]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp
Merge llvm-project main llvmorg-14-init-18294-gdb01b123d012
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / AMDGPU / AMDGPULibCalls.cpp
1 //===- AMDGPULibCalls.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file does AMD library function optimizations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AMDGPU.h"
15 #include "AMDGPULibFunc.h"
16 #include "GCNSubtarget.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/IRBuilder.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 #include "llvm/InitializePasses.h"
23 #include "llvm/Target/TargetMachine.h"
24
25 #define DEBUG_TYPE "amdgpu-simplifylib"
26
27 using namespace llvm;
28
29 static cl::opt<bool> EnablePreLink("amdgpu-prelink",
30   cl::desc("Enable pre-link mode optimizations"),
31   cl::init(false),
32   cl::Hidden);
33
34 static cl::list<std::string> UseNative("amdgpu-use-native",
35   cl::desc("Comma separated list of functions to replace with native, or all"),
36   cl::CommaSeparated, cl::ValueOptional,
37   cl::Hidden);
38
39 #define MATH_PI      numbers::pi
40 #define MATH_E       numbers::e
41 #define MATH_SQRT2   numbers::sqrt2
42 #define MATH_SQRT1_2 numbers::inv_sqrt2
43
44 namespace llvm {
45
46 class AMDGPULibCalls {
47 private:
48
49   typedef llvm::AMDGPULibFunc FuncInfo;
50
51   const TargetMachine *TM;
52
53   // -fuse-native.
54   bool AllNative = false;
55
56   bool useNativeFunc(const StringRef F) const;
57
58   // Return a pointer (pointer expr) to the function if function definition with
59   // "FuncName" exists. It may create a new function prototype in pre-link mode.
60   FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
61
62   bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo);
63
64   bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
65
66   /* Specialized optimizations */
67
68   // recip (half or native)
69   bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
70
71   // divide (half or native)
72   bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
73
74   // pow/powr/pown
75   bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
76
77   // rootn
78   bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
79
80   // fma/mad
81   bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
82
83   // -fuse-native for sincos
84   bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
85
86   // evaluate calls if calls' arguments are constants.
87   bool evaluateScalarMathFunc(const FuncInfo &FInfo, double& Res0,
88     double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
89   bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo);
90
91   // sqrt
92   bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
93
94   // sin/cos
95   bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
96
97   // __read_pipe/__write_pipe
98   bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
99                             const FuncInfo &FInfo);
100
101   // llvm.amdgcn.wavefrontsize
102   bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B);
103
104   // Get insertion point at entry.
105   BasicBlock::iterator getEntryIns(CallInst * UI);
106   // Insert an Alloc instruction.
107   AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
108   // Get a scalar native builtin single argument FP function
109   FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
110
111 protected:
112   CallInst *CI;
113
114   bool isUnsafeMath(const CallInst *CI) const;
115
116   void replaceCall(Value *With) {
117     CI->replaceAllUsesWith(With);
118     CI->eraseFromParent();
119   }
120
121 public:
122   AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {}
123
124   bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
125
126   void initNativeFuncs();
127
128   // Replace a normal math function call with that native version
129   bool useNative(CallInst *CI);
130 };
131
132 } // end llvm namespace
133
134 namespace {
135
136   class AMDGPUSimplifyLibCalls : public FunctionPass {
137
138   AMDGPULibCalls Simplifier;
139
140   public:
141     static char ID; // Pass identification
142
143     AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr)
144       : FunctionPass(ID), Simplifier(TM) {
145       initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
146     }
147
148     void getAnalysisUsage(AnalysisUsage &AU) const override {
149       AU.addRequired<AAResultsWrapperPass>();
150     }
151
152     bool runOnFunction(Function &M) override;
153   };
154
155   class AMDGPUUseNativeCalls : public FunctionPass {
156
157   AMDGPULibCalls Simplifier;
158
159   public:
160     static char ID; // Pass identification
161
162     AMDGPUUseNativeCalls() : FunctionPass(ID) {
163       initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
164       Simplifier.initNativeFuncs();
165     }
166
167     bool runOnFunction(Function &F) override;
168   };
169
170 } // end anonymous namespace.
171
172 char AMDGPUSimplifyLibCalls::ID = 0;
173 char AMDGPUUseNativeCalls::ID = 0;
174
175 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
176                       "Simplify well-known AMD library calls", false, false)
177 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
178 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
179                     "Simplify well-known AMD library calls", false, false)
180
181 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
182                 "Replace builtin math calls with that native versions.",
183                 false, false)
184
185 template <typename IRB>
186 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
187                               const Twine &Name = "") {
188   CallInst *R = B.CreateCall(Callee, Arg, Name);
189   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
190     R->setCallingConv(F->getCallingConv());
191   return R;
192 }
193
194 template <typename IRB>
195 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
196                                Value *Arg2, const Twine &Name = "") {
197   CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
198   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
199     R->setCallingConv(F->getCallingConv());
200   return R;
201 }
202
203 //  Data structures for table-driven optimizations.
