]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUISelDAGToDAG.cpp
MFV: r367652
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / AMDGPU / AMDGPUISelDAGToDAG.cpp
1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //==-----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Defines an instruction selector for the AMDGPU target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AMDGPU.h"
15 #include "AMDGPUArgumentUsageInfo.h"
16 #include "AMDGPUISelLowering.h" // For AMDGPUISD
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUPerfHintAnalysis.h"
19 #include "AMDGPUSubtarget.h"
20 #include "AMDGPUTargetMachine.h"
21 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
22 #include "SIDefines.h"
23 #include "SIISelLowering.h"
24 #include "SIInstrInfo.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIRegisterInfo.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/CodeGen/FunctionLoweringInfo.h"
34 #include "llvm/CodeGen/ISDOpcodes.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/SelectionDAG.h"
38 #include "llvm/CodeGen/SelectionDAGISel.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/InitializePasses.h"
43 #ifdef EXPENSIVE_CHECKS
44 #include "llvm/IR/Dominators.h"
45 #endif
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MachineValueType.h"
52 #include "llvm/Support/MathExtras.h"
53 #include <cassert>
54 #include <cstdint>
55 #include <new>
56 #include <vector>
57
58 #define DEBUG_TYPE "isel"
59
60 using namespace llvm;
61
62 namespace llvm {
63
64 class R600InstrInfo;
65
66 } // end namespace llvm
67
68 //===----------------------------------------------------------------------===//
69 // Instruction Selector Implementation
70 //===----------------------------------------------------------------------===//
71
72 namespace {
73
74 static bool isNullConstantOrUndef(SDValue V) {
75   if (V.isUndef())
76     return true;
77
78   ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
79   return Const != nullptr && Const->isNullValue();
80 }
81
82 static bool getConstantValue(SDValue N, uint32_t &Out) {
83   // This is only used for packed vectors, where ussing 0 for undef should
84   // always be good.
85   if (N.isUndef()) {
86     Out = 0;
87     return true;
88   }
89
90   if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
91     Out = C->getAPIntValue().getSExtValue();
92     return true;
93   }
94
95   if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
96     Out = C->getValueAPF().bitcastToAPInt().getSExtValue();
97     return true;
98   }
99
100   return false;
101 }
102
103 // TODO: Handle undef as zero
104 static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG,
105                                  bool Negate = false) {
106   assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2);
107   uint32_t LHSVal, RHSVal;
108   if (getConstantValue(N->getOperand(0), LHSVal) &&
109       getConstantValue(N->getOperand(1), RHSVal)) {
110     SDLoc SL(N);
111     uint32_t K = Negate ?
112       (-LHSVal & 0xffff) | (-RHSVal << 16) :
113       (LHSVal & 0xffff) | (RHSVal << 16);
114     return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0),
115                               DAG.getTargetConstant(K, SL, MVT::i32));
116   }
117
118   return nullptr;
119 }
120
121 static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) {
122   return packConstantV2I16(N, DAG, true);
123 }
124
125 /// AMDGPU specific code to select AMDGPU machine instructions for
126 /// SelectionDAG operations.
127 class AMDGPUDAGToDAGISel : public SelectionDAGISel {
128   // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
129   // make the right decision when generating code for different targets.
130   const GCNSubtarget *Subtarget;
131
132   // Default FP mode for the current function.
133   AMDGPU::SIModeRegisterDefaults Mode;
134
135   bool EnableLateStructurizeCFG;
136
137 public:
138   explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
139                               CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
140     : SelectionDAGISel(*TM, OptLevel) {
141     EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
142   }
143   ~AMDGPUDAGToDAGISel() override = default;
144
145   void getAnalysisUsage(AnalysisUsage &AU) const override {
146     AU.addRequired<AMDGPUArgumentUsageInfo>();
147     AU.addRequired<LegacyDivergenceAnalysis>();
148 #ifdef EXPENSIVE_CHECKS
149     AU.addRequired<DominatorTreeWrapperPass>();
150     AU.addRequired<LoopInfoWrapperPass>();
151 #endif
152     SelectionDAGISel::getAnalysisUsage(AU);
153   }
154
155   bool matchLoadD16FromBuildVector(SDNode *N) const;
156
157   bool runOnMachineFunction(MachineFunction &MF) override;
158   void PreprocessISelDAG() override;
159   void Select(SDNode *N) override;
160   StringRef getPassName() const override;
161   void PostprocessISelDAG() override;
162
163 protected:
164   void SelectBuildVector(SDNode *N, unsigned RegClassID);
165
166 private:
167   std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
168   bool isNoNanSrc(SDValue N) const;
169   bool isInlineImmediate(const SDNode *N, bool Negated = false) const;
170   bool isNegInlineImmediate(const SDNode *N) const {
171     return isInlineImmediate(N, true);
172   }
173
174   bool isInlineImmediate16(int64_t Imm) const {
175     return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm());
176   }
177
178   bool isInlineImmediate32(int64_t Imm) const {
179     return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm());
180   }
181
182   bool isInlineImmediate64(int64_t Imm) const {
183     return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm());
184   }
185
186   bool isInlineImmediate(const APFloat &Imm) const {
187     return Subtarget->getInstrInfo()->isInlineConstant(Imm);
188   }
189
190   bool isVGPRImm(const SDNode *N) const;
191   bool isUniformLoad(const SDNode *N) const;
192   bool isUniformBr(const SDNode *N) const;
193
194   MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;
195
196   SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const;
197   SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
198   SDNode *glueCopyToM0LDSInit(SDNode *N) const;
199
200   const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
201   virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
202   virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
203   bool isDSOffsetLegal(SDValue Base, unsigned Offset,
204                        unsigned OffsetBits) const;
205   bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
206   bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
207                                  SDValue &Offset1) const;
208   bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
209                    SDValue &SOffset, SDValue &Offset, SDValue &Offen,
210                    SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
211                    SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
212   bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
213                          SDValue &SOffset, SDValue &Offset, SDValue &GLC,
214                          SDValue &SLC, SDValue &TFE, SDValue &DLC,
215                          SDValue &SWZ) const;
216   bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
217                          SDValue &VAddr, SDValue &SOffset, SDValue &Offset,
218                          SDValue &SLC) const;
219   bool SelectMUBUFScratchOffen(SDNode *Parent,
220                                SDValue Addr, SDValue &RSrc, SDValue &VAddr,
221                                SDValue &SOffset, SDValue &ImmOffset) const;
222   bool SelectMUBUFScratchOffset(SDNode *Parent,
223                                 SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
224                                 SDValue &Offset) const;
225
226   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
227                          SDValue &Offset, SDValue &GLC, SDValue &SLC,
228                          SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
229   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
230                          SDValue &Offset, SDValue &SLC) const;
231   bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
232                          SDValue &Offset) const;
233
234   template <bool IsSigned>
235   bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
236                         SDValue &Offset, SDValue &SLC) const;
237   bool SelectFlatAtomic(SDNode *N, SDValue Addr, SDValue &VAddr,
238                         SDValue &Offset, SDValue &SLC) const;
239   bool SelectFlatAtomicSigned(SDNode *N, SDValue Addr, SDValue &VAddr,
240                               SDValue &Offset, SDValue &SLC) const;
241
242   bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
243                         bool &Imm) const;
244   SDValue Expand32BitAddress(SDValue Addr) const;
245   bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
246                   bool &Imm) const;
247   bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
248   bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
249   bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
250   bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
251   bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
252   bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;
253
254   bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
255   bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const;
256   bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
257   bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
258   bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
259                        SDValue &Clamp, SDValue &Omod) const;
260   bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
261                          SDValue &Clamp, SDValue &Omod) const;
262
263   bool SelectVOP3OMods(SDValue In, SDValue &Src,
264                        SDValue &Clamp, SDValue &Omod) const;
265
266   bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
267
268   bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;
269
270   bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
271   bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
272   bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
273
274   SDValue getHi16Elt(SDValue In) const;
275
276   SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const;
277
278   void SelectADD_SUB_I64(SDNode *N);
279   void SelectAddcSubb(SDNode *N);
280   void SelectUADDO_USUBO(SDNode *N);
281   void SelectDIV_SCALE(SDNode *N);
282   void SelectMAD_64_32(SDNode *N);
283   void SelectFMA_W_CHAIN(SDNode *N);
284   void SelectFMUL_W_CHAIN(SDNode *N);
285
286   SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
287                    uint32_t Offset, uint32_t Width);
288   void SelectS_BFEFromShifts(SDNode *N);
289   void SelectS_BFE(SDNode *N);
290   bool isCBranchSCC(const SDNode *N) const;
291   void SelectBRCOND(SDNode *N);
292   void SelectFMAD_FMA(SDNode *N);
293   void SelectATOMIC_CMP_SWAP(SDNode *N);
294   void SelectDSAppendConsume(SDNode *N, unsigned IntrID);
295   void SelectDS_GWS(SDNode *N, unsigned IntrID);
296   void SelectInterpP1F16(SDNode *N);
297   void SelectINTRINSIC_W_CHAIN(SDNode *N);
298   void SelectINTRINSIC_WO_CHAIN(SDNode *N);
299   void SelectINTRINSIC_VOID(SDNode *N);
300
301 protected:
302   // Include the pieces autogenerated from the target description.
303 #include "AMDGPUGenDAGISel.inc"
304 };
305
306 class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
307   const R600Subtarget *Subtarget;
308
309   bool isConstantLoad(const MemSDNode *N, int cbID) const;
310   bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
311   bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
312                                        SDValue& Offset);
313 public:
314   explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
315       AMDGPUDAGToDAGISel(TM, OptLevel) {}
316
317   void Select(SDNode *N) override;
318
319   bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
320                           SDValue &Offset) override;
321   bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
322                           SDValue &Offset) override;
323
324   bool runOnMachineFunction(MachineFunction &MF) override;
325
326   void PreprocessISelDAG() override {}
327
328 protected:
329   // Include the pieces autogenerated from the target description.
330 #include "R600GenDAGISel.inc"
331 };
332
333 static SDValue stripBitcast(SDValue Val) {
334   return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
335 }
336
337 // Figure out if this is really an extract of the high 16-bits of a dword.
338 static bool isExtractHiElt(SDValue In, SDValue &Out) {
339   In = stripBitcast(In);
340   if (In.getOpcode() != ISD::TRUNCATE)
341     return false;
342
343   SDValue Srl = In.getOperand(0);
344   if (Srl.getOpcode() == ISD::SRL) {
345     if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
346       if (ShiftAmt->getZExtValue() == 16) {
347         Out = stripBitcast(Srl.getOperand(0));
348         return true;
349       }
350     }
351   }
352
353   return false;
354 }
355
356 // Look through operations that obscure just looking at the low 16-bits of the
357 // same register.
