]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULibCalls.cpp
Adjust ENA driver files to latest ena-com changes
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / AMDGPU / AMDGPULibCalls.cpp
1 //===- AMDGPULibCalls.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file does AMD library function optimizations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AMDGPU.h"
15 #include "AMDGPULibFunc.h"
16 #include "AMDGPUSubtarget.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/StringSet.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/Loads.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/ValueSymbolTable.h"
30 #include "llvm/InitializePasses.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cmath>
36 #include <vector>
37
38 #define DEBUG_TYPE "amdgpu-simplifylib"
39
40 using namespace llvm;
41
42 static cl::opt<bool> EnablePreLink("amdgpu-prelink",
43   cl::desc("Enable pre-link mode optimizations"),
44   cl::init(false),
45   cl::Hidden);
46
47 static cl::list<std::string> UseNative("amdgpu-use-native",
48   cl::desc("Comma separated list of functions to replace with native, or all"),
49   cl::CommaSeparated, cl::ValueOptional,
50   cl::Hidden);
51
52 #define MATH_PI      numbers::pi
53 #define MATH_E       numbers::e
54 #define MATH_SQRT2   numbers::sqrt2
55 #define MATH_SQRT1_2 numbers::inv_sqrt2
56
57 namespace llvm {
58
59 class AMDGPULibCalls {
60 private:
61
62   typedef llvm::AMDGPULibFunc FuncInfo;
63
64   const TargetMachine *TM;
65
66   // -fuse-native.
67   bool AllNative = false;
68
69   bool useNativeFunc(const StringRef F) const;
70
71   // Return a pointer (pointer expr) to the function if function defintion with
72   // "FuncName" exists. It may create a new function prototype in pre-link mode.
73   FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
74
75   // Replace a normal function with its native version.
76   bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
77
78   bool parseFunctionName(const StringRef& FMangledName,
79                          FuncInfo *FInfo=nullptr /*out*/);
80
81   bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
82
83   /* Specialized optimizations */
84
85   // recip (half or native)
86   bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
87
88   // divide (half or native)
89   bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
90
91   // pow/powr/pown
92   bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
93
94   // rootn
95   bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
96
97   // fma/mad
98   bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
99
100   // -fuse-native for sincos
101   bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
102
103   // evaluate calls if calls' arguments are constants.
104   bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0,
105     double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
106   bool evaluateCall(CallInst *aCI, FuncInfo &FInfo);
107
108   // exp
109   bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
110
111   // exp2
112   bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
113
114   // exp10
115   bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
116
117   // log
118   bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
119
120   // log2
121   bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
122
123   // log10
124   bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
125
126   // sqrt
127   bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
128
129   // sin/cos
130   bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
131
132   // __read_pipe/__write_pipe
133   bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo);
134
135   // llvm.amdgcn.wavefrontsize
136   bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B);
137
138   // Get insertion point at entry.
139   BasicBlock::iterator getEntryIns(CallInst * UI);
140   // Insert an Alloc instruction.
141   AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
142   // Get a scalar native builtin signle argument FP function
143   FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
144
145 protected:
146   CallInst *CI;
147
148   bool isUnsafeMath(const CallInst *CI) const;
149
150   void replaceCall(Value *With) {
151     CI->replaceAllUsesWith(With);
152     CI->eraseFromParent();
153   }
154
155 public:
156   AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {}
157
158   bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
159
160   void initNativeFuncs();
161
162   // Replace a normal math function call with that native version
163   bool useNative(CallInst *CI);
164 };
165
166 } // end llvm namespace
167
168 namespace {
169
170   class AMDGPUSimplifyLibCalls : public FunctionPass {
171
172   AMDGPULibCalls Simplifier;
173
174   public:
175     static char ID; // Pass identification
176
177     AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr)
178       : FunctionPass(ID), Simplifier(TM) {
179       initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
180     }
181
182     void getAnalysisUsage(AnalysisUsage &AU) const override {
183       AU.addRequired<AAResultsWrapperPass>();
184     }
185
186     bool runOnFunction(Function &M) override;
187   };
188
189   class AMDGPUUseNativeCalls : public FunctionPass {
190
191   AMDGPULibCalls Simplifier;
192
193   public:
194     static char ID; // Pass identification
195
196     AMDGPUUseNativeCalls() : FunctionPass(ID) {
197       initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
198       Simplifier.initNativeFuncs();
199     }
200
201     bool runOnFunction(Function &F) override;
202   };
203
204 } // end anonymous namespace.
205
206 char AMDGPUSimplifyLibCalls::ID = 0;
207 char AMDGPUUseNativeCalls::ID = 0;
208
209 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
210                       "Simplify well-known AMD library calls", false, false)
211 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
212 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
213                     "Simplify well-known AMD library calls", false, false)
214
215 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
216                 "Replace builtin math calls with that native versions.",
217                 false, false)
218
219 template <typename IRB>
220 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
221                               const Twine &Name = "") {
222   CallInst *R = B.CreateCall(Callee, Arg, Name);
223   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
224     R->setCallingConv(F->getCallingConv());
225   return R;
226 }
227
228 template <typename IRB>
229 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
230                                Value *Arg2, const Twine &Name = "") {
231   CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
232   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
233     R->setCallingConv(F->getCallingConv());
234   return R;
235 }
236
237 //  Data structures for table-driven optimizations.
