5141
5142 def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
5143           (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
5144
5145 def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn),
5146             (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
5147           (EXTRACT_SUBREG
5148             (INSvi16lane
5149               (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
5150               VectorIndexS:$imm,
5151               (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
5152               (i64 0)),
5153             dsub)>;
5154
5155 def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn),
5156             (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
5157           (INSvi16lane
5158             V128:$Rn, VectorIndexH:$imm,
5159             (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
5160             (i64 0))>;
5161
5162 def : Pat<(v4bf16 (vector_insert (v4bf16 V64:$Rn),
5163             (bf16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
5164           (EXTRACT_SUBREG
5165             (INSvi16lane
5166               (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
5167               VectorIndexS:$imm,
5168               (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
5169               (i64 0)),
5170             dsub)>;
5171
5172 def : Pat<(v8bf16 (vector_insert (v8bf16 V128:$Rn),
5173             (bf16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
5174           (INSvi16lane
5175             V128:$Rn, VectorIndexH:$imm,
5176             (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
5177             (i64 0))>;
5178
5179 def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
5180             (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
5181           (EXTRACT_SUBREG
5182             (INSvi32lane
5183               (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
5184               VectorIndexS:$imm,
5185               (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
5186               (i64 0)),
5187             dsub)>;
5188 def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
5189             (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
5190           (INSvi32lane
5191             V128:$Rn, VectorIndexS:$imm,
5192             (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
5193             (i64 0))>;
5194 def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
5195             (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
5196           (INSvi64lane
5197             V128:$Rn, VectorIndexD:$imm,
5198             (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
5199             (i64 0))>;
5200
5201 // Copy an element at a constant index in one vector into a constant indexed
5202 // element of another.
5203 // FIXME refactor to a shared class/dev parameterized on vector type, vector
5204 // index type and INS extension
5205 def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane
5206                    (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
5207                    VectorIndexB:$idx2)),
5208           (v16i8 (INSvi8lane
5209                    V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
5210           )>;
5211 def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane
5212                    (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
5213                    VectorIndexH:$idx2)),
5214           (v8i16 (INSvi16lane
5215                    V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
5216           )>;
5217 def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane
5218                    (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
5219                    VectorIndexS:$idx2)),
5220           (v4i32 (INSvi32lane
5221                    V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
5222           )>;
5223 def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane
5224                    (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
5225                    VectorIndexD:$idx2)),
5226           (v2i64 (INSvi64lane
5227                    V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
5228           )>;
5229
5230 multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
5231                                 ValueType VTScal, Instruction INS> {
5232   def : Pat<(VT128 (vector_insert V128:$src,
5233                         (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
5234                         imm:$Immd)),
5235             (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;
5236
5237   def : Pat<(VT128 (vector_insert V128:$src,
5238                         (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
5239                         imm:$Immd)),
5240             (INS V128:$src, imm:$Immd,
5241                  (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;
5242
5243   def : Pat<(VT64 (vector_insert V64:$src,
5244                         (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
5245                         imm:$Immd)),
5246             (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
5247                                  imm:$Immd, V128:$Rn, imm:$Immn),
5248                             dsub)>;
5249
5250   def : Pat<(VT64 (vector_insert V64:$src,
5251                         (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
5252                         imm:$Immd)),
5253             (EXTRACT_SUBREG
5254                 (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
5255                      (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
5256                 dsub)>;
5257 }
5258
5259 defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>;
5260 defm : Neon_INS_elt_pattern<v8bf16, v4bf16, bf16, INSvi16lane>;
5261 defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
5262 defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
5263
5264
5265 // Floating point vector extractions are codegen'd as either a sequence of
5266 // subregister extractions, or a MOV (aka CPY here, alias for DUP) if
5267 // the lane number is anything other than zero.
5268 def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
5269           (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
5270 def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
5271           (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
5272 def : Pat<(vector_extract (v8f16 V128:$Rn), 0),
5273           (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
5274 def : Pat<(vector_extract (v8bf16 V128:$Rn), 0),
5275           (bf16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
5276
5277
5278 def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
5279           (f64 (CPYi64 V128:$Rn, VectorIndexD:$idx))>;
5280 def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
5281           (f32 (CPYi32 V128:$Rn, VectorIndexS:$idx))>;
5282 def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx),
5283           (f16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
5284 def : Pat<(vector_extract (v8bf16 V128:$Rn), VectorIndexH:$idx),
5285           (bf16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
5286
5287 // All concat_vectors operations are canonicalised to act on i64 vectors for
5288 // AArch64. In the general case we need an instruction, which had just as well be
5289 // INS.
5290 class ConcatPat<ValueType DstTy, ValueType SrcTy>
5291   : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
5292         (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
5293                      (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;
5294
5295 def : ConcatPat<v2i64, v1i64>;
5296 def : ConcatPat<v2f64, v1f64>;
5297 def : ConcatPat<v4i32, v2i32>;
5298 def : ConcatPat<v4f32, v2f32>;
5299 def : ConcatPat<v8i16, v4i16>;
5300 def : ConcatPat<v8f16, v4f16>;
5301 def : ConcatPat<v8bf16, v4bf16>;
5302 def : ConcatPat<v16i8, v8i8>;
5303
5304 // If the high lanes are undef, though, we can just ignore them:
5305 class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
5306   : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
5307         (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;
5308
5309 def : ConcatUndefPat<v2i64, v1i64>;
5310 def : ConcatUndefPat<v2f64, v1f64>;
5311 def : ConcatUndefPat<v4i32, v2i32>;
5312 def : ConcatUndefPat<v4f32, v2f32>;
5313 def : ConcatUndefPat<v8i16, v4i16>;
5314 def : ConcatUndefPat<v16i8, v8i8>;
5315
5316 //----------------------------------------------------------------------------
5317 // AdvSIMD across lanes instructions
5318 //----------------------------------------------------------------------------
5319
5320 defm ADDV    : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
5321 defm SMAXV   : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
5322 defm SMINV   : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
5323 defm UMAXV   : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
5324 defm UMINV   : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
5325 defm SADDLV  : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
5326 defm UADDLV  : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
5327 defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>;
5328 defm FMAXV   : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>;
5329 defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>;
5330 defm FMINV   : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>;
5331
5332 // Patterns for across-vector intrinsics, that have a node equivalent, that
5333 // returns a vector (with only the low lane defined) instead of a scalar.
5334 // In effect, opNode is the same as (scalar_to_vector (IntNode)).
5335 multiclass SIMDAcrossLanesIntrinsic<string baseOpc,
5336                                     SDPatternOperator opNode> {
5337 // If a lane instruction caught the vector_extract around opNode, we can
5338 // directly match the latter to the instruction.
5339 def : Pat<(v8i8 (opNode V64:$Rn)),
5340           (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
5341            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>;
5342 def : Pat<(v16i8 (opNode V128:$Rn)),
5343           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5344            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>;
5345 def : Pat<(v4i16 (opNode V64:$Rn)),
5346           (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
5347            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>;
5348 def : Pat<(v8i16 (opNode V128:$Rn)),
5349           (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
5350            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>;
5351 def : Pat<(v4i32 (opNode V128:$Rn)),
5352           (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
5353            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>;
5354
5355
5356 // If none did, fallback to the explicit patterns, consuming the vector_extract.
5357 def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)),
5358             (i32 0)), (i64 0))),
5359           (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
5360             (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn),
5361             bsub), ssub)>;
5362 def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))),
5363           (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5364             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn),
5365             bsub), ssub)>;
5366 def : Pat<(i32 (vector_extract (insert_subvector undef,
5367             (v4i16 (opNode V64:$Rn)), (i32 0)), (i64 0))),
5368           (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
5369             (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn),
5370             hsub), ssub)>;
5371 def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))),
5372           (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
5373             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn),
5374             hsub), ssub)>;
5375 def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))),
5376           (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
5377             (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn),
5378             ssub), ssub)>;
5379
5380 }
5381
5382 multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc,
5383                                           SDPatternOperator opNode>
5384     : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
5385 // If there is a sign extension after this intrinsic, consume it as smov already
5386 // performed it
5387 def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
5388             (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), i8)),
5389           (i32 (SMOVvi8to32
5390             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5391               (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
5392             (i64 0)))>;
5393 def : Pat<(i32 (sext_inreg (i32 (vector_extract
5394             (opNode (v16i8 V128:$Rn)), (i64 0))), i8)),
5395           (i32 (SMOVvi8to32
5396             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5397              (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
5398             (i64 0)))>;
5399 def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
5400             (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), i16)),
5401           (i32 (SMOVvi16to32
5402            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5403             (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
5404            (i64 0)))>;
5405 def : Pat<(i32 (sext_inreg (i32 (vector_extract
5406             (opNode (v8i16 V128:$Rn)), (i64 0))), i16)),
5407           (i32 (SMOVvi16to32
5408             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5409              (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
5410             (i64 0)))>;
5411 }
5412
5413 multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc,
5414                                             SDPatternOperator opNode>
5415     : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
5416 // If there is a masking operation keeping only what has been actually
5417 // generated, consume it.
5418 def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
5419             (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), maski8_or_more)),
5420       (i32 (EXTRACT_SUBREG
5421         (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5422           (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
5423         ssub))>;
5424 def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))),
5425             maski8_or_more)),
5426         (i32 (EXTRACT_SUBREG
5427           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5428             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
5429           ssub))>;
5430 def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
5431             (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), maski16_or_more)),
5432           (i32 (EXTRACT_SUBREG
5433             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5434               (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
5435             ssub))>;
5436 def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))),
5437             maski16_or_more)),
5438         (i32 (EXTRACT_SUBREG
5439           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5440             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
5441           ssub))>;
5442 }
5443
5444 defm : SIMDAcrossLanesSignedIntrinsic<"ADDV",  AArch64saddv>;
5445 // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
5446 def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))),
5447           (ADDPv2i32 V64:$Rn, V64:$Rn)>;
5448
5449 defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>;
5450 // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
5451 def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))),
5452           (ADDPv2i32 V64:$Rn, V64:$Rn)>;
5453
5454 defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>;
5455 def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))),
5456           (SMAXPv2i32 V64:$Rn, V64:$Rn)>;
5457
5458 defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>;
5459 def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))),
5460           (SMINPv2i32 V64:$Rn, V64:$Rn)>;
5461
5462 defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>;
5463 def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))),
5464           (UMAXPv2i32 V64:$Rn, V64:$Rn)>;
5465
5466 defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>;
5467 def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))),
5468           (UMINPv2i32 V64:$Rn, V64:$Rn)>;
5469
5470 multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
5471   def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
5472         (i32 (SMOVvi16to32
5473           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5474             (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
5475           (i64 0)))>;
5476 def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
5477         (i32 (SMOVvi16to32
5478           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5479            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
5480           (i64 0)))>;
5481
5482 def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
5483           (i32 (EXTRACT_SUBREG
5484            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5485             (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
5486            ssub))>;
5487 def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
5488         (i32 (EXTRACT_SUBREG
5489           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5490            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
5491           ssub))>;
5492
5493 def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
5494         (i64 (EXTRACT_SUBREG
5495           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5496            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
5497           dsub))>;
5498 }
5499
5500 multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
5501                                                 Intrinsic intOp> {
5502   def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
5503         (i32 (EXTRACT_SUBREG
5504           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5505             (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
5506           ssub))>;
5507 def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
5508         (i32 (EXTRACT_SUBREG
5509           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5510             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
5511           ssub))>;
5512
5513 def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
5514           (i32 (EXTRACT_SUBREG
5515             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5516               (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
5517             ssub))>;
5518 def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
5519         (i32 (EXTRACT_SUBREG
5520           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5521             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
5522           ssub))>;
5523
5524 def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
5525         (i64 (EXTRACT_SUBREG
5526           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5527             (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
5528           dsub))>;
5529 }
5530
5531 defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>;
5532 defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>;
5533
5534 // The vaddlv_s32 intrinsic gets mapped to SADDLP.
5535 def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))),
5536           (i64 (EXTRACT_SUBREG
5537             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5538               (SADDLPv2i32_v1i64 V64:$Rn), dsub),
5539             dsub))>;
5540 // The vaddlv_u32 intrinsic gets mapped to UADDLP.
