]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUISelDAGToDAG.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / AMDGPU / AMDGPUISelDAGToDAG.cpp
1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AMDGPU.h"
15 #include "AMDGPUArgumentUsageInfo.h"
16 #include "AMDGPUISelLowering.h" // For AMDGPUISD
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUPerfHintAnalysis.h"
19 #include "AMDGPURegisterInfo.h"
20 #include "AMDGPUSubtarget.h"
21 #include "AMDGPUTargetMachine.h"
22 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
23 #include "SIDefines.h"
24 #include "SIISelLowering.h"
25 #include "SIInstrInfo.h"
26 #include "SIMachineFunctionInfo.h"
27 #include "SIRegisterInfo.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGISel.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/InitializePasses.h"
43 #ifdef EXPENSIVE_CHECKS
44 #include "llvm/IR/Dominators.h"
45 #endif
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include <cassert>
54 #include <cstdint>
55 #include <new>
56 #include <vector>
57
58 #define DEBUG_TYPE "isel"
59
60 using namespace llvm;
61
62 namespace llvm {
63
64 class R600InstrInfo;
65
66 } // end namespace llvm
67
68 //===----------------------------------------------------------------------===//
69 // Instruction Selector Implementation
70 //===----------------------------------------------------------------------===//
71
72 namespace {
73
74 static bool isNullConstantOrUndef(SDValue V) {
75   if (V.isUndef())
76     return true;
77
78   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
79   return Const != nullptr && Const->isNullValue();
80 }
81
82 static bool getConstantValue(SDValue N, uint32_t &Out) {
83   // This is only used for packed vectors, where ussing 0 for undef should
84   // always be good.
85   if (N.isUndef()) {
86     Out = 0;
87     return true;
88   }
89
90   if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
91     Out = C->getAPIntValue().getSExtValue();
92     return true;
93   }
94
95   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
96     Out = C->getValueAPF().bitcastToAPInt().getSExtValue();
97     return true;
98   }
99
100   return false;
101 }
102
103 // TODO: Handle undef as zero
104 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG,
105                                  bool Negate = false) {
106   assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2);
107   uint32_t LHSVal, RHSVal;
108   if (getConstantValue(N->getOperand(0), LHSVal) &&
109       getConstantValue(N->getOperand(1), RHSVal)) {
110     SDLoc SL(N);
111     uint32_t K = Negate ?
112       (-LHSVal & 0xffff) | (-RHSVal << 16) :
113       (LHSVal & 0xffff) | (RHSVal << 16);
114     return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0),
115                               DAG.getTargetConstant(K, SL, MVT::i32));
116   }
117
118   return nullptr;
119 }
120
121 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) {
122   return packConstantV2I16(N, DAG, true);
123 }
124
125 /// AMDGPU specific code to select AMDGPU machine instructions for
126 /// SelectionDAG operations.
127 class AMDGPUDAGToDAGISel : public SelectionDAGISel {
128   // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
129   // make the right decision when generating code for different targets.
130   const GCNSubtarget *Subtarget;
131
132   // Default FP mode for the current function.
133   AMDGPU::SIModeRegisterDefaults Mode;
134
135   bool EnableLateStructurizeCFG;
136
137 public:
138   explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
139                               CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
140     : SelectionDAGISel(*TM, OptLevel) {
141     EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
142   }
143   ~AMDGPUDAGToDAGISel() override = default;
144
145   void getAnalysisUsage(AnalysisUsage &AU) const override {
146     AU.addRequired<AMDGPUArgumentUsageInfo>();
147     AU.addRequired<LegacyDivergenceAnalysis>();
148 #ifdef EXPENSIVE_CHECKS
149     AU.addRequired<DominatorTreeWrapperPass>();
150     AU.addRequired<LoopInfoWrapperPass>();
151 #endif
152     SelectionDAGISel::getAnalysisUsage(AU);
153   }
154
155   bool matchLoadD16FromBuildVector(SDNode *N) const;
156
157   bool runOnMachineFunction(MachineFunction &MF) override;
158   void PreprocessISelDAG() override;
159   void Select(SDNode *N) override;
160   StringRef getPassName() const override;
161   void PostprocessISelDAG() override;
162
163 protected:
164   void SelectBuildVector(SDNode *N, unsigned RegClassID);
165
166 private:
167   std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
168   bool isNoNanSrc(SDValue N) const;
169   bool isInlineImmediate(const SDNode *N, bool Negated = false) const;
170   bool isNegInlineImmediate(const SDNode *N) const {
171     return isInlineImmediate(N, true);
172   }
173
174   bool isInlineImmediate16(int64_t Imm) const {
175     return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm());
176   }
177
178   bool isInlineImmediate32(int64_t Imm) const {
179     return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm());
180   }
181
182   bool isInlineImmediate64(int64_t Imm) const {
183     return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm());
184   }
185
186   bool isInlineImmediate(const APFloat &Imm) const {
187     return Subtarget->getInstrInfo()->isInlineConstant(Imm);
188   }
189
190   bool isVGPRImm(const SDNode *N) const;
191   bool isUniformLoad(const SDNode *N) const;
192   bool isUniformBr(const SDNode *N) const;
193
194   MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;
195
196   SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const;
197   SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
198   SDNode *glueCopyToM0LDSInit(SDNode *N) const;
199
200   const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
201   virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
202   virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
203   bool isDSOffsetLegal(SDValue Base, unsigned Offset,
204                        unsigned OffsetBits) const;
205   bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
206   bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
207                                  SDValue &Offset1) const;
208   bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
209                    SDValue &SOffset, SDValue &Offset, SDValue &Offen,
210                    SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
211                    SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
212   bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
213                          SDValue &SOffset, SDValue &Offset, SDValue &GLC,
214                          SDValue &SLC, SDValue &TFE, SDValue &DLC,
215                          SDValue &SWZ) const;
216   bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
217                          SDValue &VAddr, SDValue &SOffset, SDValue &Offset,
218                          SDValue &SLC) const;
219   bool SelectMUBUFScratchOffen(SDNode *Parent,
220                                SDValue Addr, SDValue &RSrc, SDValue &VAddr,
221                                SDValue &SOffset, SDValue &ImmOffset) const;
222   bool SelectMUBUFScratchOffset(SDNode *Parent,
223                                 SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
224                                 SDValue &Offset) const;
225
226   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
227                          SDValue &Offset, SDValue &GLC, SDValue &SLC,
228                          SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
229   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
230                          SDValue &Offset, SDValue &SLC) const;
231   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
232                          SDValue &Offset) const;
233
234   template <bool IsSigned>
235   bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
236                         SDValue &Offset, SDValue &SLC) const;
237   bool SelectFlatAtomic(SDNode *N, SDValue Addr, SDValue &VAddr,
238                         SDValue &Offset, SDValue &SLC) const;
239   bool SelectFlatAtomicSigned(SDNode *N, SDValue Addr, SDValue &VAddr,
240                               SDValue &Offset, SDValue &SLC) const;
241
242   bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
243                         bool &Imm) const;
244   SDValue Expand32BitAddress(SDValue Addr) const;
245   bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
246                   bool &Imm) const;
247   bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
248   bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
249   bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
250   bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
251   bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
252   bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;
253
254   bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
255   bool SelectVOP3Mods_f32(SDValue In, SDValue &Src, SDValue &SrcMods) const;
256   bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const;
257   bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
258   bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
259   bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
260                        SDValue &Clamp, SDValue &Omod) const;
261   bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
262                          SDValue &Clamp, SDValue &Omod) const;
263
264   bool SelectVOP3OMods(SDValue In, SDValue &Src,
265                        SDValue &Clamp, SDValue &Omod) const;
266
267   bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
268   bool SelectVOP3PMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
269                         SDValue &Clamp) const;
270
271   bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;
272   bool SelectVOP3OpSel0(SDValue In, SDValue &Src, SDValue &SrcMods,
273                         SDValue &Clamp) const;
274
275   bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
276   bool SelectVOP3OpSelMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
277                             SDValue &Clamp) const;
278   bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
279   bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
280
281   SDValue getHi16Elt(SDValue In) const;
282
283   SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const;
284
285   void SelectADD_SUB_I64(SDNode *N);
286   void SelectAddcSubb(SDNode *N);
287   void SelectUADDO_USUBO(SDNode *N);
288   void SelectDIV_SCALE(SDNode *N);
289   void SelectDIV_FMAS(SDNode *N);
290   void SelectMAD_64_32(SDNode *N);
291   void SelectFMA_W_CHAIN(SDNode *N);
292   void SelectFMUL_W_CHAIN(SDNode *N);
293
294   SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
295                    uint32_t Offset, uint32_t Width);
296   void SelectS_BFEFromShifts(SDNode *N);
297   void SelectS_BFE(SDNode *N);
298   bool isCBranchSCC(const SDNode *N) const;
299   void SelectBRCOND(SDNode *N);
300   void SelectFMAD_FMA(SDNode *N);
301   void SelectATOMIC_CMP_SWAP(SDNode *N);
302   void SelectDSAppendConsume(SDNode *N, unsigned IntrID);
303   void SelectDS_GWS(SDNode *N, unsigned IntrID);
304   void SelectINTRINSIC_W_CHAIN(SDNode *N);
305   void SelectINTRINSIC_WO_CHAIN(SDNode *N);
306   void SelectINTRINSIC_VOID(SDNode *N);
307
308 protected:
309   // Include the pieces autogenerated from the target description.
310 #include "AMDGPUGenDAGISel.inc"
311 };
312
313 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
314   const R600Subtarget *Subtarget;
315
316   bool isConstantLoad(const MemSDNode *N, int cbID) const;
317   bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
318   bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
319                                        SDValue& Offset);
320 public:
321   explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
322       AMDGPUDAGToDAGISel(TM, OptLevel) {}
323
324   void Select(SDNode *N) override;
325
326   bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
327                           SDValue &Offset) override;
328   bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
329                           SDValue &Offset) override;
330
331   bool runOnMachineFunction(MachineFunction &MF) override;
332
333   void PreprocessISelDAG() override {}
334
335 protected:
336   // Include the pieces autogenerated from the target description.
337 #include "R600GenDAGISel.inc"
338 };
339
340 static SDValue stripBitcast(SDValue Val) {
341   return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
342 }
343
344 // Figure out if this is really an extract of the high 16-bits of a dword.