238 //  FuncTbl works for both f32 and f64 functions with 1 input argument
239
240 struct TableEntry {
241   double   result;
242   double   input;
243 };
244
245 /* a list of {result, input} */
246 static const TableEntry tbl_acos[] = {
247   {MATH_PI / 2.0, 0.0},
248   {MATH_PI / 2.0, -0.0},
249   {0.0, 1.0},
250   {MATH_PI, -1.0}
251 };
252 static const TableEntry tbl_acosh[] = {
253   {0.0, 1.0}
254 };
255 static const TableEntry tbl_acospi[] = {
256   {0.5, 0.0},
257   {0.5, -0.0},
258   {0.0, 1.0},
259   {1.0, -1.0}
260 };
261 static const TableEntry tbl_asin[] = {
262   {0.0, 0.0},
263   {-0.0, -0.0},
264   {MATH_PI / 2.0, 1.0},
265   {-MATH_PI / 2.0, -1.0}
266 };
267 static const TableEntry tbl_asinh[] = {
268   {0.0, 0.0},
269   {-0.0, -0.0}
270 };
271 static const TableEntry tbl_asinpi[] = {
272   {0.0, 0.0},
273   {-0.0, -0.0},
274   {0.5, 1.0},
275   {-0.5, -1.0}
276 };
277 static const TableEntry tbl_atan[] = {
278   {0.0, 0.0},
279   {-0.0, -0.0},
280   {MATH_PI / 4.0, 1.0},
281   {-MATH_PI / 4.0, -1.0}
282 };
283 static const TableEntry tbl_atanh[] = {
284   {0.0, 0.0},
285   {-0.0, -0.0}
286 };
287 static const TableEntry tbl_atanpi[] = {
288   {0.0, 0.0},
289   {-0.0, -0.0},
290   {0.25, 1.0},
291   {-0.25, -1.0}
292 };
293 static const TableEntry tbl_cbrt[] = {
294   {0.0, 0.0},
295   {-0.0, -0.0},
296   {1.0, 1.0},
297   {-1.0, -1.0},
298 };
299 static const TableEntry tbl_cos[] = {
300   {1.0, 0.0},
301   {1.0, -0.0}
302 };
303 static const TableEntry tbl_cosh[] = {
304   {1.0, 0.0},
305   {1.0, -0.0}
306 };
307 static const TableEntry tbl_cospi[] = {
308   {1.0, 0.0},
309   {1.0, -0.0}
310 };
311 static const TableEntry tbl_erfc[] = {
312   {1.0, 0.0},
313   {1.0, -0.0}
314 };
315 static const TableEntry tbl_erf[] = {
316   {0.0, 0.0},
317   {-0.0, -0.0}
318 };
319 static const TableEntry tbl_exp[] = {
320   {1.0, 0.0},
321   {1.0, -0.0},
322   {MATH_E, 1.0}
323 };
324 static const TableEntry tbl_exp2[] = {
325   {1.0, 0.0},
326   {1.0, -0.0},
327   {2.0, 1.0}
328 };
329 static const TableEntry tbl_exp10[] = {
330   {1.0, 0.0},
331   {1.0, -0.0},
332   {10.0, 1.0}
333 };
334 static const TableEntry tbl_expm1[] = {
335   {0.0, 0.0},
336   {-0.0, -0.0}
337 };
338 static const TableEntry tbl_log[] = {
339   {0.0, 1.0},
340   {1.0, MATH_E}
341 };
342 static const TableEntry tbl_log2[] = {
343   {0.0, 1.0},
344   {1.0, 2.0}
345 };
346 static const TableEntry tbl_log10[] = {
347   {0.0, 1.0},
348   {1.0, 10.0}
349 };
350 static const TableEntry tbl_rsqrt[] = {
351   {1.0, 1.0},
352   {MATH_SQRT1_2, 2.0}
353 };
354 static const TableEntry tbl_sin[] = {
355   {0.0, 0.0},
356   {-0.0, -0.0}
357 };
358 static const TableEntry tbl_sinh[] = {
359   {0.0, 0.0},
360   {-0.0, -0.0}
361 };
362 static const TableEntry tbl_sinpi[] = {
363   {0.0, 0.0},
364   {-0.0, -0.0}
365 };
366 static const TableEntry tbl_sqrt[] = {
367   {0.0, 0.0},
368   {1.0, 1.0},
369   {MATH_SQRT2, 2.0}
370 };
371 static const TableEntry tbl_tan[] = {
372   {0.0, 0.0},
373   {-0.0, -0.0}
374 };
375 static const TableEntry tbl_tanh[] = {
376   {0.0, 0.0},
377   {-0.0, -0.0}
378 };
379 static const TableEntry tbl_tanpi[] = {
380   {0.0, 0.0},
381   {-0.0, -0.0}
382 };
383 static const TableEntry tbl_tgamma[] = {
384   {1.0, 1.0},
385   {1.0, 2.0},
386   {2.0, 3.0},
387   {6.0, 4.0}
388 };
389
390 static bool HasNative(AMDGPULibFunc::EFuncId id) {
391   switch(id) {
392   case AMDGPULibFunc::EI_DIVIDE:
393   case AMDGPULibFunc::EI_COS:
394   case AMDGPULibFunc::EI_EXP:
395   case AMDGPULibFunc::EI_EXP2:
396   case AMDGPULibFunc::EI_EXP10:
397   case AMDGPULibFunc::EI_LOG:
398   case AMDGPULibFunc::EI_LOG2:
399   case AMDGPULibFunc::EI_LOG10:
400   case AMDGPULibFunc::EI_POWR:
401   case AMDGPULibFunc::EI_RECIP:
402   case AMDGPULibFunc::EI_RSQRT:
403   case AMDGPULibFunc::EI_SIN:
404   case AMDGPULibFunc::EI_SINCOS:
405   case AMDGPULibFunc::EI_SQRT:
406   case AMDGPULibFunc::EI_TAN:
407     return true;
408   default:;
409   }
410   return false;
411 }
412
413 struct TableRef {
414   size_t size;
415   const TableEntry *table; // variable size: from 0 to (size - 1)
416
417   TableRef() : size(0), table(nullptr) {}
418
419   template <size_t N>
420   TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
421 };
422
423 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
424   switch(id) {
425   case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos);
426   case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh);
427   case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi);
428   case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin);
429   case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh);
430   case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi);
431   case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan);
432   case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh);
433   case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi);
434   case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt);
435   case AMDGPULibFunc::EI_NCOS:
436   case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos);
437   case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh);
438   case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi);
439   case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc);
440   case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf);
441   case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp);
442   case AMDGPULibFunc::EI_NEXP2:
443   case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2);
444   case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10);
445   case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1);
446   case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log);
447   case AMDGPULibFunc::EI_NLOG2:
448   case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2);
449   case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10);
450   case AMDGPULibFunc::EI_NRSQRT:
451   case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt);
452   case AMDGPULibFunc::EI_NSIN:
453   case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin);
454   case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh);
455   case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi);
456   case AMDGPULibFunc::EI_NSQRT:
457   case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt);
458   case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan);
459   case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh);
460   case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi);
461   case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma);
462   default:;
463   }
464   return TableRef();
465 }
466
467 static inline int getVecSize(const AMDGPULibFunc& FInfo) {
468   return FInfo.getLeads()[0].VectorSize;
469 }
470
471 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
472   return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
473 }
474
475 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
476   // If we are doing PreLinkOpt, the function is external. So it is safe to
477   // use getOrInsertFunction() at this stage.
