]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp
Merge ^/vendor/libc++/dist up to its last change, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / AMDGPU / AMDGPUCallLowering.cpp
1 //===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "AMDGPUCallLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUISelLowering.h"
18 #include "AMDGPUSubtarget.h"
19 #include "SIISelLowering.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "SIRegisterInfo.h"
22 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/Support/LowLevelTypeImpl.h"
28
29 using namespace llvm;
30
31 namespace {
32
33 struct OutgoingValueHandler : public CallLowering::ValueHandler {
34   OutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
35                        MachineInstrBuilder MIB, CCAssignFn *AssignFn)
36       : ValueHandler(B, MRI, AssignFn), MIB(MIB) {}
37
38   MachineInstrBuilder MIB;
39
40   bool isIncomingArgumentHandler() const override { return false; }
41
42   Register getStackAddress(uint64_t Size, int64_t Offset,
43                            MachinePointerInfo &MPO) override {
44     llvm_unreachable("not implemented");
45   }
46
47   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
48                             MachinePointerInfo &MPO, CCValAssign &VA) override {
49     llvm_unreachable("not implemented");
50   }
51
52   void assignValueToReg(Register ValVReg, Register PhysReg,
53                         CCValAssign &VA) override {
54     Register ExtReg;
55     if (VA.getLocVT().getSizeInBits() < 32) {
56       // 16-bit types are reported as legal for 32-bit registers. We need to
57       // extend and do a 32-bit copy to avoid the verifier complaining about it.
58       ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
59     } else
60       ExtReg = extendRegister(ValVReg, VA);
61
62     MIRBuilder.buildCopy(PhysReg, ExtReg);
63     MIB.addUse(PhysReg, RegState::Implicit);
64   }
65
66   bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
67                  CCValAssign::LocInfo LocInfo,
68                  const CallLowering::ArgInfo &Info,
69                  ISD::ArgFlagsTy Flags,
70                  CCState &State) override {
71     return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
72   }
73 };
74
75 struct IncomingArgHandler : public CallLowering::ValueHandler {
76   uint64_t StackUsed = 0;
77
78   IncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
79                      CCAssignFn *AssignFn)
80     : ValueHandler(B, MRI, AssignFn) {}
81
82   Register getStackAddress(uint64_t Size, int64_t Offset,
83                            MachinePointerInfo &MPO) override {
84     auto &MFI = MIRBuilder.getMF().getFrameInfo();
85     int FI = MFI.CreateFixedObject(Size, Offset, true);
86     MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
87     Register AddrReg = MRI.createGenericVirtualRegister(
88       LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32));
89     MIRBuilder.buildFrameIndex(AddrReg, FI);
90     StackUsed = std::max(StackUsed, Size + Offset);
91     return AddrReg;
92   }
93
94   void assignValueToReg(Register ValVReg, Register PhysReg,
95                         CCValAssign &VA) override {
96     markPhysRegUsed(PhysReg);
97
98     if (VA.getLocVT().getSizeInBits() < 32) {
99       // 16-bit types are reported as legal for 32-bit registers. We need to do
100       // a 32-bit copy, and truncate to avoid the verifier complaining about it.
101       auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
102       MIRBuilder.buildTrunc(ValVReg, Copy);
103       return;
104     }
105
106     switch (VA.getLocInfo()) {
107     case CCValAssign::LocInfo::SExt:
108     case CCValAssign::LocInfo::ZExt:
109     case CCValAssign::LocInfo::AExt: {
110       auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
111       MIRBuilder.buildTrunc(ValVReg, Copy);
112       break;
113     }
114     default:
115       MIRBuilder.buildCopy(ValVReg, PhysReg);
116       break;
117     }
118   }
119
120   void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
121                             MachinePointerInfo &MPO, CCValAssign &VA) override {
122     // FIXME: Get alignment
123     auto MMO = MIRBuilder.getMF().getMachineMemOperand(
124       MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, Size, 1);
125     MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
126   }
127
128   /// How the physical register gets marked varies between formal
129   /// parameters (it's a basic-block live-in), and a call instruction
130   /// (it's an implicit-def of the BL).