5541 def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))),
5542           (i64 (EXTRACT_SUBREG
5543             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
5544               (UADDLPv2i32_v1i64 V64:$Rn), dsub),
5545             dsub))>;
5546
5547 //------------------------------------------------------------------------------
5548 // AdvSIMD modified immediate instructions
5549 //------------------------------------------------------------------------------
5550
5551 // AdvSIMD BIC
5552 defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>;
5553 // AdvSIMD ORR
5554 defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>;
5555
5556 def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
5557 def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
5558 def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
5559 def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
5560
5561 def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
5562 def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
5563 def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
5564 def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
5565
5566 def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
5567 def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
5568 def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
5569 def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
5570
5571 def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
5572 def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
5573 def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
5574 def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
5575
5576 // AdvSIMD FMOV
5577 def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8,
5578                                               "fmov", ".2d",
5579                        [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5580 def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64,  fpimm8,
5581                                               "fmov", ".2s",
5582                        [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5583 def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8,
5584                                               "fmov", ".4s",
5585                        [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5586 let Predicates = [HasNEON, HasFullFP16] in {
5587 def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64,  fpimm8,
5588                                               "fmov", ".4h",
5589                        [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5590 def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8,
5591                                               "fmov", ".8h",
5592                        [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
5593 } // Predicates = [HasNEON, HasFullFP16]
5594
5595 // AdvSIMD MOVI
5596
5597 // EDIT byte mask: scalar
5598 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
5599 def MOVID      : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
5600                     [(set FPR64:$Rd, simdimmtype10:$imm8)]>;
5601 // The movi_edit node has the immediate value already encoded, so we use
5602 // a plain imm0_255 here.
5603 def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)),
5604           (MOVID imm0_255:$shift)>;
5605
5606 // EDIT byte mask: 2d
5607
5608 // The movi_edit node has the immediate value already encoded, so we use
5609 // a plain imm0_255 in the pattern
5610 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
5611 def MOVIv2d_ns   : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128,
5612                                                 simdimmtype10,
5613                                                 "movi", ".2d",
5614                    [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>;
5615
5616 def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
5617 def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
5618 def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
5619 def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;
5620
5621 def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
5622 def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
5623 def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
5624 def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;
5625
5626 // Set 64-bit vectors to all 0/1 by extracting from a 128-bit register as the
5627 // extract is free and this gives better MachineCSE results.
5628 def : Pat<(v1i64 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
5629 def : Pat<(v2i32 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
5630 def : Pat<(v4i16 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
5631 def : Pat<(v8i8  immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
5632
5633 def : Pat<(v1i64 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
5634 def : Pat<(v2i32 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
5635 def : Pat<(v4i16 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
5636 def : Pat<(v8i8  immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
5637
5638 // EDIT per word & halfword: 2s, 4h, 4s, & 8h
5639 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
5640 defm MOVI      : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;
5641
5642 def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
5643 def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
5644 def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
5645 def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
5646
5647 def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
5648 def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
5649 def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
5650 def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
5651
5652 def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
5653           (MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
5654 def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
5655           (MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
5656 def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
5657           (MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
5658 def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
5659           (MOVIv8i16 imm0_255:$imm8, imm:$shift)>;
5660
5661 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
5662 // EDIT per word: 2s & 4s with MSL shifter
5663 def MOVIv2s_msl  : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
5664                       [(set (v2i32 V64:$Rd),
5665                             (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
5666 def MOVIv4s_msl  : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
5667                       [(set (v4i32 V128:$Rd),
5668                             (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
5669
5670 // Per byte: 8b & 16b
5671 def MOVIv8b_ns   : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64,  imm0_255,
5672                                                  "movi", ".8b",
5673                        [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>;
5674
5675 def MOVIv16b_ns  : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255,
5676                                                  "movi", ".16b",
5677                        [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>;
5678 }
5679
5680 // AdvSIMD MVNI
5681
5682 // EDIT per word & halfword: 2s, 4h, 4s, & 8h
5683 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
5684 defm MVNI      : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;
5685
5686 def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
5687 def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
5688 def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
5689 def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
5690
5691 def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
5692 def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
5693 def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
5694 def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
5695
5696 def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
5697           (MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
5698 def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
5699           (MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
5700 def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
5701           (MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
5702 def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
5703           (MVNIv8i16 imm0_255:$imm8, imm:$shift)>;
5704
5705 // EDIT per word: 2s & 4s with MSL shifter
5706 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
5707 def MVNIv2s_msl   : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
5708                       [(set (v2i32 V64:$Rd),
5709                             (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
5710 def MVNIv4s_msl   : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
5711                       [(set (v4i32 V128:$Rd),
5712                             (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
5713 }
5714
5715 //----------------------------------------------------------------------------
5716 // AdvSIMD indexed element
5717 //----------------------------------------------------------------------------
5718
5719 let hasSideEffects = 0 in {
5720   defm FMLA  : SIMDFPIndexedTied<0, 0b0001, "fmla">;
5721   defm FMLS  : SIMDFPIndexedTied<0, 0b0101, "fmls">;
5722 }
5723
5724 // NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
5725 // instruction expects the addend first, while the intrinsic expects it last.
5726
5727 // On the other hand, there are quite a few valid combinatorial options due to
5728 // the commutativity of multiplication and the fact that (-x) * y = x * (-y).
5729 defm : SIMDFPIndexedTiedPatterns<"FMLA",
5730            TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
5731 defm : SIMDFPIndexedTiedPatterns<"FMLA",
5732            TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;
5733
5734 defm : SIMDFPIndexedTiedPatterns<"FMLS",
5735            TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
5736 defm : SIMDFPIndexedTiedPatterns<"FMLS",
5737            TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
5738 defm : SIMDFPIndexedTiedPatterns<"FMLS",
5739            TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
5740 defm : SIMDFPIndexedTiedPatterns<"FMLS",
5741            TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;
5742
5743 multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
5744   // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
5745   // and DUP scalar.
5746   def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
5747                            (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
5748                                            VectorIndexS:$idx))),
5749             (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
5750   def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
5751                            (v2f32 (AArch64duplane32
5752                                       (v4f32 (insert_subvector undef,
5753                                                  (v2f32 (fneg V64:$Rm)),
5754                                                  (i32 0))),
5755                                       VectorIndexS:$idx)))),
5756             (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
5757                                (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
5758                                VectorIndexS:$idx)>;
5759   def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
5760                            (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
5761             (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
5762                 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
5763
5764   // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
5765   // and DUP scalar.
5766   def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
5767                            (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
5768                                            VectorIndexS:$idx))),
5769             (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
5770                                VectorIndexS:$idx)>;
5771   def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
5772                            (v4f32 (AArch64duplane32
5773                                       (v4f32 (insert_subvector undef,
5774                                                  (v2f32 (fneg V64:$Rm)),
5775                                                  (i32 0))),
5776                                       VectorIndexS:$idx)))),
5777             (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
5778                                (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
5779                                VectorIndexS:$idx)>;
5780   def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
5781                            (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
5782             (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
5783                 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
5784
5785   // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
5786   // (DUPLANE from 64-bit would be trivial).
5787   def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
5788                            (AArch64duplane64 (v2f64 (fneg V128:$Rm)),
5789                                            VectorIndexD:$idx))),
5790             (FMLSv2i64_indexed
5791                 V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
5792   def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
5793                            (AArch64dup (f64 (fneg FPR64Op:$Rm))))),
5794             (FMLSv2i64_indexed V128:$Rd, V128:$Rn,
5795                 (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
5796
5797   // 2 variants for 32-bit scalar version: extract from .2s or from .4s
5798   def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
5799                          (vector_extract (v4f32 (fneg V128:$Rm)),
5800                                          VectorIndexS:$idx))),
5801             (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
5802                 V128:$Rm, VectorIndexS:$idx)>;
5803   def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
5804                          (vector_extract (v4f32 (insert_subvector undef,
5805                                                     (v2f32 (fneg V64:$Rm)),
5806                                                     (i32 0))),
5807                                          VectorIndexS:$idx))),
5808             (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
5809                 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
5810
5811   // 1 variant for 64-bit scalar version: extract from .1d or from .2d
5812   def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
5813                          (vector_extract (v2f64 (fneg V128:$Rm)),
5814                                          VectorIndexS:$idx))),
5815             (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
5816                 V128:$Rm, VectorIndexS:$idx)>;
5817 }
5818
5819 defm : FMLSIndexedAfterNegPatterns<
5820            TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
5821 defm : FMLSIndexedAfterNegPatterns<
5822            TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;
5823
5824 defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>;
5825 defm FMUL  : SIMDFPIndexed<0, 0b1001, "fmul", fmul>;
5826
5827 def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
5828           (FMULv2i32_indexed V64:$Rn,
5829             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
5830             (i64 0))>;
5831 def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
5832           (FMULv4i32_indexed V128:$Rn,
5833             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
5834             (i64 0))>;
5835 def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))),
5836           (FMULv2i64_indexed V128:$Rn,
5837             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
5838             (i64 0))>;
5839
5840 defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>;
5841 defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
5842
5843 defm SQDMULH : SIMDIndexedHSPatterns<int_aarch64_neon_sqdmulh_lane,
5844                                      int_aarch64_neon_sqdmulh_laneq>;
5845 defm SQRDMULH : SIMDIndexedHSPatterns<int_aarch64_neon_sqrdmulh_lane,
5846                                       int_aarch64_neon_sqrdmulh_laneq>;
5847
5848 // Generated by MachineCombine
5849 defm MLA   : SIMDVectorIndexedHSTied<1, 0b0000, "mla", null_frag>;
5850 defm MLS   : SIMDVectorIndexedHSTied<1, 0b0100, "mls", null_frag>;
5851
5852 defm MUL   : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
5853 defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
5854     TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
5855 defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
5856     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
5857 defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
5858                 int_aarch64_neon_smull>;
5859 defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
5860                                            int_aarch64_neon_sqadd>;
5861 defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
5862                                            int_aarch64_neon_sqsub>;
5863 defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah",
5864                                           int_aarch64_neon_sqadd>;
5865 defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh",
5866                                           int_aarch64_neon_sqsub>;
5867 defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>;
5868 defm UMLAL   : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
5869     TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
5870 defm UMLSL   : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
5871     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
5872 defm UMULL   : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
5873                 int_aarch64_neon_umull>;
5874
5875 // A scalar sqdmull with the second operand being a vector lane can be
5876 // handled directly with the indexed instruction encoding.
5877 def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
5878                                           (vector_extract (v4i32 V128:$Vm),
5879                                                            VectorIndexS:$idx)),
5880           (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;
5881
5882 //----------------------------------------------------------------------------
5883 // AdvSIMD scalar shift instructions
5884 //----------------------------------------------------------------------------
5885 defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">;
5886 defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">;
5887 defm SCVTF  : SIMDFPScalarRShift<0, 0b11100, "scvtf">;
5888 defm UCVTF  : SIMDFPScalarRShift<1, 0b11100, "ucvtf">;
5889 // Codegen patterns for the above. We don't put these directly on the
5890 // instructions because TableGen's type inference can't handle the truth.
5891 // Having the same base pattern for fp <--> int totally freaks it out.
5892 def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
5893           (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
5894 def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
5895           (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
5896 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
5897           (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
5898 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
5899           (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
5900 def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
5901                                             vecshiftR64:$imm)),
5902           (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
5903 def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
5904                                             vecshiftR64:$imm)),
5905           (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
5906 def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
5907           (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
5908 def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
5909           (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5910 def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
5911                                             vecshiftR64:$imm)),
5912           (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5913 def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
5914           (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5915 def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
5916                                             vecshiftR64:$imm)),
5917           (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
5918 def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
5919           (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
5920
5921 // Patterns for FP16 Instrinsics - requires reg copy to/from as i16s not supported.
