]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/AMDGPU/SIISelLowering.cpp
Upgrade to version 3.1.6
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / AMDGPU / SIISelLowering.cpp
1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19 #include "SIDefines.h"
20 #include "SIInstrInfo.h"
21 #include "SIMachineFunctionInfo.h"
22 #include "SIRegisterInfo.h"
23 #include "Utils/AMDGPUBaseInfo.h"
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/StringSwitch.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
34 #include "llvm/CodeGen/Analysis.h"
35 #include "llvm/CodeGen/CallingConvLower.h"
36 #include "llvm/CodeGen/DAGCombine.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineLoopInfo.h"
45 #include "llvm/CodeGen/MachineMemOperand.h"
46 #include "llvm/CodeGen/MachineModuleInfo.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineRegisterInfo.h"
49 #include "llvm/CodeGen/SelectionDAG.h"
50 #include "llvm/CodeGen/SelectionDAGNodes.h"
51 #include "llvm/CodeGen/TargetCallingConv.h"
52 #include "llvm/CodeGen/TargetRegisterInfo.h"
53 #include "llvm/CodeGen/ValueTypes.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DebugLoc.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/DiagnosticInfo.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalValue.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CodeGen.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Compiler.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MachineValueType.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Target/TargetOptions.h"
75 #include <cassert>
76 #include <cmath>
77 #include <cstdint>
78 #include <iterator>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
82
83 using namespace llvm;
84
85 #define DEBUG_TYPE "si-lower"
86
87 STATISTIC(NumTailCalls, "Number of tail calls");
88
89 static cl::opt<bool> DisableLoopAlignment(
90   "amdgpu-disable-loop-alignment",
91   cl::desc("Do not align and prefetch loops"),
92   cl::init(false));
93
94 static cl::opt<bool> VGPRReserveforSGPRSpill(
95     "amdgpu-reserve-vgpr-for-sgpr-spill",
96     cl::desc("Allocates one VGPR for future SGPR Spill"), cl::init(true));
97
98 static cl::opt<bool> UseDivergentRegisterIndexing(
99   "amdgpu-use-divergent-register-indexing",
100   cl::Hidden,
101   cl::desc("Use indirect register addressing for divergent indexes"),
102   cl::init(false));
103
104 static bool hasFP32Denormals(const MachineFunction &MF) {
105   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
106   return Info->getMode().allFP32Denormals();
107 }
108
109 static bool hasFP64FP16Denormals(const MachineFunction &MF) {
110   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
111   return Info->getMode().allFP64FP16Denormals();
112 }
113
114 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
115   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
116   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
117     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
118       return AMDGPU::SGPR0 + Reg;
119     }
120   }
121   llvm_unreachable("Cannot allocate sgpr");
122 }
123
124 SITargetLowering::SITargetLowering(const TargetMachine &TM,
125                                    const GCNSubtarget &STI)
126     : AMDGPUTargetLowering(TM, STI),
127       Subtarget(&STI) {
128   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
129   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
130
131   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
132   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
133
134   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
135   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
136   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
137
138   addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
139   addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
140
141   addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
142   addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
143
144   addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
145   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
146
147   addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
148   addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
149
150   addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
151   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
152
153   addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
154   addRegisterClass(MVT::v4f64, &AMDGPU::VReg_256RegClass);
155
156   addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
157   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
158
159   addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
160   addRegisterClass(MVT::v8f64, &AMDGPU::VReg_512RegClass);
161
162   addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
163   addRegisterClass(MVT::v16f64, &AMDGPU::VReg_1024RegClass);
164
165   if (Subtarget->has16BitInsts()) {
166     addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
167     addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
168
169     // Unless there are also VOP3P operations, not operations are really legal.
170     addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
171     addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
172     addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
173     addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
174   }
175
176   addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
177   addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
178
179   computeRegisterProperties(Subtarget->getRegisterInfo());
180
181   // The boolean content concept here is too inflexible. Compares only ever
182   // really produce a 1-bit result. Any copy/extend from these will turn into a
183   // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
184   // it's what most targets use.
