]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.h
Merge llvm-project main llvmorg-13-init-16847-g88e66fa60ae5
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / AArch64 / AArch64TargetTransformInfo.h
1 //===- AArch64TargetTransformInfo.h - AArch64 specific TTI ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file a TargetTransformInfo::Concept conforming object specific to the
10 /// AArch64 target machine. It uses the target's detailed information to
11 /// provide more precise answers to certain TTI queries, while letting the
12 /// target independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
17 #define LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H
18
19 #include "AArch64.h"
20 #include "AArch64Subtarget.h"
21 #include "AArch64TargetMachine.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/CodeGen/BasicTTIImpl.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include <cstdint>
28
29 namespace llvm {
30
31 class APInt;
32 class Instruction;
33 class IntrinsicInst;
34 class Loop;
35 class SCEV;
36 class ScalarEvolution;
37 class Type;
38 class Value;
39 class VectorType;
40
41 class AArch64TTIImpl : public BasicTTIImplBase<AArch64TTIImpl> {
42   using BaseT = BasicTTIImplBase<AArch64TTIImpl>;
43   using TTI = TargetTransformInfo;
44
45   friend BaseT;
46
47   const AArch64Subtarget *ST;
48   const AArch64TargetLowering *TLI;
49
50   const AArch64Subtarget *getST() const { return ST; }
51   const AArch64TargetLowering *getTLI() const { return TLI; }
52
53   enum MemIntrinsicType {
54     VECTOR_LDST_TWO_ELEMENTS,
55     VECTOR_LDST_THREE_ELEMENTS,
56     VECTOR_LDST_FOUR_ELEMENTS
57   };
58
59   bool isWideningInstruction(Type *Ty, unsigned Opcode,
60                              ArrayRef<const Value *> Args);
61
62 public:
63   explicit AArch64TTIImpl(const AArch64TargetMachine *TM, const Function &F)
64       : BaseT(TM, F.getParent()->getDataLayout()), ST(TM->getSubtargetImpl(F)),
65         TLI(ST->getTargetLowering()) {}
66
67   bool areInlineCompatible(const Function *Caller,
68                            const Function *Callee) const;
69
70   /// \name Scalar TTI Implementations
71   /// @{
72
73   using BaseT::getIntImmCost;
74   InstructionCost getIntImmCost(int64_t Val);
75   InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
76                                 TTI::TargetCostKind CostKind);
77   InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
78                                     const APInt &Imm, Type *Ty,
79                                     TTI::TargetCostKind CostKind,
80                                     Instruction *Inst = nullptr);
81   InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
82                                       const APInt &Imm, Type *Ty,
83                                       TTI::TargetCostKind CostKind);
84   TTI::PopcntSupportKind getPopcntSupport(unsigned TyWidth);
85
86   /// @}
87
88   /// \name Vector TTI Implementations
89   /// @{
90
91   bool enableInterleavedAccessVectorization() { return true; }
92
93   unsigned getNumberOfRegisters(unsigned ClassID) const {
94     bool Vector = (ClassID == 1);
95     if (Vector) {
96       if (ST->hasNEON())
97         return 32;
98       return 0;
99     }
100     return 31;
101   }
102
103   InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
104                                         TTI::TargetCostKind CostKind);
105
106   Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
107                                                IntrinsicInst &II) const;
108
109   TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
110     switch (K) {
111     case TargetTransformInfo::RGK_Scalar:
112       return TypeSize::getFixed(64);
113     case TargetTransformInfo::RGK_FixedWidthVector:
114       if (ST->hasSVE())
115         return TypeSize::getFixed(
116             std::max(ST->getMinSVEVectorSizeInBits(), 128u));
117       return TypeSize::getFixed(ST->hasNEON() ? 128 : 0);
118     case TargetTransformInfo::RGK_ScalableVector:
119       return TypeSize::getScalable(ST->hasSVE() ? 128 : 0);
120     }
121     llvm_unreachable("Unsupported register kind");
122   }
123
124   unsigned getMinVectorRegisterBitWidth() const {
125     return ST->getMinVectorRegisterBitWidth();
126   }
127
128   Optional<unsigned> getMaxVScale() const {
129     if (ST->hasSVE())
130       return AArch64::SVEMaxBitsPerVector / AArch64::SVEBitsPerBlock;
131     return BaseT::getMaxVScale();
132   }
133
134   /// Try to return an estimate cost factor that can be used as a multiplier
135   /// when scalarizing an operation for a vector with ElementCount \p VF.
136   /// For scalable vectors this currently takes the most pessimistic view based
137   /// upon the maximum possible value for vscale.