5922
5923 def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 (sext_inreg FPR32:$Rn, i16)), vecshiftR16:$imm)),
5924           (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5925 def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 FPR32:$Rn), vecshiftR16:$imm)),
5926           (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5927 def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
5928           (SCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
5929 def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp
5930             (and FPR32:$Rn, (i32 65535)),
5931             vecshiftR16:$imm)),
5932           (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5933 def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR16:$imm)),
5934           (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
5935 def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
5936           (UCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
5937 def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR32:$imm)),
5938           (i32 (INSERT_SUBREG
5939             (i32 (IMPLICIT_DEF)),
5940             (FCVTZSh FPR16:$Rn, vecshiftR32:$imm),
5941             hsub))>;
5942 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR64:$imm)),
5943           (i64 (INSERT_SUBREG
5944             (i64 (IMPLICIT_DEF)),
5945             (FCVTZSh FPR16:$Rn, vecshiftR64:$imm),
5946             hsub))>;
5947 def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR32:$imm)),
5948           (i32 (INSERT_SUBREG
5949             (i32 (IMPLICIT_DEF)),
5950             (FCVTZUh FPR16:$Rn, vecshiftR32:$imm),
5951             hsub))>;
5952 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR64:$imm)),
5953           (i64 (INSERT_SUBREG
5954             (i64 (IMPLICIT_DEF)),
5955             (FCVTZUh FPR16:$Rn, vecshiftR64:$imm),
5956             hsub))>;
5957 def : Pat<(i32 (int_aarch64_neon_facge (f16 FPR16:$Rn), (f16 FPR16:$Rm))),
5958           (i32 (INSERT_SUBREG
5959             (i32 (IMPLICIT_DEF)),
5960             (FACGE16 FPR16:$Rn, FPR16:$Rm),
5961             hsub))>;
5962 def : Pat<(i32 (int_aarch64_neon_facgt (f16 FPR16:$Rn), (f16 FPR16:$Rm))),
5963           (i32 (INSERT_SUBREG
5964             (i32 (IMPLICIT_DEF)),
5965             (FACGT16 FPR16:$Rn, FPR16:$Rm),
5966             hsub))>;
5967
5968 defm SHL      : SIMDScalarLShiftD<   0, 0b01010, "shl", AArch64vshl>;
5969 defm SLI      : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
5970 defm SQRSHRN  : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
5971                                      int_aarch64_neon_sqrshrn>;
5972 defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
5973                                      int_aarch64_neon_sqrshrun>;
5974 defm SQSHLU   : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
5975 defm SQSHL    : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
5976 defm SQSHRN   : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
5977                                      int_aarch64_neon_sqshrn>;
5978 defm SQSHRUN  : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
5979                                      int_aarch64_neon_sqshrun>;
5980 defm SRI      : SIMDScalarRShiftDTied<   1, 0b01000, "sri">;
5981 defm SRSHR    : SIMDScalarRShiftD<   0, 0b00100, "srshr", AArch64srshri>;
5982 defm SRSRA    : SIMDScalarRShiftDTied<   0, 0b00110, "srsra",
5983     TriOpFrag<(add node:$LHS,
5984                    (AArch64srshri node:$MHS, node:$RHS))>>;
5985 defm SSHR     : SIMDScalarRShiftD<   0, 0b00000, "sshr", AArch64vashr>;
5986 defm SSRA     : SIMDScalarRShiftDTied<   0, 0b00010, "ssra",
5987     TriOpFrag<(add node:$LHS,
5988                    (AArch64vashr node:$MHS, node:$RHS))>>;
5989 defm UQRSHRN  : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
5990                                      int_aarch64_neon_uqrshrn>;
5991 defm UQSHL    : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
5992 defm UQSHRN   : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
5993                                      int_aarch64_neon_uqshrn>;
5994 defm URSHR    : SIMDScalarRShiftD<   1, 0b00100, "urshr", AArch64urshri>;
5995 defm URSRA    : SIMDScalarRShiftDTied<   1, 0b00110, "ursra",
5996     TriOpFrag<(add node:$LHS,
5997                    (AArch64urshri node:$MHS, node:$RHS))>>;
5998 defm USHR     : SIMDScalarRShiftD<   1, 0b00000, "ushr", AArch64vlshr>;
5999 defm USRA     : SIMDScalarRShiftDTied<   1, 0b00010, "usra",
6000     TriOpFrag<(add node:$LHS,
6001                    (AArch64vlshr node:$MHS, node:$RHS))>>;
6002
6003 //----------------------------------------------------------------------------
6004 // AdvSIMD vector shift instructions
6005 //----------------------------------------------------------------------------
6006 defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>;
6007 defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>;
6008 defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf",
6009                                    int_aarch64_neon_vcvtfxs2fp>;
6010 defm RSHRN   : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
6011                                          int_aarch64_neon_rshrn>;
6012 defm SHL     : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>;
6013 defm SHRN    : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
6014                           BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>;
6015 defm SLI     : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", AArch64vsli>;
6016 def : Pat<(v1i64 (AArch64vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
6017                                       (i32 vecshiftL64:$imm))),
6018           (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
6019 defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
6020                                          int_aarch64_neon_sqrshrn>;
6021 defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
6022                                          int_aarch64_neon_sqrshrun>;
6023 defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
6024 defm SQSHL  : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
6025 defm SQSHRN  : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
6026                                          int_aarch64_neon_sqshrn>;
6027 defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
6028                                          int_aarch64_neon_sqshrun>;
6029 defm SRI     : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", AArch64vsri>;
6030 def : Pat<(v1i64 (AArch64vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
6031                                       (i32 vecshiftR64:$imm))),
6032           (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
6033 defm SRSHR   : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>;
6034 defm SRSRA   : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
6035                  TriOpFrag<(add node:$LHS,
6036                                 (AArch64srshri node:$MHS, node:$RHS))> >;
6037 defm SSHLL   : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
6038                 BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>;
6039
6040 defm SSHR    : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>;
6041 defm SSRA    : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
6042                 TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>;
6043 defm UCVTF   : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf",
6044                         int_aarch64_neon_vcvtfxu2fp>;
6045 defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
6046                                          int_aarch64_neon_uqrshrn>;
6047 defm UQSHL   : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
6048 defm UQSHRN  : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
6049                                          int_aarch64_neon_uqshrn>;
6050 defm URSHR   : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>;
6051 defm URSRA   : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
6052                 TriOpFrag<(add node:$LHS,
6053                                (AArch64urshri node:$MHS, node:$RHS))> >;
6054 defm USHLL   : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
6055                 BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>;
6056 defm USHR    : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>;
6057 defm USRA    : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
6058                 TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >;
6059
6060 // SHRN patterns for when a logical right shift was used instead of arithmetic
6061 // (the immediate guarantees no sign bits actually end up in the result so it
6062 // doesn't matter).
6063 def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
6064           (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
6065 def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
6066           (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
6067 def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
6068           (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;
6069
6070 def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
6071                                  (trunc (AArch64vlshr (v8i16 V128:$Rn),
6072                                                     vecshiftR16Narrow:$imm)))),
6073           (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
6074                            V128:$Rn, vecshiftR16Narrow:$imm)>;
6075 def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
6076                                  (trunc (AArch64vlshr (v4i32 V128:$Rn),
6077                                                     vecshiftR32Narrow:$imm)))),
6078           (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
6079                            V128:$Rn, vecshiftR32Narrow:$imm)>;
6080 def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
6081                                  (trunc (AArch64vlshr (v2i64 V128:$Rn),
6082                                                     vecshiftR64Narrow:$imm)))),
6083           (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
6084                            V128:$Rn, vecshiftR32Narrow:$imm)>;
6085
6086 // Vector sign and zero extensions are implemented with SSHLL and USSHLL.
6087 // Anyexts are implemented as zexts.
6088 def : Pat<(v8i16 (sext   (v8i8 V64:$Rn))),  (SSHLLv8i8_shift  V64:$Rn, (i32 0))>;
6089 def : Pat<(v8i16 (zext   (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
6090 def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
6091 def : Pat<(v4i32 (sext   (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
6092 def : Pat<(v4i32 (zext   (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
6093 def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
6094 def : Pat<(v2i64 (sext   (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
6095 def : Pat<(v2i64 (zext   (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
6096 def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
6097 // Also match an extend from the upper half of a 128 bit source register.
6098 def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
6099           (USHLLv16i8_shift V128:$Rn, (i32 0))>;
6100 def : Pat<(v8i16 (zext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
6101           (USHLLv16i8_shift V128:$Rn, (i32 0))>;
6102 def : Pat<(v8i16 (sext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
6103           (SSHLLv16i8_shift V128:$Rn, (i32 0))>;
6104 def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
6105           (USHLLv8i16_shift V128:$Rn, (i32 0))>;
6106 def : Pat<(v4i32 (zext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
6107           (USHLLv8i16_shift V128:$Rn, (i32 0))>;
6108 def : Pat<(v4i32 (sext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
6109           (SSHLLv8i16_shift V128:$Rn, (i32 0))>;
6110 def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
6111           (USHLLv4i32_shift V128:$Rn, (i32 0))>;
6112 def : Pat<(v2i64 (zext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
6113           (USHLLv4i32_shift V128:$Rn, (i32 0))>;
6114 def : Pat<(v2i64 (sext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
6115           (SSHLLv4i32_shift V128:$Rn, (i32 0))>;
6116
6117 // Vector shift sxtl aliases
6118 def : InstAlias<"sxtl.8h $dst, $src1",
6119                 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
6120 def : InstAlias<"sxtl $dst.8h, $src1.8b",
6121                 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
6122 def : InstAlias<"sxtl.4s $dst, $src1",
6123                 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
6124 def : InstAlias<"sxtl $dst.4s, $src1.4h",
6125                 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
6126 def : InstAlias<"sxtl.2d $dst, $src1",
6127                 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
6128 def : InstAlias<"sxtl $dst.2d, $src1.2s",
6129                 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
6130
6131 // Vector shift sxtl2 aliases
6132 def : InstAlias<"sxtl2.8h $dst, $src1",
6133                 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
6134 def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
6135                 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
6136 def : InstAlias<"sxtl2.4s $dst, $src1",
6137                 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
6138 def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
6139                 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
6140 def : InstAlias<"sxtl2.2d $dst, $src1",
6141                 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
6142 def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
6143                 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
6144
6145 // Vector shift uxtl aliases
6146 def : InstAlias<"uxtl.8h $dst, $src1",
6147                 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
6148 def : InstAlias<"uxtl $dst.8h, $src1.8b",
6149                 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
6150 def : InstAlias<"uxtl.4s $dst, $src1",
6151                 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
6152 def : InstAlias<"uxtl $dst.4s, $src1.4h",
6153                 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
6154 def : InstAlias<"uxtl.2d $dst, $src1",
6155                 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
6156 def : InstAlias<"uxtl $dst.2d, $src1.2s",
6157                 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
6158
6159 // Vector shift uxtl2 aliases
6160 def : InstAlias<"uxtl2.8h $dst, $src1",
6161                 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
6162 def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
6163                 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
6164 def : InstAlias<"uxtl2.4s $dst, $src1",
6165                 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
6166 def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
6167                 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
6168 def : InstAlias<"uxtl2.2d $dst, $src1",
6169                 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
6170 def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
6171                 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
6172
6173 // If an integer is about to be converted to a floating point value,
6174 // just load it on the floating point unit.
6175 // These patterns are more complex because floating point loads do not
6176 // support sign extension.
6177 // The sign extension has to be explicitly added and is only supported for
6178 // one step: byte-to-half, half-to-word, word-to-doubleword.
6179 // SCVTF GPR -> FPR is 9 cycles.
6180 // SCVTF FPR -> FPR is 4 cyclces.
6181 // (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
6182 // Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
6183 // and still being faster.
6184 // However, this is not good for code size.
6185 // 8-bits -> float. 2 sizes step-up.
6186 class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
6187   : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))),
6188         (SCVTFv1i32 (f32 (EXTRACT_SUBREG
6189                             (SSHLLv4i16_shift
6190                               (f64
6191                                 (EXTRACT_SUBREG
6192                                   (SSHLLv8i8_shift
6193                                     (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
6194                                         INST,
6195                                         bsub),
6196                                     0),
6197                                   dsub)),
6198                                0),
6199                              ssub)))>,
6200     Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
6201
6202 def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
6203                           (LDRBroW  GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
6204 def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext),
6205                           (LDRBroX  GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>;
6206 def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset),
6207                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>;
6208 def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset),
6209                           (LDURBi GPR64sp:$Rn, simm9:$offset)>;
6210
6211 // 16-bits -> float. 1 size step-up.