345 static bool isExtractHiElt(SDValue In, SDValue &Out) {
346   In = stripBitcast(In);
347   if (In.getOpcode() != ISD::TRUNCATE)
348     return false;
349
350   SDValue Srl = In.getOperand(0);
351   if (Srl.getOpcode() == ISD::SRL) {
352     if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
353       if (ShiftAmt->getZExtValue() == 16) {
354         Out = stripBitcast(Srl.getOperand(0));
355         return true;
356       }
357     }
358   }
359
360   return false;
361 }
362
363 // Look through operations that obscure just looking at the low 16-bits of the
364 // same register.
365 static SDValue stripExtractLoElt(SDValue In) {
366   if (In.getOpcode() == ISD::TRUNCATE) {
367     SDValue Src = In.getOperand(0);
368     if (Src.getValueType().getSizeInBits() == 32)
369       return stripBitcast(Src);
370   }
371
372   return In;
373 }
374
375 }  // end anonymous namespace
376
377 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
378                       "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
379 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
380 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
381 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
382 #ifdef EXPENSIVE_CHECKS
383 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
384 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
385 #endif
386 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
387                     "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
388
389 /// This pass converts a legalized DAG into a AMDGPU-specific
390 // DAG, ready for instruction scheduling.
391 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
392                                         CodeGenOpt::Level OptLevel) {
393   return new AMDGPUDAGToDAGISel(TM, OptLevel);
394 }
395
396 /// This pass converts a legalized DAG into a R600-specific
397 // DAG, ready for instruction scheduling.
398 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
399                                       CodeGenOpt::Level OptLevel) {
400   return new R600DAGToDAGISel(TM, OptLevel);
401 }
402
403 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
404 #ifdef EXPENSIVE_CHECKS
405   DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
406   LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
407   for (auto &L : LI->getLoopsInPreorder()) {
408     assert(L->isLCSSAForm(DT));
409   }
410 #endif
411   Subtarget = &MF.getSubtarget<GCNSubtarget>();
412   Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction(), *Subtarget);
413   return SelectionDAGISel::runOnMachineFunction(MF);
414 }
415
416 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
417   assert(Subtarget->d16PreservesUnusedBits());
418   MVT VT = N->getValueType(0).getSimpleVT();
419   if (VT != MVT::v2i16 && VT != MVT::v2f16)
420     return false;
421
422   SDValue Lo = N->getOperand(0);
423   SDValue Hi = N->getOperand(1);
424
425   LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
426
427   // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
428   // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
429   // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
430
431   // Need to check for possible indirect dependencies on the other half of the
432   // vector to avoid introducing a cycle.
433   if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
434     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
435
436     SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
437     SDValue Ops[] = {
438       LdHi->getChain(), LdHi->getBasePtr(), TiedIn
439     };
440
441     unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
442     if (LdHi->getMemoryVT() == MVT::i8) {
443       LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
444         AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
445     } else {
446       assert(LdHi->getMemoryVT() == MVT::i16);
447     }
448
449     SDValue NewLoadHi =
450       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
451                                   Ops, LdHi->getMemoryVT(),
452                                   LdHi->getMemOperand());
453
454     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
455     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
456     return true;
457   }
458
459   // build_vector (load ptr), hi -> load_d16_lo ptr, hi
460   // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
461   // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
462   LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
463   if (LdLo && Lo.hasOneUse()) {
464     SDValue TiedIn = getHi16Elt(Hi);
465     if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
466       return false;
467
468     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
469     unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
470     if (LdLo->getMemoryVT() == MVT::i8) {
471       LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
472         AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
473     } else {
474       assert(LdLo->getMemoryVT() == MVT::i16);
475     }
476
477     TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
478
479     SDValue Ops[] = {
480       LdLo->getChain(), LdLo->getBasePtr(), TiedIn
481     };
482
483     SDValue NewLoadLo =
484       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
485                                   Ops, LdLo->getMemoryVT(),
486                                   LdLo->getMemOperand());
487
488     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
489     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
490     return true;
491   }
492
493   return false;
494 }
495
496 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
497   if (!Subtarget->d16PreservesUnusedBits())
498     return;
499
500   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
501
502   bool MadeChange = false;
503   while (Position != CurDAG->allnodes_begin()) {
504     SDNode *N = &*--Position;
505     if (N->use_empty())
506       continue;
507
508     switch (N->getOpcode()) {
509     case ISD::BUILD_VECTOR:
510       MadeChange |= matchLoadD16FromBuildVector(N);
511       break;
512     default:
513       break;
514     }
515   }
516
517   if (MadeChange) {
518     CurDAG->RemoveDeadNodes();
519     LLVM_DEBUG(dbgs() << "After PreProcess:\n";
520                CurDAG->dump(););
521   }
522 }
523
524 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
525   if (TM.Options.NoNaNsFPMath)
526     return true;
527
528   // TODO: Move into isKnownNeverNaN
529   if (N->getFlags().isDefined())
530     return N->getFlags().hasNoNaNs();
531
532   return CurDAG->isKnownNeverNaN(N);
533 }
534
535 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
536                                            bool Negated) const {
537   if (N->isUndef())
538     return true;
539
540   const SIInstrInfo *TII = Subtarget->getInstrInfo();
541   if (Negated) {
542     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
543       return TII->isInlineConstant(-C->getAPIntValue());
544
545     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
546       return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
547
548   } else {
549     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
550       return TII->isInlineConstant(C->getAPIntValue());
551
552     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
553       return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
554   }
555
556   return false;
557 }
558
559 /// Determine the register class for \p OpNo
560 /// \returns The register class of the virtual register that will be used for
561 /// the given operand number \OpNo or NULL if the register class cannot be
562 /// determined.
563 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
564                                                           unsigned OpNo) const {
565   if (!N->isMachineOpcode()) {
566     if (N->getOpcode() == ISD::CopyToReg) {
567       unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
568       if (Register::isVirtualRegister(Reg)) {
569         MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
570         return MRI.getRegClass(Reg);
571       }
572
573       const SIRegisterInfo *TRI
574         = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
575       return TRI->getPhysRegClass(Reg);
576     }
577
578     return nullptr;
579   }
580
581   switch (N->getMachineOpcode()) {
582   default: {
583     const MCInstrDesc &Desc =
584         Subtarget->getInstrInfo()->get(N->getMachineOpcode());
585     unsigned OpIdx = Desc.getNumDefs() + OpNo;
586     if (OpIdx >= Desc.getNumOperands())
587       return nullptr;
588     int RegClass = Desc.OpInfo[OpIdx].RegClass;
589     if (RegClass == -1)
590       return nullptr;
591
592     return Subtarget->getRegisterInfo()->getRegClass(RegClass);
593   }
594   case AMDGPU::REG_SEQUENCE: {
595     unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
596     const TargetRegisterClass *SuperRC =
597         Subtarget->getRegisterInfo()->getRegClass(RCID);
598
599     SDValue SubRegOp = N->getOperand(OpNo + 1);
600     unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
601     return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
602                                                               SubRegIdx);
603   }
604   }
605 }
606
607 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
608                                          SDValue Glue) const {
609   SmallVector <SDValue, 8> Ops;
610   Ops.push_back(NewChain); // Replace the chain.
611   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
612     Ops.push_back(N->getOperand(i));
613
614   Ops.push_back(Glue);
615   return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
616 }
617
618 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
619   const SITargetLowering& Lowering =
620     *static_cast<const SITargetLowering*>(getTargetLowering());
621
622   assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
623
624   SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
625   return glueCopyToOp(N, M0, M0.getValue(1));
626 }
627
628 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
629   unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
630   if (AS == AMDGPUAS::LOCAL_ADDRESS) {
631     if (Subtarget->ldsRequiresM0Init())
632       return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
633   } else if (AS == AMDGPUAS::REGION_ADDRESS) {
634     MachineFunction &MF = CurDAG->getMachineFunction();
635     unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
636     return
637         glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
638   }
639   return N;
640 }
641
642 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
643                                                   EVT VT) const {
644   SDNode *Lo = CurDAG->getMachineNode(
645       AMDGPU::S_MOV_B32, DL, MVT::i32,
646       CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
647   SDNode *Hi =
648       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
649                              CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
650   const SDValue Ops[] = {
651       CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
652       SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
653       SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
654
655   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
656 }
657
658 static unsigned selectSGPRVectorRegClassID(unsigned NumVectorElts) {
659   switch (NumVectorElts) {
660   case 1:
661     return AMDGPU::SReg_32RegClassID;
662   case 2:
663     return AMDGPU::SReg_64RegClassID;
664   case 3:
665     return AMDGPU::SGPR_96RegClassID;
666   case 4:
667     return AMDGPU::SGPR_128RegClassID;
668   case 5:
669     return AMDGPU::SGPR_160RegClassID;
670   case 8:
671     return AMDGPU::SReg_256RegClassID;
672   case 16:
673     return AMDGPU::SReg_512RegClassID;
674   case 32:
675     return AMDGPU::SReg_1024RegClassID;
676   }
677
678   llvm_unreachable("invalid vector size");
679 }
680
681 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
682   EVT VT = N->getValueType(0);
683   unsigned NumVectorElts = VT.getVectorNumElements();
684   EVT EltVT = VT.getVectorElementType();
685   SDLoc DL(N);
686   SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
687
688   if (NumVectorElts == 1) {
689     CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
690                          RegClass);
691     return;
692   }
693
694   assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
695                                   "supported yet");
696   // 32 = Max Num Vector Elements
697   // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
698   // 1 = Vector Register Class
699   SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
700
701   RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
702   bool IsRegSeq = true;
703   unsigned NOps = N->getNumOperands();
704   for (unsigned i = 0; i < NOps; i++) {
705     // XXX: Why is this here?
706     if (isa<RegisterSDNode>(N->getOperand(i))) {
707       IsRegSeq = false;
708       break;
709     }
710     unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i);
711     RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
712     RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
713   }
714   if (NOps != NumVectorElts) {
715     // Fill in the missing undef elements if this was a scalar_to_vector.
716     assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
717     MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
718                                                    DL, EltVT);
719     for (unsigned i = NOps; i < NumVectorElts; ++i) {
720       unsigned Sub = AMDGPURegisterInfo::getSubRegFromChannel(i);
721       RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
722       RegSeqArgs[1 + (2 * i) + 1] =
723           CurDAG->getTargetConstant(Sub, DL, MVT::i32);
724     }
725   }
726
727   if (!IsRegSeq)
728     SelectCode(N);
729   CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
730 }
731
732 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
733   unsigned int Opc = N->getOpcode();
734   if (N->isMachineOpcode()) {
735     N->setNodeId(-1);
736     return;   // Already selected.