131   virtual void markPhysRegUsed(unsigned PhysReg) = 0;
132
133   // FIXME: What is the point of this being a callback?
134   bool isIncomingArgumentHandler() const override { return true; }
135 };
136
137 struct FormalArgHandler : public IncomingArgHandler {
138   FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
139                    CCAssignFn *AssignFn)
140     : IncomingArgHandler(B, MRI, AssignFn) {}
141
142   void markPhysRegUsed(unsigned PhysReg) override {
143     MIRBuilder.getMBB().addLiveIn(PhysReg);
144   }
145 };
146
147 }
148
149 AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
150   : CallLowering(&TLI) {
151 }
152
153 void AMDGPUCallLowering::splitToValueTypes(
154     const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
155     const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv,
156     SplitArgTy PerformArgSplit) const {
157   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
158   LLVMContext &Ctx = OrigArg.Ty->getContext();
159
160   if (OrigArg.Ty->isVoidTy())
161     return;
162
163   SmallVector<EVT, 4> SplitVTs;
164   ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);
165
166   assert(OrigArg.Regs.size() == SplitVTs.size());
167
168   int SplitIdx = 0;
169   for (EVT VT : SplitVTs) {
170     unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
171     Type *Ty = VT.getTypeForEVT(Ctx);
172
173
174
175     if (NumParts == 1) {
176       // No splitting to do, but we want to replace the original type (e.g. [1 x
177       // double] -> double).
178       SplitArgs.emplace_back(OrigArg.Regs[SplitIdx], Ty,
179                              OrigArg.Flags, OrigArg.IsFixed);
180
181       ++SplitIdx;
182       continue;
183     }
184
185     LLT LLTy = getLLTForType(*Ty, DL);
186
187     SmallVector<Register, 8> SplitRegs;
188
189     EVT PartVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);
190     Type *PartTy = PartVT.getTypeForEVT(Ctx);
191     LLT PartLLT = getLLTForType(*PartTy, DL);
192
193     // FIXME: Should we be reporting all of the part registers for a single
194     // argument, and let handleAssignments take care of the repacking?
195     for (unsigned i = 0; i < NumParts; ++i) {
196       Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
197       SplitRegs.push_back(PartReg);
198       SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
199     }
200
201     PerformArgSplit(SplitRegs, LLTy, PartLLT, SplitIdx);
202
203     ++SplitIdx;
204   }
205 }
206
207 // Get the appropriate type to make \p OrigTy \p Factor times bigger.
208 static LLT getMultipleType(LLT OrigTy, int Factor) {
209   if (OrigTy.isVector()) {
210     return LLT::vector(OrigTy.getNumElements() * Factor,
211                        OrigTy.getElementType());
212   }
213
214   return LLT::scalar(OrigTy.getSizeInBits() * Factor);
215 }
216
217 // TODO: Move to generic code
218 static void unpackRegsToOrigType(MachineIRBuilder &B,
219                                  ArrayRef<Register> DstRegs,
220                                  Register SrcReg,
221                                  LLT SrcTy,
222                                  LLT PartTy) {
223   assert(DstRegs.size() > 1 && "Nothing to unpack");
224
225   MachineFunction &MF = B.getMF();
226   MachineRegisterInfo &MRI = MF.getRegInfo();
227
228   const unsigned SrcSize = SrcTy.getSizeInBits();
229   const unsigned PartSize = PartTy.getSizeInBits();
230
231   if (SrcTy.isVector() && !PartTy.isVector() &&
232       PartSize > SrcTy.getElementType().getSizeInBits()) {
233     // Vector was scalarized, and the elements extended.