6212 class SExtLoadi16CVTf32Pat<dag addrmode, dag INST>
6213   : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))),
6214         (SCVTFv1i32 (f32 (EXTRACT_SUBREG
6215                             (SSHLLv4i16_shift
6216                                 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
6217                                   INST,
6218                                   hsub),
6219                                 0),
6220                             ssub)))>, Requires<[NotForCodeSize]>;
6221
6222 def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
6223                            (LDRHroW   GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
6224 def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
6225                            (LDRHroX   GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
6226 def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
6227                            (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
6228 def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
6229                            (LDURHi GPR64sp:$Rn, simm9:$offset)>;
6230
6231 // 32-bits to 32-bits are handled in target specific dag combine:
6232 // performIntToFpCombine.
6233 // 64-bits integer to 32-bits floating point, not possible with
6234 // SCVTF on floating point registers (both source and destination
6235 // must have the same size).
6236
6237 // Here are the patterns for 8, 16, 32, and 64-bits to double.
6238 // 8-bits -> double. 3 size step-up: give up.
6239 // 16-bits -> double. 2 size step.
6240 class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
6241   : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))),
6242            (SCVTFv1i64 (f64 (EXTRACT_SUBREG
6243                               (SSHLLv2i32_shift
6244                                  (f64
6245                                   (EXTRACT_SUBREG
6246                                     (SSHLLv4i16_shift
6247                                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
6248                                         INST,
6249                                         hsub),
6250                                      0),
6251                                    dsub)),
6252                                0),
6253                              dsub)))>,
6254     Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
6255
6256 def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
6257                            (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
6258 def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
6259                            (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
6260 def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
6261                            (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
6262 def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
6263                            (LDURHi GPR64sp:$Rn, simm9:$offset)>;
6264 // 32-bits -> double. 1 size step-up.
6265 class SExtLoadi32CVTf64Pat<dag addrmode, dag INST>
6266   : Pat <(f64 (sint_to_fp (i32 (load addrmode)))),
6267            (SCVTFv1i64 (f64 (EXTRACT_SUBREG
6268                               (SSHLLv2i32_shift
6269                                 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
6270                                   INST,
6271                                   ssub),
6272                                0),
6273                              dsub)))>, Requires<[NotForCodeSize]>;
6274
6275 def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext),
6276                            (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>;
6277 def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext),
6278                            (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>;
6279 def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset),
6280                            (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>;
6281 def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset),
6282                            (LDURSi GPR64sp:$Rn, simm9:$offset)>;
6283
6284 // 64-bits -> double are handled in target specific dag combine:
6285 // performIntToFpCombine.
6286
6287
6288 //----------------------------------------------------------------------------
6289 // AdvSIMD Load-Store Structure
6290 //----------------------------------------------------------------------------
6291 defm LD1 : SIMDLd1Multiple<"ld1">;
6292 defm LD2 : SIMDLd2Multiple<"ld2">;
6293 defm LD3 : SIMDLd3Multiple<"ld3">;
6294 defm LD4 : SIMDLd4Multiple<"ld4">;
6295
6296 defm ST1 : SIMDSt1Multiple<"st1">;
6297 defm ST2 : SIMDSt2Multiple<"st2">;
6298 defm ST3 : SIMDSt3Multiple<"st3">;
6299 defm ST4 : SIMDSt4Multiple<"st4">;
6300
6301 class Ld1Pat<ValueType ty, Instruction INST>
6302   : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>;
6303
6304 def : Ld1Pat<v16i8, LD1Onev16b>;
6305 def : Ld1Pat<v8i16, LD1Onev8h>;
6306 def : Ld1Pat<v4i32, LD1Onev4s>;
6307 def : Ld1Pat<v2i64, LD1Onev2d>;
6308 def : Ld1Pat<v8i8,  LD1Onev8b>;
6309 def : Ld1Pat<v4i16, LD1Onev4h>;
6310 def : Ld1Pat<v2i32, LD1Onev2s>;
6311 def : Ld1Pat<v1i64, LD1Onev1d>;
6312
6313 class St1Pat<ValueType ty, Instruction INST>
6314   : Pat<(store ty:$Vt, GPR64sp:$Rn),
6315         (INST ty:$Vt, GPR64sp:$Rn)>;
6316
6317 def : St1Pat<v16i8, ST1Onev16b>;
6318 def : St1Pat<v8i16, ST1Onev8h>;
6319 def : St1Pat<v4i32, ST1Onev4s>;
6320 def : St1Pat<v2i64, ST1Onev2d>;
6321 def : St1Pat<v8i8,  ST1Onev8b>;
6322 def : St1Pat<v4i16, ST1Onev4h>;
6323 def : St1Pat<v2i32, ST1Onev2s>;
6324 def : St1Pat<v1i64, ST1Onev1d>;
6325
6326 //---
6327 // Single-element
6328 //---
6329
6330 defm LD1R          : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
6331 defm LD2R          : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
6332 defm LD3R          : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
6333 defm LD4R          : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
6334 let mayLoad = 1, hasSideEffects = 0 in {
6335 defm LD1 : SIMDLdSingleBTied<0, 0b000,       "ld1", VecListOneb,   GPR64pi1>;
6336 defm LD1 : SIMDLdSingleHTied<0, 0b010, 0,    "ld1", VecListOneh,   GPR64pi2>;
6337 defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes,   GPR64pi4>;
6338 defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned,   GPR64pi8>;
6339 defm LD2 : SIMDLdSingleBTied<1, 0b000,       "ld2", VecListTwob,   GPR64pi2>;
6340 defm LD2 : SIMDLdSingleHTied<1, 0b010, 0,    "ld2", VecListTwoh,   GPR64pi4>;
6341 defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos,   GPR64pi8>;
6342 defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod,   GPR64pi16>;
6343 defm LD3 : SIMDLdSingleBTied<0, 0b001,       "ld3", VecListThreeb, GPR64pi3>;
6344 defm LD3 : SIMDLdSingleHTied<0, 0b011, 0,    "ld3", VecListThreeh, GPR64pi6>;
6345 defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
6346 defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
6347 defm LD4 : SIMDLdSingleBTied<1, 0b001,       "ld4", VecListFourb,  GPR64pi4>;
6348 defm LD4 : SIMDLdSingleHTied<1, 0b011, 0,    "ld4", VecListFourh,  GPR64pi8>;
6349 defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours,  GPR64pi16>;
6350 defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd,  GPR64pi32>;
6351 }
6352
6353 def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
6354           (LD1Rv8b GPR64sp:$Rn)>;
6355 def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
6356           (LD1Rv16b GPR64sp:$Rn)>;
6357 def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
6358           (LD1Rv4h GPR64sp:$Rn)>;
6359 def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
6360           (LD1Rv8h GPR64sp:$Rn)>;
6361 def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
6362           (LD1Rv2s GPR64sp:$Rn)>;
6363 def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
6364           (LD1Rv4s GPR64sp:$Rn)>;
6365 def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
6366           (LD1Rv2d GPR64sp:$Rn)>;
6367 def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
6368           (LD1Rv1d GPR64sp:$Rn)>;
6369 // Grab the floating point version too
6370 def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
6371           (LD1Rv2s GPR64sp:$Rn)>;
6372 def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
6373           (LD1Rv4s GPR64sp:$Rn)>;
6374 def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
6375           (LD1Rv2d GPR64sp:$Rn)>;
6376 def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
6377           (LD1Rv1d GPR64sp:$Rn)>;
6378 def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
6379           (LD1Rv4h GPR64sp:$Rn)>;
6380 def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
6381           (LD1Rv8h GPR64sp:$Rn)>;
6382 def : Pat<(v4bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))),
6383           (LD1Rv4h GPR64sp:$Rn)>;
6384 def : Pat<(v8bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))),
6385           (LD1Rv8h GPR64sp:$Rn)>;
6386
6387 class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
6388                     ValueType VTy, ValueType STy, Instruction LD1>
6389   : Pat<(vector_insert (VTy VecListOne128:$Rd),
6390            (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
6391         (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>;
6392
6393 def : Ld1Lane128Pat<extloadi8,  VectorIndexB, v16i8, i32, LD1i8>;
6394 def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
6395 def : Ld1Lane128Pat<load,       VectorIndexS, v4i32, i32, LD1i32>;
6396 def : Ld1Lane128Pat<load,       VectorIndexS, v4f32, f32, LD1i32>;
6397 def : Ld1Lane128Pat<load,       VectorIndexD, v2i64, i64, LD1i64>;
6398 def : Ld1Lane128Pat<load,       VectorIndexD, v2f64, f64, LD1i64>;
6399 def : Ld1Lane128Pat<load,       VectorIndexH, v8f16, f16, LD1i16>;
6400 def : Ld1Lane128Pat<load,       VectorIndexH, v8bf16, bf16, LD1i16>;
6401
6402 class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
6403                    ValueType VTy, ValueType STy, Instruction LD1>
6404   : Pat<(vector_insert (VTy VecListOne64:$Rd),
6405            (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
6406         (EXTRACT_SUBREG
6407             (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
6408                           VecIndex:$idx, GPR64sp:$Rn),
6409             dsub)>;
6410
6411 def : Ld1Lane64Pat<extloadi8,  VectorIndexB, v8i8,  i32, LD1i8>;
6412 def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
6413 def : Ld1Lane64Pat<load,       VectorIndexS, v2i32, i32, LD1i32>;
6414 def : Ld1Lane64Pat<load,       VectorIndexS, v2f32, f32, LD1i32>;
6415 def : Ld1Lane64Pat<load,       VectorIndexH, v4f16, f16, LD1i16>;
6416 def : Ld1Lane64Pat<load,       VectorIndexH, v4bf16, bf16, LD1i16>;
6417
6418
6419 defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
6420 defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
6421 defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
6422 defm LD4 : SIMDLdSt4SingleAliases<"ld4">;
6423
6424 // Stores
6425 defm ST1 : SIMDStSingleB<0, 0b000,       "st1", VecListOneb, GPR64pi1>;
6426 defm ST1 : SIMDStSingleH<0, 0b010, 0,    "st1", VecListOneh, GPR64pi2>;
6427 defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
6428 defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
6429
6430 let AddedComplexity = 19 in
6431 class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
6432                     ValueType VTy, ValueType STy, Instruction ST1>
6433   : Pat<(scalar_store
6434              (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
6435              GPR64sp:$Rn),
6436         (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>;
6437
6438 def : St1Lane128Pat<truncstorei8,  VectorIndexB, v16i8, i32, ST1i8>;
6439 def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
6440 def : St1Lane128Pat<store,         VectorIndexS, v4i32, i32, ST1i32>;
6441 def : St1Lane128Pat<store,         VectorIndexS, v4f32, f32, ST1i32>;
6442 def : St1Lane128Pat<store,         VectorIndexD, v2i64, i64, ST1i64>;
6443 def : St1Lane128Pat<store,         VectorIndexD, v2f64, f64, ST1i64>;
6444 def : St1Lane128Pat<store,         VectorIndexH, v8f16, f16, ST1i16>;
6445 def : St1Lane128Pat<store,         VectorIndexH, v8bf16, bf16, ST1i16>;
6446
6447 let AddedComplexity = 19 in
6448 class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
6449                    ValueType VTy, ValueType STy, Instruction ST1>
6450   : Pat<(scalar_store
6451              (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
6452              GPR64sp:$Rn),
6453         (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
6454              VecIndex:$idx, GPR64sp:$Rn)>;
6455
6456 def : St1Lane64Pat<truncstorei8,  VectorIndexB, v8i8, i32, ST1i8>;
6457 def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
6458 def : St1Lane64Pat<store,         VectorIndexS, v2i32, i32, ST1i32>;
6459 def : St1Lane64Pat<store,         VectorIndexS, v2f32, f32, ST1i32>;
6460 def : St1Lane64Pat<store,         VectorIndexH, v4f16, f16, ST1i16>;
6461 def : St1Lane64Pat<store,         VectorIndexH, v4bf16, bf16, ST1i16>;
6462
6463 multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
6464                              ValueType VTy, ValueType STy, Instruction ST1,
6465                              int offset> {
6466   def : Pat<(scalar_store