737   }
738
739   // isa<MemSDNode> almost works but is slightly too permissive for some DS
740   // intrinsics.
741   if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
742       (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
743        Opc == ISD::ATOMIC_LOAD_FADD ||
744        Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
745        Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) {
746     N = glueCopyToM0LDSInit(N);
747     SelectCode(N);
748     return;
749   }
750
751   switch (Opc) {
752   default:
753     break;
754   // We are selecting i64 ADD here instead of custom lower it during
755   // DAG legalization, so we can fold some i64 ADDs used for address
756   // calculation into the LOAD and STORE instructions.
757   case ISD::ADDC:
758   case ISD::ADDE:
759   case ISD::SUBC:
760   case ISD::SUBE: {
761     if (N->getValueType(0) != MVT::i64)
762       break;
763
764     SelectADD_SUB_I64(N);
765     return;
766   }
767   case ISD::ADDCARRY:
768   case ISD::SUBCARRY:
769     if (N->getValueType(0) != MVT::i32)
770       break;
771
772     SelectAddcSubb(N);
773     return;
774   case ISD::UADDO:
775   case ISD::USUBO: {
776     SelectUADDO_USUBO(N);
777     return;
778   }
779   case AMDGPUISD::FMUL_W_CHAIN: {
780     SelectFMUL_W_CHAIN(N);
781     return;
782   }
783   case AMDGPUISD::FMA_W_CHAIN: {
784     SelectFMA_W_CHAIN(N);
785     return;
786   }
787
788   case ISD::SCALAR_TO_VECTOR:
789   case ISD::BUILD_VECTOR: {
790     EVT VT = N->getValueType(0);
791     unsigned NumVectorElts = VT.getVectorNumElements();
792     if (VT.getScalarSizeInBits() == 16) {
793       if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
794         if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
795           ReplaceNode(N, Packed);
796           return;
797         }
798       }
799
800       break;
801     }
802
803     assert(VT.getVectorElementType().bitsEq(MVT::i32));
804     unsigned RegClassID = selectSGPRVectorRegClassID(NumVectorElts);
805     SelectBuildVector(N, RegClassID);
806     return;
807   }
808   case ISD::BUILD_PAIR: {
809     SDValue RC, SubReg0, SubReg1;
810     SDLoc DL(N);
811     if (N->getValueType(0) == MVT::i128) {
812       RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
813       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
814       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
815     } else if (N->getValueType(0) == MVT::i64) {
816       RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
817       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
818       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
819     } else {
820       llvm_unreachable("Unhandled value type for BUILD_PAIR");
821     }
822     const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
823                             N->getOperand(1), SubReg1 };
824     ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
825                                           N->getValueType(0), Ops));
826     return;
827   }
828
829   case ISD::Constant:
830   case ISD::ConstantFP: {
831     if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
832       break;
833
834     uint64_t Imm;
835     if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
836       Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
837     else {
838       ConstantSDNode *C = cast<ConstantSDNode>(N);
839       Imm = C->getZExtValue();
840     }
841
842     SDLoc DL(N);
843     ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
844     return;
845   }
846   case AMDGPUISD::BFE_I32:
847   case AMDGPUISD::BFE_U32: {
848     // There is a scalar version available, but unlike the vector version which
849     // has a separate operand for the offset and width, the scalar version packs
850     // the width and offset into a single operand. Try to move to the scalar
851     // version if the offsets are constant, so that we can try to keep extended
852     // loads of kernel arguments in SGPRs.
853
854     // TODO: Technically we could try to pattern match scalar bitshifts of
855     // dynamic values, but it's probably not useful.
856     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
857     if (!Offset)
858       break;
859
860     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
861     if (!Width)
862       break;
863
864     bool Signed = Opc == AMDGPUISD::BFE_I32;
865
866     uint32_t OffsetVal = Offset->getZExtValue();
867     uint32_t WidthVal = Width->getZExtValue();
868
869     ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
870                             SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
871     return;
872   }
873   case AMDGPUISD::DIV_SCALE: {
874     SelectDIV_SCALE(N);
875     return;
876   }
877   case AMDGPUISD::DIV_FMAS: {
878     SelectDIV_FMAS(N);
879     return;
880   }
881   case AMDGPUISD::MAD_I64_I32:
882   case AMDGPUISD::MAD_U64_U32: {
883     SelectMAD_64_32(N);
884     return;
885   }
886   case ISD::CopyToReg: {
887     const SITargetLowering& Lowering =
888       *static_cast<const SITargetLowering*>(getTargetLowering());
889     N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
890     break;
891   }
892   case ISD::AND:
893   case ISD::SRL:
894   case ISD::SRA:
895   case ISD::SIGN_EXTEND_INREG:
896     if (N->getValueType(0) != MVT::i32)
897       break;
898
899     SelectS_BFE(N);
900     return;
901   case ISD::BRCOND:
902     SelectBRCOND(N);
903     return;
904   case ISD::FMAD:
905   case ISD::FMA:
906     SelectFMAD_FMA(N);
907     return;
908   case AMDGPUISD::ATOMIC_CMP_SWAP:
909     SelectATOMIC_CMP_SWAP(N);
910     return;
911   case AMDGPUISD::CVT_PKRTZ_F16_F32:
912   case AMDGPUISD::CVT_PKNORM_I16_F32:
913   case AMDGPUISD::CVT_PKNORM_U16_F32:
914   case AMDGPUISD::CVT_PK_U16_U32:
915   case AMDGPUISD::CVT_PK_I16_I32: {
916     // Hack around using a legal type if f16 is illegal.
917     if (N->getValueType(0) == MVT::i32) {
918       MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
919       N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
920                               { N->getOperand(0), N->getOperand(1) });
921       SelectCode(N);
922       return;
923     }
924
925     break;
926   }
927   case ISD::INTRINSIC_W_CHAIN: {
928     SelectINTRINSIC_W_CHAIN(N);
929     return;
930   }
931   case ISD::INTRINSIC_WO_CHAIN: {
932     SelectINTRINSIC_WO_CHAIN(N);
933     return;
934   }
935   case ISD::INTRINSIC_VOID: {
936     SelectINTRINSIC_VOID(N);
937     return;
938   }
939   }
940
941   SelectCode(N);
942 }
943
944 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
945   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
946   const Instruction *Term = BB->getTerminator();
947   return Term->getMetadata("amdgpu.uniform") ||
948          Term->getMetadata("structurizecfg.uniform");
949 }
950
951 StringRef AMDGPUDAGToDAGISel::getPassName() const {
952   return "AMDGPU DAG->DAG Pattern Instruction Selection";
953 }
954
955 //===----------------------------------------------------------------------===//
956 // Complex Patterns
957 //===----------------------------------------------------------------------===//
958
959 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
960                                             SDValue &Offset) {
961   return false;
962 }
963
964 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
965                                             SDValue &Offset) {
966   ConstantSDNode *C;
967   SDLoc DL(Addr);
968
969   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
970     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
971     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
972   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
973              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
974     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
975     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
976   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
977             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
978     Base = Addr.getOperand(0);
979     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
980   } else {
981     Base = Addr;
982     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
983   }
984
985   return true;
986 }
987
988 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
989                                                        const SDLoc &DL) const {
990   SDNode *Mov = CurDAG->getMachineNode(
991     AMDGPU::S_MOV_B32, DL, MVT::i32,
992     CurDAG->getTargetConstant(Val, DL, MVT::i32));
993   return SDValue(Mov, 0);
994 }
995
996 // FIXME: Should only handle addcarry/subcarry
997 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
998   SDLoc DL(N);
999   SDValue LHS = N->getOperand(0);
1000   SDValue RHS = N->getOperand(1);
1001
1002   unsigned Opcode = N->getOpcode();
1003   bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
1004   bool ProduceCarry =
1005       ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
1006   bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
1007
1008   SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1009   SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1010
1011   SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1012                                        DL, MVT::i32, LHS, Sub0);
1013   SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1014                                        DL, MVT::i32, LHS, Sub1);
1015
1016   SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1017                                        DL, MVT::i32, RHS, Sub0);
1018   SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1019                                        DL, MVT::i32, RHS, Sub1);
1020
1021   SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
1022
1023   unsigned Opc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
1024   unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
1025
1026   SDNode *AddLo;
1027   if (!ConsumeCarry) {
1028     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
1029     AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
1030   } else {
1031     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
1032     AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
1033   }
1034   SDValue AddHiArgs[] = {
1035     SDValue(Hi0, 0),
1036     SDValue(Hi1, 0),
1037     SDValue(AddLo, 1)
1038   };
1039   SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
1040
1041   SDValue RegSequenceArgs[] = {
1042     CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
1043     SDValue(AddLo,0),
1044     Sub0,
1045     SDValue(AddHi,0),
1046     Sub1,
1047   };
1048   SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1049                                                MVT::i64, RegSequenceArgs);
1050
1051   if (ProduceCarry) {
1052     // Replace the carry-use
1053     ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
1054   }
1055
1056   // Replace the remaining uses.
1057   ReplaceNode(N, RegSequence);
1058 }
1059
1060 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
1061   SDLoc DL(N);
1062   SDValue LHS = N->getOperand(0);
1063   SDValue RHS = N->getOperand(1);
1064   SDValue CI = N->getOperand(2);
1065
1066   unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
1067                                                  : AMDGPU::V_SUBB_U32_e64;
1068   CurDAG->SelectNodeTo(
1069       N, Opc, N->getVTList(),
1070       {LHS, RHS, CI, CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1071 }
1072
1073 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
1074   // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
1075   // carry out despite the _i32 name. These were renamed in VI to _U32.
1076   // FIXME: We should probably rename the opcodes here.
1077   unsigned Opc = N->getOpcode() == ISD::UADDO ?
1078     AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
1079
1080   CurDAG->SelectNodeTo(
1081       N, Opc, N->getVTList(),
1082       {N->getOperand(0), N->getOperand(1),
1083        CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1084 }
1085
1086 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
1087   SDLoc SL(N);
1088   //  src0_modifiers, src0,  src1_modifiers, src1, src2_modifiers, src2, clamp, omod
1089   SDValue Ops[10];
1090
1091   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
1092   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1093   SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
1094   Ops[8] = N->getOperand(0);
1095   Ops[9] = N->getOperand(4);
1096
1097   CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops);
1098 }
1099
1100 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
1101   SDLoc SL(N);
1102   //    src0_modifiers, src0,  src1_modifiers, src1, clamp, omod
1103   SDValue Ops[8];
1104
1105   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
1106   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1107   Ops[6] = N->getOperand(0);
1108   Ops[7] = N->getOperand(3);
1109
1110   CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
1111 }
1112
1113 // We need to handle this here because tablegen doesn't support matching
1114 // instructions with multiple outputs.