204 //  FuncTbl works for both f32 and f64 functions with 1 input argument
205
206 struct TableEntry {
207   double   result;
208   double   input;
209 };
210
211 /* a list of {result, input} */
212 static const TableEntry tbl_acos[] = {
213   {MATH_PI / 2.0, 0.0},
214   {MATH_PI / 2.0, -0.0},
215   {0.0, 1.0},
216   {MATH_PI, -1.0}
217 };
218 static const TableEntry tbl_acosh[] = {
219   {0.0, 1.0}
220 };
221 static const TableEntry tbl_acospi[] = {
222   {0.5, 0.0},
223   {0.5, -0.0},
224   {0.0, 1.0},
225   {1.0, -1.0}
226 };
227 static const TableEntry tbl_asin[] = {
228   {0.0, 0.0},
229   {-0.0, -0.0},
230   {MATH_PI / 2.0, 1.0},
231   {-MATH_PI / 2.0, -1.0}
232 };
233 static const TableEntry tbl_asinh[] = {
234   {0.0, 0.0},
235   {-0.0, -0.0}
236 };
237 static const TableEntry tbl_asinpi[] = {
238   {0.0, 0.0},
239   {-0.0, -0.0},
240   {0.5, 1.0},
241   {-0.5, -1.0}
242 };
243 static const TableEntry tbl_atan[] = {
244   {0.0, 0.0},
245   {-0.0, -0.0},
246   {MATH_PI / 4.0, 1.0},
247   {-MATH_PI / 4.0, -1.0}
248 };
249 static const TableEntry tbl_atanh[] = {
250   {0.0, 0.0},
251   {-0.0, -0.0}
252 };
253 static const TableEntry tbl_atanpi[] = {
254   {0.0, 0.0},
255   {-0.0, -0.0},
256   {0.25, 1.0},
257   {-0.25, -1.0}
258 };
259 static const TableEntry tbl_cbrt[] = {
260   {0.0, 0.0},
261   {-0.0, -0.0},
262   {1.0, 1.0},
263   {-1.0, -1.0},
264 };
265 static const TableEntry tbl_cos[] = {
266   {1.0, 0.0},
267   {1.0, -0.0}
268 };
269 static const TableEntry tbl_cosh[] = {
270   {1.0, 0.0},
271   {1.0, -0.0}
272 };
273 static const TableEntry tbl_cospi[] = {
274   {1.0, 0.0},
275   {1.0, -0.0}
276 };
277 static const TableEntry tbl_erfc[] = {
278   {1.0, 0.0},
279   {1.0, -0.0}
280 };
281 static const TableEntry tbl_erf[] = {
282   {0.0, 0.0},
283   {-0.0, -0.0}
284 };
285 static const TableEntry tbl_exp[] = {
286   {1.0, 0.0},
287   {1.0, -0.0},
288   {MATH_E, 1.0}
289 };
290 static const TableEntry tbl_exp2[] = {
291   {1.0, 0.0},
292   {1.0, -0.0},
293   {2.0, 1.0}
294 };
295 static const TableEntry tbl_exp10[] = {
296   {1.0, 0.0},
297   {1.0, -0.0},
298   {10.0, 1.0}
299 };
300 static const TableEntry tbl_expm1[] = {
301   {0.0, 0.0},
302   {-0.0, -0.0}
303 };
304 static const TableEntry tbl_log[] = {
305   {0.0, 1.0},
306   {1.0, MATH_E}
307 };
308 static const TableEntry tbl_log2[] = {
309   {0.0, 1.0},
310   {1.0, 2.0}
311 };
312 static const TableEntry tbl_log10[] = {
313   {0.0, 1.0},
314   {1.0, 10.0}
315 };
316 static const TableEntry tbl_rsqrt[] = {
317   {1.0, 1.0},
318   {MATH_SQRT1_2, 2.0}
319 };
320 static const TableEntry tbl_sin[] = {
321   {0.0, 0.0},
322   {-0.0, -0.0}
323 };
324 static const TableEntry tbl_sinh[] = {
325   {0.0, 0.0},
326   {-0.0, -0.0}
327 };
328 static const TableEntry tbl_sinpi[] = {
329   {0.0, 0.0},
330   {-0.0, -0.0}
331 };
332 static const TableEntry tbl_sqrt[] = {
333   {0.0, 0.0},
334   {1.0, 1.0},
335   {MATH_SQRT2, 2.0}
336 };
337 static const TableEntry tbl_tan[] = {
338   {0.0, 0.0},
339   {-0.0, -0.0}
340 };
341 static const TableEntry tbl_tanh[] = {
342   {0.0, 0.0},
343   {-0.0, -0.0}
344 };
345 static const TableEntry tbl_tanpi[] = {
346   {0.0, 0.0},
347   {-0.0, -0.0}
348 };
349 static const TableEntry tbl_tgamma[] = {
350   {1.0, 1.0},
351   {1.0, 2.0},
352   {2.0, 3.0},
353   {6.0, 4.0}
354 };
355
356 static bool HasNative(AMDGPULibFunc::EFuncId id) {
357   switch(id) {
358   case AMDGPULibFunc::EI_DIVIDE:
359   case AMDGPULibFunc::EI_COS:
360   case AMDGPULibFunc::EI_EXP:
361   case AMDGPULibFunc::EI_EXP2:
362   case AMDGPULibFunc::EI_EXP10:
363   case AMDGPULibFunc::EI_LOG:
364   case AMDGPULibFunc::EI_LOG2:
365   case AMDGPULibFunc::EI_LOG10:
366   case AMDGPULibFunc::EI_POWR:
367   case AMDGPULibFunc::EI_RECIP:
368   case AMDGPULibFunc::EI_RSQRT:
369   case AMDGPULibFunc::EI_SIN:
370   case AMDGPULibFunc::EI_SINCOS:
371   case AMDGPULibFunc::EI_SQRT:
372   case AMDGPULibFunc::EI_TAN:
373     return true;
374   default:;
375   }
376   return false;
377 }
378
379 struct TableRef {
380   size_t size;
381   const TableEntry *table; // variable size: from 0 to (size - 1)
382
383   TableRef() : size(0), table(nullptr) {}
384
385   template <size_t N>
386   TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
387 };
388
389 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
390   switch(id) {
391   case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos);
392   case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh);
393   case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi);
394   case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin);
395   case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh);
396   case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi);
397   case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan);
398   case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh);
399   case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi);
400   case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt);
401   case AMDGPULibFunc::EI_NCOS:
402   case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos);
403   case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh);
404   case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi);
405   case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc);
406   case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf);
407   case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp);
408   case AMDGPULibFunc::EI_NEXP2:
409   case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2);
410   case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10);
411   case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1);
412   case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log);
413   case AMDGPULibFunc::EI_NLOG2:
414   case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2);
415   case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10);
416   case AMDGPULibFunc::EI_NRSQRT:
417   case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt);
418   case AMDGPULibFunc::EI_NSIN:
419   case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin);
420   case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh);
421   case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi);
422   case AMDGPULibFunc::EI_NSQRT:
423   case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt);
424   case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan);
425   case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh);
426   case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi);
427   case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma);
428   default:;
429   }
430   return TableRef();
431 }
432
433 static inline int getVecSize(const AMDGPULibFunc& FInfo) {
434   return FInfo.getLeads()[0].VectorSize;
435 }
436
437 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
438   return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
439 }
440
441 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
442   // If we are doing PreLinkOpt, the function is external. So it is safe to
443   // use getOrInsertFunction() at this stage.