358 static SDValue stripExtractLoElt(SDValue In) {
359   if (In.getOpcode() == ISD::TRUNCATE) {
360     SDValue Src = In.getOperand(0);
361     if (Src.getValueType().getSizeInBits() == 32)
362       return stripBitcast(Src);
363   }
364
365   return In;
366 }
367
368 }  // end anonymous namespace
369
370 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
371                       "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
372 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
373 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
374 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
375 #ifdef EXPENSIVE_CHECKS
376 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
377 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
378 #endif
379 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
380                     "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
381
382 /// This pass converts a legalized DAG into a AMDGPU-specific
383 // DAG, ready for instruction scheduling.
384 FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
385                                         CodeGenOpt::Level OptLevel) {
386   return new AMDGPUDAGToDAGISel(TM, OptLevel);
387 }
388
389 /// This pass converts a legalized DAG into a R600-specific
390 // DAG, ready for instruction scheduling.
391 FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
392                                       CodeGenOpt::Level OptLevel) {
393   return new R600DAGToDAGISel(TM, OptLevel);
394 }
395
396 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
397 #ifdef EXPENSIVE_CHECKS
398   DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
399   LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
400   for (auto &L : LI->getLoopsInPreorder()) {
401     assert(L->isLCSSAForm(DT));
402   }
403 #endif
404   Subtarget = &MF.getSubtarget<GCNSubtarget>();
405   Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction());
406   return SelectionDAGISel::runOnMachineFunction(MF);
407 }
408
409 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
410   assert(Subtarget->d16PreservesUnusedBits());
411   MVT VT = N->getValueType(0).getSimpleVT();
412   if (VT != MVT::v2i16 && VT != MVT::v2f16)
413     return false;
414
415   SDValue Lo = N->getOperand(0);
416   SDValue Hi = N->getOperand(1);
417
418   LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
419
420   // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
421   // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
422   // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
423
424   // Need to check for possible indirect dependencies on the other half of the
425   // vector to avoid introducing a cycle.
426   if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
427     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
428
429     SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
430     SDValue Ops[] = {
431       LdHi->getChain(), LdHi->getBasePtr(), TiedIn
432     };
433
434     unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
435     if (LdHi->getMemoryVT() == MVT::i8) {
436       LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
437         AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
438     } else {
439       assert(LdHi->getMemoryVT() == MVT::i16);
440     }
441
442     SDValue NewLoadHi =
443       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
444                                   Ops, LdHi->getMemoryVT(),
445                                   LdHi->getMemOperand());
446
447     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
448     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
449     return true;
450   }
451
452   // build_vector (load ptr), hi -> load_d16_lo ptr, hi
453   // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
454   // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
455   LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
456   if (LdLo && Lo.hasOneUse()) {
457     SDValue TiedIn = getHi16Elt(Hi);
458     if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
459       return false;
460
461     SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
462     unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
463     if (LdLo->getMemoryVT() == MVT::i8) {
464       LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
465         AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
466     } else {
467       assert(LdLo->getMemoryVT() == MVT::i16);
468     }
469
470     TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
471
472     SDValue Ops[] = {
473       LdLo->getChain(), LdLo->getBasePtr(), TiedIn
474     };
475
476     SDValue NewLoadLo =
477       CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
478                                   Ops, LdLo->getMemoryVT(),
479                                   LdLo->getMemOperand());
480
481     CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
482     CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
483     return true;
484   }
485
486   return false;
487 }
488
489 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
490   if (!Subtarget->d16PreservesUnusedBits())
491     return;
492
493   SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
494
495   bool MadeChange = false;
496   while (Position != CurDAG->allnodes_begin()) {
497     SDNode *N = &*--Position;
498     if (N->use_empty())
499       continue;
500
501     switch (N->getOpcode()) {
502     case ISD::BUILD_VECTOR:
503       MadeChange |= matchLoadD16FromBuildVector(N);
504       break;
505     default:
506       break;
507     }
508   }
509
510   if (MadeChange) {
511     CurDAG->RemoveDeadNodes();
512     LLVM_DEBUG(dbgs() << "After PreProcess:\n";
513                CurDAG->dump(););
514   }
515 }
516
517 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
518   if (TM.Options.NoNaNsFPMath)
519     return true;
520
521   // TODO: Move into isKnownNeverNaN
522   if (N->getFlags().isDefined())
523     return N->getFlags().hasNoNaNs();
524
525   return CurDAG->isKnownNeverNaN(N);
526 }
527
528 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
529                                            bool Negated) const {
530   if (N->isUndef())
531     return true;
532
533   const SIInstrInfo *TII = Subtarget->getInstrInfo();
534   if (Negated) {
535     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
536       return TII->isInlineConstant(-C->getAPIntValue());
537
538     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
539       return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
540
541   } else {
542     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
543       return TII->isInlineConstant(C->getAPIntValue());
544
545     if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
546       return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
547   }
548
549   return false;
550 }
551
552 /// Determine the register class for \p OpNo
553 /// \returns The register class of the virtual register that will be used for
554 /// the given operand number \OpNo or NULL if the register class cannot be
555 /// determined.
556 const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
557                                                           unsigned OpNo) const {
558   if (!N->isMachineOpcode()) {
559     if (N->getOpcode() == ISD::CopyToReg) {
560       unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
561       if (Register::isVirtualRegister(Reg)) {
562         MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
563         return MRI.getRegClass(Reg);
564       }
565
566       const SIRegisterInfo *TRI
567         = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
568       return TRI->getPhysRegClass(Reg);
569     }
570
571     return nullptr;
572   }
573
574   switch (N->getMachineOpcode()) {
575   default: {
576     const MCInstrDesc &Desc =
577         Subtarget->getInstrInfo()->get(N->getMachineOpcode());
578     unsigned OpIdx = Desc.getNumDefs() + OpNo;
579     if (OpIdx >= Desc.getNumOperands())
580       return nullptr;
581     int RegClass = Desc.OpInfo[OpIdx].RegClass;
582     if (RegClass == -1)
583       return nullptr;
584
585     return Subtarget->getRegisterInfo()->getRegClass(RegClass);
586   }
587   case AMDGPU::REG_SEQUENCE: {
588     unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
589     const TargetRegisterClass *SuperRC =
590         Subtarget->getRegisterInfo()->getRegClass(RCID);
591
592     SDValue SubRegOp = N->getOperand(OpNo + 1);
593     unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
594     return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
595                                                               SubRegIdx);
596   }
597   }
598 }
599
600 SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
601                                          SDValue Glue) const {
602   SmallVector <SDValue, 8> Ops;
603   Ops.push_back(NewChain); // Replace the chain.
604   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
605     Ops.push_back(N->getOperand(i));
606
607   Ops.push_back(Glue);
608   return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
609 }
610
611 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
612   const SITargetLowering& Lowering =
613     *static_cast<const SITargetLowering*>(getTargetLowering());
614
615   assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
616
617   SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
618   return glueCopyToOp(N, M0, M0.getValue(1));
619 }
620
621 SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
622   unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
623   if (AS == AMDGPUAS::LOCAL_ADDRESS) {
624     if (Subtarget->ldsRequiresM0Init())
625       return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
626   } else if (AS == AMDGPUAS::REGION_ADDRESS) {
627     MachineFunction &MF = CurDAG->getMachineFunction();
628     unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
629     return
630         glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
631   }
632   return N;
633 }
634
635 MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
636                                                   EVT VT) const {
637   SDNode *Lo = CurDAG->getMachineNode(
638       AMDGPU::S_MOV_B32, DL, MVT::i32,
639       CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
640   SDNode *Hi =
641       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
642                              CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
643   const SDValue Ops[] = {
644       CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
645       SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
646       SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
647
648   return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
649 }
650
651 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
652   EVT VT = N->getValueType(0);
653   unsigned NumVectorElts = VT.getVectorNumElements();
654   EVT EltVT = VT.getVectorElementType();
655   SDLoc DL(N);
656   SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
657
658   if (NumVectorElts == 1) {
659     CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
660                          RegClass);
661     return;
662   }
663
664   assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
665                                   "supported yet");
666   // 32 = Max Num Vector Elements
667   // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
668   // 1 = Vector Register Class
669   SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
670
671   bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() ==
672                Triple::amdgcn;
673   RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
674   bool IsRegSeq = true;
675   unsigned NOps = N->getNumOperands();
676   for (unsigned i = 0; i < NOps; i++) {
677     // XXX: Why is this here?
678     if (isa<RegisterSDNode>(N->getOperand(i))) {
679       IsRegSeq = false;
680       break;
681     }
682     unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
683                          : R600RegisterInfo::getSubRegFromChannel(i);
684     RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
685     RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
686   }
687   if (NOps != NumVectorElts) {
688     // Fill in the missing undef elements if this was a scalar_to_vector.
689     assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
690     MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
691                                                    DL, EltVT);
692     for (unsigned i = NOps; i < NumVectorElts; ++i) {
693       unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
694                            : R600RegisterInfo::getSubRegFromChannel(i);
695       RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
696       RegSeqArgs[1 + (2 * i) + 1] =
697           CurDAG->getTargetConstant(Sub, DL, MVT::i32);
698     }
699   }
700
701   if (!IsRegSeq)
702     SelectCode(N);
703   CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
704 }
705
706 void AMDGPUDAGToDAGISel::Select(SDNode *N) {
707   unsigned int Opc = N->getOpcode();
708   if (N->isMachineOpcode()) {
709     N->setNodeId(-1);
710     return;   // Already selected.
711   }
712
713   // isa<MemSDNode> almost works but is slightly too permissive for some DS
714   // intrinsics.
715   if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
716       (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
717        Opc == ISD::ATOMIC_LOAD_FADD ||
718        Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
719        Opc == AMDGPUISD::ATOMIC_LOAD_FMAX ||
720        Opc == AMDGPUISD::ATOMIC_LOAD_CSUB)) {
721     N = glueCopyToM0LDSInit(N);
722     SelectCode(N);
723     return;
724   }
725
726   switch (Opc) {
727   default:
728     break;
729   // We are selecting i64 ADD here instead of custom lower it during
730   // DAG legalization, so we can fold some i64 ADDs used for address
731   // calculation into the LOAD and STORE instructions.