1115 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
1116   SDLoc SL(N);
1117   EVT VT = N->getValueType(0);
1118
1119   assert(VT == MVT::f32 || VT == MVT::f64);
1120
1121   unsigned Opc
1122     = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
1123
1124   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
1125   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1126 }
1127
1128 void AMDGPUDAGToDAGISel::SelectDIV_FMAS(SDNode *N) {
1129   const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
1130   const SIRegisterInfo *TRI = ST->getRegisterInfo();
1131
1132   SDLoc SL(N);
1133   EVT VT = N->getValueType(0);
1134
1135   assert(VT == MVT::f32 || VT == MVT::f64);
1136
1137   unsigned Opc
1138     = (VT == MVT::f64) ? AMDGPU::V_DIV_FMAS_F64 : AMDGPU::V_DIV_FMAS_F32;
1139
1140   SDValue CarryIn = N->getOperand(3);
1141   // V_DIV_FMAS implicitly reads VCC.
1142   SDValue VCC = CurDAG->getCopyToReg(CurDAG->getEntryNode(), SL,
1143                                      TRI->getVCC(), CarryIn, SDValue());
1144
1145   SDValue Ops[10];
1146
1147   SelectVOP3Mods0(N->getOperand(0), Ops[1], Ops[0], Ops[6], Ops[7]);
1148   SelectVOP3Mods(N->getOperand(1), Ops[3], Ops[2]);
1149   SelectVOP3Mods(N->getOperand(2), Ops[5], Ops[4]);
1150
1151   Ops[8] = VCC;
1152   Ops[9] = VCC.getValue(1);
1153
1154   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1155 }
1156
1157 // We need to handle this here because tablegen doesn't support matching
1158 // instructions with multiple outputs.
1159 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
1160   SDLoc SL(N);
1161   bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
1162   unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32;
1163
1164   SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1165   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1166                     Clamp };
1167   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1168 }
1169
1170 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset,
1171                                          unsigned OffsetBits) const {
1172   if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
1173       (OffsetBits == 8 && !isUInt<8>(Offset)))
1174     return false;
1175
1176   if (Subtarget->hasUsableDSOffset() ||
1177       Subtarget->unsafeDSOffsetFoldingEnabled())
1178     return true;
1179
1180   // On Southern Islands instruction with a negative base value and an offset
1181   // don't seem to work.
1182   return CurDAG->SignBitIsZero(Base);
1183 }
1184
1185 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1186                                               SDValue &Offset) const {
1187   SDLoc DL(Addr);
1188   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1189     SDValue N0 = Addr.getOperand(0);
1190     SDValue N1 = Addr.getOperand(1);
1191     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1192     if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
1193       // (add n0, c0)
1194       Base = N0;
1195       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1196       return true;
1197     }
1198   } else if (Addr.getOpcode() == ISD::SUB) {
1199     // sub C, x -> add (sub 0, x), C
1200     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1201       int64_t ByteOffset = C->getSExtValue();
1202       if (isUInt<16>(ByteOffset)) {
1203         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1204
1205         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1206         // the known bits in isDSOffsetLegal. We need to emit the selected node
1207         // here, so this is thrown away.
1208         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1209                                       Zero, Addr.getOperand(1));
1210
1211         if (isDSOffsetLegal(Sub, ByteOffset, 16)) {
1212           SmallVector<SDValue, 3> Opnds;
1213           Opnds.push_back(Zero);
1214           Opnds.push_back(Addr.getOperand(1));
1215
1216           // FIXME: Select to VOP3 version for with-carry.
1217           unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1218           if (Subtarget->hasAddNoCarry()) {
1219             SubOp = AMDGPU::V_SUB_U32_e64;
1220             Opnds.push_back(
1221                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1222           }
1223
1224           MachineSDNode *MachineSub =
1225               CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1226
1227           Base = SDValue(MachineSub, 0);
1228           Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1229           return true;
1230         }
1231       }
1232     }
1233   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1234     // If we have a constant address, prefer to put the constant into the
1235     // offset. This can save moves to load the constant address since multiple
1236     // operations can share the zero base address register, and enables merging
1237     // into read2 / write2 instructions.
1238
1239     SDLoc DL(Addr);
1240
1241     if (isUInt<16>(CAddr->getZExtValue())) {
1242       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1243       MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1244                                  DL, MVT::i32, Zero);
1245       Base = SDValue(MovZero, 0);
1246       Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1247       return true;
1248     }
1249   }
1250
1251   // default case
1252   Base = Addr;
1253   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1254   return true;
1255 }
1256
1257 // TODO: If offset is too big, put low 16-bit into offset.
1258 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1259                                                    SDValue &Offset0,
1260                                                    SDValue &Offset1) const {
1261   SDLoc DL(Addr);
1262
1263   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1264     SDValue N0 = Addr.getOperand(0);
1265     SDValue N1 = Addr.getOperand(1);
1266     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1267     unsigned DWordOffset0 = C1->getZExtValue() / 4;
1268     unsigned DWordOffset1 = DWordOffset0 + 1;
1269     // (add n0, c0)
1270     if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
1271       Base = N0;
1272       Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1273       Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1274       return true;
1275     }
1276   } else if (Addr.getOpcode() == ISD::SUB) {
1277     // sub C, x -> add (sub 0, x), C
1278     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1279       unsigned DWordOffset0 = C->getZExtValue() / 4;
1280       unsigned DWordOffset1 = DWordOffset0 + 1;
1281
1282       if (isUInt<8>(DWordOffset0)) {
1283         SDLoc DL(Addr);
1284         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1285
1286         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1287         // the known bits in isDSOffsetLegal. We need to emit the selected node
1288         // here, so this is thrown away.
1289         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1290                                       Zero, Addr.getOperand(1));
1291
1292         if (isDSOffsetLegal(Sub, DWordOffset1, 8)) {
1293           SmallVector<SDValue, 3> Opnds;
1294           Opnds.push_back(Zero);
1295           Opnds.push_back(Addr.getOperand(1));
1296           unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1297           if (Subtarget->hasAddNoCarry()) {
1298             SubOp = AMDGPU::V_SUB_U32_e64;
1299             Opnds.push_back(
1300                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1301           }
1302
1303           MachineSDNode *MachineSub
1304             = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1305
1306           Base = SDValue(MachineSub, 0);
1307           Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1308           Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1309           return true;
1310         }
1311       }
1312     }
1313   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1314     unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
1315     unsigned DWordOffset1 = DWordOffset0 + 1;
1316     assert(4 * DWordOffset0 == CAddr->getZExtValue());
1317
1318     if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
1319       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1320       MachineSDNode *MovZero
1321         = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1322                                  DL, MVT::i32, Zero);
1323       Base = SDValue(MovZero, 0);
1324       Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1325       Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1326       return true;
1327     }
1328   }
1329
1330   // default case
1331
1332   Base = Addr;
1333   Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1334   Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1335   return true;
1336 }
1337
1338 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
1339                                      SDValue &VAddr, SDValue &SOffset,
1340                                      SDValue &Offset, SDValue &Offen,
1341                                      SDValue &Idxen, SDValue &Addr64,
1342                                      SDValue &GLC, SDValue &SLC,
1343                                      SDValue &TFE, SDValue &DLC,
1344                                      SDValue &SWZ) const {
1345   // Subtarget prefers to use flat instruction
1346   if (Subtarget->useFlatForGlobal())
1347     return false;
1348
1349   SDLoc DL(Addr);
1350
1351   if (!GLC.getNode())
1352     GLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1353   if (!SLC.getNode())
1354     SLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1355   TFE = CurDAG->getTargetConstant(0, DL, MVT::i1);
1356   DLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1357   SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1);
1358
1359   Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1360   Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1361   Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1362   SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1363
1364   ConstantSDNode *C1 = nullptr;
1365   SDValue N0 = Addr;
1366   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1367     C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1368     if (isUInt<32>(C1->getZExtValue()))
1369       N0 = Addr.getOperand(0);
1370     else
1371       C1 = nullptr;
1372   }
1373
1374   if (N0.getOpcode() == ISD::ADD) {
1375     // (add N2, N3) -> addr64, or
1376     // (add (add N2, N3), C1) -> addr64
1377     SDValue N2 = N0.getOperand(0);
1378     SDValue N3 = N0.getOperand(1);
1379     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1380
1381     if (N2->isDivergent()) {
1382       if (N3->isDivergent()) {
1383         // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1384         // addr64, and construct the resource from a 0 address.
1385         Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1386         VAddr = N0;
1387       } else {
1388         // N2 is divergent, N3 is not.
1389         Ptr = N3;
1390         VAddr = N2;
1391       }
1392     } else {
1393       // N2 is not divergent.
1394       Ptr = N2;
1395       VAddr = N3;
1396     }
1397     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1398   } else if (N0->isDivergent()) {
1399     // N0 is divergent. Use it as the addr64, and construct the resource from a
1400     // 0 address.
1401     Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1402     VAddr = N0;
1403     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1404   } else {
1405     // N0 -> offset, or
1406     // (N0 + C1) -> offset
1407     VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1408     Ptr = N0;
1409   }
1410
1411   if (!C1) {
1412     // No offset.
1413     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1414     return true;
1415   }
1416
1417   if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
1418     // Legal offset for instruction.
1419     Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1420     return true;
1421   }
1422
1423   // Illegal offset, store it in soffset.
1424   Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1425   SOffset =
1426       SDValue(CurDAG->getMachineNode(
1427                   AMDGPU::S_MOV_B32, DL, MVT::i32,
1428                   CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1429               0);
1430   return true;
1431 }
1432
1433 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1434                                            SDValue &VAddr, SDValue &SOffset,
1435                                            SDValue &Offset, SDValue &GLC,
1436                                            SDValue &SLC, SDValue &TFE,
1437                                            SDValue &DLC, SDValue &SWZ) const {
1438   SDValue Ptr, Offen, Idxen, Addr64;
1439
1440   // addr64 bit was removed for volcanic islands.