6467               (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
6468               GPR64sp:$Rn, offset),
6469         (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
6470              VecIndex:$idx, GPR64sp:$Rn, XZR)>;
6471
6472   def : Pat<(scalar_store
6473               (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
6474               GPR64sp:$Rn, GPR64:$Rm),
6475         (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
6476              VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
6477 }
6478
6479 defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
6480 defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
6481                         2>;
6482 defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
6483 defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
6484 defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
6485 defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
6486 defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>;
6487 defm : St1LanePost64Pat<post_store, VectorIndexH, v4bf16, bf16, ST1i16_POST, 2>;
6488
6489 multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
6490                              ValueType VTy, ValueType STy, Instruction ST1,
6491                              int offset> {
6492   def : Pat<(scalar_store
6493               (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
6494               GPR64sp:$Rn, offset),
6495         (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>;
6496
6497   def : Pat<(scalar_store
6498               (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
6499               GPR64sp:$Rn, GPR64:$Rm),
6500         (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
6501 }
6502
6503 defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
6504                          1>;
6505 defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
6506                          2>;
6507 defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
6508 defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
6509 defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
6510 defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
6511 defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>;
6512 defm : St1LanePost128Pat<post_store, VectorIndexH, v8bf16, bf16, ST1i16_POST, 2>;
6513
6514 let mayStore = 1, hasSideEffects = 0 in {
6515 defm ST2 : SIMDStSingleB<1, 0b000,       "st2", VecListTwob,   GPR64pi2>;
6516 defm ST2 : SIMDStSingleH<1, 0b010, 0,    "st2", VecListTwoh,   GPR64pi4>;
6517 defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos,   GPR64pi8>;
6518 defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod,   GPR64pi16>;
6519 defm ST3 : SIMDStSingleB<0, 0b001,       "st3", VecListThreeb, GPR64pi3>;
6520 defm ST3 : SIMDStSingleH<0, 0b011, 0,    "st3", VecListThreeh, GPR64pi6>;
6521 defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
6522 defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
6523 defm ST4 : SIMDStSingleB<1, 0b001,       "st4", VecListFourb,  GPR64pi4>;
6524 defm ST4 : SIMDStSingleH<1, 0b011, 0,    "st4", VecListFourh,  GPR64pi8>;
6525 defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours,  GPR64pi16>;
6526 defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd,  GPR64pi32>;
6527 }
6528
6529 defm ST1 : SIMDLdSt1SingleAliases<"st1">;
6530 defm ST2 : SIMDLdSt2SingleAliases<"st2">;
6531 defm ST3 : SIMDLdSt3SingleAliases<"st3">;
6532 defm ST4 : SIMDLdSt4SingleAliases<"st4">;
6533
6534 //----------------------------------------------------------------------------
6535 // Crypto extensions
6536 //----------------------------------------------------------------------------
6537
6538 let Predicates = [HasAES] in {
6539 def AESErr   : AESTiedInst<0b0100, "aese",   int_aarch64_crypto_aese>;
6540 def AESDrr   : AESTiedInst<0b0101, "aesd",   int_aarch64_crypto_aesd>;
6541 def AESMCrr  : AESInst<    0b0110, "aesmc",  int_aarch64_crypto_aesmc>;
6542 def AESIMCrr : AESInst<    0b0111, "aesimc", int_aarch64_crypto_aesimc>;
6543 }
6544
6545 // Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required
6546 // for AES fusion on some CPUs.
6547 let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
6548 def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
6549                         Sched<[WriteV]>;
6550 def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
6551                          Sched<[WriteV]>;
6552 }
6553
6554 // Only use constrained versions of AES(I)MC instructions if they are paired with
6555 // AESE/AESD.
6556 def : Pat<(v16i8 (int_aarch64_crypto_aesmc
6557             (v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1),
6558                                             (v16i8 V128:$src2))))),
6559           (v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1),
6560                                              (v16i8 V128:$src2)))))>,
6561           Requires<[HasFuseAES]>;
6562
6563 def : Pat<(v16i8 (int_aarch64_crypto_aesimc
6564             (v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1),
6565                                             (v16i8 V128:$src2))))),
6566           (v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1),
6567                                               (v16i8 V128:$src2)))))>,
6568           Requires<[HasFuseAES]>;
6569
6570 let Predicates = [HasSHA2] in {
6571 def SHA1Crrr     : SHATiedInstQSV<0b000, "sha1c",   int_aarch64_crypto_sha1c>;
6572 def SHA1Prrr     : SHATiedInstQSV<0b001, "sha1p",   int_aarch64_crypto_sha1p>;
6573 def SHA1Mrrr     : SHATiedInstQSV<0b010, "sha1m",   int_aarch64_crypto_sha1m>;
6574 def SHA1SU0rrr   : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>;
6575 def SHA256Hrrr   : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>;
6576 def SHA256H2rrr  : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>;
6577 def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>;
6578
6579 def SHA1Hrr     : SHAInstSS<    0b0000, "sha1h",    int_aarch64_crypto_sha1h>;
6580 def SHA1SU1rr   : SHATiedInstVV<0b0001, "sha1su1",  int_aarch64_crypto_sha1su1>;
6581 def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>;
6582 }
6583
6584 //----------------------------------------------------------------------------
6585 // Compiler-pseudos
6586 //----------------------------------------------------------------------------
6587 // FIXME: Like for X86, these should go in their own separate .td file.
6588
6589 def def32 : PatLeaf<(i32 GPR32:$src), [{
6590   return isDef32(*N);
6591 }]>;
6592
6593 // In the case of a 32-bit def that is known to implicitly zero-extend,
6594 // we can use a SUBREG_TO_REG.
6595 def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;
6596
6597 // For an anyext, we don't care what the high bits are, so we can perform an
6598 // INSERT_SUBREF into an IMPLICIT_DEF.
6599 def : Pat<(i64 (anyext GPR32:$src)),
6600           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
6601
6602 // When we need to explicitly zero-extend, we use a 32-bit MOV instruction and
6603 // then assert the extension has happened.
6604 def : Pat<(i64 (zext GPR32:$src)),
6605           (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
6606
6607 // To sign extend, we use a signed bitfield move instruction (SBFM) on the
6608 // containing super-reg.
6609 def : Pat<(i64 (sext GPR32:$src)),
6610    (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
6611 def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
6612 def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
6613 def : Pat<(i64 (sext_inreg GPR64:$src, i8)),  (SBFMXri GPR64:$src, 0, 7)>;
6614 def : Pat<(i64 (sext_inreg GPR64:$src, i1)),  (SBFMXri GPR64:$src, 0, 0)>;
6615 def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
6616 def : Pat<(i32 (sext_inreg GPR32:$src, i8)),  (SBFMWri GPR32:$src, 0, 7)>;
6617 def : Pat<(i32 (sext_inreg GPR32:$src, i1)),  (SBFMWri GPR32:$src, 0, 0)>;
6618
6619 def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
6620           (SBFMWri GPR32:$Rn, (i64 (i32shift_a       imm0_31:$imm)),
6621                               (i64 (i32shift_sext_i8 imm0_31:$imm)))>;
6622 def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
6623           (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
6624                               (i64 (i64shift_sext_i8 imm0_63:$imm)))>;
6625
6626 def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
6627           (SBFMWri GPR32:$Rn, (i64 (i32shift_a        imm0_31:$imm)),
6628                               (i64 (i32shift_sext_i16 imm0_31:$imm)))>;
6629 def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
6630           (SBFMXri GPR64:$Rn, (i64 (i64shift_a        imm0_63:$imm)),
6631                               (i64 (i64shift_sext_i16 imm0_63:$imm)))>;
6632
6633 def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
6634           (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
6635                    (i64 (i64shift_a        imm0_63:$imm)),
6636                    (i64 (i64shift_sext_i32 imm0_63:$imm)))>;
6637
6638 // sra patterns have an AddedComplexity of 10, so make sure we have a higher
6639 // AddedComplexity for the following patterns since we want to match sext + sra
6640 // patterns before we attempt to match a single sra node.
6641 let AddedComplexity = 20 in {
6642 // We support all sext + sra combinations which preserve at least one bit of the
6643 // original value which is to be sign extended. E.g. we support shifts up to
6644 // bitwidth-1 bits.
6645 def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
6646           (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
6647 def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
6648           (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
6649
6650 def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
6651           (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
6652 def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
6653           (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
6654
6655 def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
6656           (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
6657                    (i64 imm0_31:$imm), 31)>;
6658 } // AddedComplexity = 20
6659
6660 // To truncate, we can simply extract from a subregister.
6661 def : Pat<(i32 (trunc GPR64sp:$src)),
6662           (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;
6663
6664 // __builtin_trap() uses the BRK instruction on AArch64.
6665 def : Pat<(trap), (BRK 1)>;
6666 def : Pat<(debugtrap), (BRK 0xF000)>, Requires<[IsWindows]>;
6667
6668 // Multiply high patterns which multiply the lower subvector using smull/umull
6669 // and the upper subvector with smull2/umull2. Then shuffle the high the high
6670 // part of both results together.
6671 def : Pat<(v16i8 (mulhs V128:$Rn, V128:$Rm)),
6672           (UZP2v16i8
6673            (SMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub),
6674                             (EXTRACT_SUBREG V128:$Rm, dsub)),
6675            (SMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>;
6676 def : Pat<(v8i16 (mulhs V128:$Rn, V128:$Rm)),
6677           (UZP2v8i16
6678            (SMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub),
6679                              (EXTRACT_SUBREG V128:$Rm, dsub)),
6680            (SMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>;
6681 def : Pat<(v4i32 (mulhs V128:$Rn, V128:$Rm)),
6682           (UZP2v4i32
6683            (SMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub),
6684                              (EXTRACT_SUBREG V128:$Rm, dsub)),
6685            (SMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>;
6686
6687 def : Pat<(v16i8 (mulhu V128:$Rn, V128:$Rm)),
6688           (UZP2v16i8
6689            (UMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub),
6690                             (EXTRACT_SUBREG V128:$Rm, dsub)),
6691            (UMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>;
6692 def : Pat<(v8i16 (mulhu V128:$Rn, V128:$Rm)),
6693           (UZP2v8i16
6694            (UMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub),
6695                              (EXTRACT_SUBREG V128:$Rm, dsub)),
6696            (UMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>;
6697 def : Pat<(v4i32 (mulhu V128:$Rn, V128:$Rm)),
6698           (UZP2v4i32
6699            (UMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub),
6700                              (EXTRACT_SUBREG V128:$Rm, dsub)),
6701            (UMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>;
6702
6703 // Conversions within AdvSIMD types in the same register size are free.
6704 // But because we need a consistent lane ordering, in big endian many
6705 // conversions require one or more REV instructions.
6706 //
6707 // Consider a simple memory load followed by a bitconvert then a store.
6708 //   v0 = load v2i32
6709 //   v1 = BITCAST v2i32 v0 to v4i16
6710 //        store v4i16 v2
6711 //
6712 // In big endian mode every memory access has an implicit byte swap. LDR and
6713 // STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
6714 // is, they treat the vector as a sequence of elements to be byte-swapped.
6715 // The two pairs of instructions are fundamentally incompatible. We've decided
6716 // to use LD1/ST1 only to simplify compiler implementation.
