]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AsmBackend.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / AArch64 / MCTargetDesc / AArch64AsmBackend.cpp
1 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "MCTargetDesc/AArch64FixupKinds.h"
10 #include "MCTargetDesc/AArch64MCExpr.h"
11 #include "MCTargetDesc/AArch64MCTargetDesc.h"
12 #include "Utils/AArch64BaseInfo.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/BinaryFormat/MachO.h"
15 #include "llvm/MC/MCAsmBackend.h"
16 #include "llvm/MC/MCAssembler.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/MC/MCDirectives.h"
19 #include "llvm/MC/MCELFObjectWriter.h"
20 #include "llvm/MC/MCFixupKindInfo.h"
21 #include "llvm/MC/MCObjectWriter.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSectionELF.h"
24 #include "llvm/MC/MCSectionMachO.h"
25 #include "llvm/MC/MCTargetOptions.h"
26 #include "llvm/MC/MCValue.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/TargetRegistry.h"
29 using namespace llvm;
30
31 namespace {
32
33 class AArch64AsmBackend : public MCAsmBackend {
34   static const unsigned PCRelFlagVal =
35       MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
36   Triple TheTriple;
37
38 public:
39   AArch64AsmBackend(const Target &T, const Triple &TT, bool IsLittleEndian)
40       : MCAsmBackend(IsLittleEndian ? support::little : support::big),
41         TheTriple(TT) {}
42
43   unsigned getNumFixupKinds() const override {
44     return AArch64::NumTargetFixupKinds;
45   }
46
47   Optional<MCFixupKind> getFixupKind(StringRef Name) const override;
48
49   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
50     const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
51         // This table *must* be in the order that the fixup_* kinds are defined
52         // in AArch64FixupKinds.h.
53         //
54         // Name                           Offset (bits) Size (bits)     Flags
55         {"fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal},
56         {"fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal},
57         {"fixup_aarch64_add_imm12", 10, 12, 0},
58         {"fixup_aarch64_ldst_imm12_scale1", 10, 12, 0},
59         {"fixup_aarch64_ldst_imm12_scale2", 10, 12, 0},
60         {"fixup_aarch64_ldst_imm12_scale4", 10, 12, 0},
61         {"fixup_aarch64_ldst_imm12_scale8", 10, 12, 0},
62         {"fixup_aarch64_ldst_imm12_scale16", 10, 12, 0},
63         {"fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal},
64         {"fixup_aarch64_movw", 5, 16, 0},
65         {"fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal},
66         {"fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal},
67         {"fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal},
68         {"fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal},
69         {"fixup_aarch64_tlsdesc_call", 0, 0, 0}};
70
71     if (Kind < FirstTargetFixupKind)
72       return MCAsmBackend::getFixupKindInfo(Kind);
73
74     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
75            "Invalid kind!");
76     return Infos[Kind - FirstTargetFixupKind];
77   }
78
79   void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
80                   const MCValue &Target, MutableArrayRef<char> Data,
81                   uint64_t Value, bool IsResolved,
82                   const MCSubtargetInfo *STI) const override;
83
84   bool mayNeedRelaxation(const MCInst &Inst,
85                          const MCSubtargetInfo &STI) const override;
86   bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
87                             const MCRelaxableFragment *DF,
88                             const MCAsmLayout &Layout) const override;
89   void relaxInstruction(const MCInst &Inst, const MCSubtargetInfo &STI,
90                         MCInst &Res) const override;
91   bool writeNopData(raw_ostream &OS, uint64_t Count) const override;
92
93   void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
94
95   unsigned getPointerSize() const { return 8; }
96
97   unsigned getFixupKindContainereSizeInBytes(unsigned Kind) const;
98
99   bool shouldForceRelocation(const MCAssembler &Asm, const MCFixup &Fixup,
100                              const MCValue &Target) override;
101 };
102
103 } // end anonymous namespace
104
105 /// The number of bytes the fixup may change.