234     auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(),
235                                                   SrcReg);
236     for (int i = 0, e = DstRegs.size(); i != e; ++i)
237       B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
238     return;
239   }
240
241   if (SrcSize % PartSize == 0) {
242     B.buildUnmerge(DstRegs, SrcReg);
243     return;
244   }
245
246   const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;
247
248   LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
249   auto ImpDef = B.buildUndef(BigTy);
250
251   Register BigReg = MRI.createGenericVirtualRegister(BigTy);
252   B.buildInsert(BigReg, ImpDef.getReg(0), SrcReg, 0).getReg(0);
253
254   int64_t Offset = 0;
255   for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
256     B.buildExtract(DstRegs[i], BigReg, Offset);
257 }
258
259 /// Lower the return value for the already existing \p Ret. This assumes that
260 /// \p B's insertion point is correct.
261 bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
262                                         const Value *Val, ArrayRef<Register> VRegs,
263                                         MachineInstrBuilder &Ret) const {
264   if (!Val)
265     return true;
266
267   auto &MF = B.getMF();
268   const auto &F = MF.getFunction();
269   const DataLayout &DL = MF.getDataLayout();
270
271   CallingConv::ID CC = F.getCallingConv();
272   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
273   MachineRegisterInfo &MRI = MF.getRegInfo();
274
275   ArgInfo OrigRetInfo(VRegs, Val->getType());
276   setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
277   SmallVector<ArgInfo, 4> SplitRetInfos;
278
279   splitToValueTypes(
280     OrigRetInfo, SplitRetInfos, DL, MRI, CC,
281     [&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
282       unpackRegsToOrigType(B, Regs, VRegs[VTSplitIdx], LLTy, PartLLT);
283     });
284
285   CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
286
287   OutgoingValueHandler RetHandler(B, MF.getRegInfo(), Ret, AssignFn);
288   return handleAssignments(B, SplitRetInfos, RetHandler);
289 }
290
291 bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
292                                      const Value *Val,
293                                      ArrayRef<Register> VRegs) const {
294
295   MachineFunction &MF = B.getMF();
296   MachineRegisterInfo &MRI = MF.getRegInfo();
297   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
298   MFI->setIfReturnsVoid(!Val);
299
300   assert(!Val == VRegs.empty() && "Return value without a vreg");
301
302   CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
303   const bool IsShader = AMDGPU::isShader(CC);
304   const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
305                          AMDGPU::isKernel(CC);
306   if (IsWaveEnd) {
307     B.buildInstr(AMDGPU::S_ENDPGM)
308       .addImm(0);
309     return true;
310   }
311
312   auto const &ST = B.getMF().getSubtarget<GCNSubtarget>();
313
314   unsigned ReturnOpc =
315       IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;
316
317   auto Ret = B.buildInstrNoInsert(ReturnOpc);
318   Register ReturnAddrVReg;
319   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
320     ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
321     Ret.addUse(ReturnAddrVReg);
322   }
323
324   if (!lowerReturnVal(B, Val, VRegs, Ret))
325     return false;
326
327   if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
328     const SIRegisterInfo *TRI = ST.getRegisterInfo();
329     Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
330                                          &AMDGPU::SGPR_64RegClass);
331     B.buildCopy(ReturnAddrVReg, LiveInReturn);
332   }
333
334   // TODO: Handle CalleeSavedRegsViaCopy.
335
336   B.insertInstr(Ret);
337   return true;
338 }
339
340 Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &B,
341                                                Type *ParamTy,
342                                                uint64_t Offset) const {
343
344   MachineFunction &MF = B.getMF();
345   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
346   MachineRegisterInfo &MRI = MF.getRegInfo();
347   const Function &F = MF.getFunction();
348   const DataLayout &DL = F.getParent()->getDataLayout();
349   PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
350   LLT PtrType = getLLTForType(*PtrTy, DL);
351   Register DstReg = MRI.createGenericVirtualRegister(PtrType);
352   Register KernArgSegmentPtr =
353     MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
354   Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
355
356   Register OffsetReg = MRI.createGenericVirtualRegister(LLT::scalar(64));
357   B.buildConstant(OffsetReg, Offset);
358
359   B.buildGEP(DstReg, KernArgSegmentVReg, OffsetReg);
360
361   return DstReg;
362 }
363
364 void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B,
365                                         Type *ParamTy, uint64_t Offset,
366                                         unsigned Align,
367                                         Register DstReg) const {
368   MachineFunction &MF = B.getMF();
369   const Function &F = MF.getFunction();
370   const DataLayout &DL = F.getParent()->getDataLayout();
371   PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
372   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
373   unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
374   Register PtrReg = lowerParameterPtr(B, ParamTy, Offset);
375
376   MachineMemOperand *MMO =
377       MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad |
378                                        MachineMemOperand::MODereferenceable |
379                                        MachineMemOperand::MOInvariant,
380                                        TypeSize, Align);
381
382   B.buildLoad(DstReg, PtrReg, *MMO);
383 }
384
385 // Allocate special inputs passed in user SGPRs.