1441   if (!Subtarget->hasAddr64())
1442     return false;
1443
1444   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1445               GLC, SLC, TFE, DLC, SWZ))
1446     return false;
1447
1448   ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1449   if (C->getSExtValue()) {
1450     SDLoc DL(Addr);
1451
1452     const SITargetLowering& Lowering =
1453       *static_cast<const SITargetLowering*>(getTargetLowering());
1454
1455     SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1456     return true;
1457   }
1458
1459   return false;
1460 }
1461
1462 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1463                                            SDValue &VAddr, SDValue &SOffset,
1464                                            SDValue &Offset,
1465                                            SDValue &SLC) const {
1466   SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1);
1467   SDValue GLC, TFE, DLC, SWZ;
1468
1469   return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1470 }
1471
1472 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
1473   auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
1474   return PSV && PSV->isStack();
1475 }
1476
1477 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1478   const MachineFunction &MF = CurDAG->getMachineFunction();
1479   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1480
1481   if (auto FI = dyn_cast<FrameIndexSDNode>(N)) {
1482     SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1483                                               FI->getValueType(0));
1484
1485     // If we can resolve this to a frame index access, this will be relative to
1486     // either the stack or frame pointer SGPR.
1487     return std::make_pair(
1488         TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32));
1489   }
1490
1491   // If we don't know this private access is a local stack object, it needs to
1492   // be relative to the entry point's scratch wave offset register.
1493   return std::make_pair(N, CurDAG->getRegister(Info->getScratchWaveOffsetReg(),
1494                                                MVT::i32));
1495 }
1496
1497 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1498                                                  SDValue Addr, SDValue &Rsrc,
1499                                                  SDValue &VAddr, SDValue &SOffset,
1500                                                  SDValue &ImmOffset) const {
1501
1502   SDLoc DL(Addr);
1503   MachineFunction &MF = CurDAG->getMachineFunction();
1504   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1505
1506   Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1507
1508   if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1509     unsigned Imm = CAddr->getZExtValue();
1510
1511     SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
1512     MachineSDNode *MovHighBits = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1513                                                         DL, MVT::i32, HighBits);
1514     VAddr = SDValue(MovHighBits, 0);
1515
1516     // In a call sequence, stores to the argument stack area are relative to the
1517     // stack pointer.
1518     const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1519     unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
1520       Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
1521
1522     SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
1523     ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
1524     return true;
1525   }
1526
1527   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1528     // (add n0, c1)
1529
1530     SDValue N0 = Addr.getOperand(0);
1531     SDValue N1 = Addr.getOperand(1);
1532
1533     // Offsets in vaddr must be positive if range checking is enabled.
1534     //
1535     // The total computation of vaddr + soffset + offset must not overflow.  If
1536     // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1537     // overflowing.
1538     //
1539     // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1540     // always perform a range check. If a negative vaddr base index was used,
1541     // this would fail the range check. The overall address computation would
1542     // compute a valid address, but this doesn't happen due to the range
1543     // check. For out-of-bounds MUBUF loads, a 0 is returned.
1544     //
1545     // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1546     // MUBUF vaddr, but not on older subtargets which can only do this if the
1547     // sign bit is known 0.
1548     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1549     if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
1550         (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1551          CurDAG->SignBitIsZero(N0))) {
1552       std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1553       ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1554       return true;
1555     }
1556   }
1557
1558   // (node)
1559   std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1560   ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1561   return true;
1562 }
1563
1564 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1565                                                   SDValue Addr,
1566                                                   SDValue &SRsrc,
1567                                                   SDValue &SOffset,
1568                                                   SDValue &Offset) const {
1569   ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
1570   if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1571     return false;
1572
1573   SDLoc DL(Addr);
1574   MachineFunction &MF = CurDAG->getMachineFunction();
1575   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1576
1577   SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1578
1579   const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1580   unsigned SOffsetReg = isStackPtrRelative(PtrInfo) ?
1581     Info->getStackPtrOffsetReg() : Info->getScratchWaveOffsetReg();
1582
1583   // FIXME: Get from MachinePointerInfo? We should only be using the frame
1584   // offset if we know this is in a call sequence.
1585   SOffset = CurDAG->getRegister(SOffsetReg, MVT::i32);
1586
1587   Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1588   return true;
1589 }
1590
1591 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1592                                            SDValue &SOffset, SDValue &Offset,
1593                                            SDValue &GLC, SDValue &SLC,
1594                                            SDValue &TFE, SDValue &DLC,
1595                                            SDValue &SWZ) const {
1596   SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1597   const SIInstrInfo *TII =
1598     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1599
1600   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1601               GLC, SLC, TFE, DLC, SWZ))
1602     return false;
1603
1604   if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1605       !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1606       !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1607     uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1608                     APInt::getAllOnesValue(32).getZExtValue(); // Size
1609     SDLoc DL(Addr);
1610
1611     const SITargetLowering& Lowering =
1612       *static_cast<const SITargetLowering*>(getTargetLowering());
1613
1614     SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1615     return true;
1616   }
1617   return false;
1618 }
1619
1620 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1621                                            SDValue &Soffset, SDValue &Offset
1622                                            ) const {
1623   SDValue GLC, SLC, TFE, DLC, SWZ;
1624
1625   return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1626 }
1627 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1628                                            SDValue &Soffset, SDValue &Offset,
1629                                            SDValue &SLC) const {
1630   SDValue GLC, TFE, DLC, SWZ;
1631
1632   return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1633 }
1634
1635 // Find a load or store from corresponding pattern root.
1636 // Roots may be build_vector, bitconvert or their combinations.
1637 static MemSDNode* findMemSDNode(SDNode *N) {
1638   N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
1639   if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
1640     return MN;
1641   assert(isa<BuildVectorSDNode>(N));
1642   for (SDValue V : N->op_values())
1643     if (MemSDNode *MN =
1644           dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
1645       return MN;
1646   llvm_unreachable("cannot find MemSDNode in the pattern!");
1647 }
1648
1649 template <bool IsSigned>
1650 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N,
1651                                           SDValue Addr,
1652                                           SDValue &VAddr,
1653                                           SDValue &Offset,
1654                                           SDValue &SLC) const {
1655   int64_t OffsetVal = 0;
1656
1657   if (Subtarget->hasFlatInstOffsets() &&
1658       (!Subtarget->hasFlatSegmentOffsetBug() ||
1659        findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS) &&
1660       CurDAG->isBaseWithConstantOffset(Addr)) {
1661     SDValue N0 = Addr.getOperand(0);
1662     SDValue N1 = Addr.getOperand(1);
1663     uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1664
1665     const SIInstrInfo *TII = Subtarget->getInstrInfo();
1666     unsigned AS = findMemSDNode(N)->getAddressSpace();
1667     if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) {
1668       Addr = N0;
1669       OffsetVal = COffsetVal;
1670     } else {
1671       // If the offset doesn't fit, put the low bits into the offset field and
1672       // add the rest.
1673
1674       SDLoc DL(N);
1675       uint64_t ImmField;
1676       const unsigned NumBits = TII->getNumFlatOffsetBits(AS, IsSigned);
1677       if (IsSigned) {
1678         ImmField = SignExtend64(COffsetVal, NumBits);
1679
1680         // Don't use a negative offset field if the base offset is positive.
1681         // Since the scheduler currently relies on the offset field, doing so
1682         // could result in strange scheduling decisions.
1683
1684         // TODO: Should we not do this in the opposite direction as well?
1685         if (static_cast<int64_t>(COffsetVal) > 0) {
1686           if (static_cast<int64_t>(ImmField) < 0) {
1687             const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits - 1);
1688             ImmField = COffsetVal & OffsetMask;
1689           }
1690         }
1691       } else {
1692         // TODO: Should we do this for a negative offset?
1693         const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits);
1694         ImmField = COffsetVal & OffsetMask;
1695       }
1696
1697       uint64_t RemainderOffset = COffsetVal - ImmField;
1698
1699       assert(TII->isLegalFLATOffset(ImmField, AS, IsSigned));
1700       assert(RemainderOffset + ImmField == COffsetVal);
1701
1702       OffsetVal = ImmField;
1703
1704       // TODO: Should this try to use a scalar add pseudo if the base address is
1705       // uniform and saddr is usable?
1706       SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1707       SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1708
1709       SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1710                                             DL, MVT::i32, N0, Sub0);
1711       SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
1712                                             DL, MVT::i32, N0, Sub1);
1713
1714       SDValue AddOffsetLo
1715         = getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
1716       SDValue AddOffsetHi
1717         = getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
1718
1719       SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
1720       SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1721
1722       SDNode *Add = CurDAG->getMachineNode(
1723         AMDGPU::V_ADD_I32_e64, DL, VTs,
1724         {AddOffsetLo, SDValue(N0Lo, 0), Clamp});
1725
1726       SDNode *Addc = CurDAG->getMachineNode(
1727         AMDGPU::V_ADDC_U32_e64, DL, VTs,
1728         {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
1729
1730       SDValue RegSequenceArgs[] = {
1731         CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
1732         SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1
1733       };
1734
1735       Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1736                                             MVT::i64, RegSequenceArgs), 0);
1737     }
1738   }
1739
1740   VAddr = Addr;
1741   Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
1742   SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1);
1743   return true;
1744 }
1745
1746 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDNode *N,
1747                                           SDValue Addr,
1748                                           SDValue &VAddr,
1749                                           SDValue &Offset,
1750                                           SDValue &SLC) const {
1751   return SelectFlatOffset<false>(N, Addr, VAddr, Offset, SLC);
1752 }
1753
1754 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDNode *N,
1755                                                 SDValue Addr,
1756                                                 SDValue &VAddr,
1757                                                 SDValue &Offset,
1758                                                 SDValue &SLC) const {
1759   return SelectFlatOffset<true>(N, Addr, VAddr, Offset, SLC);
1760 }
1761
1762 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
1763                                           SDValue &Offset, bool &Imm) const {
1764
1765   // FIXME: Handle non-constant offsets.
1766   ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
1767   if (!C)
1768     return false;
1769
1770   SDLoc SL(ByteOffsetNode);
1771   GCNSubtarget::Generation Gen = Subtarget->getGeneration();
1772   int64_t ByteOffset = C->getSExtValue();
1773   int64_t EncodedOffset = AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset);
1774
1775   if (AMDGPU::isLegalSMRDImmOffset(*Subtarget, ByteOffset)) {
1776     Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32);
1777     Imm = true;
1778     return true;
1779   }
1780
1781   if (!isUInt<32>(EncodedOffset) || !isUInt<32>(ByteOffset))
1782     return false;
1783
1784   if (Gen == AMDGPUSubtarget::SEA_ISLANDS && isUInt<32>(EncodedOffset)) {
1785     // 32-bit Immediates are supported on Sea Islands.