106 static unsigned getFixupKindNumBytes(unsigned Kind) {
107   switch (Kind) {
108   default:
109     llvm_unreachable("Unknown fixup kind!");
110
111   case FK_NONE:
112   case AArch64::fixup_aarch64_tlsdesc_call:
113     return 0;
114
115   case FK_Data_1:
116     return 1;
117
118   case FK_Data_2:
119   case FK_SecRel_2:
120     return 2;
121
122   case AArch64::fixup_aarch64_movw:
123   case AArch64::fixup_aarch64_pcrel_branch14:
124   case AArch64::fixup_aarch64_add_imm12:
125   case AArch64::fixup_aarch64_ldst_imm12_scale1:
126   case AArch64::fixup_aarch64_ldst_imm12_scale2:
127   case AArch64::fixup_aarch64_ldst_imm12_scale4:
128   case AArch64::fixup_aarch64_ldst_imm12_scale8:
129   case AArch64::fixup_aarch64_ldst_imm12_scale16:
130   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
131   case AArch64::fixup_aarch64_pcrel_branch19:
132     return 3;
133
134   case AArch64::fixup_aarch64_pcrel_adr_imm21:
135   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
136   case AArch64::fixup_aarch64_pcrel_branch26:
137   case AArch64::fixup_aarch64_pcrel_call26:
138   case FK_Data_4:
139   case FK_SecRel_4:
140     return 4;
141
142   case FK_Data_8:
143     return 8;
144   }
145 }
146
147 static unsigned AdrImmBits(unsigned Value) {
148   unsigned lo2 = Value & 0x3;
149   unsigned hi19 = (Value & 0x1ffffc) >> 2;
150   return (hi19 << 5) | (lo2 << 29);
151 }
152
153 static bool valueFitsIntoFixupKind(unsigned Kind, uint64_t Value) {
154   unsigned NumBits;
155   switch(Kind) {
156   case FK_Data_1: NumBits = 8; break;
157   case FK_Data_2: NumBits = 16; break;
158   case FK_Data_4: NumBits = 32; break;
159   case FK_Data_8: NumBits = 64; break;
160   default: return true;
161   }
162   return isUIntN(NumBits, Value) ||
163     isIntN(NumBits, static_cast<int64_t>(Value));
164 }
165
166 static uint64_t adjustFixupValue(const MCFixup &Fixup, const MCValue &Target,
167                                  uint64_t Value, MCContext &Ctx,
168                                  const Triple &TheTriple, bool IsResolved) {
169   int64_t SignedValue = static_cast<int64_t>(Value);
170   switch (Fixup.getTargetKind()) {
171   default:
172     llvm_unreachable("Unknown fixup kind!");
173   case AArch64::fixup_aarch64_pcrel_adr_imm21:
174     if (SignedValue > 2097151 || SignedValue < -2097152)
175       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
176     return AdrImmBits(Value & 0x1fffffULL);
177   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
178     assert(!IsResolved);
179     if (TheTriple.isOSBinFormatCOFF())
180       return AdrImmBits(Value & 0x1fffffULL);
181     return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
182   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
183   case AArch64::fixup_aarch64_pcrel_branch19:
184     // Signed 21-bit immediate
185     if (SignedValue > 2097151 || SignedValue < -2097152)
186       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
187     if (Value & 0x3)
188       Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
189     // Low two bits are not encoded.
190     return (Value >> 2) & 0x7ffff;
191   case AArch64::fixup_aarch64_add_imm12:
192   case AArch64::fixup_aarch64_ldst_imm12_scale1:
193     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
194       Value &= 0xfff;
195     // Unsigned 12-bit immediate
196     if (Value >= 0x1000)
197       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
198     return Value;
199   case AArch64::fixup_aarch64_ldst_imm12_scale2:
200     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
201       Value &= 0xfff;
202     // Unsigned 12-bit immediate which gets multiplied by 2
203     if (Value >= 0x2000)
204       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
205     if (Value & 0x1)
206       Ctx.reportError(Fixup.getLoc(), "fixup must be 2-byte aligned");
207     return Value >> 1;
208   case AArch64::fixup_aarch64_ldst_imm12_scale4:
209     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
210       Value &= 0xfff;
211     // Unsigned 12-bit immediate which gets multiplied by 4
212     if (Value >= 0x4000)
213       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
214     if (Value & 0x3)
215       Ctx.reportError(Fixup.getLoc(), "fixup must be 4-byte aligned");
216     return Value >> 2;
217   case AArch64::fixup_aarch64_ldst_imm12_scale8:
218     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
219       Value &= 0xfff;
220     // Unsigned 12-bit immediate which gets multiplied by 8
221     if (Value >= 0x8000)
222       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
223     if (Value & 0x7)
224       Ctx.reportError(Fixup.getLoc(), "fixup must be 8-byte aligned");
225     return Value >> 3;
226   case AArch64::fixup_aarch64_ldst_imm12_scale16:
227     if (TheTriple.isOSBinFormatCOFF() && !IsResolved)
228       Value &= 0xfff;
229     // Unsigned 12-bit immediate which gets multiplied by 16
230     if (Value >= 0x10000)
231       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
232     if (Value & 0xf)
233       Ctx.reportError(Fixup.getLoc(), "fixup must be 16-byte aligned");
234     return Value >> 4;
235   case AArch64::fixup_aarch64_movw: {
236     AArch64MCExpr::VariantKind RefKind =
237         static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
238     if (AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_ABS &&
239         AArch64MCExpr::getSymbolLoc(RefKind) != AArch64MCExpr::VK_SABS) {
240       // VK_GOTTPREL, VK_TPREL, VK_DTPREL are movw fixups, but they can't
241       // ever be resolved in the assembler.