386 static void allocateHSAUserSGPRs(CCState &CCInfo,
387                                  MachineIRBuilder &B,
388                                  MachineFunction &MF,
389                                  const SIRegisterInfo &TRI,
390                                  SIMachineFunctionInfo &Info) {
391   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
392   if (Info.hasPrivateSegmentBuffer()) {
393     unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
394     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
395     CCInfo.AllocateReg(PrivateSegmentBufferReg);
396   }
397
398   if (Info.hasDispatchPtr()) {
399     unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
400     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
401     CCInfo.AllocateReg(DispatchPtrReg);
402   }
403
404   if (Info.hasQueuePtr()) {
405     unsigned QueuePtrReg = Info.addQueuePtr(TRI);
406     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
407     CCInfo.AllocateReg(QueuePtrReg);
408   }
409
410   if (Info.hasKernargSegmentPtr()) {
411     MachineRegisterInfo &MRI = MF.getRegInfo();
412     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
413     const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
414     Register VReg = MRI.createGenericVirtualRegister(P4);
415     MRI.addLiveIn(InputPtrReg, VReg);
416     B.getMBB().addLiveIn(InputPtrReg);
417     B.buildCopy(VReg, InputPtrReg);
418     CCInfo.AllocateReg(InputPtrReg);
419   }
420
421   if (Info.hasDispatchID()) {
422     unsigned DispatchIDReg = Info.addDispatchID(TRI);
423     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
424     CCInfo.AllocateReg(DispatchIDReg);
425   }
426
427   if (Info.hasFlatScratchInit()) {
428     unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
429     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
430     CCInfo.AllocateReg(FlatScratchInitReg);
431   }
432
433   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
434   // these from the dispatch pointer.
435 }
436
437 bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
438     MachineIRBuilder &B, const Function &F,
439     ArrayRef<ArrayRef<Register>> VRegs) const {
440   MachineFunction &MF = B.getMF();
441   const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
442   MachineRegisterInfo &MRI = MF.getRegInfo();
443   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
444   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
445   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
446
447   const DataLayout &DL = F.getParent()->getDataLayout();
448
449   SmallVector<CCValAssign, 16> ArgLocs;
450   CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
451
452   allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
453
454   unsigned i = 0;
455   const unsigned KernArgBaseAlign = 16;
456   const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
457   uint64_t ExplicitArgOffset = 0;
458
459   // TODO: Align down to dword alignment and extract bits for extending loads.