444
445   return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
446                        : AMDGPULibFunc::getFunction(M, fInfo);
447 }
448
449 bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName,
450                                        FuncInfo &FInfo) {
451   return AMDGPULibFunc::parse(FMangledName, FInfo);
452 }
453
454 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
455   if (auto Op = dyn_cast<FPMathOperator>(CI))
456     if (Op->isFast())
457       return true;
458   const Function *F = CI->getParent()->getParent();
459   Attribute Attr = F->getFnAttribute("unsafe-fp-math");
460   return Attr.getValueAsBool();
461 }
462
463 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
464   return AllNative || llvm::is_contained(UseNative, F);
465 }
466
467 void AMDGPULibCalls::initNativeFuncs() {
468   AllNative = useNativeFunc("all") ||
469               (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
470                UseNative.begin()->empty());
471 }
472
473 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
474   bool native_sin = useNativeFunc("sin");
475   bool native_cos = useNativeFunc("cos");
476
477   if (native_sin && native_cos) {
478     Module *M = aCI->getModule();
479     Value *opr0 = aCI->getArgOperand(0);
480
481     AMDGPULibFunc nf;
482     nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
483     nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
484
485     nf.setPrefix(AMDGPULibFunc::NATIVE);
486     nf.setId(AMDGPULibFunc::EI_SIN);
487     FunctionCallee sinExpr = getFunction(M, nf);
488
489     nf.setPrefix(AMDGPULibFunc::NATIVE);
490     nf.setId(AMDGPULibFunc::EI_COS);
491     FunctionCallee cosExpr = getFunction(M, nf);
492     if (sinExpr && cosExpr) {
493       Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
494       Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
495       new StoreInst(cosval, aCI->getArgOperand(1), aCI);
496
497       DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
498                                           << " with native version of sin/cos");
499
500       replaceCall(sinval);
501       return true;
502     }
503   }
504   return false;
505 }
506
507 bool AMDGPULibCalls::useNative(CallInst *aCI) {
508   CI = aCI;
509   Function *Callee = aCI->getCalledFunction();
510
511   FuncInfo FInfo;
512   if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() ||
513       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
514       getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
515       !(AllNative || useNativeFunc(FInfo.getName()))) {
516     return false;
517   }
518
519   if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
520     return sincosUseNative(aCI, FInfo);
521
522   FInfo.setPrefix(AMDGPULibFunc::NATIVE);
523   FunctionCallee F = getFunction(aCI->getModule(), FInfo);
524   if (!F)
525     return false;
526
527   aCI->setCalledFunction(F);
528   DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
529                                       << " with native version");
530   return true;
531 }
532
533 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
534 // builtin, with appended type size and alignment arguments, where 2 or 4
535 // indicates the original number of arguments. The library has optimized version
536 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
537 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
538 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
539 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
540 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
541                                           const FuncInfo &FInfo) {
542   auto *Callee = CI->getCalledFunction();
543   if (!Callee->isDeclaration())
544     return false;
545
546   assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
547   auto *M = Callee->getParent();
548   auto &Ctx = M->getContext();
549   std::string Name = std::string(Callee->getName());
550   auto NumArg = CI->arg_size();
551   if (NumArg != 4 && NumArg != 6)
552     return false;
553   auto *PacketSize = CI->getArgOperand(NumArg - 2);
554   auto *PacketAlign = CI->getArgOperand(NumArg - 1);
555   if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
556     return false;
557   unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
558   Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue();
559   if (Alignment != Size)
560     return false;
561
562   Type *PtrElemTy;
563   if (Size <= 8)
564     PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
565   else
566     PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8);
567   unsigned PtrArgLoc = CI->arg_size() - 3;
568   auto PtrArg = CI->getArgOperand(PtrArgLoc);
569   unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
570   auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
571
572   SmallVector<llvm::Type *, 6> ArgTys;
573   for (unsigned I = 0; I != PtrArgLoc; ++I)
574     ArgTys.push_back(CI->getArgOperand(I)->getType());
575   ArgTys.push_back(PtrTy);
576
577   Name = Name + "_" + std::to_string(Size);
578   auto *FTy = FunctionType::get(Callee->getReturnType(),
579                                 ArrayRef<Type *>(ArgTys), false);
580   AMDGPULibFunc NewLibFunc(Name, FTy);
581   FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
582   if (!F)
583     return false;
584
585   auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
586   SmallVector<Value *, 6> Args;
587   for (unsigned I = 0; I != PtrArgLoc; ++I)
588     Args.push_back(CI->getArgOperand(I));
589   Args.push_back(BCast);
590
591   auto *NCI = B.CreateCall(F, Args);
592   NCI->setAttributes(CI->getAttributes());
593   CI->replaceAllUsesWith(NCI);
594   CI->dropAllReferences();
595   CI->eraseFromParent();
596
597   return true;
598 }
599
600 // This function returns false if no change; return true otherwise.
601 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
602   this->CI = CI;
603   Function *Callee = CI->getCalledFunction();
604
605   // Ignore indirect calls.
606   if (Callee == nullptr)
607     return false;
608
609   BasicBlock *BB = CI->getParent();
610   LLVMContext &Context = CI->getParent()->getContext();
611   IRBuilder<> B(Context);
612
613   // Set the builder to the instruction after the call.
614   B.SetInsertPoint(BB, CI->getIterator());
615
616   // Copy fast flags from the original call.
617   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
618     B.setFastMathFlags(FPOp->getFastMathFlags());
619
620   switch (Callee->getIntrinsicID()) {
621   default:
622     break;
623   case Intrinsic::amdgcn_wavefrontsize:
624     return !EnablePreLink && fold_wavefrontsize(CI, B);
625   }
626
627   FuncInfo FInfo;
628   if (!parseFunctionName(Callee->getName(), FInfo))
629     return false;
630
631   // Further check the number of arguments to see if they match.
632   if (CI->arg_size() != FInfo.getNumArgs())
633     return false;
634
635   if (TDOFold(CI, FInfo))
636     return true;
637
638   // Under unsafe-math, evaluate calls if possible.
639   // According to Brian Sumner, we can do this for all f32 function calls
640   // using host's double function calls.