6717 //
6718 // LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
6719 // the original code sequence:
6720 //   v0 = load v2i32
6721 //   v1 = REV v2i32                  (implicit)
6722 //   v2 = BITCAST v2i32 v1 to v4i16
6723 //   v3 = REV v4i16 v2               (implicit)
6724 //        store v4i16 v3
6725 //
6726 // But this is now broken - the value stored is different to the value loaded
6727 // due to lane reordering. To fix this, on every BITCAST we must perform two
6728 // other REVs:
6729 //   v0 = load v2i32
6730 //   v1 = REV v2i32                  (implicit)
6731 //   v2 = REV v2i32
6732 //   v3 = BITCAST v2i32 v2 to v4i16
6733 //   v4 = REV v4i16
6734 //   v5 = REV v4i16 v4               (implicit)
6735 //        store v4i16 v5
6736 //
6737 // This means an extra two instructions, but actually in most cases the two REV
6738 // instructions can be combined into one. For example:
6739 //   (REV64_2s (REV64_4h X)) === (REV32_4h X)
6740 //
6741 // There is also no 128-bit REV instruction. This must be synthesized with an
6742 // EXT instruction.
6743 //
6744 // Most bitconverts require some sort of conversion. The only exceptions are:
6745 //   a) Identity conversions -  vNfX <-> vNiX
6746 //   b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
6747 //
6748
6749 // Natural vector casts (64 bit)
6750 def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
6751 def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
6752 def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
6753 def : Pat<(v4bf16 (AArch64NvCast (v2i32 FPR64:$src))), (v4bf16 FPR64:$src)>;
6754 def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>;
6755 def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
6756 def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
6757
6758 def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
6759 def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>;
6760 def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
6761 def : Pat<(v4bf16 (AArch64NvCast (v4i16 FPR64:$src))), (v4bf16 FPR64:$src)>;
6762 def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
6763 def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
6764
6765 def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>;
6766 def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
6767 def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
6768 def : Pat<(v4bf16 (AArch64NvCast (v8i8 FPR64:$src))), (v4bf16 FPR64:$src)>;
6769 def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
6770 def : Pat<(v2f32 (AArch64NvCast (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
6771 def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
6772
6773 def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
6774 def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
6775 def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
6776 def : Pat<(v4bf16 (AArch64NvCast (f64 FPR64:$src))), (v4bf16 FPR64:$src)>;
6777 def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
6778 def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
6779 def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
6780 def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
6781
6782 def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
6783 def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
6784 def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
6785 def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>;
6786 def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
6787 def : Pat<(v1f64 (AArch64NvCast (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
6788
6789 // Natural vector casts (128 bit)
6790 def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
6791 def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
6792 def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
6793 def : Pat<(v8bf16 (AArch64NvCast (v4i32 FPR128:$src))), (v8bf16 FPR128:$src)>;
6794 def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>;
6795 def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
6796 def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
6797 def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
6798
6799 def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
6800 def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>;
6801 def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
6802 def : Pat<(v8bf16 (AArch64NvCast (v8i16 FPR128:$src))), (v8bf16 FPR128:$src)>;
6803 def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
6804 def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
6805 def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
6806 def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
6807
6808 def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>;
6809 def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
6810 def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
6811 def : Pat<(v8bf16 (AArch64NvCast (v16i8 FPR128:$src))), (v8bf16 FPR128:$src)>;
6812 def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
6813 def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
6814 def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
6815 def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
6816
6817 def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
6818 def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
6819 def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
6820 def : Pat<(v8bf16 (AArch64NvCast (v2i64 FPR128:$src))), (v8bf16 FPR128:$src)>;
6821 def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
6822 def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>;
6823 def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
6824 def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
6825
6826 def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
6827 def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
6828 def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
6829 def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>;
6830 def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
6831 def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
6832 def : Pat<(v8bf16 (AArch64NvCast (v4f32 FPR128:$src))), (v8bf16 FPR128:$src)>;
6833 def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
6834
6835 def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
6836 def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
6837 def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
6838 def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
6839 def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>;
6840 def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
6841 def : Pat<(v8bf16 (AArch64NvCast (v2f64 FPR128:$src))), (v8bf16 FPR128:$src)>;
6842 def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
6843
6844 let Predicates = [IsLE] in {
6845 def : Pat<(v8i8  (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6846 def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6847 def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6848 def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6849 def : Pat<(v4bf16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6850 def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6851
6852 def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
6853           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6854 def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
6855           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6856 def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
6857           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6858 def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
6859           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6860 def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))),
6861           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6862 def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
6863           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6864 def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
6865           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6866 }
6867 let Predicates = [IsBE] in {
6868 def : Pat<(v8i8  (bitconvert GPR64:$Xn)),
6869                  (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
6870 def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
6871                  (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
6872 def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
6873                  (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
6874 def : Pat<(v4f16 (bitconvert GPR64:$Xn)),
6875                  (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
6876 def : Pat<(v4bf16 (bitconvert GPR64:$Xn)),
6877                   (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
6878 def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
6879                  (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
6880
6881 def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
6882           (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
6883 def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
6884           (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
6885 def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
6886           (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
6887 def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
6888           (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
6889 def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))),
6890           (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
6891 def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
6892           (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
6893 }
6894 def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6895 def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6896 def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
6897           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6898 def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
6899           (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6900 def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
6901           (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6902 def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;
6903
6904 def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
6905           (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
6906 def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
6907           (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
6908 def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
6909           (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
6910 def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
6911           (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
6912 def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
6913           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
6914
6915 let Predicates = [IsLE] in {
6916 def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
6917 def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
6918 def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))), (v1i64 FPR64:$src)>;
6919 def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>;
6920 def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))), (v1i64 FPR64:$src)>;
6921 def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
6922 }
6923 let Predicates = [IsBE] in {
6924 def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
6925                              (v1i64 (REV64v2i32 FPR64:$src))>;
6926 def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
6927                              (v1i64 (REV64v4i16 FPR64:$src))>;
6928 def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))),
6929                              (v1i64 (REV64v8i8 FPR64:$src))>;
6930 def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))),
6931                              (v1i64 (REV64v4i16 FPR64:$src))>;
6932 def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))),
6933                              (v1i64 (REV64v4i16 FPR64:$src))>;
6934 def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
6935                              (v1i64 (REV64v2i32 FPR64:$src))>;
6936 }
6937 def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
6938 def : Pat<(v1i64 (bitconvert (f64   FPR64:$src))), (v1i64 FPR64:$src)>;
6939
6940 let Predicates = [IsLE] in {
6941 def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
6942 def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
6943 def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))), (v2i32 FPR64:$src)>;
6944 def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))), (v2i32 FPR64:$src)>;
6945 def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
6946 def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>;
6947 def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))), (v2i32 FPR64:$src)>;
6948 }
6949 let Predicates = [IsBE] in {
6950 def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
6951                              (v2i32 (REV64v2i32 FPR64:$src))>;
6952 def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
6953                              (v2i32 (REV32v4i16 FPR64:$src))>;
6954 def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))),
6955                              (v2i32 (REV32v8i8 FPR64:$src))>;
6956 def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))),
6957                              (v2i32 (REV64v2i32 FPR64:$src))>;
6958 def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
6959                              (v2i32 (REV64v2i32 FPR64:$src))>;
6960 def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))),
6961                              (v2i32 (REV32v4i16 FPR64:$src))>;
6962 def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))),
6963                              (v2i32 (REV32v4i16 FPR64:$src))>;
6964 }
6965 def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
6966
6967 let Predicates = [IsLE] in {
6968 def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
6969 def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
6970 def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))), (v4i16 FPR64:$src)>;
6971 def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))), (v4i16 FPR64:$src)>;
6972 def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
6973 def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
6974 }
6975 let Predicates = [IsBE] in {
6976 def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
6977                              (v4i16 (REV64v4i16 FPR64:$src))>;
6978 def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
6979                              (v4i16 (REV32v4i16 FPR64:$src))>;
6980 def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))),
6981                              (v4i16 (REV16v8i8 FPR64:$src))>;
6982 def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))),
6983                              (v4i16 (REV64v4i16 FPR64:$src))>;
6984 def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
6985                              (v4i16 (REV32v4i16 FPR64:$src))>;
6986 def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
6987                              (v4i16 (REV64v4i16 FPR64:$src))>;
6988 }
6989 def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>;
6990 def : Pat<(v4i16 (bitconvert (v4bf16 FPR64:$src))), (v4i16 FPR64:$src)>;
6991
6992 let Predicates = [IsLE] in {
6993 def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>;
6994 def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
6995 def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))), (v4f16 FPR64:$src)>;
6996 def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))), (v4f16 FPR64:$src)>;
6997 def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>;
6998 def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>;
6999
7000 def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))), (v4bf16 FPR64:$src)>;
7001 def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))), (v4bf16 FPR64:$src)>;
7002 def : Pat<(v4bf16 (bitconvert (v8i8  FPR64:$src))), (v4bf16 FPR64:$src)>;
7003 def : Pat<(v4bf16 (bitconvert (f64   FPR64:$src))), (v4bf16 FPR64:$src)>;
7004 def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))), (v4bf16 FPR64:$src)>;
7005 def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))), (v4bf16 FPR64:$src)>;
7006 }
7007 let Predicates = [IsBE] in {
7008 def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))),
7009                              (v4f16 (REV64v4i16 FPR64:$src))>;
7010 def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))),
7011                              (v4f16 (REV32v4i16 FPR64:$src))>;
7012 def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))),
7013                              (v4f16 (REV16v8i8 FPR64:$src))>;
7014 def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))),
7015                              (v4f16 (REV64v4i16 FPR64:$src))>;
7016 def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))),
7017                              (v4f16 (REV32v4i16 FPR64:$src))>;
7018 def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))),
7019                              (v4f16 (REV64v4i16 FPR64:$src))>;
7020
7021 def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))),
7022                              (v4bf16 (REV64v4i16 FPR64:$src))>;
7023 def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))),
7024                              (v4bf16 (REV32v4i16 FPR64:$src))>;
7025 def : Pat<(v4bf16 (bitconvert (v8i8  FPR64:$src))),
7026                              (v4bf16 (REV16v8i8 FPR64:$src))>;
7027 def : Pat<(v4bf16 (bitconvert (f64   FPR64:$src))),
7028                              (v4bf16 (REV64v4i16 FPR64:$src))>;
7029 def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))),
7030                              (v4bf16 (REV32v4i16 FPR64:$src))>;
7031 def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))),
7032                              (v4bf16 (REV64v4i16 FPR64:$src))>;
7033 }
7034 def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
7035 def : Pat<(v4bf16 (bitconvert (v4i16 FPR64:$src))), (v4bf16 FPR64:$src)>;
7036
7037 let Predicates = [IsLE] in {
7038 def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))), (v8i8  FPR64:$src)>;
7039 def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))), (v8i8  FPR64:$src)>;
7040 def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))), (v8i8  FPR64:$src)>;
7041 def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))), (v8i8  FPR64:$src)>;
7042 def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))), (v8i8  FPR64:$src)>;
7043 def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))), (v8i8  FPR64:$src)>;
7044 def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))), (v8i8  FPR64:$src)>;
7045 def : Pat<(v8i8  (bitconvert (v4bf16 FPR64:$src))), (v8i8  FPR64:$src)>;
7046 }
7047 let Predicates = [IsBE] in {
7048 def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))),
7049                              (v8i8 (REV64v8i8 FPR64:$src))>;
7050 def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))),
7051                              (v8i8 (REV32v8i8 FPR64:$src))>;
7052 def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))),
7053                              (v8i8 (REV16v8i8 FPR64:$src))>;
7054 def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))),
7055                              (v8i8 (REV64v8i8 FPR64:$src))>;
7056 def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))),
7057                              (v8i8 (REV32v8i8 FPR64:$src))>;
7058 def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))),
7059                              (v8i8 (REV64v8i8 FPR64:$src))>;
7060 def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))),
7061                              (v8i8 (REV16v8i8 FPR64:$src))>;
7062 def : Pat<(v8i8  (bitconvert (v4bf16 FPR64:$src))),
7063                              (v8i8 (REV16v8i8 FPR64:$src))>;
7064 }
7065
7066 let Predicates = [IsLE] in {
7067 def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))), (f64   FPR64:$src)>;
7068 def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))), (f64   FPR64:$src)>;
7069 def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))), (f64   FPR64:$src)>;
7070 def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))), (f64   FPR64:$src)>;
7071 def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))), (f64   FPR64:$src)>;
7072 def : Pat<(f64   (bitconvert (v4bf16 FPR64:$src))), (f64   FPR64:$src)>;
7073 }
7074 let Predicates = [IsBE] in {
7075 def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))),
7076                              (f64 (REV64v2i32 FPR64:$src))>;
7077 def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))),