242       Ctx.reportError(Fixup.getLoc(),
243                       "relocation for a thread-local variable points to an "
244                       "absolute symbol");
245       return Value;
246     }
247
248     if (!IsResolved) {
249       // FIXME: Figure out when this can actually happen, and verify our
250       // behavior.
251       Ctx.reportError(Fixup.getLoc(), "unresolved movw fixup not yet "
252                                       "implemented");
253       return Value;
254     }
255
256     if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
257       switch (AArch64MCExpr::getAddressFrag(RefKind)) {
258       case AArch64MCExpr::VK_G0:
259         break;
260       case AArch64MCExpr::VK_G1:
261         SignedValue = SignedValue >> 16;
262         break;
263       case AArch64MCExpr::VK_G2:
264         SignedValue = SignedValue >> 32;
265         break;
266       case AArch64MCExpr::VK_G3:
267         SignedValue = SignedValue >> 48;
268         break;
269       default:
270         llvm_unreachable("Variant kind doesn't correspond to fixup");
271       }
272
273     } else {
274       switch (AArch64MCExpr::getAddressFrag(RefKind)) {
275       case AArch64MCExpr::VK_G0:
276         break;
277       case AArch64MCExpr::VK_G1:
278         Value = Value >> 16;
279         break;
280       case AArch64MCExpr::VK_G2:
281         Value = Value >> 32;
282         break;
283       case AArch64MCExpr::VK_G3:
284         Value = Value >> 48;
285         break;
286       default:
287         llvm_unreachable("Variant kind doesn't correspond to fixup");
288       }
289     }
290
291     if (RefKind & AArch64MCExpr::VK_NC) {
292       Value &= 0xFFFF;
293     }
294     else if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
295       if (SignedValue > 0xFFFF || SignedValue < -0xFFFF)
296         Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
297
298       // Invert the negative immediate because it will feed into a MOVN.
299       if (SignedValue < 0)
300         SignedValue = ~SignedValue;
301       Value = static_cast<uint64_t>(SignedValue);
302     }
303     else if (Value > 0xFFFF) {
304       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
305     }
306     return Value;
307   }
308   case AArch64::fixup_aarch64_pcrel_branch14:
309     // Signed 16-bit immediate
310     if (SignedValue > 32767 || SignedValue < -32768)
311       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
312     // Low two bits are not encoded (4-byte alignment assumed).
313     if (Value & 0x3)
314       Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
315     return (Value >> 2) & 0x3fff;
316   case AArch64::fixup_aarch64_pcrel_branch26:
317   case AArch64::fixup_aarch64_pcrel_call26:
318     // Signed 28-bit immediate
319     if (SignedValue > 134217727 || SignedValue < -134217728)
320       Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
321     // Low two bits are not encoded (4-byte alignment assumed).