641   if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
642     return true;
643
644   // Specialized optimizations for each function call
645   switch (FInfo.getId()) {
646   case AMDGPULibFunc::EI_RECIP:
647     // skip vector function
648     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
649              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
650             "recip must be an either native or half function");
651     return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
652
653   case AMDGPULibFunc::EI_DIVIDE:
654     // skip vector function
655     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
656              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
657             "divide must be an either native or half function");
658     return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
659
660   case AMDGPULibFunc::EI_POW:
661   case AMDGPULibFunc::EI_POWR:
662   case AMDGPULibFunc::EI_POWN:
663     return fold_pow(CI, B, FInfo);
664
665   case AMDGPULibFunc::EI_ROOTN:
666     // skip vector function
667     return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
668
669   case AMDGPULibFunc::EI_FMA:
670   case AMDGPULibFunc::EI_MAD:
671   case AMDGPULibFunc::EI_NFMA:
672     // skip vector function
673     return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
674
675   case AMDGPULibFunc::EI_SQRT:
676     return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
677   case AMDGPULibFunc::EI_COS:
678   case AMDGPULibFunc::EI_SIN:
679     if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
680          getArgType(FInfo) == AMDGPULibFunc::F64)
681         && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
682       return fold_sincos(CI, B, AA);
683
684     break;
685   case AMDGPULibFunc::EI_READ_PIPE_2:
686   case AMDGPULibFunc::EI_READ_PIPE_4:
687   case AMDGPULibFunc::EI_WRITE_PIPE_2:
688   case AMDGPULibFunc::EI_WRITE_PIPE_4:
689     return fold_read_write_pipe(CI, B, FInfo);
690
691   default:
692     break;
693   }
694
695   return false;
696 }
697
698 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
699   // Table-Driven optimization
700   const TableRef tr = getOptTable(FInfo.getId());
701   if (tr.size==0)
702     return false;
703
704   int const sz = (int)tr.size;
705   const TableEntry * const ftbl = tr.table;
706   Value *opr0 = CI->getArgOperand(0);
707
708   if (getVecSize(FInfo) > 1) {
709     if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
710       SmallVector<double, 0> DVal;
711       for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
712         ConstantFP *eltval = dyn_cast<ConstantFP>(
713                                CV->getElementAsConstant((unsigned)eltNo));
714         assert(eltval && "Non-FP arguments in math function!");
715         bool found = false;
716         for (int i=0; i < sz; ++i) {
717           if (eltval->isExactlyValue(ftbl[i].input)) {
718             DVal.push_back(ftbl[i].result);
719             found = true;
720             break;
721           }
722         }
723         if (!found) {
724           // This vector constants not handled yet.
725           return false;
726         }
727       }
728       LLVMContext &context = CI->getParent()->getParent()->getContext();
729       Constant *nval;
730       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
731         SmallVector<float, 0> FVal;
732         for (unsigned i = 0; i < DVal.size(); ++i) {
733           FVal.push_back((float)DVal[i]);
734         }
735         ArrayRef<float> tmp(FVal);
736         nval = ConstantDataVector::get(context, tmp);
737       } else { // F64
738         ArrayRef<double> tmp(DVal);
739         nval = ConstantDataVector::get(context, tmp);
740       }
741       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
742       replaceCall(nval);
743       return true;
744     }
745   } else {
746     // Scalar version
747     if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
748       for (int i = 0; i < sz; ++i) {
749         if (CF->isExactlyValue(ftbl[i].input)) {
750           Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
751           LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
752           replaceCall(nval);
753           return true;
754         }
755       }
756     }
757   }
758
759   return false;
760 }
761
762 //  [native_]half_recip(c) ==> 1.0/c
763 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
764                                 const FuncInfo &FInfo) {
765   Value *opr0 = CI->getArgOperand(0);
766   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
767     // Just create a normal div. Later, InstCombine will be able
768     // to compute the divide into a constant (avoid check float infinity
769     // or subnormal at this point).
770     Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
771                                opr0,
772                                "recip2div");
773     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
774     replaceCall(nval);
775     return true;
776   }
777   return false;
778 }
779
780 //  [native_]half_divide(x, c) ==> x/c
781 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
782                                  const FuncInfo &FInfo) {
783   Value *opr0 = CI->getArgOperand(0);
784   Value *opr1 = CI->getArgOperand(1);
785   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
786   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
787
788   if ((CF0 && CF1) ||  // both are constants
789       (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
790       // CF1 is constant && f32 divide
791   {
792     Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
793                                 opr1, "__div2recip");
794     Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul");
795     replaceCall(nval);
796     return true;
797   }
798   return false;
799 }
800
801 namespace llvm {
802 static double log2(double V) {
803 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
804   return ::log2(V);
805 #else
806   return log(V) / numbers::ln2;
807 #endif
808 }
809 }
810
811 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
812                               const FuncInfo &FInfo) {
813   assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
814           FInfo.getId() == AMDGPULibFunc::EI_POWR ||
815           FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
816          "fold_pow: encounter a wrong function call");
817
818   Value *opr0, *opr1;
819   ConstantFP *CF;
820   ConstantInt *CINT;
821   ConstantAggregateZero *CZero;
822   Type *eltType;
823
824   opr0 = CI->getArgOperand(0);
825   opr1 = CI->getArgOperand(1);
826   CZero = dyn_cast<ConstantAggregateZero>(opr1);
827   if (getVecSize(FInfo) == 1) {
828     eltType = opr0->getType();
829     CF = dyn_cast<ConstantFP>(opr1);
830     CINT = dyn_cast<ConstantInt>(opr1);
831   } else {
832     VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
833     assert(VTy && "Oprand of vector function should be of vectortype");
834     eltType = VTy->getElementType();
835     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
836
837     // Now, only Handle vector const whose elements have the same value.
838     CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
839     CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
840   }
841
842   // No unsafe math , no constant argument, do nothing
843   if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
844     return false;
845
846   // 0x1111111 means that we don't do anything for this call.