460   for (auto &Arg : F.args()) {
461     Type *ArgTy = Arg.getType();
462     unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
463     if (AllocSize == 0)
464       continue;
465
466     unsigned ABIAlign = DL.getABITypeAlignment(ArgTy);
467
468     uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
469     ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
470
471     ArrayRef<Register> OrigArgRegs = VRegs[i];
472     Register ArgReg =
473       OrigArgRegs.size() == 1
474       ? OrigArgRegs[0]
475       : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));
476     unsigned Align = MinAlign(KernArgBaseAlign, ArgOffset);
477     ArgOffset = alignTo(ArgOffset, DL.getABITypeAlignment(ArgTy));
478     lowerParameter(B, ArgTy, ArgOffset, Align, ArgReg);
479     if (OrigArgRegs.size() > 1)
480       unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
481     ++i;
482   }
483
484   TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
485   TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
486   return true;
487 }
488
489 // TODO: Move this to generic code
490 static void packSplitRegsToOrigType(MachineIRBuilder &B,
491                                     ArrayRef<Register> OrigRegs,
492                                     ArrayRef<Register> Regs,
493                                     LLT LLTy,
494                                     LLT PartLLT) {
495   if (!LLTy.isVector() && !PartLLT.isVector()) {
496     B.buildMerge(OrigRegs[0], Regs);
497     return;
498   }
499
500   if (LLTy.isVector() && PartLLT.isVector()) {
501     assert(LLTy.getElementType() == PartLLT.getElementType());
502
503     int DstElts = LLTy.getNumElements();
504     int PartElts = PartLLT.getNumElements();
505     if (DstElts % PartElts == 0)
506       B.buildConcatVectors(OrigRegs[0], Regs);
507     else {
508       // Deal with v3s16 split into v2s16
509       assert(PartElts == 2 && DstElts % 2 != 0);
510       int RoundedElts = PartElts * ((DstElts + PartElts - 1) / PartElts);
511
512       LLT RoundedDestTy = LLT::vector(RoundedElts, PartLLT.getElementType());
513       auto RoundedConcat = B.buildConcatVectors(RoundedDestTy, Regs);
514       B.buildExtract(OrigRegs[0], RoundedConcat, 0);
515     }
516
517     return;
518   }
519
520   assert(LLTy.isVector() && !PartLLT.isVector());
521
522   LLT DstEltTy = LLTy.getElementType();
523   if (DstEltTy == PartLLT) {
524     // Vector was trivially scalarized.
525     B.buildBuildVector(OrigRegs[0], Regs);
526   } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
527     // Deal with vector with 64-bit elements decomposed to 32-bit
528     // registers. Need to create intermediate 64-bit elements.
529     SmallVector<Register, 8> EltMerges;
530     int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();
531
532     assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);
533
534     for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I)  {
535       auto Merge = B.buildMerge(DstEltTy,
536                                          Regs.take_front(PartsPerElt));
537       EltMerges.push_back(Merge.getReg(0));
538       Regs = Regs.drop_front(PartsPerElt);
539     }
540
541     B.buildBuildVector(OrigRegs[0], EltMerges);
542   } else {
543     // Vector was split, and elements promoted to a wider type.
544     LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
545     auto BV = B.buildBuildVector(BVType, Regs);
546     B.buildTrunc(OrigRegs[0], BV);
547   }
548 }
549
550 bool AMDGPUCallLowering::lowerFormalArguments(
551     MachineIRBuilder &B, const Function &F,
552     ArrayRef<ArrayRef<Register>> VRegs) const {
553   CallingConv::ID CC = F.getCallingConv();
554
555   // The infrastructure for normal calling convention lowering is essentially
556   // useless for kernels. We want to avoid any kind of legalization or argument
557   // splitting.
558   if (CC == CallingConv::AMDGPU_KERNEL)
559     return lowerFormalArgumentsKernel(B, F, VRegs);
560
561   const bool IsShader = AMDGPU::isShader(CC);
562   const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
563
564   MachineFunction &MF = B.getMF();
565   MachineBasicBlock &MBB = B.getMBB();
566   MachineRegisterInfo &MRI = MF.getRegInfo();
567   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
568   const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
569   const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
570   const DataLayout &DL = F.getParent()->getDataLayout();
571
572
573   SmallVector<CCValAssign, 16> ArgLocs;
574   CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
575
576   if (!IsEntryFunc) {
577     Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
578     Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
579                                          &AMDGPU::SGPR_64RegClass);
580     MBB.addLiveIn(ReturnAddrReg);
581     B.buildCopy(LiveInReturn, ReturnAddrReg);
582   }
583
584   if (Info->hasImplicitBufferPtr()) {
585     Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
586     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
587     CCInfo.AllocateReg(ImplicitBufferPtrReg);
588   }
589
590
591   SmallVector<ArgInfo, 32> SplitArgs;
592   unsigned Idx = 0;
593   unsigned PSInputNum = 0;
594
595   for (auto &Arg : F.args()) {
596     if (DL.getTypeStoreSize(Arg.getType()) == 0)
597       continue;
598
599     const bool InReg = Arg.hasAttribute(Attribute::InReg);
600
601     // SGPR arguments to functions not implemented.