1786     Offset = CurDAG->getTargetConstant(EncodedOffset, SL, MVT::i32);
1787   } else {
1788     SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
1789     Offset = SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32,
1790                                             C32Bit), 0);
1791   }
1792   Imm = false;
1793   return true;
1794 }
1795
1796 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
1797   if (Addr.getValueType() != MVT::i32)
1798     return Addr;
1799
1800   // Zero-extend a 32-bit address.
1801   SDLoc SL(Addr);
1802
1803   const MachineFunction &MF = CurDAG->getMachineFunction();
1804   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1805   unsigned AddrHiVal = Info->get32BitAddressHighBits();
1806   SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
1807
1808   const SDValue Ops[] = {
1809     CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
1810     Addr,
1811     CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
1812     SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
1813             0),
1814     CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
1815   };
1816
1817   return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
1818                                         Ops), 0);
1819 }
1820
1821 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
1822                                      SDValue &Offset, bool &Imm) const {
1823   SDLoc SL(Addr);
1824
1825   // A 32-bit (address + offset) should not cause unsigned 32-bit integer
1826   // wraparound, because s_load instructions perform the addition in 64 bits.
1827   if ((Addr.getValueType() != MVT::i32 ||
1828        Addr->getFlags().hasNoUnsignedWrap()) &&
1829       CurDAG->isBaseWithConstantOffset(Addr)) {
1830     SDValue N0 = Addr.getOperand(0);
1831     SDValue N1 = Addr.getOperand(1);
1832
1833     if (SelectSMRDOffset(N1, Offset, Imm)) {
1834       SBase = Expand32BitAddress(N0);
1835       return true;
1836     }
1837   }
1838   SBase = Expand32BitAddress(Addr);
1839   Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
1840   Imm = true;
1841   return true;
1842 }
1843
1844 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
1845                                        SDValue &Offset) const {
1846   bool Imm;
1847   return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
1848 }
1849
1850 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
1851                                          SDValue &Offset) const {
1852
1853   if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS)
1854     return false;
1855
1856   bool Imm;
1857   if (!SelectSMRD(Addr, SBase, Offset, Imm))
1858     return false;
1859
1860   return !Imm && isa<ConstantSDNode>(Offset);
1861 }
1862
1863 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
1864                                         SDValue &Offset) const {
1865   bool Imm;
1866   return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
1867          !isa<ConstantSDNode>(Offset);
1868 }
1869
1870 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
1871                                              SDValue &Offset) const {
1872   bool Imm;
1873   return SelectSMRDOffset(Addr, Offset, Imm) && Imm;
1874 }
1875
1876 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
1877                                                SDValue &Offset) const {
1878   if (Subtarget->getGeneration() != AMDGPUSubtarget::SEA_ISLANDS)
1879     return false;
1880
1881   bool Imm;
1882   if (!SelectSMRDOffset(Addr, Offset, Imm))
1883     return false;
1884
1885   return !Imm && isa<ConstantSDNode>(Offset);
1886 }
1887
1888 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
1889                                             SDValue &Base,
1890                                             SDValue &Offset) const {
1891   SDLoc DL(Index);
1892
1893   if (CurDAG->isBaseWithConstantOffset(Index)) {
1894     SDValue N0 = Index.getOperand(0);
1895     SDValue N1 = Index.getOperand(1);
1896     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1897
1898     // (add n0, c0)
1899     // Don't peel off the offset (c0) if doing so could possibly lead
1900     // the base (n0) to be negative.
1901     if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0)) {
1902       Base = N0;
1903       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
1904       return true;
1905     }
1906   }
1907
1908   if (isa<ConstantSDNode>(Index))
1909     return false;
1910
1911   Base = Index;
1912   Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1913   return true;
1914 }
1915
1916 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
1917                                      SDValue Val, uint32_t Offset,
1918                                      uint32_t Width) {
1919   // Transformation function, pack the offset and width of a BFE into
1920   // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
1921   // source, bits [5:0] contain the offset and bits [22:16] the width.
1922   uint32_t PackedVal = Offset | (Width << 16);
1923   SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
1924
1925   return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
1926 }
1927
1928 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
1929   // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
1930   // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
1931   // Predicate: 0 < b <= c < 32
1932
1933   const SDValue &Shl = N->getOperand(0);
1934   ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
1935   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1936
1937   if (B && C) {
1938     uint32_t BVal = B->getZExtValue();
1939     uint32_t CVal = C->getZExtValue();
1940
1941     if (0 < BVal && BVal <= CVal && CVal < 32) {
1942       bool Signed = N->getOpcode() == ISD::SRA;
1943       unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
1944
1945       ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
1946                               32 - CVal));
1947       return;
1948     }
1949   }
1950   SelectCode(N);
1951 }
1952
1953 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
1954   switch (N->getOpcode()) {
1955   case ISD::AND:
1956     if (N->getOperand(0).getOpcode() == ISD::SRL) {
1957       // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
1958       // Predicate: isMask(mask)
1959       const SDValue &Srl = N->getOperand(0);
1960       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
1961       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
1962
1963       if (Shift && Mask) {
1964         uint32_t ShiftVal = Shift->getZExtValue();
1965         uint32_t MaskVal = Mask->getZExtValue();
1966
1967         if (isMask_32(MaskVal)) {
1968           uint32_t WidthVal = countPopulation(MaskVal);
1969
1970           ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1971                                   Srl.getOperand(0), ShiftVal, WidthVal));
1972           return;
1973         }
1974       }
1975     }
1976     break;
1977   case ISD::SRL:
1978     if (N->getOperand(0).getOpcode() == ISD::AND) {
1979       // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
1980       // Predicate: isMask(mask >> b)
1981       const SDValue &And = N->getOperand(0);
1982       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
1983       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
1984
1985       if (Shift && Mask) {
1986         uint32_t ShiftVal = Shift->getZExtValue();
1987         uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
1988
1989         if (isMask_32(MaskVal)) {
1990           uint32_t WidthVal = countPopulation(MaskVal);
1991
1992           ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
1993                                   And.getOperand(0), ShiftVal, WidthVal));
1994           return;
1995         }
1996       }
1997     } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
1998       SelectS_BFEFromShifts(N);
1999       return;
2000     }
2001     break;
2002   case ISD::SRA:
2003     if (N->getOperand(0).getOpcode() == ISD::SHL) {
2004       SelectS_BFEFromShifts(N);
2005       return;
2006     }
2007     break;
2008
2009   case ISD::SIGN_EXTEND_INREG: {
2010     // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
2011     SDValue Src = N->getOperand(0);
2012     if (Src.getOpcode() != ISD::SRL)
2013       break;
2014
2015     const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
2016     if (!Amt)
2017       break;
2018
2019     unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2020     ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
2021                             Amt->getZExtValue(), Width));
2022     return;
2023   }
2024   }
2025
2026   SelectCode(N);
2027 }
2028
2029 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
2030   assert(N->getOpcode() == ISD::BRCOND);
2031   if (!N->hasOneUse())
2032     return false;
2033
2034   SDValue Cond = N->getOperand(1);
2035   if (Cond.getOpcode() == ISD::CopyToReg)
2036     Cond = Cond.getOperand(2);
2037
2038   if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
2039     return false;
2040
2041   MVT VT = Cond.getOperand(0).getSimpleValueType();
2042   if (VT == MVT::i32)
2043     return true;
2044
2045   if (VT == MVT::i64) {
2046     auto ST = static_cast<const GCNSubtarget *>(Subtarget);
2047
2048     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2049     return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
2050   }
2051
2052   return false;
2053 }
2054
2055 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
2056   SDValue Cond = N->getOperand(1);
2057
2058   if (Cond.isUndef()) {
2059     CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
2060                          N->getOperand(2), N->getOperand(0));
2061     return;
2062   }
2063
2064   const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
2065   const SIRegisterInfo *TRI = ST->getRegisterInfo();
2066
2067   bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
2068   unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
2069   unsigned CondReg = UseSCCBr ? (unsigned)AMDGPU::SCC : TRI->getVCC();
2070   SDLoc SL(N);
2071
2072   if (!UseSCCBr) {
2073     // This is the case that we are selecting to S_CBRANCH_VCCNZ.  We have not
2074     // analyzed what generates the vcc value, so we do not know whether vcc
2075     // bits for disabled lanes are 0.  Thus we need to mask out bits for
2076     // disabled lanes.
2077     //
2078     // For the case that we select S_CBRANCH_SCC1 and it gets
2079     // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2080     // SIInstrInfo::moveToVALU which inserts the S_AND).
2081     //
2082     // We could add an analysis of what generates the vcc value here and omit
2083     // the S_AND when is unnecessary. But it would be better to add a separate
2084     // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2085     // catches both cases.
2086     Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
2087                                                          : AMDGPU::S_AND_B64,
2088                      SL, MVT::i1,
2089                      CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
2090                                                         : AMDGPU::EXEC,
2091                                          MVT::i1),
2092                     Cond),
2093                    0);
2094   }
2095
2096   SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
2097   CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
2098                        N->getOperand(2), // Basic Block
2099                        VCC.getValue(0));
2100 }
2101
2102 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
2103   MVT VT = N->getSimpleValueType(0);
2104   bool IsFMA = N->getOpcode() == ISD::FMA;
2105   if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
2106                          !Subtarget->hasFmaMixInsts()) ||
2107       ((IsFMA && Subtarget->hasMadMixInsts()) ||
2108        (!IsFMA && Subtarget->hasFmaMixInsts()))) {
2109     SelectCode(N);
2110     return;
2111   }
2112
2113   SDValue Src0 = N->getOperand(0);
2114   SDValue Src1 = N->getOperand(1);
2115   SDValue Src2 = N->getOperand(2);
2116   unsigned Src0Mods, Src1Mods, Src2Mods;
2117
2118   // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
2119   // using the conversion from f16.
2120   bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
2121   bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
2122   bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
2123
2124   assert((IsFMA || !Mode.FP32Denormals) &&
2125          "fmad selected with denormals enabled");
2126   // TODO: We can select this with f32 denormals enabled if all the sources are
2127   // converted from f16 (in which case fmad isn't legal).
2128
2129   if (Sel0 || Sel1 || Sel2) {
2130     // For dummy operands.
2131     SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2132     SDValue Ops[] = {
2133       CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
2134       CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
2135       CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
2136       CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
2137       Zero, Zero
2138     };
2139
2140     CurDAG->SelectNodeTo(N,
2141                          IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
2142                          MVT::f32, Ops);
2143   } else {
2144     SelectCode(N);
2145   }
2146 }
2147
2148 // This is here because there isn't a way to use the generated sub0_sub1 as the
2149 // subreg index to EXTRACT_SUBREG in tablegen.