732   case ISD::ADDC:
733   case ISD::ADDE:
734   case ISD::SUBC:
735   case ISD::SUBE: {
736     if (N->getValueType(0) != MVT::i64)
737       break;
738
739     SelectADD_SUB_I64(N);
740     return;
741   }
742   case ISD::ADDCARRY:
743   case ISD::SUBCARRY:
744     if (N->getValueType(0) != MVT::i32)
745       break;
746
747     SelectAddcSubb(N);
748     return;
749   case ISD::UADDO:
750   case ISD::USUBO: {
751     SelectUADDO_USUBO(N);
752     return;
753   }
754   case AMDGPUISD::FMUL_W_CHAIN: {
755     SelectFMUL_W_CHAIN(N);
756     return;
757   }
758   case AMDGPUISD::FMA_W_CHAIN: {
759     SelectFMA_W_CHAIN(N);
760     return;
761   }
762
763   case ISD::SCALAR_TO_VECTOR:
764   case ISD::BUILD_VECTOR: {
765     EVT VT = N->getValueType(0);
766     unsigned NumVectorElts = VT.getVectorNumElements();
767     if (VT.getScalarSizeInBits() == 16) {
768       if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
769         if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
770           ReplaceNode(N, Packed);
771           return;
772         }
773       }
774
775       break;
776     }
777
778     assert(VT.getVectorElementType().bitsEq(MVT::i32));
779     unsigned RegClassID =
780         SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID();
781     SelectBuildVector(N, RegClassID);
782     return;
783   }
784   case ISD::BUILD_PAIR: {
785     SDValue RC, SubReg0, SubReg1;
786     SDLoc DL(N);
787     if (N->getValueType(0) == MVT::i128) {
788       RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
789       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
790       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
791     } else if (N->getValueType(0) == MVT::i64) {
792       RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
793       SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
794       SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
795     } else {
796       llvm_unreachable("Unhandled value type for BUILD_PAIR");
797     }
798     const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
799                             N->getOperand(1), SubReg1 };
800     ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
801                                           N->getValueType(0), Ops));
802     return;
803   }
804
805   case ISD::Constant:
806   case ISD::ConstantFP: {
807     if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
808       break;
809
810     uint64_t Imm;
811     if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
812       Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
813     else {
814       ConstantSDNode *C = cast<ConstantSDNode>(N);
815       Imm = C->getZExtValue();
816     }
817
818     SDLoc DL(N);
819     ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
820     return;
821   }
822   case AMDGPUISD::BFE_I32:
823   case AMDGPUISD::BFE_U32: {
824     // There is a scalar version available, but unlike the vector version which
825     // has a separate operand for the offset and width, the scalar version packs
826     // the width and offset into a single operand. Try to move to the scalar
827     // version if the offsets are constant, so that we can try to keep extended
828     // loads of kernel arguments in SGPRs.
829
830     // TODO: Technically we could try to pattern match scalar bitshifts of
831     // dynamic values, but it's probably not useful.
832     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
833     if (!Offset)
834       break;
835
836     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
837     if (!Width)
838       break;
839
840     bool Signed = Opc == AMDGPUISD::BFE_I32;
841
842     uint32_t OffsetVal = Offset->getZExtValue();
843     uint32_t WidthVal = Width->getZExtValue();
844
845     ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
846                             SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
847     return;
848   }
849   case AMDGPUISD::DIV_SCALE: {
850     SelectDIV_SCALE(N);
851     return;
852   }
853   case AMDGPUISD::MAD_I64_I32:
854   case AMDGPUISD::MAD_U64_U32: {
855     SelectMAD_64_32(N);
856     return;
857   }
858   case ISD::CopyToReg: {
859     const SITargetLowering& Lowering =
860       *static_cast<const SITargetLowering*>(getTargetLowering());
861     N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
862     break;
863   }
864   case ISD::AND:
865   case ISD::SRL:
866   case ISD::SRA:
867   case ISD::SIGN_EXTEND_INREG:
868     if (N->getValueType(0) != MVT::i32)
869       break;
870
871     SelectS_BFE(N);
872     return;
873   case ISD::BRCOND:
874     SelectBRCOND(N);
875     return;
876   case ISD::FMAD:
877   case ISD::FMA:
878     SelectFMAD_FMA(N);
879     return;
880   case AMDGPUISD::ATOMIC_CMP_SWAP:
881     SelectATOMIC_CMP_SWAP(N);
882     return;
883   case AMDGPUISD::CVT_PKRTZ_F16_F32:
884   case AMDGPUISD::CVT_PKNORM_I16_F32:
885   case AMDGPUISD::CVT_PKNORM_U16_F32:
886   case AMDGPUISD::CVT_PK_U16_U32:
887   case AMDGPUISD::CVT_PK_I16_I32: {
888     // Hack around using a legal type if f16 is illegal.
889     if (N->getValueType(0) == MVT::i32) {
890       MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
891       N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
892                               { N->getOperand(0), N->getOperand(1) });
893       SelectCode(N);
894       return;
895     }
896
897     break;
898   }
899   case ISD::INTRINSIC_W_CHAIN: {
900     SelectINTRINSIC_W_CHAIN(N);
901     return;
902   }
903   case ISD::INTRINSIC_WO_CHAIN: {
904     SelectINTRINSIC_WO_CHAIN(N);
905     return;
906   }
907   case ISD::INTRINSIC_VOID: {
908     SelectINTRINSIC_VOID(N);
909     return;
910   }
911   }
912
913   SelectCode(N);
914 }
915
916 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
917   const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
918   const Instruction *Term = BB->getTerminator();
919   return Term->getMetadata("amdgpu.uniform") ||
920          Term->getMetadata("structurizecfg.uniform");
921 }
922
923 StringRef AMDGPUDAGToDAGISel::getPassName() const {
924   return "AMDGPU DAG->DAG Pattern Instruction Selection";
925 }
926
927 //===----------------------------------------------------------------------===//
928 // Complex Patterns
929 //===----------------------------------------------------------------------===//
930
931 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
932                                             SDValue &Offset) {
933   return false;
934 }
935
936 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
937                                             SDValue &Offset) {
938   ConstantSDNode *C;
939   SDLoc DL(Addr);
940
941   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
942     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
943     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
944   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
945              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
946     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
947     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
948   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
949             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
950     Base = Addr.getOperand(0);
951     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
952   } else {
953     Base = Addr;
954     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
955   }
956
957   return true;
958 }
959
960 SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
961                                                        const SDLoc &DL) const {
962   SDNode *Mov = CurDAG->getMachineNode(
963     AMDGPU::S_MOV_B32, DL, MVT::i32,
964     CurDAG->getTargetConstant(Val, DL, MVT::i32));
965   return SDValue(Mov, 0);
966 }
967
968 // FIXME: Should only handle addcarry/subcarry
969 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
970   SDLoc DL(N);
971   SDValue LHS = N->getOperand(0);
972   SDValue RHS = N->getOperand(1);
973
974   unsigned Opcode = N->getOpcode();
975   bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
976   bool ProduceCarry =
977       ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
978   bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
979
980   SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
981   SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
982
983   SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
984                                        DL, MVT::i32, LHS, Sub0);
985   SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
986                                        DL, MVT::i32, LHS, Sub1);
987
988   SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
989                                        DL, MVT::i32, RHS, Sub0);
990   SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
991                                        DL, MVT::i32, RHS, Sub1);
992
993   SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
994
995   static const unsigned OpcMap[2][2][2] = {
996       {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32},
997        {AMDGPU::V_SUB_I32_e32, AMDGPU::V_ADD_I32_e32}},
998       {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32},
999        {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}};
1000
1001   unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd];
1002   unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd];
1003
1004   SDNode *AddLo;
1005   if (!ConsumeCarry) {
1006     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
1007     AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
1008   } else {
1009     SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
1010     AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
1011   }
1012   SDValue AddHiArgs[] = {
1013     SDValue(Hi0, 0),
1014     SDValue(Hi1, 0),
1015     SDValue(AddLo, 1)
1016   };
1017   SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
1018
1019   SDValue RegSequenceArgs[] = {
1020     CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
1021     SDValue(AddLo,0),
1022     Sub0,
1023     SDValue(AddHi,0),
1024     Sub1,
1025   };
1026   SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1027                                                MVT::i64, RegSequenceArgs);
1028
1029   if (ProduceCarry) {
1030     // Replace the carry-use
1031     ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
1032   }
1033
1034   // Replace the remaining uses.
1035   ReplaceNode(N, RegSequence);
1036 }
1037
1038 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
1039   SDLoc DL(N);
1040   SDValue LHS = N->getOperand(0);
1041   SDValue RHS = N->getOperand(1);
1042   SDValue CI = N->getOperand(2);
1043
1044   if (N->isDivergent()) {
1045     unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
1046                                                    : AMDGPU::V_SUBB_U32_e64;
1047     CurDAG->SelectNodeTo(
1048         N, Opc, N->getVTList(),
1049         {LHS, RHS, CI,
1050          CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1051   } else {
1052     unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO
1053                                                    : AMDGPU::S_SUB_CO_PSEUDO;
1054     CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI});
1055   }
1056 }
1057
1058 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
1059   // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
1060   // carry out despite the _i32 name. These were renamed in VI to _U32.
1061   // FIXME: We should probably rename the opcodes here.
1062   bool IsAdd = N->getOpcode() == ISD::UADDO;
1063   bool IsVALU = N->isDivergent();
1064
1065   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E;
1066        ++UI)
1067     if (UI.getUse().getResNo() == 1) {
1068       if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) ||
1069           (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) {
1070         IsVALU = true;
1071         break;
1072       }
1073     }
1074
1075   if (IsVALU) {
1076     unsigned Opc = IsAdd ? AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
1077
1078     CurDAG->SelectNodeTo(
1079         N, Opc, N->getVTList(),
1080         {N->getOperand(0), N->getOperand(1),
1081          CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
1082   } else {
1083     unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO
1084                                                 : AMDGPU::S_USUBO_PSEUDO;
1085
1086     CurDAG->SelectNodeTo(N, Opc, N->getVTList(),
1087                          {N->getOperand(0), N->getOperand(1)});
1088   }
1089 }
1090
1091 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
1092   SDLoc SL(N);
1093   //  src0_modifiers, src0,  src1_modifiers, src1, src2_modifiers, src2, clamp, omod
1094   SDValue Ops[10];
1095
1096   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
1097   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1098   SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
1099   Ops[8] = N->getOperand(0);
1100   Ops[9] = N->getOperand(4);
1101
1102   CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops);
1103 }
1104
1105 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
1106   SDLoc SL(N);
1107   //    src0_modifiers, src0,  src1_modifiers, src1, clamp, omod
1108   SDValue Ops[8];
1109
1110   SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
1111   SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
1112   Ops[6] = N->getOperand(0);
1113   Ops[7] = N->getOperand(3);
1114
1115   CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
1116 }
1117
1118 // We need to handle this here because tablegen doesn't support matching
1119 // instructions with multiple outputs.
1120 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
1121   SDLoc SL(N);
1122   EVT VT = N->getValueType(0);
1123
1124   assert(VT == MVT::f32 || VT == MVT::f64);
1125
1126   unsigned Opc
1127     = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
1128
1129   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
1130   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1131 }
1132
1133 // We need to handle this here because tablegen doesn't support matching
1134 // instructions with multiple outputs.