847   int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
848
849   if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
850     //  pow/powr/pown(x, 0) == 1
851     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
852     Constant *cnval = ConstantFP::get(eltType, 1.0);
853     if (getVecSize(FInfo) > 1) {
854       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
855     }
856     replaceCall(cnval);
857     return true;
858   }
859   if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
860     // pow/powr/pown(x, 1.0) = x
861     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
862     replaceCall(opr0);
863     return true;
864   }
865   if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
866     // pow/powr/pown(x, 2.0) = x*x
867     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
868                       << "\n");
869     Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
870     replaceCall(nval);
871     return true;
872   }
873   if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
874     // pow/powr/pown(x, -1.0) = 1.0/x
875     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
876     Constant *cnval = ConstantFP::get(eltType, 1.0);
877     if (getVecSize(FInfo) > 1) {
878       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
879     }
880     Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
881     replaceCall(nval);
882     return true;
883   }
884
885   Module *M = CI->getModule();
886   if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
887     // pow[r](x, [-]0.5) = sqrt(x)
888     bool issqrt = CF->isExactlyValue(0.5);
889     if (FunctionCallee FPExpr =
890             getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
891                                                 : AMDGPULibFunc::EI_RSQRT,
892                                          FInfo))) {
893       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
894                         << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
895       Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
896                                                         : "__pow2rsqrt");
897       replaceCall(nval);
898       return true;
899     }
900   }
901
902   if (!isUnsafeMath(CI))
903     return false;
904
905   // Unsafe Math optimization
906
907   // Remember that ci_opr1 is set if opr1 is integral
908   if (CF) {
909     double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
910                     ? (double)CF->getValueAPF().convertToFloat()
911                     : CF->getValueAPF().convertToDouble();
912     int ival = (int)dval;
913     if ((double)ival == dval) {
914       ci_opr1 = ival;
915     } else
916       ci_opr1 = 0x11111111;
917   }
918
919   // pow/powr/pown(x, c) = [1/](x*x*..x); where
920   //   trunc(c) == c && the number of x == c && |c| <= 12
921   unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
922   if (abs_opr1 <= 12) {
923     Constant *cnval;
924     Value *nval;
925     if (abs_opr1 == 0) {
926       cnval = ConstantFP::get(eltType, 1.0);
927       if (getVecSize(FInfo) > 1) {
928         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
929       }
930       nval = cnval;
931     } else {
932       Value *valx2 = nullptr;
933       nval = nullptr;
934       while (abs_opr1 > 0) {
935         valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
936         if (abs_opr1 & 1) {
937           nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
938         }
939         abs_opr1 >>= 1;
940       }
941     }
942
943     if (ci_opr1 < 0) {
944       cnval = ConstantFP::get(eltType, 1.0);
945       if (getVecSize(FInfo) > 1) {
946         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
947       }
948       nval = B.CreateFDiv(cnval, nval, "__1powprod");
949     }
950     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
951                       << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
952                       << ")\n");
953     replaceCall(nval);
954     return true;
955   }
956
957   // powr ---> exp2(y * log2(x))
958   // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
959   FunctionCallee ExpExpr =
960       getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
961   if (!ExpExpr)
962     return false;
963
964   bool needlog = false;
965   bool needabs = false;
966   bool needcopysign = false;
967   Constant *cnval = nullptr;
968   if (getVecSize(FInfo) == 1) {
969     CF = dyn_cast<ConstantFP>(opr0);
970
971     if (CF) {
972       double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
973                    ? (double)CF->getValueAPF().convertToFloat()
974                    : CF->getValueAPF().convertToDouble();
975
976       V = log2(std::abs(V));
977       cnval = ConstantFP::get(eltType, V);
978       needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
979                      CF->isNegative();
980     } else {
981       needlog = true;
982       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
983                                (!CF || CF->isNegative());
984     }
985   } else {
986     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
987
988     if (!CDV) {
989       needlog = true;
990       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
991     } else {
992       assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
993               "Wrong vector size detected");
994
995       SmallVector<double, 0> DVal;
996       for (int i=0; i < getVecSize(FInfo); ++i) {
997         double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
998                      ? (double)CDV->getElementAsFloat(i)
999                      : CDV->getElementAsDouble(i);
1000         if (V < 0.0) needcopysign = true;
1001         V = log2(std::abs(V));
1002         DVal.push_back(V);
1003       }
1004       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1005         SmallVector<float, 0> FVal;
1006         for (unsigned i=0; i < DVal.size(); ++i) {
1007           FVal.push_back((float)DVal[i]);
1008         }
1009         ArrayRef<float> tmp(FVal);
1010         cnval = ConstantDataVector::get(M->getContext(), tmp);
1011       } else {
1012         ArrayRef<double> tmp(DVal);
1013         cnval = ConstantDataVector::get(M->getContext(), tmp);
1014       }
1015     }
1016   }
1017
1018   if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1019     // We cannot handle corner cases for a general pow() function, give up
1020     // unless y is a constant integral value. Then proceed as if it were pown.
1021     if (getVecSize(FInfo) == 1) {
1022       if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1023         double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1024                    ? (double)CF->getValueAPF().convertToFloat()
1025                    : CF->getValueAPF().convertToDouble();
1026         if (y != (double)(int64_t)y)
1027           return false;
1028       } else
1029         return false;
1030     } else {
1031       if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1032         for (int i=0; i < getVecSize(FInfo); ++i) {
1033           double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1034                      ? (double)CDV->getElementAsFloat(i)
1035                      : CDV->getElementAsDouble(i);
1036           if (y != (double)(int64_t)y)
1037             return false;
1038         }
1039       } else
1040         return false;
1041     }
1042   }
1043
1044   Value *nval;
1045   if (needabs) {
1046     FunctionCallee AbsExpr =
1047         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo));
1048     if (!AbsExpr)
1049       return false;
1050     nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1051   } else {
1052     nval = cnval ? cnval : opr0;
1053   }
1054   if (needlog) {
1055     FunctionCallee LogExpr =
1056         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1057     if (!LogExpr)
1058       return false;
1059     nval = CreateCallEx(B,LogExpr, nval, "__log2");
1060   }
1061
1062   if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1063     // convert int(32) to fp(f32 or f64)
1064     opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1065   }
1066   nval = B.CreateFMul(opr1, nval, "__ylogx");
1067   nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1068
1069   if (needcopysign) {
1070     Value *opr_n;
1071     Type* rTy = opr0->getType();
1072     Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1073     Type *nTy = nTyS;
1074     if (const auto *vTy = dyn_cast<FixedVectorType>(rTy))
1075       nTy = FixedVectorType::get(nTyS, vTy);
1076     unsigned size = nTy->getScalarSizeInBits();
1077     opr_n = CI->getArgOperand(1);
1078     if (opr_n->getType()->isIntegerTy())
1079       opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1080     else
1081       opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1082
1083     Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1084     sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1085     nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1086     nval = B.CreateBitCast(nval, opr0->getType());
1087   }
1088
1089   LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1090                     << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1091   replaceCall(nval);
1092
1093   return true;
1094 }
1095
1096 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1097                                 const FuncInfo &FInfo) {