478
479   return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
480                        : AMDGPULibFunc::getFunction(M, fInfo);
481 }
482
483 bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName,
484                                     FuncInfo *FInfo) {
485   return AMDGPULibFunc::parse(FMangledName, *FInfo);
486 }
487
488 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
489   if (auto Op = dyn_cast<FPMathOperator>(CI))
490     if (Op->isFast())
491       return true;
492   const Function *F = CI->getParent()->getParent();
493   Attribute Attr = F->getFnAttribute("unsafe-fp-math");
494   return Attr.getValueAsString() == "true";
495 }
496
497 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
498   return AllNative ||
499          std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end();
500 }
501
502 void AMDGPULibCalls::initNativeFuncs() {
503   AllNative = useNativeFunc("all") ||
504               (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
505                UseNative.begin()->empty());
506 }
507
508 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
509   bool native_sin = useNativeFunc("sin");
510   bool native_cos = useNativeFunc("cos");
511
512   if (native_sin && native_cos) {
513     Module *M = aCI->getModule();
514     Value *opr0 = aCI->getArgOperand(0);
515
516     AMDGPULibFunc nf;
517     nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
518     nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
519
520     nf.setPrefix(AMDGPULibFunc::NATIVE);
521     nf.setId(AMDGPULibFunc::EI_SIN);
522     FunctionCallee sinExpr = getFunction(M, nf);
523
524     nf.setPrefix(AMDGPULibFunc::NATIVE);
525     nf.setId(AMDGPULibFunc::EI_COS);
526     FunctionCallee cosExpr = getFunction(M, nf);
527     if (sinExpr && cosExpr) {
528       Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
529       Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
530       new StoreInst(cosval, aCI->getArgOperand(1), aCI);
531
532       DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
533                                           << " with native version of sin/cos");
534
535       replaceCall(sinval);
536       return true;
537     }
538   }
539   return false;
540 }
541
542 bool AMDGPULibCalls::useNative(CallInst *aCI) {
543   CI = aCI;
544   Function *Callee = aCI->getCalledFunction();
545
546   FuncInfo FInfo;
547   if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() ||
548       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
549       getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
550       !(AllNative || useNativeFunc(FInfo.getName()))) {
551     return false;
552   }
553
554   if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
555     return sincosUseNative(aCI, FInfo);
556
557   FInfo.setPrefix(AMDGPULibFunc::NATIVE);
558   FunctionCallee F = getFunction(aCI->getModule(), FInfo);
559   if (!F)
560     return false;
561
562   aCI->setCalledFunction(F);
563   DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
564                                       << " with native version");
565   return true;
566 }
567
568 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
569 // builtin, with appended type size and alignment arguments, where 2 or 4
570 // indicates the original number of arguments. The library has optimized version
571 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
572 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
573 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
574 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
575 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
576                                           FuncInfo &FInfo) {
577   auto *Callee = CI->getCalledFunction();
578   if (!Callee->isDeclaration())
579     return false;
580
581   assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
582   auto *M = Callee->getParent();
583   auto &Ctx = M->getContext();
584   std::string Name = std::string(Callee->getName());
585   auto NumArg = CI->getNumArgOperands();
586   if (NumArg != 4 && NumArg != 6)
587     return false;
588   auto *PacketSize = CI->getArgOperand(NumArg - 2);
589   auto *PacketAlign = CI->getArgOperand(NumArg - 1);
590   if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
591     return false;
592   unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
593   Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue();
594   if (Alignment != Size)
595     return false;
596
597   Type *PtrElemTy;
598   if (Size <= 8)
599     PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
600   else
601     PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8);
602   unsigned PtrArgLoc = CI->getNumArgOperands() - 3;
603   auto PtrArg = CI->getArgOperand(PtrArgLoc);
604   unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
605   auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
606
607   SmallVector<llvm::Type *, 6> ArgTys;
608   for (unsigned I = 0; I != PtrArgLoc; ++I)
609     ArgTys.push_back(CI->getArgOperand(I)->getType());
610   ArgTys.push_back(PtrTy);
611
612   Name = Name + "_" + std::to_string(Size);
613   auto *FTy = FunctionType::get(Callee->getReturnType(),
614                                 ArrayRef<Type *>(ArgTys), false);
615   AMDGPULibFunc NewLibFunc(Name, FTy);
616   FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
617   if (!F)
618     return false;
619
620   auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
621   SmallVector<Value *, 6> Args;
622   for (unsigned I = 0; I != PtrArgLoc; ++I)
623     Args.push_back(CI->getArgOperand(I));
624   Args.push_back(BCast);
625
626   auto *NCI = B.CreateCall(F, Args);
627   NCI->setAttributes(CI->getAttributes());
628   CI->replaceAllUsesWith(NCI);
629   CI->dropAllReferences();
630   CI->eraseFromParent();
631
632   return true;
633 }
634
635 // This function returns false if no change; return true otherwise.
636 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
637   this->CI = CI;
638   Function *Callee = CI->getCalledFunction();
639
640   // Ignore indirect calls.
641   if (Callee == 0) return false;
642
643   BasicBlock *BB = CI->getParent();
644   LLVMContext &Context = CI->getParent()->getContext();
645   IRBuilder<> B(Context);
646
647   // Set the builder to the instruction after the call.
648   B.SetInsertPoint(BB, CI->getIterator());
649
650   // Copy fast flags from the original call.
651   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
652     B.setFastMathFlags(FPOp->getFastMathFlags());
653
654   switch (Callee->getIntrinsicID()) {
655   default:
656     break;
657   case Intrinsic::amdgcn_wavefrontsize:
658     return !EnablePreLink && fold_wavefrontsize(CI, B);
659   }
660
661   FuncInfo FInfo;
662   if (!parseFunctionName(Callee->getName(), &FInfo))
663     return false;
664
665   // Further check the number of arguments to see if they match.
666   if (CI->getNumArgOperands() != FInfo.getNumArgs())
667     return false;
668
669   if (TDOFold(CI, FInfo))
670     return true;
671
672   // Under unsafe-math, evaluate calls if possible.
673   // According to Brian Sumner, we can do this for all f32 function calls
674   // using host's double function calls.