7078                              (f64 (REV64v4i16 FPR64:$src))>;
7079 def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))),
7080                              (f64 (REV64v2i32 FPR64:$src))>;
7081 def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))),
7082                              (f64 (REV64v8i8 FPR64:$src))>;
7083 def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))),
7084                              (f64 (REV64v4i16 FPR64:$src))>;
7085 def : Pat<(f64   (bitconvert (v4bf16 FPR64:$src))),
7086                              (f64 (REV64v4i16 FPR64:$src))>;
7087 }
7088 def : Pat<(f64   (bitconvert (v1i64 FPR64:$src))), (f64   FPR64:$src)>;
7089 def : Pat<(f64   (bitconvert (v1f64 FPR64:$src))), (f64   FPR64:$src)>;
7090
7091 let Predicates = [IsLE] in {
7092 def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
7093 def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
7094 def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))), (v1f64 FPR64:$src)>;
7095 def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
7096 def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>;
7097 def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))), (v1f64 FPR64:$src)>;
7098 }
7099 let Predicates = [IsBE] in {
7100 def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
7101                              (v1f64 (REV64v2i32 FPR64:$src))>;
7102 def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
7103                              (v1f64 (REV64v4i16 FPR64:$src))>;
7104 def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))),
7105                              (v1f64 (REV64v8i8 FPR64:$src))>;
7106 def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
7107                              (v1f64 (REV64v2i32 FPR64:$src))>;
7108 def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))),
7109                              (v1f64 (REV64v4i16 FPR64:$src))>;
7110 def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))),
7111                              (v1f64 (REV64v4i16 FPR64:$src))>;
7112 }
7113 def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
7114 def : Pat<(v1f64 (bitconvert (f64   FPR64:$src))), (v1f64 FPR64:$src)>;
7115
7116 let Predicates = [IsLE] in {
7117 def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
7118 def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
7119 def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))), (v2f32 FPR64:$src)>;
7120 def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
7121 def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))), (v2f32 FPR64:$src)>;
7122 def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>;
7123 def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))), (v2f32 FPR64:$src)>;
7124 }
7125 let Predicates = [IsBE] in {
7126 def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
7127                              (v2f32 (REV64v2i32 FPR64:$src))>;
7128 def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
7129                              (v2f32 (REV32v4i16 FPR64:$src))>;
7130 def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))),
7131                              (v2f32 (REV32v8i8 FPR64:$src))>;
7132 def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
7133                              (v2f32 (REV64v2i32 FPR64:$src))>;
7134 def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))),
7135                              (v2f32 (REV64v2i32 FPR64:$src))>;
7136 def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))),
7137                              (v2f32 (REV32v4i16 FPR64:$src))>;
7138 def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))),
7139                              (v2f32 (REV32v4i16 FPR64:$src))>;
7140 }
7141 def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
7142
7143 let Predicates = [IsLE] in {
7144 def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
7145 def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
7146 def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
7147 def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
7148 def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
7149 def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>;
7150 def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))), (f128 FPR128:$src)>;
7151 def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
7152 }
7153 let Predicates = [IsBE] in {
7154 def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
7155                             (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
7156 def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
7157                             (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
7158                                             (REV64v4i32 FPR128:$src), (i32 8)))>;
7159 def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
7160                             (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
7161                                             (REV64v8i16 FPR128:$src), (i32 8)))>;
7162 def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))),
7163                             (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
7164                                             (REV64v8i16 FPR128:$src), (i32 8)))>;
7165 def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))),
7166                             (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
7167                                             (REV64v8i16 FPR128:$src), (i32 8)))>;
7168 def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
7169                             (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
7170 def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
7171                             (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
7172                                             (REV64v4i32 FPR128:$src), (i32 8)))>;
7173 def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
7174                             (f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
7175                                             (REV64v16i8 FPR128:$src), (i32 8)))>;
7176 }
7177
7178 let Predicates = [IsLE] in {
7179 def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))), (v2f64 FPR128:$src)>;
7180 def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
7181 def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
7182 def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>;
7183 def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))), (v2f64 FPR128:$src)>;
7184 def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
7185 def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
7186 }
7187 let Predicates = [IsBE] in {
7188 def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))),
7189                              (v2f64 (EXTv16i8 FPR128:$src,
7190                                               FPR128:$src, (i32 8)))>;
7191 def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
7192                              (v2f64 (REV64v4i32 FPR128:$src))>;
7193 def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
7194                              (v2f64 (REV64v8i16 FPR128:$src))>;
7195 def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))),
7196                              (v2f64 (REV64v8i16 FPR128:$src))>;
7197 def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))),
7198                              (v2f64 (REV64v8i16 FPR128:$src))>;
7199 def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
7200                              (v2f64 (REV64v16i8 FPR128:$src))>;
7201 def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
7202                              (v2f64 (REV64v4i32 FPR128:$src))>;
7203 }
7204 def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
7205
7206 let Predicates = [IsLE] in {
7207 def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))), (v4f32 FPR128:$src)>;
7208 def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
7209 def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>;
7210 def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))), (v4f32 FPR128:$src)>;
7211 def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
7212 def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
7213 def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
7214 }
7215 let Predicates = [IsBE] in {
7216 def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))),
7217                              (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
7218                                     (REV64v4i32 FPR128:$src), (i32 8)))>;
7219 def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
7220                              (v4f32 (REV32v8i16 FPR128:$src))>;
7221 def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))),
7222                              (v4f32 (REV32v8i16 FPR128:$src))>;
7223 def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))),
7224                              (v4f32 (REV32v8i16 FPR128:$src))>;
7225 def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
7226                              (v4f32 (REV32v16i8 FPR128:$src))>;
7227 def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
7228                              (v4f32 (REV64v4i32 FPR128:$src))>;
7229 def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
7230                              (v4f32 (REV64v4i32 FPR128:$src))>;
7231 }
7232 def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
7233
7234 let Predicates = [IsLE] in {
7235 def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))), (v2i64 FPR128:$src)>;
7236 def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
7237 def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
7238 def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
7239 def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
7240 def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>;
7241 def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))), (v2i64 FPR128:$src)>;
7242 }
7243 let Predicates = [IsBE] in {
7244 def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))),
7245                              (v2i64 (EXTv16i8 FPR128:$src,
7246                                               FPR128:$src, (i32 8)))>;
7247 def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
7248                              (v2i64 (REV64v4i32 FPR128:$src))>;
7249 def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
7250                              (v2i64 (REV64v8i16 FPR128:$src))>;
7251 def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
7252                              (v2i64 (REV64v16i8 FPR128:$src))>;
7253 def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
7254                              (v2i64 (REV64v4i32 FPR128:$src))>;
7255 def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))),
7256                              (v2i64 (REV64v8i16 FPR128:$src))>;
7257 def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))),
7258                              (v2i64 (REV64v8i16 FPR128:$src))>;
7259 }
7260 def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
7261
7262 let Predicates = [IsLE] in {
7263 def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))), (v4i32 FPR128:$src)>;
7264 def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
7265 def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
7266 def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
7267 def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
7268 def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>;
7269 def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))), (v4i32 FPR128:$src)>;
7270 }
7271 let Predicates = [IsBE] in {
7272 def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))),
7273                              (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
7274                                               (REV64v4i32 FPR128:$src),
7275                                               (i32 8)))>;
7276 def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
7277                              (v4i32 (REV64v4i32 FPR128:$src))>;
7278 def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
7279                              (v4i32 (REV32v8i16 FPR128:$src))>;
7280 def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
7281                              (v4i32 (REV32v16i8 FPR128:$src))>;
7282 def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
7283                              (v4i32 (REV64v4i32 FPR128:$src))>;
7284 def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))),
7285                              (v4i32 (REV32v8i16 FPR128:$src))>;
7286 def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))),
7287                              (v4i32 (REV32v8i16 FPR128:$src))>;
7288 }
7289 def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
7290
7291 let Predicates = [IsLE] in {
7292 def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))), (v8i16 FPR128:$src)>;
7293 def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
7294 def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
7295 def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
7296 def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
7297 def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
7298 }
7299 let Predicates = [IsBE] in {
7300 def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))),
7301                              (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
7302                                               (REV64v8i16 FPR128:$src),
7303                                               (i32 8)))>;
7304 def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
7305                              (v8i16 (REV64v8i16 FPR128:$src))>;
7306 def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
7307                              (v8i16 (REV32v8i16 FPR128:$src))>;
7308 def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
7309                              (v8i16 (REV16v16i8 FPR128:$src))>;
7310 def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
7311                              (v8i16 (REV64v8i16 FPR128:$src))>;
7312 def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
7313                              (v8i16 (REV32v8i16 FPR128:$src))>;
7314 }
7315 def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>;
7316 def : Pat<(v8i16 (bitconvert (v8bf16 FPR128:$src))), (v8i16 FPR128:$src)>;
7317
7318 let Predicates = [IsLE] in {
7319 def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))), (v8f16 FPR128:$src)>;
7320 def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
7321 def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
7322 def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
7323 def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
7324 def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
7325
7326 def : Pat<(v8bf16 (bitconvert (f128  FPR128:$src))), (v8bf16 FPR128:$src)>;
7327 def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))), (v8bf16 FPR128:$src)>;
7328 def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))), (v8bf16 FPR128:$src)>;
7329 def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))), (v8bf16 FPR128:$src)>;
7330 def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))), (v8bf16 FPR128:$src)>;
7331 def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))), (v8bf16 FPR128:$src)>;
7332 }
7333 let Predicates = [IsBE] in {
7334 def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))),
7335                              (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src),
7336                                               (REV64v8i16 FPR128:$src),
7337                                               (i32 8)))>;
7338 def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))),
7339                              (v8f16 (REV64v8i16 FPR128:$src))>;
7340 def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))),
7341                              (v8f16 (REV32v8i16 FPR128:$src))>;
7342 def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))),
7343                              (v8f16 (REV16v16i8 FPR128:$src))>;
7344 def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))),
7345                              (v8f16 (REV64v8i16 FPR128:$src))>;
7346 def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))),
7347                              (v8f16 (REV32v8i16 FPR128:$src))>;
7348
7349 def : Pat<(v8bf16 (bitconvert (f128  FPR128:$src))),
7350                              (v8bf16 (EXTv16i8 (REV64v8i16 FPR128:$src),
7351                                               (REV64v8i16 FPR128:$src),
7352                                               (i32 8)))>;
7353 def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))),
7354                              (v8bf16 (REV64v8i16 FPR128:$src))>;
7355 def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))),
7356                              (v8bf16 (REV32v8i16 FPR128:$src))>;
7357 def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))),
7358                              (v8bf16 (REV16v16i8 FPR128:$src))>;
7359 def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))),
7360                              (v8bf16 (REV64v8i16 FPR128:$src))>;
7361 def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))),
7362                              (v8bf16 (REV32v8i16 FPR128:$src))>;
7363 }
7364 def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
7365 def : Pat<(v8bf16 (bitconvert (v8i16 FPR128:$src))), (v8bf16 FPR128:$src)>;
7366
7367 let Predicates = [IsLE] in {
7368 def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))), (v16i8 FPR128:$src)>;
7369 def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
7370 def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
7371 def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
7372 def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
7373 def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
7374 def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>;
7375 def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))), (v16i8 FPR128:$src)>;
7376 }
7377 let Predicates = [IsBE] in {
7378 def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))),
7379                              (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
7380                                               (REV64v16i8 FPR128:$src),
7381                                               (i32 8)))>;
7382 def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
7383                              (v16i8 (REV64v16i8 FPR128:$src))>;
7384 def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
7385                              (v16i8 (REV32v16i8 FPR128:$src))>;
7386 def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
7387                              (v16i8 (REV16v16i8 FPR128:$src))>;
7388 def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
7389                              (v16i8 (REV64v16i8 FPR128:$src))>;
7390 def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
7391                              (v16i8 (REV32v16i8 FPR128:$src))>;
7392 def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))),
7393                              (v16i8 (REV16v16i8 FPR128:$src))>;
7394 def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))),
7395                              (v16i8 (REV16v16i8 FPR128:$src))>;
7396 }
7397
7398 def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))),
7399            (EXTRACT_SUBREG V128:$Rn, dsub)>;
7400 def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))),
7401            (EXTRACT_SUBREG V128:$Rn, dsub)>;
7402 def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))),
7403            (EXTRACT_SUBREG V128:$Rn, dsub)>;
7404 def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))),
7405            (EXTRACT_SUBREG V128:$Rn, dsub)>;
7406 def : Pat<(v4bf16 (extract_subvector V128:$Rn, (i64 0))),
7407            (EXTRACT_SUBREG V128:$Rn, dsub)>;
7408 def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))),
7409            (EXTRACT_SUBREG V128:$Rn, dsub)>;
7410 def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))),
7411            (EXTRACT_SUBREG V128:$Rn, dsub)>;
7412 def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))),
7413            (EXTRACT_SUBREG V128:$Rn, dsub)>;
7414
7415 def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
7416           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
7417 def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
7418           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
7419 def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
7420           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
7421 def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
7422           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
7423
7424 // A 64-bit subvector insert to the first 128-bit vector position
7425 // is a subregister copy that needs no instruction.