2150 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
2151   MemSDNode *Mem = cast<MemSDNode>(N);
2152   unsigned AS = Mem->getAddressSpace();
2153   if (AS == AMDGPUAS::FLAT_ADDRESS) {
2154     SelectCode(N);
2155     return;
2156   }
2157
2158   MVT VT = N->getSimpleValueType(0);
2159   bool Is32 = (VT == MVT::i32);
2160   SDLoc SL(N);
2161
2162   MachineSDNode *CmpSwap = nullptr;
2163   if (Subtarget->hasAddr64()) {
2164     SDValue SRsrc, VAddr, SOffset, Offset, SLC;
2165
2166     if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) {
2167       unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
2168         AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
2169       SDValue CmpVal = Mem->getOperand(2);
2170
2171       // XXX - Do we care about glue operands?
2172
2173       SDValue Ops[] = {
2174         CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2175       };
2176
2177       CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2178     }
2179   }
2180
2181   if (!CmpSwap) {
2182     SDValue SRsrc, SOffset, Offset, SLC;
2183     if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) {
2184       unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
2185         AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
2186
2187       SDValue CmpVal = Mem->getOperand(2);
2188       SDValue Ops[] = {
2189         CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2190       };
2191
2192       CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2193     }
2194   }
2195
2196   if (!CmpSwap) {
2197     SelectCode(N);
2198     return;
2199   }
2200
2201   MachineMemOperand *MMO = Mem->getMemOperand();
2202   CurDAG->setNodeMemRefs(CmpSwap, {MMO});
2203
2204   unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
2205   SDValue Extract
2206     = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
2207
2208   ReplaceUses(SDValue(N, 0), Extract);
2209   ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
2210   CurDAG->RemoveDeadNode(N);
2211 }
2212
2213 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2214   // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2215   // be copied to an SGPR with readfirstlane.
2216   unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2217     AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2218
2219   SDValue Chain = N->getOperand(0);
2220   SDValue Ptr = N->getOperand(2);
2221   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2222   MachineMemOperand *MMO = M->getMemOperand();
2223   bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2224
2225   SDValue Offset;
2226   if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2227     SDValue PtrBase = Ptr.getOperand(0);
2228     SDValue PtrOffset = Ptr.getOperand(1);
2229
2230     const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
2231     if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) {
2232       N = glueCopyToM0(N, PtrBase);
2233       Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2234     }
2235   }
2236
2237   if (!Offset) {
2238     N = glueCopyToM0(N, Ptr);
2239     Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2240   }
2241
2242   SDValue Ops[] = {
2243     Offset,
2244     CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2245     Chain,
2246     N->getOperand(N->getNumOperands() - 1) // New glue
2247   };
2248
2249   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2250   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2251 }
2252
2253 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2254   switch (IntrID) {
2255   case Intrinsic::amdgcn_ds_gws_init:
2256     return AMDGPU::DS_GWS_INIT;
2257   case Intrinsic::amdgcn_ds_gws_barrier:
2258     return AMDGPU::DS_GWS_BARRIER;
2259   case Intrinsic::amdgcn_ds_gws_sema_v:
2260     return AMDGPU::DS_GWS_SEMA_V;
2261   case Intrinsic::amdgcn_ds_gws_sema_br:
2262     return AMDGPU::DS_GWS_SEMA_BR;
2263   case Intrinsic::amdgcn_ds_gws_sema_p:
2264     return AMDGPU::DS_GWS_SEMA_P;
2265   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2266     return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2267   default:
2268     llvm_unreachable("not a gws intrinsic");
2269   }
2270 }
2271
2272 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2273   if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2274       !Subtarget->hasGWSSemaReleaseAll()) {
2275     // Let this error.
2276     SelectCode(N);
2277     return;
2278   }
2279
2280   // Chain, intrinsic ID, vsrc, offset
2281   const bool HasVSrc = N->getNumOperands() == 4;
2282   assert(HasVSrc || N->getNumOperands() == 3);
2283
2284   SDLoc SL(N);
2285   SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2286   int ImmOffset = 0;
2287   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2288   MachineMemOperand *MMO = M->getMemOperand();
2289
2290   // Don't worry if the offset ends up in a VGPR. Only one lane will have
2291   // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2292
2293   // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2294   // offset field) % 64. Some versions of the programming guide omit the m0
2295   // part, or claim it's from offset 0.
2296   if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2297     // If we have a constant offset, try to use the 0 in m0 as the base.
2298     // TODO: Look into changing the default m0 initialization value. If the
2299     // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2300     // the immediate offset.
2301     glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2302     ImmOffset = ConstOffset->getZExtValue();
2303   } else {
2304     if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2305       ImmOffset = BaseOffset.getConstantOperandVal(1);
2306       BaseOffset = BaseOffset.getOperand(0);
2307     }
2308
2309     // Prefer to do the shift in an SGPR since it should be possible to use m0
2310     // as the result directly. If it's already an SGPR, it will be eliminated
2311     // later.
2312     SDNode *SGPROffset
2313       = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2314                                BaseOffset);
2315     // Shift to offset in m0
2316     SDNode *M0Base
2317       = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2318                                SDValue(SGPROffset, 0),
2319                                CurDAG->getTargetConstant(16, SL, MVT::i32));
2320     glueCopyToM0(N, SDValue(M0Base, 0));
2321   }
2322
2323   SDValue Chain = N->getOperand(0);
2324   SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2325
2326   // TODO: Can this just be removed from the instruction?
2327   SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1);
2328
2329   const unsigned Opc = gwsIntrinToOpcode(IntrID);
2330   SmallVector<SDValue, 5> Ops;
2331   if (HasVSrc)
2332     Ops.push_back(N->getOperand(2));
2333   Ops.push_back(OffsetField);
2334   Ops.push_back(GDS);
2335   Ops.push_back(Chain);
2336
2337   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2338   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2339 }
2340
2341 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2342   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2343   switch (IntrID) {
2344   case Intrinsic::amdgcn_ds_append:
2345   case Intrinsic::amdgcn_ds_consume: {
2346     if (N->getValueType(0) != MVT::i32)
2347       break;
2348     SelectDSAppendConsume(N, IntrID);
2349     return;
2350   }
2351   }
2352
2353   SelectCode(N);
2354 }
2355
2356 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2357   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2358   unsigned Opcode;
2359   switch (IntrID) {
2360   case Intrinsic::amdgcn_wqm:
2361     Opcode = AMDGPU::WQM;
2362     break;
2363   case Intrinsic::amdgcn_softwqm:
2364     Opcode = AMDGPU::SOFT_WQM;
2365     break;
2366   case Intrinsic::amdgcn_wwm:
2367     Opcode = AMDGPU::WWM;
2368     break;
2369   default:
2370     SelectCode(N);
2371     return;
2372   }
2373
2374   SDValue Src = N->getOperand(1);
2375   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2376 }
2377
2378 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2379   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2380   switch (IntrID) {
2381   case Intrinsic::amdgcn_ds_gws_init:
2382   case Intrinsic::amdgcn_ds_gws_barrier:
2383   case Intrinsic::amdgcn_ds_gws_sema_v:
2384   case Intrinsic::amdgcn_ds_gws_sema_br:
2385   case Intrinsic::amdgcn_ds_gws_sema_p:
2386   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2387     SelectDS_GWS(N, IntrID);
2388     return;
2389   default:
2390     break;
2391   }
2392
2393   SelectCode(N);
2394 }
2395
2396 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2397                                             unsigned &Mods) const {
2398   Mods = 0;
2399   Src = In;
2400
2401   if (Src.getOpcode() == ISD::FNEG) {
2402     Mods |= SISrcMods::NEG;
2403     Src = Src.getOperand(0);
2404   }
2405
2406   if (Src.getOpcode() == ISD::FABS) {
2407     Mods |= SISrcMods::ABS;
2408     Src = Src.getOperand(0);
2409   }
2410
2411   return true;
2412 }
2413
2414 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2415                                         SDValue &SrcMods) const {
2416   unsigned Mods;
2417   if (SelectVOP3ModsImpl(In, Src, Mods)) {
2418     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2419     return true;
2420   }
2421
2422   return false;
2423 }
2424
2425 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
2426                                              SDValue &SrcMods) const {
2427   SelectVOP3Mods(In, Src, SrcMods);
2428   return isNoNanSrc(Src);
2429 }
2430
2431 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_f32(SDValue In, SDValue &Src,
2432                                             SDValue &SrcMods) const {
2433   if (In.getValueType() == MVT::f32)
2434     return SelectVOP3Mods(In, Src, SrcMods);
2435   Src = In;
2436   SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);;
2437   return true;
2438 }
2439
2440 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2441   if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2442     return false;
2443
2444   Src = In;
2445   return true;
2446 }
2447
2448 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2449                                          SDValue &SrcMods, SDValue &Clamp,
2450                                          SDValue &Omod) const {
2451   SDLoc DL(In);
2452   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2453   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2454
2455   return SelectVOP3Mods(In, Src, SrcMods);
2456 }
2457
2458 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2459                                          SDValue &Clamp, SDValue &Omod) const {
2460   Src = In;
2461
2462   SDLoc DL(In);
2463   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2464   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2465
2466   return true;
2467 }
2468
2469 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2470                                          SDValue &SrcMods) const {
2471   unsigned Mods = 0;
2472   Src = In;
2473
2474   if (Src.getOpcode() == ISD::FNEG) {
2475     Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2476     Src = Src.getOperand(0);
2477   }
2478
2479   if (Src.getOpcode() == ISD::BUILD_VECTOR) {
2480     unsigned VecMods = Mods;
2481
2482     SDValue Lo = stripBitcast(Src.getOperand(0));
2483     SDValue Hi = stripBitcast(Src.getOperand(1));
2484
2485     if (Lo.getOpcode() == ISD::FNEG) {
2486       Lo = stripBitcast(Lo.getOperand(0));
2487       Mods ^= SISrcMods::NEG;
2488     }
2489
2490     if (Hi.getOpcode() == ISD::FNEG) {
2491       Hi = stripBitcast(Hi.getOperand(0));
2492       Mods ^= SISrcMods::NEG_HI;
2493     }
2494
2495     if (isExtractHiElt(Lo, Lo))
2496       Mods |= SISrcMods::OP_SEL_0;
2497
2498     if (isExtractHiElt(Hi, Hi))
2499       Mods |= SISrcMods::OP_SEL_1;
2500
2501     Lo = stripExtractLoElt(Lo);
2502     Hi = stripExtractLoElt(Hi);
2503
2504     if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
2505       // Really a scalar input. Just select from the low half of the register to
2506       // avoid packing.