675   if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
676     return true;
677
678   // Specilized optimizations for each function call
679   switch (FInfo.getId()) {
680   case AMDGPULibFunc::EI_RECIP:
681     // skip vector function
682     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
683              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
684             "recip must be an either native or half function");
685     return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
686
687   case AMDGPULibFunc::EI_DIVIDE:
688     // skip vector function
689     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
690              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
691             "divide must be an either native or half function");
692     return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
693
694   case AMDGPULibFunc::EI_POW:
695   case AMDGPULibFunc::EI_POWR:
696   case AMDGPULibFunc::EI_POWN:
697     return fold_pow(CI, B, FInfo);
698
699   case AMDGPULibFunc::EI_ROOTN:
700     // skip vector function
701     return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
702
703   case AMDGPULibFunc::EI_FMA:
704   case AMDGPULibFunc::EI_MAD:
705   case AMDGPULibFunc::EI_NFMA:
706     // skip vector function
707     return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
708
709   case AMDGPULibFunc::EI_SQRT:
710     return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
711   case AMDGPULibFunc::EI_COS:
712   case AMDGPULibFunc::EI_SIN:
713     if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
714          getArgType(FInfo) == AMDGPULibFunc::F64)
715         && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
716       return fold_sincos(CI, B, AA);
717
718     break;
719   case AMDGPULibFunc::EI_READ_PIPE_2:
720   case AMDGPULibFunc::EI_READ_PIPE_4:
721   case AMDGPULibFunc::EI_WRITE_PIPE_2:
722   case AMDGPULibFunc::EI_WRITE_PIPE_4:
723     return fold_read_write_pipe(CI, B, FInfo);
724
725   default:
726     break;
727   }
728
729   return false;
730 }
731
732 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
733   // Table-Driven optimization
734   const TableRef tr = getOptTable(FInfo.getId());
735   if (tr.size==0)
736     return false;
737
738   int const sz = (int)tr.size;
739   const TableEntry * const ftbl = tr.table;
740   Value *opr0 = CI->getArgOperand(0);
741
742   if (getVecSize(FInfo) > 1) {
743     if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
744       SmallVector<double, 0> DVal;
745       for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
746         ConstantFP *eltval = dyn_cast<ConstantFP>(
747                                CV->getElementAsConstant((unsigned)eltNo));
748         assert(eltval && "Non-FP arguments in math function!");
749         bool found = false;
750         for (int i=0; i < sz; ++i) {
751           if (eltval->isExactlyValue(ftbl[i].input)) {
752             DVal.push_back(ftbl[i].result);
753             found = true;
754             break;
755           }
756         }
757         if (!found) {
758           // This vector constants not handled yet.
759           return false;
760         }
761       }
762       LLVMContext &context = CI->getParent()->getParent()->getContext();
763       Constant *nval;
764       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
765         SmallVector<float, 0> FVal;
766         for (unsigned i = 0; i < DVal.size(); ++i) {
767           FVal.push_back((float)DVal[i]);
768         }
769         ArrayRef<float> tmp(FVal);
770         nval = ConstantDataVector::get(context, tmp);
771       } else { // F64
772         ArrayRef<double> tmp(DVal);
773         nval = ConstantDataVector::get(context, tmp);
774       }
775       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
776       replaceCall(nval);
777       return true;
778     }
779   } else {
780     // Scalar version
781     if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
782       for (int i = 0; i < sz; ++i) {
783         if (CF->isExactlyValue(ftbl[i].input)) {
784           Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
785           LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
786           replaceCall(nval);
787           return true;
788         }
789       }
790     }
791   }
792
793   return false;
794 }
795
796 bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
797   Module *M = CI->getModule();
798   if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
799       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
800       !HasNative(FInfo.getId()))
801     return false;
802
803   AMDGPULibFunc nf = FInfo;
804   nf.setPrefix(AMDGPULibFunc::NATIVE);
805   if (FunctionCallee FPExpr = getFunction(M, nf)) {
806     LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
807
808     CI->setCalledFunction(FPExpr);
809
810     LLVM_DEBUG(dbgs() << *CI << '\n');
811
812     return true;
813   }
814   return false;
815 }
816
817 //  [native_]half_recip(c) ==> 1.0/c
818 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
819                                 const FuncInfo &FInfo) {
820   Value *opr0 = CI->getArgOperand(0);
821   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
822     // Just create a normal div. Later, InstCombine will be able
823     // to compute the divide into a constant (avoid check float infinity
824     // or subnormal at this point).
825     Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
826                                opr0,
827                                "recip2div");
828     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
829     replaceCall(nval);
830     return true;
831   }
832   return false;
833 }
834
835 //  [native_]half_divide(x, c) ==> x/c
836 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
837                                  const FuncInfo &FInfo) {
838   Value *opr0 = CI->getArgOperand(0);
839   Value *opr1 = CI->getArgOperand(1);
840   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
841   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
842
843   if ((CF0 && CF1) ||  // both are constants
844       (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
845       // CF1 is constant && f32 divide
846   {
847     Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
848                                 opr1, "__div2recip");
849     Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul");
850     replaceCall(nval);
851     return true;
852   }
853   return false;
854 }
855
856 namespace llvm {
857 static double log2(double V) {
858 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L
859   return ::log2(V);
860 #else
861   return log(V) / numbers::ln2;
862 #endif
863 }
864 }
865
866 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
867                               const FuncInfo &FInfo) {
868   assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
869           FInfo.getId() == AMDGPULibFunc::EI_POWR ||
870           FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
871          "fold_pow: encounter a wrong function call");
872
873   Value *opr0, *opr1;
874   ConstantFP *CF;
875   ConstantInt *CINT;
876   ConstantAggregateZero *CZero;
877   Type *eltType;
878
879   opr0 = CI->getArgOperand(0);
880   opr1 = CI->getArgOperand(1);
881   CZero = dyn_cast<ConstantAggregateZero>(opr1);
882   if (getVecSize(FInfo) == 1) {
883     eltType = opr0->getType();
884     CF = dyn_cast<ConstantFP>(opr1);
885     CINT = dyn_cast<ConstantInt>(opr1);
886   } else {
887     VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
888     assert(VTy && "Oprand of vector function should be of vectortype");
889     eltType = VTy->getElementType();
890     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
891
892     // Now, only Handle vector const whose elements have the same value.
893     CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
894     CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
895   }
896
897   // No unsafe math , no constant argument, do nothing
898   if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
899     return false;
900
901   // 0x1111111 means that we don't do anything for this call.