1135 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
1136   SDLoc SL(N);
1137   bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
1138   unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32;
1139
1140   SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
1141   SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
1142                     Clamp };
1143   CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
1144 }
1145
1146 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset,
1147                                          unsigned OffsetBits) const {
1148   if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
1149       (OffsetBits == 8 && !isUInt<8>(Offset)))
1150     return false;
1151
1152   if (Subtarget->hasUsableDSOffset() ||
1153       Subtarget->unsafeDSOffsetFoldingEnabled())
1154     return true;
1155
1156   // On Southern Islands instruction with a negative base value and an offset
1157   // don't seem to work.
1158   return CurDAG->SignBitIsZero(Base);
1159 }
1160
1161 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
1162                                               SDValue &Offset) const {
1163   SDLoc DL(Addr);
1164   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1165     SDValue N0 = Addr.getOperand(0);
1166     SDValue N1 = Addr.getOperand(1);
1167     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1168     if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
1169       // (add n0, c0)
1170       Base = N0;
1171       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1172       return true;
1173     }
1174   } else if (Addr.getOpcode() == ISD::SUB) {
1175     // sub C, x -> add (sub 0, x), C
1176     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1177       int64_t ByteOffset = C->getSExtValue();
1178       if (isUInt<16>(ByteOffset)) {
1179         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1180
1181         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1182         // the known bits in isDSOffsetLegal. We need to emit the selected node
1183         // here, so this is thrown away.
1184         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1185                                       Zero, Addr.getOperand(1));
1186
1187         if (isDSOffsetLegal(Sub, ByteOffset, 16)) {
1188           SmallVector<SDValue, 3> Opnds;
1189           Opnds.push_back(Zero);
1190           Opnds.push_back(Addr.getOperand(1));
1191
1192           // FIXME: Select to VOP3 version for with-carry.
1193           unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1194           if (Subtarget->hasAddNoCarry()) {
1195             SubOp = AMDGPU::V_SUB_U32_e64;
1196             Opnds.push_back(
1197                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1198           }
1199
1200           MachineSDNode *MachineSub =
1201               CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1202
1203           Base = SDValue(MachineSub, 0);
1204           Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
1205           return true;
1206         }
1207       }
1208     }
1209   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1210     // If we have a constant address, prefer to put the constant into the
1211     // offset. This can save moves to load the constant address since multiple
1212     // operations can share the zero base address register, and enables merging
1213     // into read2 / write2 instructions.
1214
1215     SDLoc DL(Addr);
1216
1217     if (isUInt<16>(CAddr->getZExtValue())) {
1218       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1219       MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1220                                  DL, MVT::i32, Zero);
1221       Base = SDValue(MovZero, 0);
1222       Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1223       return true;
1224     }
1225   }
1226
1227   // default case
1228   Base = Addr;
1229   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
1230   return true;
1231 }
1232
1233 // TODO: If offset is too big, put low 16-bit into offset.
1234 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
1235                                                    SDValue &Offset0,
1236                                                    SDValue &Offset1) const {
1237   SDLoc DL(Addr);
1238
1239   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1240     SDValue N0 = Addr.getOperand(0);
1241     SDValue N1 = Addr.getOperand(1);
1242     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1243     unsigned DWordOffset0 = C1->getZExtValue() / 4;
1244     unsigned DWordOffset1 = DWordOffset0 + 1;
1245     // (add n0, c0)
1246     if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
1247       Base = N0;
1248       Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1249       Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1250       return true;
1251     }
1252   } else if (Addr.getOpcode() == ISD::SUB) {
1253     // sub C, x -> add (sub 0, x), C
1254     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
1255       unsigned DWordOffset0 = C->getZExtValue() / 4;
1256       unsigned DWordOffset1 = DWordOffset0 + 1;
1257
1258       if (isUInt<8>(DWordOffset0)) {
1259         SDLoc DL(Addr);
1260         SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1261
1262         // XXX - This is kind of hacky. Create a dummy sub node so we can check
1263         // the known bits in isDSOffsetLegal. We need to emit the selected node
1264         // here, so this is thrown away.
1265         SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
1266                                       Zero, Addr.getOperand(1));
1267
1268         if (isDSOffsetLegal(Sub, DWordOffset1, 8)) {
1269           SmallVector<SDValue, 3> Opnds;
1270           Opnds.push_back(Zero);
1271           Opnds.push_back(Addr.getOperand(1));
1272           unsigned SubOp = AMDGPU::V_SUB_I32_e32;
1273           if (Subtarget->hasAddNoCarry()) {
1274             SubOp = AMDGPU::V_SUB_U32_e64;
1275             Opnds.push_back(
1276                 CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
1277           }
1278
1279           MachineSDNode *MachineSub
1280             = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
1281
1282           Base = SDValue(MachineSub, 0);
1283           Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1284           Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1285           return true;
1286         }
1287       }
1288     }
1289   } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1290     unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
1291     unsigned DWordOffset1 = DWordOffset0 + 1;
1292     assert(4 * DWordOffset0 == CAddr->getZExtValue());
1293
1294     if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
1295       SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
1296       MachineSDNode *MovZero
1297         = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
1298                                  DL, MVT::i32, Zero);
1299       Base = SDValue(MovZero, 0);
1300       Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
1301       Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
1302       return true;
1303     }
1304   }
1305
1306   // default case
1307
1308   Base = Addr;
1309   Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
1310   Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
1311   return true;
1312 }
1313
1314 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
1315                                      SDValue &VAddr, SDValue &SOffset,
1316                                      SDValue &Offset, SDValue &Offen,
1317                                      SDValue &Idxen, SDValue &Addr64,
1318                                      SDValue &GLC, SDValue &SLC,
1319                                      SDValue &TFE, SDValue &DLC,
1320                                      SDValue &SWZ) const {
1321   // Subtarget prefers to use flat instruction
1322   // FIXME: This should be a pattern predicate and not reach here
1323   if (Subtarget->useFlatForGlobal())
1324     return false;
1325
1326   SDLoc DL(Addr);
1327
1328   if (!GLC.getNode())
1329     GLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1330   if (!SLC.getNode())
1331     SLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1332   TFE = CurDAG->getTargetConstant(0, DL, MVT::i1);
1333   DLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
1334   SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1);
1335
1336   Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1337   Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
1338   Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
1339   SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1340
1341   ConstantSDNode *C1 = nullptr;
1342   SDValue N0 = Addr;
1343   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1344     C1 = cast<ConstantSDNode>(Addr.getOperand(1));
1345     if (isUInt<32>(C1->getZExtValue()))
1346       N0 = Addr.getOperand(0);
1347     else
1348       C1 = nullptr;
1349   }
1350
1351   if (N0.getOpcode() == ISD::ADD) {
1352     // (add N2, N3) -> addr64, or
1353     // (add (add N2, N3), C1) -> addr64
1354     SDValue N2 = N0.getOperand(0);
1355     SDValue N3 = N0.getOperand(1);
1356     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1357
1358     if (N2->isDivergent()) {
1359       if (N3->isDivergent()) {
1360         // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1361         // addr64, and construct the resource from a 0 address.
1362         Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1363         VAddr = N0;
1364       } else {
1365         // N2 is divergent, N3 is not.
1366         Ptr = N3;
1367         VAddr = N2;
1368       }
1369     } else {
1370       // N2 is not divergent.
1371       Ptr = N2;
1372       VAddr = N3;
1373     }
1374     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1375   } else if (N0->isDivergent()) {
1376     // N0 is divergent. Use it as the addr64, and construct the resource from a
1377     // 0 address.
1378     Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
1379     VAddr = N0;
1380     Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
1381   } else {
1382     // N0 -> offset, or
1383     // (N0 + C1) -> offset
1384     VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
1385     Ptr = N0;
1386   }
1387
1388   if (!C1) {
1389     // No offset.
1390     Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1391     return true;
1392   }
1393
1394   if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
1395     // Legal offset for instruction.
1396     Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1397     return true;
1398   }
1399
1400   // Illegal offset, store it in soffset.
1401   Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1402   SOffset =
1403       SDValue(CurDAG->getMachineNode(
1404                   AMDGPU::S_MOV_B32, DL, MVT::i32,
1405                   CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
1406               0);
1407   return true;
1408 }
1409
1410 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1411                                            SDValue &VAddr, SDValue &SOffset,
1412                                            SDValue &Offset, SDValue &GLC,
1413                                            SDValue &SLC, SDValue &TFE,
1414                                            SDValue &DLC, SDValue &SWZ) const {
1415   SDValue Ptr, Offen, Idxen, Addr64;
1416
1417   // addr64 bit was removed for volcanic islands.
1418   // FIXME: This should be a pattern predicate and not reach here
1419   if (!Subtarget->hasAddr64())
1420     return false;
1421
1422   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1423               GLC, SLC, TFE, DLC, SWZ))
1424     return false;
1425
1426   ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
1427   if (C->getSExtValue()) {
1428     SDLoc DL(Addr);
1429
1430     const SITargetLowering& Lowering =
1431       *static_cast<const SITargetLowering*>(getTargetLowering());
1432
1433     SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
1434     return true;
1435   }
1436
1437   return false;
1438 }
1439
1440 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
1441                                            SDValue &VAddr, SDValue &SOffset,
1442                                            SDValue &Offset,
1443                                            SDValue &SLC) const {
1444   SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1);
1445   SDValue GLC, TFE, DLC, SWZ;
1446
1447   return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1448 }
1449
1450 static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
1451   auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
1452   return PSV && PSV->isStack();
1453 }
1454
1455 std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
1456   SDLoc DL(N);
1457   const MachineFunction &MF = CurDAG->getMachineFunction();
1458   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1459
1460   if (auto FI = dyn_cast<FrameIndexSDNode>(N)) {
1461     SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
1462                                               FI->getValueType(0));
1463
1464     // If we can resolve this to a frame index access, this will be relative to
1465     // either the stack or frame pointer SGPR.
1466     return std::make_pair(
1467         TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32));
1468   }
1469
1470   // If we don't know this private access is a local stack object, it needs to
1471   // be relative to the entry point's scratch wave offset.
1472   return std::make_pair(N, CurDAG->getTargetConstant(0, DL, MVT::i32));
1473 }
1474
1475 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
1476                                                  SDValue Addr, SDValue &Rsrc,
1477                                                  SDValue &VAddr, SDValue &SOffset,
1478                                                  SDValue &ImmOffset) const {
1479
1480   SDLoc DL(Addr);
1481   MachineFunction &MF = CurDAG->getMachineFunction();
1482   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1483
1484   Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1485
1486   if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
1487     int64_t Imm = CAddr->getSExtValue();
1488     const int64_t NullPtr =
1489         AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS);
1490     // Don't fold null pointer.
1491     if (Imm != NullPtr) {
1492       SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
1493       MachineSDNode *MovHighBits = CurDAG->getMachineNode(
1494         AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits);
1495       VAddr = SDValue(MovHighBits, 0);
1496
1497       // In a call sequence, stores to the argument stack area are relative to the
1498       // stack pointer.