322     if (Value & 0x3)
323       Ctx.reportError(Fixup.getLoc(), "fixup not sufficiently aligned");
324     return (Value >> 2) & 0x3ffffff;
325   case FK_Data_1:
326   case FK_Data_2:
327   case FK_Data_4:
328   case FK_Data_8:
329     if (!valueFitsIntoFixupKind(Fixup.getTargetKind(), Value))
330       Ctx.reportError(Fixup.getLoc(), "fixup value too large for data type!");
331     LLVM_FALLTHROUGH;
332   case FK_NONE:
333   case FK_SecRel_2:
334   case FK_SecRel_4:
335     return Value;
336   }
337 }
338
339 Optional<MCFixupKind> AArch64AsmBackend::getFixupKind(StringRef Name) const {
340   if (TheTriple.isOSBinFormatELF() && Name == "R_AARCH64_NONE")
341     return FK_NONE;
342   return MCAsmBackend::getFixupKind(Name);
343 }
344
345 /// getFixupKindContainereSizeInBytes - The number of bytes of the
346 /// container involved in big endian or 0 if the item is little endian
347 unsigned AArch64AsmBackend::getFixupKindContainereSizeInBytes(unsigned Kind) const {
348   if (Endian == support::little)
349     return 0;
350
351   switch (Kind) {
352   default:
353     llvm_unreachable("Unknown fixup kind!");
354
355   case FK_Data_1:
356     return 1;
357   case FK_Data_2:
358     return 2;
359   case FK_Data_4:
360     return 4;
361   case FK_Data_8:
362     return 8;
363
364   case AArch64::fixup_aarch64_tlsdesc_call:
365   case AArch64::fixup_aarch64_movw:
366   case AArch64::fixup_aarch64_pcrel_branch14:
367   case AArch64::fixup_aarch64_add_imm12:
368   case AArch64::fixup_aarch64_ldst_imm12_scale1:
369   case AArch64::fixup_aarch64_ldst_imm12_scale2:
370   case AArch64::fixup_aarch64_ldst_imm12_scale4:
371   case AArch64::fixup_aarch64_ldst_imm12_scale8:
372   case AArch64::fixup_aarch64_ldst_imm12_scale16:
373   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
374   case AArch64::fixup_aarch64_pcrel_branch19:
375   case AArch64::fixup_aarch64_pcrel_adr_imm21:
376   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
377   case AArch64::fixup_aarch64_pcrel_branch26:
378   case AArch64::fixup_aarch64_pcrel_call26:
379     // Instructions are always little endian
380     return 0;
381   }
382 }
383
384 void AArch64AsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
385                                    const MCValue &Target,
386                                    MutableArrayRef<char> Data, uint64_t Value,
387                                    bool IsResolved,
388                                    const MCSubtargetInfo *STI) const {
389   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
390   if (!Value)
391     return; // Doesn't change encoding.
392   MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
393   MCContext &Ctx = Asm.getContext();
394   int64_t SignedValue = static_cast<int64_t>(Value);
395   // Apply any target-specific value adjustments.
396   Value = adjustFixupValue(Fixup, Target, Value, Ctx, TheTriple, IsResolved);
397
398   // Shift the value into position.
399   Value <<= Info.TargetOffset;
400
401   unsigned Offset = Fixup.getOffset();
402   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
403
404   // Used to point to big endian bytes.
405   unsigned FulleSizeInBytes = getFixupKindContainereSizeInBytes(Fixup.getKind());
406
407   // For each byte of the fragment that the fixup touches, mask in the
408   // bits from the fixup value.
409   if (FulleSizeInBytes == 0) {
410     // Handle as little-endian
411     for (unsigned i = 0; i != NumBytes; ++i) {
412       Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
413     }
414   } else {
415     // Handle as big-endian
416     assert((Offset + FulleSizeInBytes) <= Data.size() && "Invalid fixup size!");
417     assert(NumBytes <= FulleSizeInBytes && "Invalid fixup size!");
418     for (unsigned i = 0; i != NumBytes; ++i) {
419       unsigned Idx = FulleSizeInBytes - 1 - i;
420       Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
421     }
422   }
423
424   // FIXME: getFixupKindInfo() and getFixupKindNumBytes() could be fixed to
425   // handle this more cleanly. This may affect the output of -show-mc-encoding.
426   AArch64MCExpr::VariantKind RefKind =
427     static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
428   if (AArch64MCExpr::getSymbolLoc(RefKind) == AArch64MCExpr::VK_SABS) {
429     // If the immediate is negative, generate MOVN else MOVZ.
430     // (Bit 30 = 0) ==> MOVN, (Bit 30 = 1) ==> MOVZ.
431     if (SignedValue < 0)
432       Data[Offset + 3] &= ~(1 << 6);
433     else
434       Data[Offset + 3] |= (1 << 6);
435   }
436 }
437
438 bool AArch64AsmBackend::mayNeedRelaxation(const MCInst &Inst,
439                                           const MCSubtargetInfo &STI) const {
440   return false;
441 }
442
443 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
444                                              uint64_t Value,
445                                              const MCRelaxableFragment *DF,
446                                              const MCAsmLayout &Layout) const {
447   // FIXME:  This isn't correct for AArch64. Just moving the "generic" logic
448   // into the targets for now.