602     if (!IsShader && InReg)
603       return false;
604
605     if (Arg.hasAttribute(Attribute::SwiftSelf) ||
606         Arg.hasAttribute(Attribute::SwiftError) ||
607         Arg.hasAttribute(Attribute::Nest))
608       return false;
609
610     if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
611       const bool ArgUsed = !Arg.use_empty();
612       bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
613
614       if (!SkipArg) {
615         Info->markPSInputAllocated(PSInputNum);
616         if (ArgUsed)
617           Info->markPSInputEnabled(PSInputNum);
618       }
619
620       ++PSInputNum;
621
622       if (SkipArg) {
623         for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
624           B.buildUndef(VRegs[Idx][I]);
625
626         ++Idx;
627         continue;
628       }
629     }
630
631     ArgInfo OrigArg(VRegs[Idx], Arg.getType());
632     setArgFlags(OrigArg, Idx + AttributeList::FirstArgIndex, DL, F);
633
634     splitToValueTypes(
635       OrigArg, SplitArgs, DL, MRI, CC,
636       // FIXME: We should probably be passing multiple registers to
637       // handleAssignments to do this
638       [&](ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT, int VTSplitIdx) {
639         packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
640                                 LLTy, PartLLT);
641       });
642
643     ++Idx;
644   }
645
646   // At least one interpolation mode must be enabled or else the GPU will
647   // hang.
648   //
649   // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
650   // set PSInputAddr, the user wants to enable some bits after the compilation
651   // based on run-time states. Since we can't know what the final PSInputEna
652   // will look like, so we shouldn't do anything here and the user should take
653   // responsibility for the correct programming.
654   //
655   // Otherwise, the following restrictions apply:
656   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
657   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
658   //   enabled too.
659   if (CC == CallingConv::AMDGPU_PS) {
660     if ((Info->getPSInputAddr() & 0x7F) == 0 ||
661         ((Info->getPSInputAddr() & 0xF) == 0 &&
662          Info->isPSInputAllocated(11))) {
663       CCInfo.AllocateReg(AMDGPU::VGPR0);
664       CCInfo.AllocateReg(AMDGPU::VGPR1);
665       Info->markPSInputAllocated(0);
666       Info->markPSInputEnabled(0);
667     }
668
669     if (Subtarget.isAmdPalOS()) {
670       // For isAmdPalOS, the user does not enable some bits after compilation
671       // based on run-time states; the register values being generated here are
672       // the final ones set in hardware. Therefore we need to apply the
673       // workaround to PSInputAddr and PSInputEnable together.  (The case where
674       // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
675       // set up an input arg for a particular interpolation mode, but nothing
676       // uses that input arg. Really we should have an earlier pass that removes
677       // such an arg.)
678       unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
679       if ((PsInputBits & 0x7F) == 0 ||
680           ((PsInputBits & 0xF) == 0 &&
681            (PsInputBits >> 11 & 1)))
682         Info->markPSInputEnabled(
683           countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
684     }
685   }
686
687   const SITargetLowering &TLI = *getTLI<SITargetLowering>();
688   CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
689
690   if (!MBB.empty())
691     B.setInstr(*MBB.begin());
692
693   FormalArgHandler Handler(B, MRI, AssignFn);
694   if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
695     return false;
696
697   if (!IsEntryFunc) {
698     // Special inputs come after user arguments.
699     TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
700   }
701
702   // Start adding system SGPRs.
703   if (IsEntryFunc) {
704     TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
705   } else {
706     CCInfo.AllocateReg(Info->getScratchRSrcReg());
707     CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
708     CCInfo.AllocateReg(Info->getFrameOffsetReg());
709     TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
710   }
711
712   // Move back to the end of the basic block.
713   B.setMBB(MBB);
714
715   return true;
716 }