1499       const MachinePointerInfo &PtrInfo
1500         = cast<MemSDNode>(Parent)->getPointerInfo();
1501       SOffset = isStackPtrRelative(PtrInfo)
1502         ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)
1503         : CurDAG->getTargetConstant(0, DL, MVT::i32);
1504       ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
1505       return true;
1506     }
1507   }
1508
1509   if (CurDAG->isBaseWithConstantOffset(Addr)) {
1510     // (add n0, c1)
1511
1512     SDValue N0 = Addr.getOperand(0);
1513     SDValue N1 = Addr.getOperand(1);
1514
1515     // Offsets in vaddr must be positive if range checking is enabled.
1516     //
1517     // The total computation of vaddr + soffset + offset must not overflow.  If
1518     // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1519     // overflowing.
1520     //
1521     // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1522     // always perform a range check. If a negative vaddr base index was used,
1523     // this would fail the range check. The overall address computation would
1524     // compute a valid address, but this doesn't happen due to the range
1525     // check. For out-of-bounds MUBUF loads, a 0 is returned.
1526     //
1527     // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1528     // MUBUF vaddr, but not on older subtargets which can only do this if the
1529     // sign bit is known 0.
1530     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1531     if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
1532         (!Subtarget->privateMemoryResourceIsRangeChecked() ||
1533          CurDAG->SignBitIsZero(N0))) {
1534       std::tie(VAddr, SOffset) = foldFrameIndex(N0);
1535       ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
1536       return true;
1537     }
1538   }
1539
1540   // (node)
1541   std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
1542   ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
1543   return true;
1544 }
1545
1546 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
1547                                                   SDValue Addr,
1548                                                   SDValue &SRsrc,
1549                                                   SDValue &SOffset,
1550                                                   SDValue &Offset) const {
1551   ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
1552   if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
1553     return false;
1554
1555   SDLoc DL(Addr);
1556   MachineFunction &MF = CurDAG->getMachineFunction();
1557   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1558
1559   SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
1560
1561   const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
1562
1563   // FIXME: Get from MachinePointerInfo? We should only be using the frame
1564   // offset if we know this is in a call sequence.
1565   SOffset = isStackPtrRelative(PtrInfo)
1566                 ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)
1567                 : CurDAG->getTargetConstant(0, DL, MVT::i32);
1568
1569   Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
1570   return true;
1571 }
1572
1573 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1574                                            SDValue &SOffset, SDValue &Offset,
1575                                            SDValue &GLC, SDValue &SLC,
1576                                            SDValue &TFE, SDValue &DLC,
1577                                            SDValue &SWZ) const {
1578   SDValue Ptr, VAddr, Offen, Idxen, Addr64;
1579   const SIInstrInfo *TII =
1580     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1581
1582   if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
1583               GLC, SLC, TFE, DLC, SWZ))
1584     return false;
1585
1586   if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
1587       !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
1588       !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
1589     uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
1590                     APInt::getAllOnesValue(32).getZExtValue(); // Size
1591     SDLoc DL(Addr);
1592
1593     const SITargetLowering& Lowering =
1594       *static_cast<const SITargetLowering*>(getTargetLowering());
1595
1596     SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
1597     return true;
1598   }
1599   return false;
1600 }
1601
1602 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1603                                            SDValue &Soffset, SDValue &Offset
1604                                            ) const {
1605   SDValue GLC, SLC, TFE, DLC, SWZ;
1606
1607   return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1608 }
1609 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
1610                                            SDValue &Soffset, SDValue &Offset,
1611                                            SDValue &SLC) const {
1612   SDValue GLC, TFE, DLC, SWZ;
1613
1614   return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
1615 }
1616
1617 // Find a load or store from corresponding pattern root.
1618 // Roots may be build_vector, bitconvert or their combinations.
1619 static MemSDNode* findMemSDNode(SDNode *N) {
1620   N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
1621   if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
1622     return MN;
1623   assert(isa<BuildVectorSDNode>(N));
1624   for (SDValue V : N->op_values())
1625     if (MemSDNode *MN =
1626           dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
1627       return MN;
1628   llvm_unreachable("cannot find MemSDNode in the pattern!");
1629 }
1630
1631 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr,
1632                                           SDValue &N0, SDValue &N1) {
1633   if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST &&
1634       Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
1635     // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e.
1636     // (i64 (bitcast (v2i32 (build_vector
1637     //                        (or (extract_vector_elt V, 0), OFFSET),
1638     //                        (extract_vector_elt V, 1)))))
1639     SDValue Lo = Addr.getOperand(0).getOperand(0);
1640     if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) {
1641       SDValue BaseLo = Lo.getOperand(0);
1642       SDValue BaseHi = Addr.getOperand(0).getOperand(1);
1643       // Check that split base (Lo and Hi) are extracted from the same one.
1644       if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
1645           BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
1646           BaseLo.getOperand(0) == BaseHi.getOperand(0) &&
1647           // Lo is statically extracted from index 0.
1648           isa<ConstantSDNode>(BaseLo.getOperand(1)) &&
1649           BaseLo.getConstantOperandVal(1) == 0 &&
1650           // Hi is statically extracted from index 0.
1651           isa<ConstantSDNode>(BaseHi.getOperand(1)) &&
1652           BaseHi.getConstantOperandVal(1) == 1) {
1653         N0 = BaseLo.getOperand(0).getOperand(0);
1654         N1 = Lo.getOperand(1);
1655         return true;
1656       }
1657     }
1658   }
1659   return false;
1660 }
1661
1662 template <bool IsSigned>
1663 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N,
1664                                           SDValue Addr,
1665                                           SDValue &VAddr,
1666                                           SDValue &Offset,
1667                                           SDValue &SLC) const {
1668   int64_t OffsetVal = 0;
1669
1670   if (Subtarget->hasFlatInstOffsets() &&
1671       (!Subtarget->hasFlatSegmentOffsetBug() ||
1672        findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS)) {
1673     SDValue N0, N1;
1674     if (CurDAG->isBaseWithConstantOffset(Addr)) {
1675       N0 = Addr.getOperand(0);
1676       N1 = Addr.getOperand(1);
1677     } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) {
1678       assert(N0 && N1 && isa<ConstantSDNode>(N1));
1679     }
1680     if (N0 && N1) {
1681       uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
1682
1683       const SIInstrInfo *TII = Subtarget->getInstrInfo();
1684       unsigned AS = findMemSDNode(N)->getAddressSpace();
1685       if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) {
1686         Addr = N0;
1687         OffsetVal = COffsetVal;
1688       } else {
1689         // If the offset doesn't fit, put the low bits into the offset field and
1690         // add the rest.
1691
1692         SDLoc DL(N);
1693         uint64_t ImmField;
1694         const unsigned NumBits = TII->getNumFlatOffsetBits(AS, IsSigned);
1695         if (IsSigned) {
1696           ImmField = SignExtend64(COffsetVal, NumBits);
1697
1698           // Don't use a negative offset field if the base offset is positive.
1699           // Since the scheduler currently relies on the offset field, doing so
1700           // could result in strange scheduling decisions.
1701
1702           // TODO: Should we not do this in the opposite direction as well?
1703           if (static_cast<int64_t>(COffsetVal) > 0) {
1704             if (static_cast<int64_t>(ImmField) < 0) {
1705               const uint64_t OffsetMask =
1706                   maskTrailingOnes<uint64_t>(NumBits - 1);
1707               ImmField = COffsetVal & OffsetMask;
1708             }
1709           }
1710         } else {
1711           // TODO: Should we do this for a negative offset?
1712           const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits);
1713           ImmField = COffsetVal & OffsetMask;
1714         }
1715
1716         uint64_t RemainderOffset = COffsetVal - ImmField;
1717
1718         assert(TII->isLegalFLATOffset(ImmField, AS, IsSigned));
1719         assert(RemainderOffset + ImmField == COffsetVal);
1720
1721         OffsetVal = ImmField;
1722
1723         // TODO: Should this try to use a scalar add pseudo if the base address
1724         // is uniform and saddr is usable?
1725         SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
1726         SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
1727
1728         SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1729                                               MVT::i32, N0, Sub0);
1730         SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
1731                                               MVT::i32, N0, Sub1);
1732
1733         SDValue AddOffsetLo =
1734             getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
1735         SDValue AddOffsetHi =
1736             getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
1737
1738         SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
1739         SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
1740
1741         SDNode *Add =
1742             CurDAG->getMachineNode(AMDGPU::V_ADD_I32_e64, DL, VTs,
1743                                    {AddOffsetLo, SDValue(N0Lo, 0), Clamp});
1744
1745         SDNode *Addc = CurDAG->getMachineNode(
1746             AMDGPU::V_ADDC_U32_e64, DL, VTs,
1747             {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
1748
1749         SDValue RegSequenceArgs[] = {
1750             CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
1751             SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1};
1752
1753         Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
1754                                               MVT::i64, RegSequenceArgs),
1755                        0);
1756       }
1757     }
1758   }
1759
1760   VAddr = Addr;
1761   Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
1762   SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1);
1763   return true;
1764 }
1765
1766 bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDNode *N,
1767                                           SDValue Addr,
1768                                           SDValue &VAddr,
1769                                           SDValue &Offset,
1770                                           SDValue &SLC) const {
1771   return SelectFlatOffset<false>(N, Addr, VAddr, Offset, SLC);
1772 }
1773
1774 bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDNode *N,
1775                                                 SDValue Addr,
1776                                                 SDValue &VAddr,
1777                                                 SDValue &Offset,
1778                                                 SDValue &SLC) const {
1779   return SelectFlatOffset<true>(N, Addr, VAddr, Offset, SLC);
1780 }
1781
1782 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
1783                                           SDValue &Offset, bool &Imm) const {
1784   ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
1785   if (!C) {
1786     if (ByteOffsetNode.getValueType().isScalarInteger() &&
1787         ByteOffsetNode.getValueType().getSizeInBits() == 32) {
1788       Offset = ByteOffsetNode;
1789       Imm = false;
1790       return true;
1791     }
1792     if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) {
1793       if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) {
1794         Offset = ByteOffsetNode.getOperand(0);
1795         Imm = false;
1796         return true;
1797       }
1798     }
1799     return false;
1800   }
1801
1802   SDLoc SL(ByteOffsetNode);
1803   // GFX9 and GFX10 have signed byte immediate offsets.
1804   int64_t ByteOffset = C->getSExtValue();
1805   Optional<int64_t> EncodedOffset =
1806       AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false);
1807   if (EncodedOffset) {
1808     Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1809     Imm = true;
1810     return true;
1811   }
1812
1813   // SGPR and literal offsets are unsigned.