1098   Value *opr0 = CI->getArgOperand(0);
1099   Value *opr1 = CI->getArgOperand(1);
1100
1101   ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1102   if (!CINT) {
1103     return false;
1104   }
1105   int ci_opr1 = (int)CINT->getSExtValue();
1106   if (ci_opr1 == 1) {  // rootn(x, 1) = x
1107     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
1108     replaceCall(opr0);
1109     return true;
1110   }
1111   if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x)
1112     Module *M = CI->getModule();
1113     if (FunctionCallee FPExpr =
1114             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1115       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1116       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1117       replaceCall(nval);
1118       return true;
1119     }
1120   } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1121     Module *M = CI->getModule();
1122     if (FunctionCallee FPExpr =
1123             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1124       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1125       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1126       replaceCall(nval);
1127       return true;
1128     }
1129   } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1130     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1131     Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1132                                opr0,
1133                                "__rootn2div");
1134     replaceCall(nval);
1135     return true;
1136   } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x)
1137     Module *M = CI->getModule();
1138     if (FunctionCallee FPExpr =
1139             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) {
1140       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
1141                         << ")\n");
1142       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1143       replaceCall(nval);
1144       return true;
1145     }
1146   }
1147   return false;
1148 }
1149
1150 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1151                                   const FuncInfo &FInfo) {
1152   Value *opr0 = CI->getArgOperand(0);
1153   Value *opr1 = CI->getArgOperand(1);
1154   Value *opr2 = CI->getArgOperand(2);
1155
1156   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1157   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1158   if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1159     // fma/mad(a, b, c) = c if a=0 || b=0
1160     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1161     replaceCall(opr2);
1162     return true;
1163   }
1164   if (CF0 && CF0->isExactlyValue(1.0f)) {
1165     // fma/mad(a, b, c) = b+c if a=1
1166     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
1167                       << "\n");
1168     Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1169     replaceCall(nval);
1170     return true;
1171   }
1172   if (CF1 && CF1->isExactlyValue(1.0f)) {
1173     // fma/mad(a, b, c) = a+c if b=1
1174     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
1175                       << "\n");
1176     Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1177     replaceCall(nval);
1178     return true;
1179   }
1180   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1181     if (CF->isZero()) {
1182       // fma/mad(a, b, c) = a*b if c=0
1183       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
1184                         << *opr1 << "\n");
1185       Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1186       replaceCall(nval);
1187       return true;
1188     }
1189   }
1190
1191   return false;
1192 }
1193
1194 // Get a scalar native builtin single argument FP function
1195 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1196                                                  const FuncInfo &FInfo) {
1197   if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1198     return nullptr;
1199   FuncInfo nf = FInfo;
1200   nf.setPrefix(AMDGPULibFunc::NATIVE);
1201   return getFunction(M, nf);
1202 }
1203
1204 // fold sqrt -> native_sqrt (x)
1205 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1206                                const FuncInfo &FInfo) {
1207   if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1208       (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1209     if (FunctionCallee FPExpr = getNativeFunction(
1210             CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1211       Value *opr0 = CI->getArgOperand(0);
1212       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1213                         << "sqrt(" << *opr0 << ")\n");
1214       Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1215       replaceCall(nval);
1216       return true;
1217     }
1218   }
1219   return false;
1220 }
1221
1222 // fold sin, cos -> sincos.
1223 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1224                                  AliasAnalysis *AA) {
1225   AMDGPULibFunc fInfo;
1226   if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1227     return false;
1228
1229   assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1230          fInfo.getId() == AMDGPULibFunc::EI_COS);
1231   bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1232
1233   Value *CArgVal = CI->getArgOperand(0);
1234   BasicBlock * const CBB = CI->getParent();
1235
1236   int const MaxScan = 30;
1237   bool Changed = false;
1238
1239   { // fold in load value.
1240     LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1241     if (LI && LI->getParent() == CBB) {
1242       BasicBlock::iterator BBI = LI->getIterator();
1243       Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1244       if (AvailableVal) {
1245         Changed = true;
1246         CArgVal->replaceAllUsesWith(AvailableVal);
1247         if (CArgVal->getNumUses() == 0)
1248           LI->eraseFromParent();
1249         CArgVal = CI->getArgOperand(0);
1250       }
1251     }
1252   }
1253
1254   Module *M = CI->getModule();
1255   fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
1256   std::string const PairName = fInfo.mangle();
1257
1258   CallInst *UI = nullptr;
1259   for (User* U : CArgVal->users()) {
1260     CallInst *XI = dyn_cast_or_null<CallInst>(U);
1261     if (!XI || XI == CI || XI->getParent() != CBB)
1262       continue;
1263
1264     Function *UCallee = XI->getCalledFunction();
1265     if (!UCallee || !UCallee->getName().equals(PairName))
1266       continue;
1267
1268     BasicBlock::iterator BBI = CI->getIterator();
1269     if (BBI == CI->getParent()->begin())
1270       break;
1271     --BBI;
1272     for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1273       if (cast<Instruction>(BBI) == XI) {
1274         UI = XI;
1275         break;
1276       }
1277     }
1278     if (UI) break;
1279   }
1280
1281   if (!UI)
1282     return Changed;
1283
1284   // Merge the sin and cos.
1285
1286   // for OpenCL 2.0 we have only generic implementation of sincos
1287   // function.
1288   AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
1289   nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
1290   FunctionCallee Fsincos = getFunction(M, nf);
1291   if (!Fsincos)
1292     return Changed;
1293
1294   BasicBlock::iterator ItOld = B.GetInsertPoint();
1295   AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1296   B.SetInsertPoint(UI);
1297
1298   Value *P = Alloc;
1299   Type *PTy = Fsincos.getFunctionType()->getParamType(1);
1300   // The allocaInst allocates the memory in private address space. This need
1301   // to be bitcasted to point to the address space of cos pointer type.
1302   // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1303   if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
1304     P = B.CreateAddrSpaceCast(Alloc, PTy);
1305   CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1306
1307   LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
1308                     << *Call << "\n");
1309
1310   if (!isSin) { // CI->cos, UI->sin
1311     B.SetInsertPoint(&*ItOld);
1312     UI->replaceAllUsesWith(&*Call);
1313     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1314     CI->replaceAllUsesWith(Reload);
1315     UI->eraseFromParent();
1316     CI->eraseFromParent();
1317   } else { // CI->sin, UI->cos
1318     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1319     UI->replaceAllUsesWith(Reload);
1320     CI->replaceAllUsesWith(Call);
1321     UI->eraseFromParent();
1322     CI->eraseFromParent();
1323   }
1324   return true;
1325 }
1326
1327 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) {
1328   if (!TM)
1329     return false;
1330
1331   StringRef CPU = TM->getTargetCPU();
1332   StringRef Features = TM->getTargetFeatureString();
1333   if ((CPU.empty() || CPU.equals_insensitive("generic")) &&
1334       (Features.empty() || !Features.contains_insensitive("wavefrontsize")))
1335     return false;
1336
1337   Function *F = CI->getParent()->getParent();
1338   const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F);
1339   unsigned N = ST.getWavefrontSize();
1340
1341   LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with "
1342                << N << "\n");
1343
1344   CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N));
1345   CI->eraseFromParent();
1346   return true;
1347 }
1348
1349 // Get insertion point at entry.