902   int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
903
904   if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
905     //  pow/powr/pown(x, 0) == 1
906     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
907     Constant *cnval = ConstantFP::get(eltType, 1.0);
908     if (getVecSize(FInfo) > 1) {
909       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
910     }
911     replaceCall(cnval);
912     return true;
913   }
914   if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
915     // pow/powr/pown(x, 1.0) = x
916     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
917     replaceCall(opr0);
918     return true;
919   }
920   if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
921     // pow/powr/pown(x, 2.0) = x*x
922     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
923                       << "\n");
924     Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
925     replaceCall(nval);
926     return true;
927   }
928   if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
929     // pow/powr/pown(x, -1.0) = 1.0/x
930     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
931     Constant *cnval = ConstantFP::get(eltType, 1.0);
932     if (getVecSize(FInfo) > 1) {
933       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
934     }
935     Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
936     replaceCall(nval);
937     return true;
938   }
939
940   Module *M = CI->getModule();
941   if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
942     // pow[r](x, [-]0.5) = sqrt(x)
943     bool issqrt = CF->isExactlyValue(0.5);
944     if (FunctionCallee FPExpr =
945             getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
946                                                 : AMDGPULibFunc::EI_RSQRT,
947                                          FInfo))) {
948       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
949                         << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
950       Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
951                                                         : "__pow2rsqrt");
952       replaceCall(nval);
953       return true;
954     }
955   }
956
957   if (!isUnsafeMath(CI))
958     return false;
959
960   // Unsafe Math optimization
961
962   // Remember that ci_opr1 is set if opr1 is integral
963   if (CF) {
964     double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
965                     ? (double)CF->getValueAPF().convertToFloat()
966                     : CF->getValueAPF().convertToDouble();
967     int ival = (int)dval;
968     if ((double)ival == dval) {
969       ci_opr1 = ival;
970     } else
971       ci_opr1 = 0x11111111;
972   }
973
974   // pow/powr/pown(x, c) = [1/](x*x*..x); where
975   //   trunc(c) == c && the number of x == c && |c| <= 12
976   unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
977   if (abs_opr1 <= 12) {
978     Constant *cnval;
979     Value *nval;
980     if (abs_opr1 == 0) {
981       cnval = ConstantFP::get(eltType, 1.0);
982       if (getVecSize(FInfo) > 1) {
983         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
984       }
985       nval = cnval;
986     } else {
987       Value *valx2 = nullptr;
988       nval = nullptr;
989       while (abs_opr1 > 0) {
990         valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
991         if (abs_opr1 & 1) {
992           nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
993         }
994         abs_opr1 >>= 1;
995       }
996     }
997
998     if (ci_opr1 < 0) {
999       cnval = ConstantFP::get(eltType, 1.0);
1000       if (getVecSize(FInfo) > 1) {
1001         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
1002       }
1003       nval = B.CreateFDiv(cnval, nval, "__1powprod");
1004     }
1005     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1006                       << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
1007                       << ")\n");
1008     replaceCall(nval);
1009     return true;
1010   }
1011
1012   // powr ---> exp2(y * log2(x))
1013   // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
1014   FunctionCallee ExpExpr =
1015       getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
1016   if (!ExpExpr)
1017     return false;
1018
1019   bool needlog = false;
1020   bool needabs = false;
1021   bool needcopysign = false;
1022   Constant *cnval = nullptr;
1023   if (getVecSize(FInfo) == 1) {
1024     CF = dyn_cast<ConstantFP>(opr0);
1025
1026     if (CF) {
1027       double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1028                    ? (double)CF->getValueAPF().convertToFloat()
1029                    : CF->getValueAPF().convertToDouble();
1030
1031       V = log2(std::abs(V));
1032       cnval = ConstantFP::get(eltType, V);
1033       needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
1034                      CF->isNegative();
1035     } else {
1036       needlog = true;
1037       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
1038                                (!CF || CF->isNegative());
1039     }
1040   } else {
1041     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
1042
1043     if (!CDV) {
1044       needlog = true;
1045       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
1046     } else {
1047       assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
1048               "Wrong vector size detected");
1049
1050       SmallVector<double, 0> DVal;
1051       for (int i=0; i < getVecSize(FInfo); ++i) {
1052         double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
1053                      ? (double)CDV->getElementAsFloat(i)
1054                      : CDV->getElementAsDouble(i);
1055         if (V < 0.0) needcopysign = true;
1056         V = log2(std::abs(V));
1057         DVal.push_back(V);
1058       }
1059       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1060         SmallVector<float, 0> FVal;
1061         for (unsigned i=0; i < DVal.size(); ++i) {
1062           FVal.push_back((float)DVal[i]);
1063         }
1064         ArrayRef<float> tmp(FVal);
1065         cnval = ConstantDataVector::get(M->getContext(), tmp);
1066       } else {
1067         ArrayRef<double> tmp(DVal);
1068         cnval = ConstantDataVector::get(M->getContext(), tmp);
1069       }
1070     }
1071   }
1072
1073   if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
1074     // We cannot handle corner cases for a general pow() function, give up
1075     // unless y is a constant integral value. Then proceed as if it were pown.