1814   if (ByteOffset < 0)
1815     return false;
1816
1817   EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset);
1818   if (EncodedOffset) {
1819     Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
1820     return true;
1821   }
1822
1823   if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset))
1824     return false;
1825
1826   SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
1827   Offset = SDValue(
1828       CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0);
1829
1830   return true;
1831 }
1832
1833 SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
1834   if (Addr.getValueType() != MVT::i32)
1835     return Addr;
1836
1837   // Zero-extend a 32-bit address.
1838   SDLoc SL(Addr);
1839
1840   const MachineFunction &MF = CurDAG->getMachineFunction();
1841   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1842   unsigned AddrHiVal = Info->get32BitAddressHighBits();
1843   SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
1844
1845   const SDValue Ops[] = {
1846     CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
1847     Addr,
1848     CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
1849     SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
1850             0),
1851     CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
1852   };
1853
1854   return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
1855                                         Ops), 0);
1856 }
1857
1858 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
1859                                      SDValue &Offset, bool &Imm) const {
1860   SDLoc SL(Addr);
1861
1862   // A 32-bit (address + offset) should not cause unsigned 32-bit integer
1863   // wraparound, because s_load instructions perform the addition in 64 bits.
1864   if ((Addr.getValueType() != MVT::i32 ||
1865        Addr->getFlags().hasNoUnsignedWrap())) {
1866     SDValue N0, N1;
1867     // Extract the base and offset if possible.
1868     if (CurDAG->isBaseWithConstantOffset(Addr) ||
1869         Addr.getOpcode() == ISD::ADD) {
1870       N0 = Addr.getOperand(0);
1871       N1 = Addr.getOperand(1);
1872     } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) {
1873       assert(N0 && N1 && isa<ConstantSDNode>(N1));
1874     }
1875     if (N0 && N1) {
1876       if (SelectSMRDOffset(N1, Offset, Imm)) {
1877         SBase = Expand32BitAddress(N0);
1878         return true;
1879       }
1880     }
1881   }
1882   SBase = Expand32BitAddress(Addr);
1883   Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
1884   Imm = true;
1885   return true;
1886 }
1887
1888 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
1889                                        SDValue &Offset) const {
1890   bool Imm = false;
1891   return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
1892 }
1893
1894 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
1895                                          SDValue &Offset) const {
1896
1897   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
1898
1899   bool Imm = false;
1900   if (!SelectSMRD(Addr, SBase, Offset, Imm))
1901     return false;
1902
1903   return !Imm && isa<ConstantSDNode>(Offset);
1904 }
1905
1906 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
1907                                         SDValue &Offset) const {
1908   bool Imm = false;
1909   return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
1910          !isa<ConstantSDNode>(Offset);
1911 }
1912
1913 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
1914                                              SDValue &Offset) const {
1915   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
1916     // The immediate offset for S_BUFFER instructions is unsigned.
1917     if (auto Imm =
1918             AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) {
1919       Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
1920       return true;
1921     }
1922   }
1923
1924   return false;
1925 }
1926
1927 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
1928                                                SDValue &Offset) const {
1929   assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
1930
1931   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
1932     if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget,
1933                                                          C->getZExtValue())) {
1934       Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
1935       return true;
1936     }
1937   }
1938
1939   return false;
1940 }
1941
1942 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
1943                                             SDValue &Base,
1944                                             SDValue &Offset) const {
1945   SDLoc DL(Index);
1946
1947   if (CurDAG->isBaseWithConstantOffset(Index)) {
1948     SDValue N0 = Index.getOperand(0);
1949     SDValue N1 = Index.getOperand(1);
1950     ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
1951
1952     // (add n0, c0)
1953     // Don't peel off the offset (c0) if doing so could possibly lead
1954     // the base (n0) to be negative.
1955     // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset.
1956     if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) ||
1957         (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) {
1958       Base = N0;
1959       Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
1960       return true;
1961     }
1962   }
1963
1964   if (isa<ConstantSDNode>(Index))
1965     return false;
1966
1967   Base = Index;
1968   Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
1969   return true;
1970 }
1971
1972 SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
1973                                      SDValue Val, uint32_t Offset,
1974                                      uint32_t Width) {
1975   // Transformation function, pack the offset and width of a BFE into
1976   // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
1977   // source, bits [5:0] contain the offset and bits [22:16] the width.
1978   uint32_t PackedVal = Offset | (Width << 16);
1979   SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
1980
1981   return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
1982 }
1983
1984 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
1985   // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
1986   // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
1987   // Predicate: 0 < b <= c < 32
1988
1989   const SDValue &Shl = N->getOperand(0);
1990   ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
1991   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1992
1993   if (B && C) {
1994     uint32_t BVal = B->getZExtValue();
1995     uint32_t CVal = C->getZExtValue();
1996
1997     if (0 < BVal && BVal <= CVal && CVal < 32) {
1998       bool Signed = N->getOpcode() == ISD::SRA;
1999       unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
2000
2001       ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
2002                               32 - CVal));
2003       return;
2004     }
2005   }
2006   SelectCode(N);
2007 }
2008
2009 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
2010   switch (N->getOpcode()) {
2011   case ISD::AND:
2012     if (N->getOperand(0).getOpcode() == ISD::SRL) {
2013       // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
2014       // Predicate: isMask(mask)
2015       const SDValue &Srl = N->getOperand(0);
2016       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
2017       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
2018
2019       if (Shift && Mask) {
2020         uint32_t ShiftVal = Shift->getZExtValue();
2021         uint32_t MaskVal = Mask->getZExtValue();
2022
2023         if (isMask_32(MaskVal)) {
2024           uint32_t WidthVal = countPopulation(MaskVal);
2025
2026           ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
2027                                   Srl.getOperand(0), ShiftVal, WidthVal));
2028           return;
2029         }
2030       }
2031     }
2032     break;
2033   case ISD::SRL:
2034     if (N->getOperand(0).getOpcode() == ISD::AND) {
2035       // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
2036       // Predicate: isMask(mask >> b)
2037       const SDValue &And = N->getOperand(0);
2038       ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
2039       ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
2040
2041       if (Shift && Mask) {
2042         uint32_t ShiftVal = Shift->getZExtValue();
2043         uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
2044
2045         if (isMask_32(MaskVal)) {
2046           uint32_t WidthVal = countPopulation(MaskVal);
2047
2048           ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
2049                                   And.getOperand(0), ShiftVal, WidthVal));
2050           return;
2051         }
2052       }
2053     } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
2054       SelectS_BFEFromShifts(N);
2055       return;
2056     }
2057     break;
2058   case ISD::SRA:
2059     if (N->getOperand(0).getOpcode() == ISD::SHL) {
2060       SelectS_BFEFromShifts(N);
2061       return;
2062     }
2063     break;
2064
2065   case ISD::SIGN_EXTEND_INREG: {
2066     // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
2067     SDValue Src = N->getOperand(0);
2068     if (Src.getOpcode() != ISD::SRL)
2069       break;
2070
2071     const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
2072     if (!Amt)
2073       break;
2074
2075     unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
2076     ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
2077                             Amt->getZExtValue(), Width));
2078     return;
2079   }
2080   }
2081
2082   SelectCode(N);
2083 }
2084
2085 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
2086   assert(N->getOpcode() == ISD::BRCOND);
2087   if (!N->hasOneUse())
2088     return false;
2089
2090   SDValue Cond = N->getOperand(1);
2091   if (Cond.getOpcode() == ISD::CopyToReg)
2092     Cond = Cond.getOperand(2);
2093
2094   if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
2095     return false;
2096
2097   MVT VT = Cond.getOperand(0).getSimpleValueType();
2098   if (VT == MVT::i32)
2099     return true;
2100
2101   if (VT == MVT::i64) {
2102     auto ST = static_cast<const GCNSubtarget *>(Subtarget);
2103
2104     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
2105     return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
2106   }
2107
2108   return false;
2109 }
2110
2111 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
2112   SDValue Cond = N->getOperand(1);
2113
2114   if (Cond.isUndef()) {
2115     CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
2116                          N->getOperand(2), N->getOperand(0));
2117     return;
2118   }
2119
2120   const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
2121   const SIRegisterInfo *TRI = ST->getRegisterInfo();
2122
2123   bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
2124   unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
2125   Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC();
2126   SDLoc SL(N);
2127
2128   if (!UseSCCBr) {
2129     // This is the case that we are selecting to S_CBRANCH_VCCNZ.  We have not
2130     // analyzed what generates the vcc value, so we do not know whether vcc
2131     // bits for disabled lanes are 0.  Thus we need to mask out bits for
2132     // disabled lanes.
2133     //
2134     // For the case that we select S_CBRANCH_SCC1 and it gets
2135     // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2136     // SIInstrInfo::moveToVALU which inserts the S_AND).
2137     //
2138     // We could add an analysis of what generates the vcc value here and omit
2139     // the S_AND when is unnecessary. But it would be better to add a separate
2140     // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2141     // catches both cases.
2142     Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
2143                                                          : AMDGPU::S_AND_B64,
2144                      SL, MVT::i1,
2145                      CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
2146                                                         : AMDGPU::EXEC,
2147                                          MVT::i1),
2148                     Cond),
2149                    0);
2150   }
2151
2152   SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
2153   CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
2154                        N->getOperand(2), // Basic Block
2155                        VCC.getValue(0));
2156 }
2157
2158 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
2159   MVT VT = N->getSimpleValueType(0);
2160   bool IsFMA = N->getOpcode() == ISD::FMA;
2161   if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
2162                          !Subtarget->hasFmaMixInsts()) ||
2163       ((IsFMA && Subtarget->hasMadMixInsts()) ||
2164        (!IsFMA && Subtarget->hasFmaMixInsts()))) {
2165     SelectCode(N);
2166     return;
2167   }
2168
2169   SDValue Src0 = N->getOperand(0);
2170   SDValue Src1 = N->getOperand(1);
2171   SDValue Src2 = N->getOperand(2);
2172   unsigned Src0Mods, Src1Mods, Src2Mods;
2173
2174   // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
2175   // using the conversion from f16.
2176   bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
2177   bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
2178   bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
2179
2180   assert((IsFMA || !Mode.allFP32Denormals()) &&
2181          "fmad selected with denormals enabled");
2182   // TODO: We can select this with f32 denormals enabled if all the sources are
2183   // converted from f16 (in which case fmad isn't legal).
2184
2185   if (Sel0 || Sel1 || Sel2) {
2186     // For dummy operands.
2187     SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2188     SDValue Ops[] = {
2189       CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
2190       CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
2191       CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
2192       CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
2193       Zero, Zero
2194     };
2195
2196     CurDAG->SelectNodeTo(N,
2197                          IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
2198                          MVT::f32, Ops);
2199   } else {
2200     SelectCode(N);
2201   }
2202 }
2203
2204 // This is here because there isn't a way to use the generated sub0_sub1 as the
2205 // subreg index to EXTRACT_SUBREG in tablegen.