1350 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1351   Function * Func = UI->getParent()->getParent();
1352   BasicBlock * BB = &Func->getEntryBlock();
1353   assert(BB && "Entry block not found!");
1354   BasicBlock::iterator ItNew = BB->begin();
1355   return ItNew;
1356 }
1357
1358 // Insert a AllocsInst at the beginning of function entry block.
1359 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1360                                          const char *prefix) {
1361   BasicBlock::iterator ItNew = getEntryIns(UI);
1362   Function *UCallee = UI->getCalledFunction();
1363   Type *RetType = UCallee->getReturnType();
1364   B.SetInsertPoint(&*ItNew);
1365   AllocaInst *Alloc =
1366       B.CreateAlloca(RetType, nullptr, std::string(prefix) + UI->getName());
1367   Alloc->setAlignment(
1368       Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType)));
1369   return Alloc;
1370 }
1371
1372 bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo,
1373                                             double& Res0, double& Res1,
1374                                             Constant *copr0, Constant *copr1,
1375                                             Constant *copr2) {
1376   // By default, opr0/opr1/opr3 holds values of float/double type.
1377   // If they are not float/double, each function has to its
1378   // operand separately.
1379   double opr0=0.0, opr1=0.0, opr2=0.0;
1380   ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1381   ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1382   ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1383   if (fpopr0) {
1384     opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1385              ? fpopr0->getValueAPF().convertToDouble()
1386              : (double)fpopr0->getValueAPF().convertToFloat();
1387   }
1388
1389   if (fpopr1) {
1390     opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1391              ? fpopr1->getValueAPF().convertToDouble()
1392              : (double)fpopr1->getValueAPF().convertToFloat();
1393   }
1394
1395   if (fpopr2) {
1396     opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1397              ? fpopr2->getValueAPF().convertToDouble()
1398              : (double)fpopr2->getValueAPF().convertToFloat();
1399   }
1400
1401   switch (FInfo.getId()) {
1402   default : return false;
1403
1404   case AMDGPULibFunc::EI_ACOS:
1405     Res0 = acos(opr0);
1406     return true;
1407
1408   case AMDGPULibFunc::EI_ACOSH:
1409     // acosh(x) == log(x + sqrt(x*x - 1))
1410     Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1411     return true;
1412
1413   case AMDGPULibFunc::EI_ACOSPI:
1414     Res0 = acos(opr0) / MATH_PI;
1415     return true;
1416
1417   case AMDGPULibFunc::EI_ASIN:
1418     Res0 = asin(opr0);
1419     return true;
1420
1421   case AMDGPULibFunc::EI_ASINH:
1422     // asinh(x) == log(x + sqrt(x*x + 1))
1423     Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1424     return true;
1425
1426   case AMDGPULibFunc::EI_ASINPI:
1427     Res0 = asin(opr0) / MATH_PI;
1428     return true;
1429
1430   case AMDGPULibFunc::EI_ATAN:
1431     Res0 = atan(opr0);
1432     return true;
1433
1434   case AMDGPULibFunc::EI_ATANH:
1435     // atanh(x) == (log(x+1) - log(x-1))/2;
1436     Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1437     return true;
1438
1439   case AMDGPULibFunc::EI_ATANPI:
1440     Res0 = atan(opr0) / MATH_PI;
1441     return true;
1442
1443   case AMDGPULibFunc::EI_CBRT:
1444     Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1445     return true;
1446
1447   case AMDGPULibFunc::EI_COS:
1448     Res0 = cos(opr0);
1449     return true;
1450
1451   case AMDGPULibFunc::EI_COSH:
1452     Res0 = cosh(opr0);
1453     return true;
1454
1455   case AMDGPULibFunc::EI_COSPI:
1456     Res0 = cos(MATH_PI * opr0);
1457     return true;
1458
1459   case AMDGPULibFunc::EI_EXP:
1460     Res0 = exp(opr0);
1461     return true;
1462
1463   case AMDGPULibFunc::EI_EXP2:
1464     Res0 = pow(2.0, opr0);
1465     return true;
1466
1467   case AMDGPULibFunc::EI_EXP10:
1468     Res0 = pow(10.0, opr0);
1469     return true;
1470
1471   case AMDGPULibFunc::EI_EXPM1:
1472     Res0 = exp(opr0) - 1.0;
1473     return true;
1474
1475   case AMDGPULibFunc::EI_LOG:
1476     Res0 = log(opr0);
1477     return true;
1478
1479   case AMDGPULibFunc::EI_LOG2:
1480     Res0 = log(opr0) / log(2.0);
1481     return true;
1482
1483   case AMDGPULibFunc::EI_LOG10:
1484     Res0 = log(opr0) / log(10.0);
1485     return true;
1486
1487   case AMDGPULibFunc::EI_RSQRT:
1488     Res0 = 1.0 / sqrt(opr0);
1489     return true;
1490
1491   case AMDGPULibFunc::EI_SIN:
1492     Res0 = sin(opr0);
1493     return true;
1494
1495   case AMDGPULibFunc::EI_SINH:
1496     Res0 = sinh(opr0);
1497     return true;
1498
1499   case AMDGPULibFunc::EI_SINPI:
1500     Res0 = sin(MATH_PI * opr0);
1501     return true;
1502
1503   case AMDGPULibFunc::EI_SQRT:
1504     Res0 = sqrt(opr0);
1505     return true;
1506
1507   case AMDGPULibFunc::EI_TAN:
1508     Res0 = tan(opr0);
1509     return true;
1510
1511   case AMDGPULibFunc::EI_TANH:
1512     Res0 = tanh(opr0);
1513     return true;
1514
1515   case AMDGPULibFunc::EI_TANPI:
1516     Res0 = tan(MATH_PI * opr0);
1517     return true;
1518
1519   case AMDGPULibFunc::EI_RECIP:
1520     Res0 = 1.0 / opr0;
1521     return true;
1522
1523   // two-arg functions
1524   case AMDGPULibFunc::EI_DIVIDE:
1525     Res0 = opr0 / opr1;
1526     return true;
1527
1528   case AMDGPULibFunc::EI_POW:
1529   case AMDGPULibFunc::EI_POWR:
1530     Res0 = pow(opr0, opr1);
1531     return true;
1532
1533   case AMDGPULibFunc::EI_POWN: {
1534     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1535       double val = (double)iopr1->getSExtValue();
1536       Res0 = pow(opr0, val);
1537       return true;
1538     }
1539     return false;
1540   }
1541
1542   case AMDGPULibFunc::EI_ROOTN: {
1543     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1544       double val = (double)iopr1->getSExtValue();
1545       Res0 = pow(opr0, 1.0 / val);
1546       return true;
1547     }
1548     return false;
1549   }
1550
1551   // with ptr arg
1552   case AMDGPULibFunc::EI_SINCOS:
1553     Res0 = sin(opr0);
1554     Res1 = cos(opr0);
1555     return true;
1556
1557   // three-arg functions
1558   case AMDGPULibFunc::EI_FMA:
1559   case AMDGPULibFunc::EI_MAD:
1560     Res0 = opr0 * opr1 + opr2;
1561     return true;
1562   }
1563
1564   return false;
1565 }
1566
1567 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) {
1568   int numArgs = (int)aCI->arg_size();
1569   if (numArgs > 3)
1570     return false;
1571
1572   Constant *copr0 = nullptr;
1573   Constant *copr1 = nullptr;
1574   Constant *copr2 = nullptr;
1575   if (numArgs > 0) {
1576     if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1577       return false;
1578   }
1579
1580   if (numArgs > 1) {
1581     if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1582       if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1583         return false;
1584     }
1585   }
1586
1587   if (numArgs > 2) {
1588     if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1589       return false;
1590   }
1591
1592   // At this point, all arguments to aCI are constants.