2507
2508       Src = Lo;
2509       SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2510       return true;
2511     }
2512
2513     Mods = VecMods;
2514   }
2515
2516   // Packed instructions do not have abs modifiers.
2517   Mods |= SISrcMods::OP_SEL_1;
2518
2519   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2520   return true;
2521 }
2522
2523 bool AMDGPUDAGToDAGISel::SelectVOP3PMods0(SDValue In, SDValue &Src,
2524                                           SDValue &SrcMods,
2525                                           SDValue &Clamp) const {
2526   SDLoc SL(In);
2527
2528   // FIXME: Handle clamp and op_sel
2529   Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2530
2531   return SelectVOP3PMods(In, Src, SrcMods);
2532 }
2533
2534 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
2535                                          SDValue &SrcMods) const {
2536   Src = In;
2537   // FIXME: Handle op_sel
2538   SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2539   return true;
2540 }
2541
2542 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel0(SDValue In, SDValue &Src,
2543                                           SDValue &SrcMods,
2544                                           SDValue &Clamp) const {
2545   SDLoc SL(In);
2546
2547   // FIXME: Handle clamp
2548   Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2549
2550   return SelectVOP3OpSel(In, Src, SrcMods);
2551 }
2552
2553 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
2554                                              SDValue &SrcMods) const {
2555   // FIXME: Handle op_sel
2556   return SelectVOP3Mods(In, Src, SrcMods);
2557 }
2558
2559 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods0(SDValue In, SDValue &Src,
2560                                               SDValue &SrcMods,
2561                                               SDValue &Clamp) const {
2562   SDLoc SL(In);
2563
2564   // FIXME: Handle clamp
2565   Clamp = CurDAG->getTargetConstant(0, SL, MVT::i32);
2566
2567   return SelectVOP3OpSelMods(In, Src, SrcMods);
2568 }
2569
2570 // The return value is not whether the match is possible (which it always is),
2571 // but whether or not it a conversion is really used.
2572 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
2573                                                    unsigned &Mods) const {
2574   Mods = 0;
2575   SelectVOP3ModsImpl(In, Src, Mods);
2576
2577   if (Src.getOpcode() == ISD::FP_EXTEND) {
2578     Src = Src.getOperand(0);
2579     assert(Src.getValueType() == MVT::f16);
2580     Src = stripBitcast(Src);
2581
2582     // Be careful about folding modifiers if we already have an abs. fneg is
2583     // applied last, so we don't want to apply an earlier fneg.
2584     if ((Mods & SISrcMods::ABS) == 0) {
2585       unsigned ModsTmp;
2586       SelectVOP3ModsImpl(Src, Src, ModsTmp);
2587
2588       if ((ModsTmp & SISrcMods::NEG) != 0)
2589         Mods ^= SISrcMods::NEG;
2590
2591       if ((ModsTmp & SISrcMods::ABS) != 0)
2592         Mods |= SISrcMods::ABS;
2593     }
2594
2595     // op_sel/op_sel_hi decide the source type and source.
2596     // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2597     // If the sources's op_sel is set, it picks the high half of the source
2598     // register.
2599
2600     Mods |= SISrcMods::OP_SEL_1;
2601     if (isExtractHiElt(Src, Src)) {
2602       Mods |= SISrcMods::OP_SEL_0;
2603
2604       // TODO: Should we try to look for neg/abs here?
2605     }
2606
2607     return true;
2608   }
2609
2610   return false;
2611 }
2612
2613 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
2614                                                SDValue &SrcMods) const {
2615   unsigned Mods = 0;
2616   SelectVOP3PMadMixModsImpl(In, Src, Mods);
2617   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2618   return true;
2619 }
2620
2621 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
2622   if (In.isUndef())
2623     return CurDAG->getUNDEF(MVT::i32);
2624
2625   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
2626     SDLoc SL(In);
2627     return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
2628   }
2629
2630   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
2631     SDLoc SL(In);
2632     return CurDAG->getConstant(
2633       C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
2634   }
2635
2636   SDValue Src;
2637   if (isExtractHiElt(In, Src))
2638     return Src;
2639
2640   return SDValue();
2641 }
2642
2643 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
2644   assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
2645
2646   const SIRegisterInfo *SIRI =
2647     static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
2648   const SIInstrInfo * SII =
2649     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2650
2651   unsigned Limit = 0;
2652   bool AllUsesAcceptSReg = true;
2653   for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
2654     Limit < 10 && U != E; ++U, ++Limit) {
2655     const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
2656
2657     // If the register class is unknown, it could be an unknown
2658     // register class that needs to be an SGPR, e.g. an inline asm
2659     // constraint
2660     if (!RC || SIRI->isSGPRClass(RC))
2661       return false;
2662
2663     if (RC != &AMDGPU::VS_32RegClass) {
2664       AllUsesAcceptSReg = false;
2665       SDNode * User = *U;
2666       if (User->isMachineOpcode()) {
2667         unsigned Opc = User->getMachineOpcode();
2668         MCInstrDesc Desc = SII->get(Opc);
2669         if (Desc.isCommutable()) {
2670           unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
2671           unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
2672           if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
2673             unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
2674             const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
2675             if (CommutedRC == &AMDGPU::VS_32RegClass)
2676               AllUsesAcceptSReg = true;
2677           }
2678         }
2679       }
2680       // If "AllUsesAcceptSReg == false" so far we haven't suceeded
2681       // commuting current user. This means have at least one use
2682       // that strictly require VGPR. Thus, we will not attempt to commute
2683       // other user instructions.
2684       if (!AllUsesAcceptSReg)
2685         break;
2686     }
2687   }
2688   return !AllUsesAcceptSReg && (Limit < 10);
2689 }
2690
2691 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
2692   auto Ld = cast<LoadSDNode>(N);
2693
2694   return Ld->getAlignment() >= 4 &&
2695         (
2696           (
2697             (
2698               Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS       ||
2699               Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
2700             )
2701             &&
2702             !N->isDivergent()
2703           )
2704           ||
2705           (
2706             Subtarget->getScalarizeGlobalBehavior() &&
2707             Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
2708             !Ld->isVolatile() &&
2709             !N->isDivergent() &&
2710             static_cast<const SITargetLowering *>(
2711               getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
2712           )
2713         );
2714 }
2715
2716 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
2717   const AMDGPUTargetLowering& Lowering =
2718     *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
2719   bool IsModified = false;
2720   do {
2721     IsModified = false;
2722
2723     // Go over all selected nodes and try to fold them a bit more
2724     SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
2725     while (Position != CurDAG->allnodes_end()) {
2726       SDNode *Node = &*Position++;
2727       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
2728       if (!MachineNode)
2729         continue;
2730
2731       SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
2732       if (ResNode != Node) {
2733         if (ResNode)
2734           ReplaceUses(Node, ResNode);
2735         IsModified = true;
2736       }
2737     }
2738     CurDAG->RemoveDeadNodes();
2739   } while (IsModified);
2740 }
2741
2742 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
2743   Subtarget = &MF.getSubtarget<R600Subtarget>();
2744   return SelectionDAGISel::runOnMachineFunction(MF);
2745 }
2746
2747 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
2748   if (!N->readMem())
2749     return false;
2750   if (CbId == -1)
2751     return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2752            N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
2753
2754   return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
2755 }
2756
2757 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
2758                                                          SDValue& IntPtr) {
2759   if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
2760     IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
2761                                        true);
2762     return true;
2763   }
2764   return false;
2765 }
2766
2767 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
2768     SDValue& BaseReg, SDValue &Offset) {
2769   if (!isa<ConstantSDNode>(Addr)) {
2770     BaseReg = Addr;
2771     Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
2772     return true;
2773   }
2774   return false;
2775 }
2776
2777 void R600DAGToDAGISel::Select(SDNode *N) {
2778   unsigned int Opc = N->getOpcode();
2779   if (N->isMachineOpcode()) {
2780     N->setNodeId(-1);
2781     return;   // Already selected.
2782   }
2783
2784   switch (Opc) {
2785   default: break;
2786   case AMDGPUISD::BUILD_VERTICAL_VECTOR:
2787   case ISD::SCALAR_TO_VECTOR:
2788   case ISD::BUILD_VECTOR: {
2789     EVT VT = N->getValueType(0);
2790     unsigned NumVectorElts = VT.getVectorNumElements();
2791     unsigned RegClassID;
2792     // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
2793     // that adds a 128 bits reg copy when going through TwoAddressInstructions
2794     // pass. We want to avoid 128 bits copies as much as possible because they
2795     // can't be bundled by our scheduler.
2796     switch(NumVectorElts) {
2797     case 2: RegClassID = R600::R600_Reg64RegClassID; break;
2798     case 4:
2799       if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
2800         RegClassID = R600::R600_Reg128VerticalRegClassID;
2801       else
2802         RegClassID = R600::R600_Reg128RegClassID;
2803       break;
2804     default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
2805     }
2806     SelectBuildVector(N, RegClassID);
2807     return;
2808   }
2809   }
2810
2811   SelectCode(N);
2812 }
2813
2814 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
2815                                           SDValue &Offset) {
2816   ConstantSDNode *C;
2817   SDLoc DL(Addr);
2818
2819   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
2820     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2821     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2822   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
2823              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
2824     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2825     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2826   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
2827             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
2828     Base = Addr.getOperand(0);
2829     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2830   } else {
2831     Base = Addr;
2832     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2833   }
2834
2835   return true;
2836 }
2837
2838 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
2839                                           SDValue &Offset) {
2840   ConstantSDNode *IMMOffset;
2841
2842   if (Addr.getOpcode() == ISD::ADD
2843       && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
2844       && isInt<16>(IMMOffset->getZExtValue())) {
2845
2846       Base = Addr.getOperand(0);
2847       Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2848                                          MVT::i32);
2849       return true;
2850   // If the pointer address is constant, we can move it to the offset field.
2851   } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
2852              && isInt<16>(IMMOffset->getZExtValue())) {
2853     Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
2854                                   SDLoc(CurDAG->getEntryNode()),
2855                                   R600::ZERO, MVT::i32);
2856     Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2857                                        MVT::i32);
2858     return true;
2859   }
2860
2861   // Default case, no offset
2862   Base = Addr;
2863   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
2864   return true;
2865 }