2206 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
2207   MemSDNode *Mem = cast<MemSDNode>(N);
2208   unsigned AS = Mem->getAddressSpace();
2209   if (AS == AMDGPUAS::FLAT_ADDRESS) {
2210     SelectCode(N);
2211     return;
2212   }
2213
2214   MVT VT = N->getSimpleValueType(0);
2215   bool Is32 = (VT == MVT::i32);
2216   SDLoc SL(N);
2217
2218   MachineSDNode *CmpSwap = nullptr;
2219   if (Subtarget->hasAddr64()) {
2220     SDValue SRsrc, VAddr, SOffset, Offset, SLC;
2221
2222     if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) {
2223       unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
2224         AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
2225       SDValue CmpVal = Mem->getOperand(2);
2226
2227       // XXX - Do we care about glue operands?
2228
2229       SDValue Ops[] = {
2230         CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2231       };
2232
2233       CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2234     }
2235   }
2236
2237   if (!CmpSwap) {
2238     SDValue SRsrc, SOffset, Offset, SLC;
2239     if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) {
2240       unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
2241         AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
2242
2243       SDValue CmpVal = Mem->getOperand(2);
2244       SDValue Ops[] = {
2245         CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain()
2246       };
2247
2248       CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
2249     }
2250   }
2251
2252   if (!CmpSwap) {
2253     SelectCode(N);
2254     return;
2255   }
2256
2257   MachineMemOperand *MMO = Mem->getMemOperand();
2258   CurDAG->setNodeMemRefs(CmpSwap, {MMO});
2259
2260   unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
2261   SDValue Extract
2262     = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
2263
2264   ReplaceUses(SDValue(N, 0), Extract);
2265   ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
2266   CurDAG->RemoveDeadNode(N);
2267 }
2268
2269 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
2270   // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2271   // be copied to an SGPR with readfirstlane.
2272   unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
2273     AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
2274
2275   SDValue Chain = N->getOperand(0);
2276   SDValue Ptr = N->getOperand(2);
2277   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2278   MachineMemOperand *MMO = M->getMemOperand();
2279   bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
2280
2281   SDValue Offset;
2282   if (CurDAG->isBaseWithConstantOffset(Ptr)) {
2283     SDValue PtrBase = Ptr.getOperand(0);
2284     SDValue PtrOffset = Ptr.getOperand(1);
2285
2286     const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
2287     if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) {
2288       N = glueCopyToM0(N, PtrBase);
2289       Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
2290     }
2291   }
2292
2293   if (!Offset) {
2294     N = glueCopyToM0(N, Ptr);
2295     Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
2296   }
2297
2298   SDValue Ops[] = {
2299     Offset,
2300     CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
2301     Chain,
2302     N->getOperand(N->getNumOperands() - 1) // New glue
2303   };
2304
2305   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2306   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2307 }
2308
2309 static unsigned gwsIntrinToOpcode(unsigned IntrID) {
2310   switch (IntrID) {
2311   case Intrinsic::amdgcn_ds_gws_init:
2312     return AMDGPU::DS_GWS_INIT;
2313   case Intrinsic::amdgcn_ds_gws_barrier:
2314     return AMDGPU::DS_GWS_BARRIER;
2315   case Intrinsic::amdgcn_ds_gws_sema_v:
2316     return AMDGPU::DS_GWS_SEMA_V;
2317   case Intrinsic::amdgcn_ds_gws_sema_br:
2318     return AMDGPU::DS_GWS_SEMA_BR;
2319   case Intrinsic::amdgcn_ds_gws_sema_p:
2320     return AMDGPU::DS_GWS_SEMA_P;
2321   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2322     return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
2323   default:
2324     llvm_unreachable("not a gws intrinsic");
2325   }
2326 }
2327
2328 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
2329   if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
2330       !Subtarget->hasGWSSemaReleaseAll()) {
2331     // Let this error.
2332     SelectCode(N);
2333     return;
2334   }
2335
2336   // Chain, intrinsic ID, vsrc, offset
2337   const bool HasVSrc = N->getNumOperands() == 4;
2338   assert(HasVSrc || N->getNumOperands() == 3);
2339
2340   SDLoc SL(N);
2341   SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
2342   int ImmOffset = 0;
2343   MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
2344   MachineMemOperand *MMO = M->getMemOperand();
2345
2346   // Don't worry if the offset ends up in a VGPR. Only one lane will have
2347   // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2348
2349   // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2350   // offset field) % 64. Some versions of the programming guide omit the m0
2351   // part, or claim it's from offset 0.
2352   if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
2353     // If we have a constant offset, try to use the 0 in m0 as the base.
2354     // TODO: Look into changing the default m0 initialization value. If the
2355     // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2356     // the immediate offset.
2357     glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
2358     ImmOffset = ConstOffset->getZExtValue();
2359   } else {
2360     if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
2361       ImmOffset = BaseOffset.getConstantOperandVal(1);
2362       BaseOffset = BaseOffset.getOperand(0);
2363     }
2364
2365     // Prefer to do the shift in an SGPR since it should be possible to use m0
2366     // as the result directly. If it's already an SGPR, it will be eliminated
2367     // later.
2368     SDNode *SGPROffset
2369       = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
2370                                BaseOffset);
2371     // Shift to offset in m0
2372     SDNode *M0Base
2373       = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
2374                                SDValue(SGPROffset, 0),
2375                                CurDAG->getTargetConstant(16, SL, MVT::i32));
2376     glueCopyToM0(N, SDValue(M0Base, 0));
2377   }
2378
2379   SDValue Chain = N->getOperand(0);
2380   SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
2381
2382   // TODO: Can this just be removed from the instruction?
2383   SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1);
2384
2385   const unsigned Opc = gwsIntrinToOpcode(IntrID);
2386   SmallVector<SDValue, 5> Ops;
2387   if (HasVSrc)
2388     Ops.push_back(N->getOperand(2));
2389   Ops.push_back(OffsetField);
2390   Ops.push_back(GDS);
2391   Ops.push_back(Chain);
2392
2393   SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
2394   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
2395 }
2396
2397 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) {
2398   if (Subtarget->getLDSBankCount() != 16) {
2399     // This is a single instruction with a pattern.
2400     SelectCode(N);
2401     return;
2402   }
2403
2404   SDLoc DL(N);
2405
2406   // This requires 2 instructions. It is possible to write a pattern to support
2407   // this, but the generated isel emitter doesn't correctly deal with multiple
2408   // output instructions using the same physical register input. The copy to m0
2409   // is incorrectly placed before the second instruction.
2410   //
2411   // TODO: Match source modifiers.
2412   //
2413   // def : Pat <
2414   //   (int_amdgcn_interp_p1_f16
2415   //    (VOP3Mods f32:$src0, i32:$src0_modifiers),
2416   //                             (i32 timm:$attrchan), (i32 timm:$attr),
2417   //                             (i1 timm:$high), M0),
2418   //   (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
2419   //       timm:$attrchan, 0,
2420   //       (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
2421   //   let Predicates = [has16BankLDS];
2422   // }
2423
2424   // 16 bank LDS
2425   SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0,
2426                                       N->getOperand(5), SDValue());
2427
2428   SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other);
2429
2430   SDNode *InterpMov =
2431     CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, {
2432         CurDAG->getTargetConstant(2, DL, MVT::i32), // P0
2433         N->getOperand(3),  // Attr
2434         N->getOperand(2),  // Attrchan
2435         ToM0.getValue(1) // In glue
2436   });
2437
2438   SDNode *InterpP1LV =
2439     CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, {
2440         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
2441         N->getOperand(1), // Src0
2442         N->getOperand(3), // Attr
2443         N->getOperand(2), // Attrchan
2444         CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
2445         SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high
2446         N->getOperand(4), // high
2447         CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp
2448         CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod
2449         SDValue(InterpMov, 1)
2450   });
2451
2452   CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0));
2453 }
2454
2455 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
2456   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2457   switch (IntrID) {
2458   case Intrinsic::amdgcn_ds_append:
2459   case Intrinsic::amdgcn_ds_consume: {
2460     if (N->getValueType(0) != MVT::i32)
2461       break;
2462     SelectDSAppendConsume(N, IntrID);
2463     return;
2464   }
2465   }
2466
2467   SelectCode(N);
2468 }
2469
2470 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
2471   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
2472   unsigned Opcode;
2473   switch (IntrID) {
2474   case Intrinsic::amdgcn_wqm:
2475     Opcode = AMDGPU::WQM;
2476     break;
2477   case Intrinsic::amdgcn_softwqm:
2478     Opcode = AMDGPU::SOFT_WQM;
2479     break;
2480   case Intrinsic::amdgcn_wwm:
2481     Opcode = AMDGPU::WWM;
2482     break;
2483   case Intrinsic::amdgcn_interp_p1_f16:
2484     SelectInterpP1F16(N);
2485     return;
2486   default:
2487     SelectCode(N);
2488     return;
2489   }
2490
2491   SDValue Src = N->getOperand(1);
2492   CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
2493 }
2494
2495 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
2496   unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
2497   switch (IntrID) {
2498   case Intrinsic::amdgcn_ds_gws_init:
2499   case Intrinsic::amdgcn_ds_gws_barrier:
2500   case Intrinsic::amdgcn_ds_gws_sema_v:
2501   case Intrinsic::amdgcn_ds_gws_sema_br:
2502   case Intrinsic::amdgcn_ds_gws_sema_p:
2503   case Intrinsic::amdgcn_ds_gws_sema_release_all:
2504     SelectDS_GWS(N, IntrID);
2505     return;
2506   default:
2507     break;
2508   }
2509
2510   SelectCode(N);
2511 }
2512
2513 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
2514                                             unsigned &Mods) const {
2515   Mods = 0;
2516   Src = In;
2517
2518   if (Src.getOpcode() == ISD::FNEG) {
2519     Mods |= SISrcMods::NEG;
2520     Src = Src.getOperand(0);
2521   }
2522
2523   if (Src.getOpcode() == ISD::FABS) {
2524     Mods |= SISrcMods::ABS;
2525     Src = Src.getOperand(0);
2526   }
2527
2528   return true;
2529 }
2530
2531 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
2532                                         SDValue &SrcMods) const {
2533   unsigned Mods;
2534   if (SelectVOP3ModsImpl(In, Src, Mods)) {
2535     SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2536     return true;
2537   }
2538
2539   return false;
2540 }
2541
2542 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
2543                                              SDValue &SrcMods) const {
2544   SelectVOP3Mods(In, Src, SrcMods);
2545   return isNoNanSrc(Src);
2546 }
2547
2548 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
2549   if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
2550     return false;
2551
2552   Src = In;
2553   return true;
2554 }
2555
2556 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
2557                                          SDValue &SrcMods, SDValue &Clamp,
2558                                          SDValue &Omod) const {
2559   SDLoc DL(In);
2560   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2561   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2562
2563   return SelectVOP3Mods(In, Src, SrcMods);
2564 }
2565
2566 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
2567                                          SDValue &Clamp, SDValue &Omod) const {
2568   Src = In;
2569
2570   SDLoc DL(In);
2571   Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
2572   Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
2573
2574   return true;
2575 }
2576
2577 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
2578                                          SDValue &SrcMods) const {
2579   unsigned Mods = 0;
2580   Src = In;
2581
2582   if (Src.getOpcode() == ISD::FNEG) {
2583     Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
2584     Src = Src.getOperand(0);
2585   }
2586
2587   if (Src.getOpcode() == ISD::BUILD_VECTOR) {
2588     unsigned VecMods = Mods;
2589
2590     SDValue Lo = stripBitcast(Src.getOperand(0));
2591     SDValue Hi = stripBitcast(Src.getOperand(1));
2592
2593     if (Lo.getOpcode() == ISD::FNEG) {
2594       Lo = stripBitcast(Lo.getOperand(0));
2595       Mods ^= SISrcMods::NEG;
2596     }
2597
2598     if (Hi.getOpcode() == ISD::FNEG) {
2599       Hi = stripBitcast(Hi.getOperand(0));
2600       Mods ^= SISrcMods::NEG_HI;
2601     }
2602
2603     if (isExtractHiElt(Lo, Lo))
2604       Mods |= SISrcMods::OP_SEL_0;
2605
2606     if (isExtractHiElt(Hi, Hi))
2607       Mods |= SISrcMods::OP_SEL_1;
2608
2609     Lo = stripExtractLoElt(Lo);
2610     Hi = stripExtractLoElt(Hi);
2611
2612     if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
2613       // Really a scalar input. Just select from the low half of the register to
2614       // avoid packing.