1076     if (getVecSize(FInfo) == 1) {
1077       if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
1078         double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1079                    ? (double)CF->getValueAPF().convertToFloat()
1080                    : CF->getValueAPF().convertToDouble();
1081         if (y != (double)(int64_t)y)
1082           return false;
1083       } else
1084         return false;
1085     } else {
1086       if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
1087         for (int i=0; i < getVecSize(FInfo); ++i) {
1088           double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
1089                      ? (double)CDV->getElementAsFloat(i)
1090                      : CDV->getElementAsDouble(i);
1091           if (y != (double)(int64_t)y)
1092             return false;
1093         }
1094       } else
1095         return false;
1096     }
1097   }
1098
1099   Value *nval;
1100   if (needabs) {
1101     FunctionCallee AbsExpr =
1102         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo));
1103     if (!AbsExpr)
1104       return false;
1105     nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
1106   } else {
1107     nval = cnval ? cnval : opr0;
1108   }
1109   if (needlog) {
1110     FunctionCallee LogExpr =
1111         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
1112     if (!LogExpr)
1113       return false;
1114     nval = CreateCallEx(B,LogExpr, nval, "__log2");
1115   }
1116
1117   if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
1118     // convert int(32) to fp(f32 or f64)
1119     opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
1120   }
1121   nval = B.CreateFMul(opr1, nval, "__ylogx");
1122   nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
1123
1124   if (needcopysign) {
1125     Value *opr_n;
1126     Type* rTy = opr0->getType();
1127     Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
1128     Type *nTy = nTyS;
1129     if (const auto *vTy = dyn_cast<FixedVectorType>(rTy))
1130       nTy = FixedVectorType::get(nTyS, vTy);
1131     unsigned size = nTy->getScalarSizeInBits();
1132     opr_n = CI->getArgOperand(1);
1133     if (opr_n->getType()->isIntegerTy())
1134       opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
1135     else
1136       opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
1137
1138     Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
1139     sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
1140     nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
1141     nval = B.CreateBitCast(nval, opr0->getType());
1142   }
1143
1144   LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1145                     << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
1146   replaceCall(nval);
1147
1148   return true;
1149 }
1150
1151 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
1152                                 const FuncInfo &FInfo) {
1153   Value *opr0 = CI->getArgOperand(0);
1154   Value *opr1 = CI->getArgOperand(1);
1155
1156   ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
1157   if (!CINT) {
1158     return false;
1159   }
1160   int ci_opr1 = (int)CINT->getSExtValue();
1161   if (ci_opr1 == 1) {  // rootn(x, 1) = x
1162     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
1163     replaceCall(opr0);
1164     return true;
1165   }
1166   if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x)
1167     Module *M = CI->getModule();
1168     if (FunctionCallee FPExpr =
1169             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1170       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
1171       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
1172       replaceCall(nval);
1173       return true;
1174     }
1175   } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
1176     Module *M = CI->getModule();
1177     if (FunctionCallee FPExpr =
1178             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
1179       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
1180       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
1181       replaceCall(nval);
1182       return true;
1183     }
1184   } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
1185     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
1186     Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
1187                                opr0,
1188                                "__rootn2div");
1189     replaceCall(nval);
1190     return true;
1191   } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x)
1192     Module *M = CI->getModule();
1193     if (FunctionCallee FPExpr =
1194             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) {
1195       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
1196                         << ")\n");
1197       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
1198       replaceCall(nval);
1199       return true;
1200     }
1201   }
1202   return false;
1203 }
1204
1205 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
1206                                   const FuncInfo &FInfo) {
1207   Value *opr0 = CI->getArgOperand(0);
1208   Value *opr1 = CI->getArgOperand(1);
1209   Value *opr2 = CI->getArgOperand(2);
1210
1211   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
1212   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
1213   if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
1214     // fma/mad(a, b, c) = c if a=0 || b=0
1215     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
1216     replaceCall(opr2);
1217     return true;
1218   }
1219   if (CF0 && CF0->isExactlyValue(1.0f)) {
1220     // fma/mad(a, b, c) = b+c if a=1
1221     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
1222                       << "\n");
1223     Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
1224     replaceCall(nval);
1225     return true;
1226   }
1227   if (CF1 && CF1->isExactlyValue(1.0f)) {
1228     // fma/mad(a, b, c) = a+c if b=1
1229     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
1230                       << "\n");
1231     Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
1232     replaceCall(nval);
1233     return true;
1234   }
1235   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
1236     if (CF->isZero()) {
1237       // fma/mad(a, b, c) = a*b if c=0
1238       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
1239                         << *opr1 << "\n");
1240       Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
1241       replaceCall(nval);
1242       return true;
1243     }
1244   }
1245
1246   return false;
1247 }
1248
1249 // Get a scalar native builtin signle argument FP function
1250 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
1251                                                  const FuncInfo &FInfo) {
1252   if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
1253     return nullptr;
1254   FuncInfo nf = FInfo;
1255   nf.setPrefix(AMDGPULibFunc::NATIVE);
1256   return getFunction(M, nf);
1257 }
1258
1259 // fold sqrt -> native_sqrt (x)
1260 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
1261                                const FuncInfo &FInfo) {
1262   if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
1263       (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
1264     if (FunctionCallee FPExpr = getNativeFunction(
1265             CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
1266       Value *opr0 = CI->getArgOperand(0);
1267       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
1268                         << "sqrt(" << *opr0 << ")\n");
1269       Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
1270       replaceCall(nval);
1271       return true;
1272     }
1273   }
1274   return false;
1275 }
1276
1277 // fold sin, cos -> sincos.
1278 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
1279                                  AliasAnalysis *AA) {
1280   AMDGPULibFunc fInfo;
1281   if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
1282     return false;
1283
1284   assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
1285          fInfo.getId() == AMDGPULibFunc::EI_COS);
1286   bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
1287
1288   Value *CArgVal = CI->getArgOperand(0);
1289   BasicBlock * const CBB = CI->getParent();
1290
1291   int const MaxScan = 30;
1292
1293   { // fold in load value.
1294     LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
1295     if (LI && LI->getParent() == CBB) {
1296       BasicBlock::iterator BBI = LI->getIterator();
1297       Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
1298       if (AvailableVal) {
1299         CArgVal->replaceAllUsesWith(AvailableVal);
1300         if (CArgVal->getNumUses() == 0)
1301           LI->eraseFromParent();
1302         CArgVal = CI->getArgOperand(0);
1303       }
1304     }
1305   }
1306
1307   Module *M = CI->getModule();
1308   fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
1309   std::string const PairName = fInfo.mangle();
1310
1311   CallInst *UI = nullptr;
1312   for (User* U : CArgVal->users()) {
1313     CallInst *XI = dyn_cast_or_null<CallInst>(U);
1314     if (!XI || XI == CI || XI->getParent() != CBB)
1315       continue;
1316
1317     Function *UCallee = XI->getCalledFunction();
1318     if (!UCallee || !UCallee->getName().equals(PairName))
1319       continue;
1320
1321     BasicBlock::iterator BBI = CI->getIterator();
1322     if (BBI == CI->getParent()->begin())
1323       break;
1324     --BBI;
1325     for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
1326       if (cast<Instruction>(BBI) == XI) {
1327         UI = XI;
1328         break;
1329       }
1330     }
1331     if (UI) break;
1332   }
1333
1334   if (!UI) return false;
1335
1336   // Merge the sin and cos.
1337
1338   // for OpenCL 2.0 we have only generic implementation of sincos
1339   // function.
1340   AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
1341   nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
1342   FunctionCallee Fsincos = getFunction(M, nf);
1343   if (!Fsincos) return false;
1344
1345   BasicBlock::iterator ItOld = B.GetInsertPoint();
1346   AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
1347   B.SetInsertPoint(UI);
1348
1349   Value *P = Alloc;
1350   Type *PTy = Fsincos.getFunctionType()->getParamType(1);
1351   // The allocaInst allocates the memory in private address space. This need
1352   // to be bitcasted to point to the address space of cos pointer type.
1353   // In OpenCL 2.0 this is generic, while in 1.2 that is private.