449   //
450   // Relax if the value is too big for a (signed) i8.
451   return int64_t(Value) != int64_t(int8_t(Value));
452 }
453
454 void AArch64AsmBackend::relaxInstruction(const MCInst &Inst,
455                                          const MCSubtargetInfo &STI,
456                                          MCInst &Res) const {
457   llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
458 }
459
460 bool AArch64AsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
461   // If the count is not 4-byte aligned, we must be writing data into the text
462   // section (otherwise we have unaligned instructions, and thus have far
463   // bigger problems), so just write zeros instead.
464   OS.write_zeros(Count % 4);
465
466   // We are properly aligned, so write NOPs as requested.
467   Count /= 4;
468   for (uint64_t i = 0; i != Count; ++i)
469     support::endian::write<uint32_t>(OS, 0xd503201f, Endian);
470   return true;
471 }
472
473 bool AArch64AsmBackend::shouldForceRelocation(const MCAssembler &Asm,
474                                               const MCFixup &Fixup,
475                                               const MCValue &Target) {
476   unsigned Kind = Fixup.getKind();
477   if (Kind == FK_NONE)
478     return true;
479
480   // The ADRP instruction adds some multiple of 0x1000 to the current PC &
481   // ~0xfff. This means that the required offset to reach a symbol can vary by
482   // up to one step depending on where the ADRP is in memory. For example:
483   //
484   //     ADRP x0, there
485   //  there:
486   //
487   // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
488   // we'll need that as an offset. At any other address "there" will be in the
489   // same page as the ADRP and the instruction should encode 0x0. Assuming the
490   // section isn't 0x1000-aligned, we therefore need to delegate this decision
491   // to the linker -- a relocation!
492   if (Kind == AArch64::fixup_aarch64_pcrel_adrp_imm21)
493     return true;
494
495   AArch64MCExpr::VariantKind RefKind =
496       static_cast<AArch64MCExpr::VariantKind>(Target.getRefKind());
497   AArch64MCExpr::VariantKind SymLoc = AArch64MCExpr::getSymbolLoc(RefKind);
498   // LDR GOT relocations need a relocation
499   if (Kind == AArch64::fixup_aarch64_ldr_pcrel_imm19 &&
500       SymLoc == AArch64MCExpr::VK_GOT)
501     return true;
502   return false;
503 }
504
505 namespace {
506
507 namespace CU {
508
509 /// Compact unwind encoding values.
510 enum CompactUnwindEncodings {
511   /// A "frameless" leaf function, where no non-volatile registers are
512   /// saved. The return remains in LR throughout the function.
513   UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
514
515   /// No compact unwind encoding available. Instead the low 23-bits of
516   /// the compact unwind encoding is the offset of the DWARF FDE in the
517   /// __eh_frame section. This mode is never used in object files. It is only
518   /// generated by the linker in final linked images, which have only DWARF info
519   /// for a function.
520   UNWIND_ARM64_MODE_DWARF = 0x03000000,
521
522   /// This is a standard arm64 prologue where FP/LR are immediately
523   /// pushed on the stack, then SP is copied to FP. If there are any
524   /// non-volatile register saved, they are copied into the stack fame in pairs
525   /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
526   /// five X pairs and four D pairs can be saved, but the memory layout must be
527   /// in register number order.
528   UNWIND_ARM64_MODE_FRAME = 0x04000000,
529
530   /// Frame register pair encodings.
531   UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
532   UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
533   UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
534   UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
535   UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
536   UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
537   UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
538   UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
539   UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800
540 };
541
542 } // end CU namespace
543
544 // FIXME: This should be in a separate file.
545 class DarwinAArch64AsmBackend : public AArch64AsmBackend {
546   const MCRegisterInfo &MRI;
547   bool IsILP32;
548
549   /// Encode compact unwind stack adjustment for frameless functions.
550   /// See UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
551   /// The stack size always needs to be 16 byte aligned.