1593
1594   // max vector size is 16, and sincos will generate two results.
1595   double DVal0[16], DVal1[16];
1596   bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1597   if (getVecSize(FInfo) == 1) {
1598     if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1599                                 DVal1[0], copr0, copr1, copr2)) {
1600       return false;
1601     }
1602   } else {
1603     ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1604     ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1605     ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1606     for (int i=0; i < getVecSize(FInfo); ++i) {
1607       Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1608       Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1609       Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1610       if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1611                                   DVal1[i], celt0, celt1, celt2)) {
1612         return false;
1613       }
1614     }
1615   }
1616
1617   LLVMContext &context = CI->getParent()->getParent()->getContext();
1618   Constant *nval0, *nval1;
1619   if (getVecSize(FInfo) == 1) {
1620     nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1621     if (hasTwoResults)
1622       nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1623   } else {
1624     if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1625       SmallVector <float, 0> FVal0, FVal1;
1626       for (int i=0; i < getVecSize(FInfo); ++i)
1627         FVal0.push_back((float)DVal0[i]);
1628       ArrayRef<float> tmp0(FVal0);
1629       nval0 = ConstantDataVector::get(context, tmp0);
1630       if (hasTwoResults) {
1631         for (int i=0; i < getVecSize(FInfo); ++i)
1632           FVal1.push_back((float)DVal1[i]);
1633         ArrayRef<float> tmp1(FVal1);
1634         nval1 = ConstantDataVector::get(context, tmp1);
1635       }
1636     } else {
1637       ArrayRef<double> tmp0(DVal0);
1638       nval0 = ConstantDataVector::get(context, tmp0);
1639       if (hasTwoResults) {
1640         ArrayRef<double> tmp1(DVal1);
1641         nval1 = ConstantDataVector::get(context, tmp1);
1642       }
1643     }
1644   }
1645
1646   if (hasTwoResults) {
1647     // sincos
1648     assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1649            "math function with ptr arg not supported yet");
1650     new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1651   }
1652
1653   replaceCall(nval0);
1654   return true;
1655 }
1656
1657 // Public interface to the Simplify LibCalls pass.
1658 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) {
1659   return new AMDGPUSimplifyLibCalls(TM);
1660 }
1661
1662 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
1663   return new AMDGPUUseNativeCalls();
1664 }
1665
1666 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
1667   if (skipFunction(F))
1668     return false;
1669
1670   bool Changed = false;
1671   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1672
1673   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1674              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1675
1676   for (auto &BB : F) {
1677     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1678       // Ignore non-calls.
1679       CallInst *CI = dyn_cast<CallInst>(I);
1680       ++I;
1681       // Ignore intrinsics that do not become real instructions.
1682       if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
1683         continue;
1684
1685       // Ignore indirect calls.
1686       Function *Callee = CI->getCalledFunction();
1687       if (Callee == nullptr)
1688         continue;
1689
1690       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1691                  dbgs().flush());
1692       if(Simplifier.fold(CI, AA))
1693         Changed = true;
1694     }
1695   }
1696   return Changed;
1697 }
1698
1699 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F,
1700                                                   FunctionAnalysisManager &AM) {
1701   AMDGPULibCalls Simplifier(&TM);
1702   Simplifier.initNativeFuncs();
1703
1704   bool Changed = false;
1705   auto AA = &AM.getResult<AAManager>(F);
1706
1707   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1708              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1709
1710   for (auto &BB : F) {
1711     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1712       // Ignore non-calls.
1713       CallInst *CI = dyn_cast<CallInst>(I);
1714       ++I;
1715       // Ignore intrinsics that do not become real instructions.
1716       if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
1717         continue;
1718
1719       // Ignore indirect calls.
1720       Function *Callee = CI->getCalledFunction();
1721       if (Callee == nullptr)
1722         continue;
1723
1724       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1725                  dbgs().flush());
1726       if (Simplifier.fold(CI, AA))
1727         Changed = true;
1728     }
1729   }
1730   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1731 }
1732
1733 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
1734   if (skipFunction(F) || UseNative.empty())
1735     return false;
1736
1737   bool Changed = false;
1738   for (auto &BB : F) {
1739     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1740       // Ignore non-calls.
1741       CallInst *CI = dyn_cast<CallInst>(I);
1742       ++I;
1743       if (!CI) continue;
1744
1745       // Ignore indirect calls.
1746       Function *Callee = CI->getCalledFunction();
1747       if (Callee == nullptr)
1748         continue;
1749
1750       if (Simplifier.useNative(CI))
1751         Changed = true;
1752     }
1753   }
1754   return Changed;
1755 }
1756
1757 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F,
1758                                                 FunctionAnalysisManager &AM) {
1759   if (UseNative.empty())
1760     return PreservedAnalyses::all();
1761
1762   AMDGPULibCalls Simplifier;
1763   Simplifier.initNativeFuncs();
1764
1765   bool Changed = false;
1766   for (auto &BB : F) {
1767     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) {
1768       // Ignore non-calls.
1769       CallInst *CI = dyn_cast<CallInst>(I);
1770       ++I;
1771       if (!CI)
1772         continue;
1773
1774       // Ignore indirect calls.
1775       Function *Callee = CI->getCalledFunction();
1776       if (Callee == nullptr)
1777         continue;
1778
1779       if (Simplifier.useNative(CI))
1780         Changed = true;
1781     }
1782   }
1783   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1784 }