1354   if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
1355     P = B.CreateAddrSpaceCast(Alloc, PTy);
1356   CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
1357
1358   LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
1359                     << *Call << "\n");
1360
1361   if (!isSin) { // CI->cos, UI->sin
1362     B.SetInsertPoint(&*ItOld);
1363     UI->replaceAllUsesWith(&*Call);
1364     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1365     CI->replaceAllUsesWith(Reload);
1366     UI->eraseFromParent();
1367     CI->eraseFromParent();
1368   } else { // CI->sin, UI->cos
1369     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
1370     UI->replaceAllUsesWith(Reload);
1371     CI->replaceAllUsesWith(Call);
1372     UI->eraseFromParent();
1373     CI->eraseFromParent();
1374   }
1375   return true;
1376 }
1377
1378 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) {
1379   if (!TM)
1380     return false;
1381
1382   StringRef CPU = TM->getTargetCPU();
1383   StringRef Features = TM->getTargetFeatureString();
1384   if ((CPU.empty() || CPU.equals_lower("generic")) &&
1385       (Features.empty() ||
1386        Features.find_lower("wavefrontsize") == StringRef::npos))
1387     return false;
1388
1389   Function *F = CI->getParent()->getParent();
1390   const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F);
1391   unsigned N = ST.getWavefrontSize();
1392
1393   LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with "
1394                << N << "\n");
1395
1396   CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N));
1397   CI->eraseFromParent();
1398   return true;
1399 }
1400
1401 // Get insertion point at entry.
1402 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
1403   Function * Func = UI->getParent()->getParent();
1404   BasicBlock * BB = &Func->getEntryBlock();
1405   assert(BB && "Entry block not found!");
1406   BasicBlock::iterator ItNew = BB->begin();
1407   return ItNew;
1408 }
1409
1410 // Insert a AllocsInst at the beginning of function entry block.
1411 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
1412                                          const char *prefix) {
1413   BasicBlock::iterator ItNew = getEntryIns(UI);
1414   Function *UCallee = UI->getCalledFunction();
1415   Type *RetType = UCallee->getReturnType();
1416   B.SetInsertPoint(&*ItNew);
1417   AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
1418     std::string(prefix) + UI->getName());
1419   Alloc->setAlignment(
1420       Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType)));
1421   return Alloc;
1422 }
1423
1424 bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo,
1425                                             double& Res0, double& Res1,
1426                                             Constant *copr0, Constant *copr1,
1427                                             Constant *copr2) {
1428   // By default, opr0/opr1/opr3 holds values of float/double type.
1429   // If they are not float/double, each function has to its
1430   // operand separately.
1431   double opr0=0.0, opr1=0.0, opr2=0.0;
1432   ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
1433   ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
1434   ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
1435   if (fpopr0) {
1436     opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1437              ? fpopr0->getValueAPF().convertToDouble()
1438              : (double)fpopr0->getValueAPF().convertToFloat();
1439   }
1440
1441   if (fpopr1) {
1442     opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1443              ? fpopr1->getValueAPF().convertToDouble()
1444              : (double)fpopr1->getValueAPF().convertToFloat();
1445   }
1446
1447   if (fpopr2) {
1448     opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
1449              ? fpopr2->getValueAPF().convertToDouble()
1450              : (double)fpopr2->getValueAPF().convertToFloat();
1451   }
1452
1453   switch (FInfo.getId()) {
1454   default : return false;
1455
1456   case AMDGPULibFunc::EI_ACOS:
1457     Res0 = acos(opr0);
1458     return true;
1459
1460   case AMDGPULibFunc::EI_ACOSH:
1461     // acosh(x) == log(x + sqrt(x*x - 1))
1462     Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
1463     return true;
1464
1465   case AMDGPULibFunc::EI_ACOSPI:
1466     Res0 = acos(opr0) / MATH_PI;
1467     return true;
1468
1469   case AMDGPULibFunc::EI_ASIN:
1470     Res0 = asin(opr0);
1471     return true;
1472
1473   case AMDGPULibFunc::EI_ASINH:
1474     // asinh(x) == log(x + sqrt(x*x + 1))
1475     Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
1476     return true;
1477
1478   case AMDGPULibFunc::EI_ASINPI:
1479     Res0 = asin(opr0) / MATH_PI;
1480     return true;
1481
1482   case AMDGPULibFunc::EI_ATAN:
1483     Res0 = atan(opr0);
1484     return true;
1485
1486   case AMDGPULibFunc::EI_ATANH:
1487     // atanh(x) == (log(x+1) - log(x-1))/2;
1488     Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
1489     return true;
1490
1491   case AMDGPULibFunc::EI_ATANPI:
1492     Res0 = atan(opr0) / MATH_PI;
1493     return true;
1494
1495   case AMDGPULibFunc::EI_CBRT:
1496     Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
1497     return true;
1498
1499   case AMDGPULibFunc::EI_COS:
1500     Res0 = cos(opr0);
1501     return true;
1502
1503   case AMDGPULibFunc::EI_COSH:
1504     Res0 = cosh(opr0);
1505     return true;
1506
1507   case AMDGPULibFunc::EI_COSPI:
1508     Res0 = cos(MATH_PI * opr0);
1509     return true;
1510
1511   case AMDGPULibFunc::EI_EXP:
1512     Res0 = exp(opr0);
1513     return true;
1514
1515   case AMDGPULibFunc::EI_EXP2:
1516     Res0 = pow(2.0, opr0);
1517     return true;
1518
1519   case AMDGPULibFunc::EI_EXP10:
1520     Res0 = pow(10.0, opr0);
1521     return true;
1522
1523   case AMDGPULibFunc::EI_EXPM1:
1524     Res0 = exp(opr0) - 1.0;
1525     return true;
1526
1527   case AMDGPULibFunc::EI_LOG:
1528     Res0 = log(opr0);
1529     return true;
1530
1531   case AMDGPULibFunc::EI_LOG2:
1532     Res0 = log(opr0) / log(2.0);
1533     return true;
1534
1535   case AMDGPULibFunc::EI_LOG10:
1536     Res0 = log(opr0) / log(10.0);
1537     return true;
1538
1539   case AMDGPULibFunc::EI_RSQRT:
1540     Res0 = 1.0 / sqrt(opr0);
1541     return true;
1542
1543   case AMDGPULibFunc::EI_SIN:
1544     Res0 = sin(opr0);
1545     return true;
1546
1547   case AMDGPULibFunc::EI_SINH:
1548     Res0 = sinh(opr0);
1549     return true;
1550
1551   case AMDGPULibFunc::EI_SINPI:
1552     Res0 = sin(MATH_PI * opr0);
1553     return true;
1554
1555   case AMDGPULibFunc::EI_SQRT:
1556     Res0 = sqrt(opr0);
1557     return true;
1558
1559   case AMDGPULibFunc::EI_TAN:
1560     Res0 = tan(opr0);
1561     return true;
1562
1563   case AMDGPULibFunc::EI_TANH:
1564     Res0 = tanh(opr0);
1565     return true;
1566
1567   case AMDGPULibFunc::EI_TANPI:
1568     Res0 = tan(MATH_PI * opr0);
1569     return true;
1570
1571   case AMDGPULibFunc::EI_RECIP:
1572     Res0 = 1.0 / opr0;
1573     return true;
1574
1575   // two-arg functions
1576   case AMDGPULibFunc::EI_DIVIDE:
1577     Res0 = opr0 / opr1;
1578     return true;
1579
1580   case AMDGPULibFunc::EI_POW:
1581   case AMDGPULibFunc::EI_POWR:
1582     Res0 = pow(opr0, opr1);
1583     return true;
1584
1585   case AMDGPULibFunc::EI_POWN: {
1586     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1587       double val = (double)iopr1->getSExtValue();
1588       Res0 = pow(opr0, val);
1589       return true;
1590     }
1591     return false;
1592   }
1593
1594   case AMDGPULibFunc::EI_ROOTN: {
1595     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
1596       double val = (double)iopr1->getSExtValue();
1597       Res0 = pow(opr0, 1.0 / val);
1598       return true;
1599     }
1600     return false;
1601   }
1602
1603   // with ptr arg
1604   case AMDGPULibFunc::EI_SINCOS:
1605     Res0 = sin(opr0);
1606     Res1 = cos(opr0);
1607     return true;
1608
1609   // three-arg functions
1610   case AMDGPULibFunc::EI_FMA:
1611   case AMDGPULibFunc::EI_MAD:
1612     Res0 = opr0 * opr1 + opr2;
1613     return true;
1614   }
1615
1616   return false;
1617 }
1618
1619 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) {
1620   int numArgs = (int)aCI->getNumArgOperands();
1621   if (numArgs > 3)
1622     return false;
1623
1624   Constant *copr0 = nullptr;
1625   Constant *copr1 = nullptr;
1626   Constant *copr2 = nullptr;
1627   if (numArgs > 0) {
1628     if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
1629       return false;
1630   }
1631
1632   if (numArgs > 1) {
1633     if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
1634       if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
1635         return false;
1636     }
1637   }
1638
1639   if (numArgs > 2) {
1640     if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
1641       return false;
1642   }
1643
1644   // At this point, all arguments to aCI are constants.
1645
1646   // max vector size is 16, and sincos will generate two results.
1647   double DVal0[16], DVal1[16];
1648   bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
1649   if (getVecSize(FInfo) == 1) {
1650     if (!evaluateScalarMathFunc(FInfo, DVal0[0],
1651                                 DVal1[0], copr0, copr1, copr2)) {
1652       return false;
1653     }
1654   } else {
1655     ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
1656     ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
1657     ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
1658     for (int i=0; i < getVecSize(FInfo); ++i) {
1659       Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
1660       Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
1661       Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
1662       if (!evaluateScalarMathFunc(FInfo, DVal0[i],
1663                                   DVal1[i], celt0, celt1, celt2)) {
1664         return false;
1665       }
1666     }
1667   }
1668
1669   LLVMContext &context = CI->getParent()->getParent()->getContext();
1670   Constant *nval0, *nval1;
1671   if (getVecSize(FInfo) == 1) {
1672     nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
1673     if (hasTwoResults)
1674       nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
1675   } else {
1676     if (getArgType(FInfo) == AMDGPULibFunc::F32) {
1677       SmallVector <float, 0> FVal0, FVal1;
1678       for (int i=0; i < getVecSize(FInfo); ++i)
1679         FVal0.push_back((float)DVal0[i]);
1680       ArrayRef<float> tmp0(FVal0);
1681       nval0 = ConstantDataVector::get(context, tmp0);
1682       if (hasTwoResults) {
1683         for (int i=0; i < getVecSize(FInfo); ++i)
1684           FVal1.push_back((float)DVal1[i]);
1685         ArrayRef<float> tmp1(FVal1);
1686         nval1 = ConstantDataVector::get(context, tmp1);
1687       }
1688     } else {
1689       ArrayRef<double> tmp0(DVal0);
1690       nval0 = ConstantDataVector::get(context, tmp0);
1691       if (hasTwoResults) {
1692         ArrayRef<double> tmp1(DVal1);
1693         nval1 = ConstantDataVector::get(context, tmp1);
1694       }
1695     }
1696   }
1697
1698   if (hasTwoResults) {
1699     // sincos
1700     assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
1701            "math function with ptr arg not supported yet");
1702     new StoreInst(nval1, aCI->getArgOperand(1), aCI);
1703   }
1704
1705   replaceCall(nval0);
1706   return true;
1707 }
1708
1709 // Public interface to the Simplify LibCalls pass.
1710 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) {
1711   return new AMDGPUSimplifyLibCalls(TM);
1712 }
1713
1714 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
1715   return new AMDGPUUseNativeCalls();
1716 }
1717
1718 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
1719   if (skipFunction(F))
1720     return false;
1721
1722   bool Changed = false;
1723   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1724
1725   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
1726              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
1727
1728   for (auto &BB : F) {
1729     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1730       // Ignore non-calls.
1731       CallInst *CI = dyn_cast<CallInst>(I);
1732       ++I;
1733       // Ignore intrinsics that do not become real instructions.
1734       if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd())
1735         continue;
1736
1737       // Ignore indirect calls.
1738       Function *Callee = CI->getCalledFunction();
1739       if (Callee == 0) continue;
1740
1741       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
1742                  dbgs().flush());
1743       if(Simplifier.fold(CI, AA))
1744         Changed = true;
1745     }
1746   }
1747   return Changed;
1748 }
1749
1750 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
1751   if (skipFunction(F) || UseNative.empty())
1752     return false;
1753
1754   bool Changed = false;
1755   for (auto &BB : F) {
1756     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
1757       // Ignore non-calls.
1758       CallInst *CI = dyn_cast<CallInst>(I);
1759       ++I;
1760       if (!CI) continue;
1761
1762       // Ignore indirect calls.
1763       Function *Callee = CI->getCalledFunction();
1764       if (Callee == 0) continue;
1765
1766       if(Simplifier.useNative(CI))
1767         Changed = true;
1768     }
1769   }
1770   return Changed;
1771 }