7426 multiclass InsertSubvectorUndef<ValueType Ty> {
7427   def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (Ty 0)),
7428             (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7429   def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (Ty 0)),
7430             (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7431   def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (Ty 0)),
7432             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7433   def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (Ty 0)),
7434             (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7435   def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (Ty 0)),
7436             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7437   def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (Ty 0)),
7438             (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7439   def : Pat<(insert_subvector undef, (v4bf16 FPR64:$src), (Ty 0)),
7440             (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7441   def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (Ty 0)),
7442             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
7443 }
7444
7445 defm : InsertSubvectorUndef<i32>;
7446 defm : InsertSubvectorUndef<i64>;
7447
7448 // Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
7449 // or v2f32.
7450 def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
7451                     (vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
7452            (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
7453 def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
7454                      (vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
7455            (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
7456     // vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
7457     // so we match on v4f32 here, not v2f32. This will also catch adding
7458     // the low two lanes of a true v4f32 vector.
7459 def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
7460                 (vector_extract (v4f32 FPR128:$Rn), (i64 1))),
7461           (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
7462
7463 // Scalar 64-bit shifts in FPR64 registers.
7464 def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
7465           (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
7466 def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
7467           (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
7468 def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
7469           (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
7470 def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
7471           (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
7472
7473 // Patterns for nontemporal/no-allocate stores.
7474 // We have to resort to tricks to turn a single-input store into a store pair,
7475 // because there is no single-input nontemporal store, only STNP.
7476 let Predicates = [IsLE] in {
7477 let AddedComplexity = 15 in {
7478 class NTStore128Pat<ValueType VT> :
7479   Pat<(nontemporalstore (VT FPR128:$Rt),
7480         (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
7481       (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub),
7482               (CPYi64 FPR128:$Rt, (i64 1)),
7483               GPR64sp:$Rn, simm7s8:$offset)>;
7484
7485 def : NTStore128Pat<v2i64>;
7486 def : NTStore128Pat<v4i32>;
7487 def : NTStore128Pat<v8i16>;
7488 def : NTStore128Pat<v16i8>;
7489
7490 class NTStore64Pat<ValueType VT> :
7491   Pat<(nontemporalstore (VT FPR64:$Rt),
7492         (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
7493       (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub),
7494               (CPYi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)),
7495               GPR64sp:$Rn, simm7s4:$offset)>;
7496
7497 // FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64?
7498 def : NTStore64Pat<v1f64>;
7499 def : NTStore64Pat<v1i64>;
7500 def : NTStore64Pat<v2i32>;
7501 def : NTStore64Pat<v4i16>;
7502 def : NTStore64Pat<v8i8>;
7503
7504 def : Pat<(nontemporalstore GPR64:$Rt,
7505             (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
7506           (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32),
7507                   (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32),
7508                   GPR64sp:$Rn, simm7s4:$offset)>;
7509 } // AddedComplexity=10
7510 } // Predicates = [IsLE]
7511
7512 // Tail call return handling. These are all compiler pseudo-instructions,
7513 // so no encoding information or anything like that.
7514 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
7515   def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>,
7516                    Sched<[WriteBrReg]>;
7517   def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>,
7518                    Sched<[WriteBrReg]>;
7519   // Indirect tail-call with any register allowed, used by MachineOutliner when
7520   // this is proven safe.
7521   // FIXME: If we have to add any more hacks like this, we should instead relax
7522   // some verifier checks for outlined functions.
7523   def TCRETURNriALL : Pseudo<(outs), (ins GPR64:$dst, i32imm:$FPDiff), []>,
7524                       Sched<[WriteBrReg]>;
7525   // Indirect tail-call limited to only use registers (x16 and x17) which are
7526   // allowed to tail-call a "BTI c" instruction.
7527   def TCRETURNriBTI : Pseudo<(outs), (ins rtcGPR64:$dst, i32imm:$FPDiff), []>,
7528                       Sched<[WriteBrReg]>;
7529 }
7530
7531 def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)),
7532           (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>,
7533       Requires<[NotUseBTI]>;
7534 def : Pat<(AArch64tcret rtcGPR64:$dst, (i32 timm:$FPDiff)),
7535           (TCRETURNriBTI rtcGPR64:$dst, imm:$FPDiff)>,
7536       Requires<[UseBTI]>;
7537 def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)),
7538           (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
7539 def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
7540           (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
7541
7542 def MOVMCSym : Pseudo<(outs GPR64:$dst), (ins i64imm:$sym), []>, Sched<[]>;
7543 def : Pat<(i64 (AArch64LocalRecover mcsym:$sym)), (MOVMCSym mcsym:$sym)>;
7544
7545 // Extracting lane zero is a special case where we can just use a plain
7546 // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for the
7547 // rest of the compiler, especially the register allocator and copy propagation,
7548 // to reason about, so is preferred when it's possible to use it.
7549 let AddedComplexity = 10 in {
7550   def : Pat<(i64 (extractelt (v2i64 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, dsub)>;
7551   def : Pat<(i32 (extractelt (v4i32 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, ssub)>;
7552   def : Pat<(i32 (extractelt (v2i32 V64:$V), (i64 0))), (EXTRACT_SUBREG V64:$V, ssub)>;
7553 }
7554
7555 // dot_v4i8
7556 class mul_v4i8<SDPatternOperator ldop> :
7557   PatFrag<(ops node:$Rn, node:$Rm, node:$offset),
7558           (mul (ldop (add node:$Rn, node:$offset)),
7559                (ldop (add node:$Rm, node:$offset)))>;
7560 class mulz_v4i8<SDPatternOperator ldop> :
7561   PatFrag<(ops node:$Rn, node:$Rm),
7562           (mul (ldop node:$Rn), (ldop node:$Rm))>;
7563
7564 def load_v4i8 :
7565   OutPatFrag<(ops node:$R),
7566              (INSERT_SUBREG
7567               (v2i32 (IMPLICIT_DEF)),
7568                (i32 (COPY_TO_REGCLASS (LDRWui node:$R, (i64 0)), FPR32)),
7569               ssub)>;
7570
7571 class dot_v4i8<Instruction DOT, SDPatternOperator ldop> :
7572   Pat<(i32 (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 3)),
7573            (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 2)),
7574            (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 1)),
7575                 (mulz_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm))))),
7576       (EXTRACT_SUBREG (i64 (DOT (DUPv2i32gpr WZR),
7577                                 (load_v4i8 GPR64sp:$Rn),
7578                                 (load_v4i8 GPR64sp:$Rm))),
7579                       sub_32)>, Requires<[HasDotProd]>;
7580
7581 // dot_v8i8
7582 class ee_v8i8<SDPatternOperator extend> :
7583   PatFrag<(ops node:$V, node:$K),
7584           (v4i16 (extract_subvector (v8i16 (extend node:$V)), node:$K))>;
7585
7586 class mul_v8i8<SDPatternOperator mulop, SDPatternOperator extend> :
7587   PatFrag<(ops node:$M, node:$N, node:$K),
7588           (mulop (v4i16 (ee_v8i8<extend> node:$M, node:$K)),
7589                  (v4i16 (ee_v8i8<extend> node:$N, node:$K)))>;
7590
7591 class idot_v8i8<SDPatternOperator mulop, SDPatternOperator extend> :
7592   PatFrag<(ops node:$M, node:$N),
7593           (i32 (extractelt
7594            (v4i32 (AArch64uaddv
7595             (add (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 0)),
7596                  (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 4))))),
7597            (i64 0)))>;
7598
7599 // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
7600 def VADDV_32 : OutPatFrag<(ops node:$R), (ADDPv2i32 node:$R, node:$R)>;
7601
7602 class odot_v8i8<Instruction DOT> :
7603   OutPatFrag<(ops node:$Vm, node:$Vn),
7604              (EXTRACT_SUBREG
7605               (VADDV_32
7606                (i64 (DOT (DUPv2i32gpr WZR),
7607                          (v8i8 node:$Vm),
7608                          (v8i8 node:$Vn)))),
7609               sub_32)>;
7610
7611 class dot_v8i8<Instruction DOT, SDPatternOperator mulop,
7612                     SDPatternOperator extend> :
7613   Pat<(idot_v8i8<mulop, extend> V64:$Vm, V64:$Vn),
7614       (odot_v8i8<DOT> V64:$Vm, V64:$Vn)>,
7615   Requires<[HasDotProd]>;
7616
7617 // dot_v16i8
7618 class ee_v16i8<SDPatternOperator extend> :
7619   PatFrag<(ops node:$V, node:$K1, node:$K2),
7620           (v4i16 (extract_subvector
7621            (v8i16 (extend
7622             (v8i8 (extract_subvector node:$V, node:$K1)))), node:$K2))>;
7623
7624 class mul_v16i8<SDPatternOperator mulop, SDPatternOperator extend> :
7625   PatFrag<(ops node:$M, node:$N, node:$K1, node:$K2),
7626           (v4i32
7627            (mulop (v4i16 (ee_v16i8<extend> node:$M, node:$K1, node:$K2)),
7628                   (v4i16 (ee_v16i8<extend> node:$N, node:$K1, node:$K2))))>;
7629
7630 class idot_v16i8<SDPatternOperator m, SDPatternOperator x> :
7631   PatFrag<(ops node:$M, node:$N),
7632           (i32 (extractelt
7633            (v4i32 (AArch64uaddv
7634             (add
7635              (add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 0)),
7636                   (mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 0))),
7637              (add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 4)),
7638                   (mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 4)))))),
7639            (i64 0)))>;
7640
7641 class odot_v16i8<Instruction DOT> :
7642   OutPatFrag<(ops node:$Vm, node:$Vn),
7643              (i32 (ADDVv4i32v
7644               (DOT (DUPv4i32gpr WZR), node:$Vm, node:$Vn)))>;
7645
7646 class dot_v16i8<Instruction DOT, SDPatternOperator mulop,
7647                 SDPatternOperator extend> :
7648   Pat<(idot_v16i8<mulop, extend> V128:$Vm, V128:$Vn),
7649       (odot_v16i8<DOT> V128:$Vm, V128:$Vn)>,
7650   Requires<[HasDotProd]>;
7651
7652 let AddedComplexity = 10 in {
7653   def : dot_v4i8<SDOTv8i8, sextloadi8>;
7654   def : dot_v4i8<UDOTv8i8, zextloadi8>;
7655   def : dot_v8i8<SDOTv8i8, AArch64smull, sext>;
7656   def : dot_v8i8<UDOTv8i8, AArch64umull, zext>;
7657   def : dot_v16i8<SDOTv16i8, AArch64smull, sext>;
7658   def : dot_v16i8<UDOTv16i8, AArch64umull, zext>;
7659
7660   // FIXME: add patterns to generate vector by element dot product.
7661   // FIXME: add SVE dot-product patterns.
7662 }
7663
7664 include "AArch64InstrAtomics.td"
7665 include "AArch64SVEInstrInfo.td"
7666
7667 include "AArch64InstrGISel.td"