552   uint32_t encodeStackAdjustment(uint32_t StackSize) const {
553     return (StackSize / 16) << 12;
554   }
555
556 public:
557   DarwinAArch64AsmBackend(const Target &T, const Triple &TT,
558                           const MCRegisterInfo &MRI, bool IsILP32)
559       : AArch64AsmBackend(T, TT, /*IsLittleEndian*/ true), MRI(MRI),
560         IsILP32(IsILP32) {}
561
562   std::unique_ptr<MCObjectTargetWriter>
563   createObjectTargetWriter() const override {
564     if (IsILP32)
565       return createAArch64MachObjectWriter(
566           MachO::CPU_TYPE_ARM64_32, MachO::CPU_SUBTYPE_ARM64_32_V8, true);
567     else
568       return createAArch64MachObjectWriter(MachO::CPU_TYPE_ARM64,
569                                            MachO::CPU_SUBTYPE_ARM64_ALL, false);
570   }
571
572   /// Generate the compact unwind encoding from the CFI directives.
573   uint32_t generateCompactUnwindEncoding(
574                              ArrayRef<MCCFIInstruction> Instrs) const override {
575     if (Instrs.empty())
576       return CU::UNWIND_ARM64_MODE_FRAMELESS;
577
578     bool HasFP = false;
579     unsigned StackSize = 0;
580
581     uint32_t CompactUnwindEncoding = 0;
582     for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
583       const MCCFIInstruction &Inst = Instrs[i];
584
585       switch (Inst.getOperation()) {
586       default:
587         // Cannot handle this directive:  bail out.
588         return CU::UNWIND_ARM64_MODE_DWARF;
589       case MCCFIInstruction::OpDefCfa: {
590         // Defines a frame pointer.
591         unsigned XReg =
592             getXRegFromWReg(*MRI.getLLVMRegNum(Inst.getRegister(), true));
593
594         // Other CFA registers than FP are not supported by compact unwind.
595         // Fallback on DWARF.
596         // FIXME: When opt-remarks are supported in MC, add a remark to notify
597         // the user.
598         if (XReg != AArch64::FP)
599           return CU::UNWIND_ARM64_MODE_DWARF;
600
601         assert(XReg == AArch64::FP && "Invalid frame pointer!");
602         assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
603
604         const MCCFIInstruction &LRPush = Instrs[++i];
605         assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
606                "Link register not pushed!");
607         const MCCFIInstruction &FPPush = Instrs[++i];
608         assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
609                "Frame pointer not pushed!");
610
611         unsigned LRReg = *MRI.getLLVMRegNum(LRPush.getRegister(), true);
612         unsigned FPReg = *MRI.getLLVMRegNum(FPPush.getRegister(), true);
613
614         LRReg = getXRegFromWReg(LRReg);
615         FPReg = getXRegFromWReg(FPReg);
616
617         assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
618                "Pushing invalid registers for frame!");
619
620         // Indicate that the function has a frame.
621         CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAME;
622         HasFP = true;
623         break;
624       }
625       case MCCFIInstruction::OpDefCfaOffset: {
626         assert(StackSize == 0 && "We already have the CFA offset!");
627         StackSize = std::abs(Inst.getOffset());
628         break;
629       }
630       case MCCFIInstruction::OpOffset: {
631         // Registers are saved in pairs. We expect there to be two consecutive
632         // `.cfi_offset' instructions with the appropriate registers specified.
633         unsigned Reg1 = *MRI.getLLVMRegNum(Inst.getRegister(), true);
634         if (i + 1 == e)
635           return CU::UNWIND_ARM64_MODE_DWARF;
636
637         const MCCFIInstruction &Inst2 = Instrs[++i];
638         if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
639           return CU::UNWIND_ARM64_MODE_DWARF;
640         unsigned Reg2 = *MRI.getLLVMRegNum(Inst2.getRegister(), true);
641
642         // N.B. The encodings must be in register number order, and the X
643         // registers before the D registers.