2615
2616       Src = Lo;
2617       SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2618       return true;
2619     }
2620
2621     Mods = VecMods;
2622   }
2623
2624   // Packed instructions do not have abs modifiers.
2625   Mods |= SISrcMods::OP_SEL_1;
2626
2627   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2628   return true;
2629 }
2630
2631 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
2632                                          SDValue &SrcMods) const {
2633   Src = In;
2634   // FIXME: Handle op_sel
2635   SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
2636   return true;
2637 }
2638
2639 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
2640                                              SDValue &SrcMods) const {
2641   // FIXME: Handle op_sel
2642   return SelectVOP3Mods(In, Src, SrcMods);
2643 }
2644
2645 // The return value is not whether the match is possible (which it always is),
2646 // but whether or not it a conversion is really used.
2647 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
2648                                                    unsigned &Mods) const {
2649   Mods = 0;
2650   SelectVOP3ModsImpl(In, Src, Mods);
2651
2652   if (Src.getOpcode() == ISD::FP_EXTEND) {
2653     Src = Src.getOperand(0);
2654     assert(Src.getValueType() == MVT::f16);
2655     Src = stripBitcast(Src);
2656
2657     // Be careful about folding modifiers if we already have an abs. fneg is
2658     // applied last, so we don't want to apply an earlier fneg.
2659     if ((Mods & SISrcMods::ABS) == 0) {
2660       unsigned ModsTmp;
2661       SelectVOP3ModsImpl(Src, Src, ModsTmp);
2662
2663       if ((ModsTmp & SISrcMods::NEG) != 0)
2664         Mods ^= SISrcMods::NEG;
2665
2666       if ((ModsTmp & SISrcMods::ABS) != 0)
2667         Mods |= SISrcMods::ABS;
2668     }
2669
2670     // op_sel/op_sel_hi decide the source type and source.
2671     // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2672     // If the sources's op_sel is set, it picks the high half of the source
2673     // register.
2674
2675     Mods |= SISrcMods::OP_SEL_1;
2676     if (isExtractHiElt(Src, Src)) {
2677       Mods |= SISrcMods::OP_SEL_0;
2678
2679       // TODO: Should we try to look for neg/abs here?
2680     }
2681
2682     return true;
2683   }
2684
2685   return false;
2686 }
2687
2688 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
2689                                                SDValue &SrcMods) const {
2690   unsigned Mods = 0;
2691   SelectVOP3PMadMixModsImpl(In, Src, Mods);
2692   SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
2693   return true;
2694 }
2695
2696 SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
2697   if (In.isUndef())
2698     return CurDAG->getUNDEF(MVT::i32);
2699
2700   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
2701     SDLoc SL(In);
2702     return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
2703   }
2704
2705   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
2706     SDLoc SL(In);
2707     return CurDAG->getConstant(
2708       C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
2709   }
2710
2711   SDValue Src;
2712   if (isExtractHiElt(In, Src))
2713     return Src;
2714
2715   return SDValue();
2716 }
2717
2718 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
2719   assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
2720
2721   const SIRegisterInfo *SIRI =
2722     static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
2723   const SIInstrInfo * SII =
2724     static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2725
2726   unsigned Limit = 0;
2727   bool AllUsesAcceptSReg = true;
2728   for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
2729     Limit < 10 && U != E; ++U, ++Limit) {
2730     const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
2731
2732     // If the register class is unknown, it could be an unknown
2733     // register class that needs to be an SGPR, e.g. an inline asm
2734     // constraint
2735     if (!RC || SIRI->isSGPRClass(RC))
2736       return false;
2737
2738     if (RC != &AMDGPU::VS_32RegClass) {
2739       AllUsesAcceptSReg = false;
2740       SDNode * User = *U;
2741       if (User->isMachineOpcode()) {
2742         unsigned Opc = User->getMachineOpcode();
2743         MCInstrDesc Desc = SII->get(Opc);
2744         if (Desc.isCommutable()) {
2745           unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
2746           unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
2747           if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
2748             unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
2749             const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
2750             if (CommutedRC == &AMDGPU::VS_32RegClass)
2751               AllUsesAcceptSReg = true;
2752           }
2753         }
2754       }
2755       // If "AllUsesAcceptSReg == false" so far we haven't suceeded
2756       // commuting current user. This means have at least one use
2757       // that strictly require VGPR. Thus, we will not attempt to commute
2758       // other user instructions.
2759       if (!AllUsesAcceptSReg)
2760         break;
2761     }
2762   }
2763   return !AllUsesAcceptSReg && (Limit < 10);
2764 }
2765
2766 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
2767   auto Ld = cast<LoadSDNode>(N);
2768
2769   return Ld->getAlignment() >= 4 &&
2770         (
2771           (
2772             (
2773               Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS       ||
2774               Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
2775             )
2776             &&
2777             !N->isDivergent()
2778           )
2779           ||
2780           (
2781             Subtarget->getScalarizeGlobalBehavior() &&
2782             Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
2783             Ld->isSimple() &&
2784             !N->isDivergent() &&
2785             static_cast<const SITargetLowering *>(
2786               getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
2787           )
2788         );
2789 }
2790
2791 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
2792   const AMDGPUTargetLowering& Lowering =
2793     *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
2794   bool IsModified = false;
2795   do {
2796     IsModified = false;
2797
2798     // Go over all selected nodes and try to fold them a bit more
2799     SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
2800     while (Position != CurDAG->allnodes_end()) {
2801       SDNode *Node = &*Position++;
2802       MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
2803       if (!MachineNode)
2804         continue;
2805
2806       SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
2807       if (ResNode != Node) {
2808         if (ResNode)
2809           ReplaceUses(Node, ResNode);
2810         IsModified = true;
2811       }
2812     }
2813     CurDAG->RemoveDeadNodes();
2814   } while (IsModified);
2815 }
2816
2817 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
2818   Subtarget = &MF.getSubtarget<R600Subtarget>();
2819   return SelectionDAGISel::runOnMachineFunction(MF);
2820 }
2821
2822 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
2823   if (!N->readMem())
2824     return false;
2825   if (CbId == -1)
2826     return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
2827            N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
2828
2829   return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
2830 }
2831
2832 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
2833                                                          SDValue& IntPtr) {
2834   if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
2835     IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
2836                                        true);
2837     return true;
2838   }
2839   return false;
2840 }
2841
2842 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
2843     SDValue& BaseReg, SDValue &Offset) {
2844   if (!isa<ConstantSDNode>(Addr)) {
2845     BaseReg = Addr;
2846     Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
2847     return true;
2848   }
2849   return false;
2850 }
2851
2852 void R600DAGToDAGISel::Select(SDNode *N) {
2853   unsigned int Opc = N->getOpcode();
2854   if (N->isMachineOpcode()) {
2855     N->setNodeId(-1);
2856     return;   // Already selected.
2857   }
2858
2859   switch (Opc) {
2860   default: break;
2861   case AMDGPUISD::BUILD_VERTICAL_VECTOR:
2862   case ISD::SCALAR_TO_VECTOR:
2863   case ISD::BUILD_VECTOR: {
2864     EVT VT = N->getValueType(0);
2865     unsigned NumVectorElts = VT.getVectorNumElements();
2866     unsigned RegClassID;
2867     // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
2868     // that adds a 128 bits reg copy when going through TwoAddressInstructions
2869     // pass. We want to avoid 128 bits copies as much as possible because they
2870     // can't be bundled by our scheduler.
2871     switch(NumVectorElts) {
2872     case 2: RegClassID = R600::R600_Reg64RegClassID; break;
2873     case 4:
2874       if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
2875         RegClassID = R600::R600_Reg128VerticalRegClassID;
2876       else
2877         RegClassID = R600::R600_Reg128RegClassID;
2878       break;
2879     default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
2880     }
2881     SelectBuildVector(N, RegClassID);
2882     return;
2883   }
2884   }
2885
2886   SelectCode(N);
2887 }
2888
2889 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
2890                                           SDValue &Offset) {
2891   ConstantSDNode *C;
2892   SDLoc DL(Addr);
2893
2894   if ((C = dyn_cast<ConstantSDNode>(Addr))) {
2895     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2896     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2897   } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
2898              (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
2899     Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
2900     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2901   } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
2902             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
2903     Base = Addr.getOperand(0);
2904     Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
2905   } else {
2906     Base = Addr;
2907     Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
2908   }
2909
2910   return true;
2911 }
2912
2913 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
2914                                           SDValue &Offset) {
2915   ConstantSDNode *IMMOffset;
2916
2917   if (Addr.getOpcode() == ISD::ADD
2918       && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
2919       && isInt<16>(IMMOffset->getZExtValue())) {
2920
2921       Base = Addr.getOperand(0);
2922       Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2923                                          MVT::i32);
2924       return true;
2925   // If the pointer address is constant, we can move it to the offset field.
2926   } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
2927              && isInt<16>(IMMOffset->getZExtValue())) {
2928     Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
2929                                   SDLoc(CurDAG->getEntryNode()),
2930                                   R600::ZERO, MVT::i32);
2931     Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
2932                                        MVT::i32);
2933     return true;
2934   }
2935
2936   // Default case, no offset
2937   Base = Addr;
2938   Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
2939   return true;
2940 }