138   unsigned getMaxNumElements(ElementCount VF) const {
139     if (!VF.isScalable())
140       return VF.getFixedValue();
141     Optional<unsigned> MaxNumVScale = getMaxVScale();
142     assert(MaxNumVScale && "Expected valid max vscale value");
143     return *MaxNumVScale * VF.getKnownMinValue();
144   }
145
146   unsigned getMaxInterleaveFactor(unsigned VF);
147
148   InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
149                                         Align Alignment, unsigned AddressSpace,
150                                         TTI::TargetCostKind CostKind);
151
152   InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
153                                          const Value *Ptr, bool VariableMask,
154                                          Align Alignment,
155                                          TTI::TargetCostKind CostKind,
156                                          const Instruction *I = nullptr);
157
158   InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
159                                    TTI::CastContextHint CCH,
160                                    TTI::TargetCostKind CostKind,
161                                    const Instruction *I = nullptr);
162
163   InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
164                                            VectorType *VecTy, unsigned Index);
165
166   InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
167                                  const Instruction *I = nullptr);
168
169   InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
170                                      unsigned Index);
171
172   InstructionCost getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
173                                          bool IsUnsigned,
174                                          TTI::TargetCostKind CostKind);
175
176   InstructionCost getArithmeticReductionCostSVE(unsigned Opcode,
177                                                 VectorType *ValTy,
178                                                 TTI::TargetCostKind CostKind);
179
180   InstructionCost getSpliceCost(VectorType *Tp, int Index);
181
182   InstructionCost getArithmeticInstrCost(
183       unsigned Opcode, Type *Ty,
184       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
185       TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
186       TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
187       TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
188       TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
189       ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
190       const Instruction *CxtI = nullptr);
191
192   InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
193                                             const SCEV *Ptr);
194
195   InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
196                                      CmpInst::Predicate VecPred,
197                                      TTI::TargetCostKind CostKind,
198                                      const Instruction *I = nullptr);
199
200   TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize,
201                                                     bool IsZeroCmp) const;
202   bool useNeonVector(const Type *Ty) const;
203
204   InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src,
205                                   MaybeAlign Alignment, unsigned AddressSpace,
206                                   TTI::TargetCostKind CostKind,
207                                   const Instruction *I = nullptr);
208
209   InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys);
210
211   void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
212                                TTI::UnrollingPreferences &UP);
213
214   void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
215                              TTI::PeelingPreferences &PP);
216
217   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
218                                            Type *ExpectedType);
219
220   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info);
221
222   bool isElementTypeLegalForScalableVector(Type *Ty) const {
223     if (Ty->isPointerTy())
224       return true;
225
226     if (Ty->isBFloatTy() && ST->hasBF16())
227       return true;
228
229     if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
230       return true;
231
232     if (Ty->isIntegerTy(1) || Ty->isIntegerTy(8) || Ty->isIntegerTy(16) ||
233         Ty->isIntegerTy(32) || Ty->isIntegerTy(64))
234       return true;
235
236     return false;
237   }
238
239   bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) {
240     if (!ST->hasSVE())
241       return false;
242
243     // For fixed vectors, avoid scalarization if using SVE for them.
244     if (isa<FixedVectorType>(DataType) && !ST->useSVEForFixedLengthVectors())
245       return false; // Fall back to scalarization of masked operations.
246
247     return !DataType->getScalarType()->isIntegerTy(1) &&
248            isElementTypeLegalForScalableVector(DataType->getScalarType());
249   }
250
251   bool isLegalMaskedLoad(Type *DataType, Align Alignment) {
252     return isLegalMaskedLoadStore(DataType, Alignment);
253   }
254
255   bool isLegalMaskedStore(Type *DataType, Align Alignment) {
256     return isLegalMaskedLoadStore(DataType, Alignment);
257   }
258
259   bool isLegalMaskedGatherScatter(Type *DataType) const {
260     if (!ST->hasSVE())
261       return false;
262
263     // For fixed vectors, scalarize if not using SVE for them.
264     auto *DataTypeFVTy = dyn_cast<FixedVectorType>(DataType);
265     if (DataTypeFVTy && (!ST->useSVEForFixedLengthVectors() ||
266                          DataTypeFVTy->getNumElements() < 2))
267       return false;
268
269     return !DataType->getScalarType()->isIntegerTy(1) &&
270            isElementTypeLegalForScalableVector(DataType->getScalarType());
271   }
272
273   bool isLegalMaskedGather(Type *DataType, Align Alignment) const {
274     return isLegalMaskedGatherScatter(DataType);
275   }
276   bool isLegalMaskedScatter(Type *DataType, Align Alignment) const {
277     return isLegalMaskedGatherScatter(DataType);
278   }
279
280   bool isLegalNTStore(Type *DataType, Align Alignment) {
281     // NOTE: The logic below is mostly geared towards LV, which calls it with
282     //       vectors with 2 elements. We might want to improve that, if other
283     //       users show up.
284     // Nontemporal vector stores can be directly lowered to STNP, if the vector
285     // can be halved so that each half fits into a register. That's the case if
286     // the element type fits into a register and the number of elements is a
287     // power of 2 > 1.
288     if (auto *DataTypeVTy = dyn_cast<VectorType>(DataType)) {
289       unsigned NumElements =
290           cast<FixedVectorType>(DataTypeVTy)->getNumElements();
291       unsigned EltSize = DataTypeVTy->getElementType()->getScalarSizeInBits();
292       return NumElements > 1 && isPowerOf2_64(NumElements) && EltSize >= 8 &&
293              EltSize <= 128 && isPowerOf2_64(EltSize);
294     }
295     return BaseT::isLegalNTStore(DataType, Alignment);
296   }
297
298   InstructionCost getInterleavedMemoryOpCost(
299       unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
300       Align Alignment, unsigned AddressSpace,
301       TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency,
302       bool UseMaskForCond = false, bool UseMaskForGaps = false);
303
304   bool
305   shouldConsiderAddressTypePromotion(const Instruction &I,
306                                      bool &AllowPromotionWithoutCommonHeader);
307
308   bool shouldExpandReduction(const IntrinsicInst *II) const { return false; }
309
310   unsigned getGISelRematGlobalCost() const {
311     return 2;
312   }
313
314   bool supportsScalableVectors() const { return ST->hasSVE(); }
315
316   bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
317                                    ElementCount VF) const;
318
319   InstructionCost getArithmeticReductionCost(
320       unsigned Opcode, VectorType *Ty, Optional<FastMathFlags> FMF,
321       TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput);
322
323   InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
324                                  ArrayRef<int> Mask, int Index,
325                                  VectorType *SubTp);
326   /// @}
327 };
328
329 } // end namespace llvm
330
331 #endif // LLVM_LIB_TARGET_AARCH64_AARCH64TARGETTRANSFORMINFO_H