644
645         // X19/X20 pair = 0x00000001,
646         // X21/X22 pair = 0x00000002,
647         // X23/X24 pair = 0x00000004,
648         // X25/X26 pair = 0x00000008,
649         // X27/X28 pair = 0x00000010
650         Reg1 = getXRegFromWReg(Reg1);
651         Reg2 = getXRegFromWReg(Reg2);
652
653         if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
654             (CompactUnwindEncoding & 0xF1E) == 0)
655           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X19_X20_PAIR;
656         else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
657                  (CompactUnwindEncoding & 0xF1C) == 0)
658           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X21_X22_PAIR;
659         else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
660                  (CompactUnwindEncoding & 0xF18) == 0)
661           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X23_X24_PAIR;
662         else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
663                  (CompactUnwindEncoding & 0xF10) == 0)
664           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X25_X26_PAIR;
665         else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
666                  (CompactUnwindEncoding & 0xF00) == 0)
667           CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_X27_X28_PAIR;
668         else {
669           Reg1 = getDRegFromBReg(Reg1);
670           Reg2 = getDRegFromBReg(Reg2);
671
672           // D8/D9 pair   = 0x00000100,
673           // D10/D11 pair = 0x00000200,
674           // D12/D13 pair = 0x00000400,
675           // D14/D15 pair = 0x00000800
676           if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
677               (CompactUnwindEncoding & 0xE00) == 0)
678             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D8_D9_PAIR;
679           else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
680                    (CompactUnwindEncoding & 0xC00) == 0)
681             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D10_D11_PAIR;
682           else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
683                    (CompactUnwindEncoding & 0x800) == 0)
684             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D12_D13_PAIR;
685           else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
686             CompactUnwindEncoding |= CU::UNWIND_ARM64_FRAME_D14_D15_PAIR;
687           else
688             // A pair was pushed which we cannot handle.
689             return CU::UNWIND_ARM64_MODE_DWARF;
690         }
691
692         break;
693       }
694       }
695     }
696
697     if (!HasFP) {
698       // With compact unwind info we can only represent stack adjustments of up
699       // to 65520 bytes.
700       if (StackSize > 65520)
701         return CU::UNWIND_ARM64_MODE_DWARF;
702
703       CompactUnwindEncoding |= CU::UNWIND_ARM64_MODE_FRAMELESS;
704       CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
705     }
706
707     return CompactUnwindEncoding;
708   }
709 };
710
711 } // end anonymous namespace
712
713 namespace {
714
715 class ELFAArch64AsmBackend : public AArch64AsmBackend {
716 public:
717   uint8_t OSABI;
718   bool IsILP32;
719
720   ELFAArch64AsmBackend(const Target &T, const Triple &TT, uint8_t OSABI,
721                        bool IsLittleEndian, bool IsILP32)
722       : AArch64AsmBackend(T, TT, IsLittleEndian), OSABI(OSABI),
723         IsILP32(IsILP32) {}
724
725   std::unique_ptr<MCObjectTargetWriter>
726   createObjectTargetWriter() const override {
727     return createAArch64ELFObjectWriter(OSABI, IsILP32);
728   }
729 };
730
731 }
732
733 namespace {
734 class COFFAArch64AsmBackend : public AArch64AsmBackend {
735 public:
736   COFFAArch64AsmBackend(const Target &T, const Triple &TheTriple)
737       : AArch64AsmBackend(T, TheTriple, /*IsLittleEndian*/ true) {}
738
739   std::unique_ptr<MCObjectTargetWriter>
740   createObjectTargetWriter() const override {
741     return createAArch64WinCOFFObjectWriter();
742   }
743 };
744 }
745
746 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
747                                               const MCSubtargetInfo &STI,
748                                               const MCRegisterInfo &MRI,
749                                               const MCTargetOptions &Options) {
750   const Triple &TheTriple = STI.getTargetTriple();
751   if (TheTriple.isOSBinFormatMachO()) {
752     const bool IsILP32 = TheTriple.isArch32Bit();
753     return new DarwinAArch64AsmBackend(T, TheTriple, MRI, IsILP32);
754   }
755
756   if (TheTriple.isOSBinFormatCOFF())
757     return new COFFAArch64AsmBackend(T, TheTriple);
758
759   assert(TheTriple.isOSBinFormatELF() && "Invalid target");
760
761   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
762   bool IsILP32 = Options.getABIName() == "ilp32";
763   return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/true,
764                                   IsILP32);
765 }
766
767 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
768                                               const MCSubtargetInfo &STI,
769                                               const MCRegisterInfo &MRI,
770                                               const MCTargetOptions &Options) {
771   const Triple &TheTriple = STI.getTargetTriple();
772   assert(TheTriple.isOSBinFormatELF() &&
773          "Big endian is only supported for ELF targets!");
774   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
775   bool IsILP32 = Options.getABIName() == "ilp32";
776   return new ELFAArch64AsmBackend(T, TheTriple, OSABI, /*IsLittleEndian=*/false,
777                                   IsILP32);
778 }