185   setBooleanContents(ZeroOrOneBooleanContent);
186   setBooleanVectorContents(ZeroOrOneBooleanContent);
187
188   // We need to custom lower vector stores from local memory
189   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
190   setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
191   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
192   setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
193   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
194   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
195   setOperationAction(ISD::LOAD, MVT::i1, Custom);
196   setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
197
198   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
199   setOperationAction(ISD::STORE, MVT::v3i32, Custom);
200   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
201   setOperationAction(ISD::STORE, MVT::v5i32, Custom);
202   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
203   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
204   setOperationAction(ISD::STORE, MVT::i1, Custom);
205   setOperationAction(ISD::STORE, MVT::v32i32, Custom);
206
207   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
208   setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
209   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
210   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
211   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
212   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
213   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
214   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
215   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
216   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
217   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
218   setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
219   setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
220   setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
221   setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
222   setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
223
224   setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
225   setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
226   setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
227   setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
228   setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
229
230   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
231   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
232
233   setOperationAction(ISD::SELECT, MVT::i1, Promote);
234   setOperationAction(ISD::SELECT, MVT::i64, Custom);
235   setOperationAction(ISD::SELECT, MVT::f64, Promote);
236   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
237
238   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
239   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
240   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
241   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
242   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
243
244   setOperationAction(ISD::SETCC, MVT::i1, Promote);
245   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
246   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
247   AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
248
249   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
250   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
251   setOperationAction(ISD::TRUNCATE, MVT::v4i32, Expand);
252   setOperationAction(ISD::FP_ROUND, MVT::v4f32, Expand);
253   setOperationAction(ISD::TRUNCATE, MVT::v8i32, Expand);
254   setOperationAction(ISD::FP_ROUND, MVT::v8f32, Expand);
255   setOperationAction(ISD::TRUNCATE, MVT::v16i32, Expand);
256   setOperationAction(ISD::FP_ROUND, MVT::v16f32, Expand);
257
258   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
259   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
260   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
261   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
262   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
263   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
264   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
265   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
266
267   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
268   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
269   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
270   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
271   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
272   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
273
274   setOperationAction(ISD::UADDO, MVT::i32, Legal);
275   setOperationAction(ISD::USUBO, MVT::i32, Legal);
276
277   setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
278   setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
279
280   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
281   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
282   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
283
284 #if 0
285   setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
286   setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
287 #endif
288
289   // We only support LOAD/STORE and vector manipulation ops for vectors
290   // with > 4 elements.
291   for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
292                   MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
293                   MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
294                   MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32 }) {
295     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
296       switch (Op) {
297       case ISD::LOAD:
298       case ISD::STORE:
299       case ISD::BUILD_VECTOR:
300       case ISD::BITCAST:
301       case ISD::EXTRACT_VECTOR_ELT:
302       case ISD::INSERT_VECTOR_ELT:
303       case ISD::INSERT_SUBVECTOR:
304       case ISD::EXTRACT_SUBVECTOR:
305       case ISD::SCALAR_TO_VECTOR:
306         break;
307       case ISD::CONCAT_VECTORS:
308         setOperationAction(Op, VT, Custom);
309         break;
310       default:
311         setOperationAction(Op, VT, Expand);
312         break;
313       }
314     }
315   }
316
317   setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
318
319   // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
320   // is expanded to avoid having two separate loops in case the index is a VGPR.
321
322   // Most operations are naturally 32-bit vector operations. We only support
323   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
324   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
325     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
326     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
327
328     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
329     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
330
331     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
332     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
333
334     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
335     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
336   }
337
338   for (MVT Vec64 : { MVT::v4i64, MVT::v4f64 }) {
339     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
340     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
341
342     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
343     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
344
345     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
346     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
347
348     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
349     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
350   }
351
352   for (MVT Vec64 : { MVT::v8i64, MVT::v8f64 }) {
353     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
354     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
355
356     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
357     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
358
359     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
360     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
361
362     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
363     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
364   }
365
366   for (MVT Vec64 : { MVT::v16i64, MVT::v16f64 }) {
367     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
368     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
369
370     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
371     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
372
373     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
374     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
375
376     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
377     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
378   }
379
380   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
381   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
382   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
383   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
384
385   setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
386   setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
387
388   // Avoid stack access for these.
389   // TODO: Generalize to more vector types.
390   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
391   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
392   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
393   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
394
395   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
396   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
397   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
398   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
399   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
400
401   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
402   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
403   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
404
405   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
406   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
407   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
408   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
409
410   // Deal with vec3 vector operations when widened to vec4.
411   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
412   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
413   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
414   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
415
416   // Deal with vec5 vector operations when widened to vec8.
417   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
418   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
419   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
420   setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
421
422   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
423   // and output demarshalling
424   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
425   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
426
427   // We can't return success/failure, only the old value,
428   // let LLVM add the comparison
429   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
430   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
431
432   if (Subtarget->hasFlatAddressSpace()) {
433     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
434     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
435   }
436
437   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
438
439   // FIXME: This should be narrowed to i32, but that only happens if i64 is
440   // illegal.
441   // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
442   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
443   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
444
445   // On SI this is s_memtime and s_memrealtime on VI.
446   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
447   setOperationAction(ISD::TRAP, MVT::Other, Custom);
448   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
449
450   if (Subtarget->has16BitInsts()) {
451     setOperationAction(ISD::FPOW, MVT::f16, Promote);
452     setOperationAction(ISD::FLOG, MVT::f16, Custom);
453     setOperationAction(ISD::FEXP, MVT::f16, Custom);
454     setOperationAction(ISD::FLOG10, MVT::f16, Custom);
455   }
456
457   if (Subtarget->hasMadMacF32Insts())
458     setOperationAction(ISD::FMAD, MVT::f32, Legal);
459
460   if (!Subtarget->hasBFI()) {
461     // fcopysign can be done in a single instruction with BFI.
462     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
463     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
464   }
465
466   if (!Subtarget->hasBCNT(32))
467     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
468
469   if (!Subtarget->hasBCNT(64))
470     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
471
472   if (Subtarget->hasFFBH())
473     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
474
475   if (Subtarget->hasFFBL())
476     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
477
478   // We only really have 32-bit BFE instructions (and 16-bit on VI).
479   //
480   // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
481   // effort to match them now. We want this to be false for i64 cases when the
482   // extraction isn't restricted to the upper or lower half. Ideally we would
483   // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
484   // span the midpoint are probably relatively rare, so don't worry about them
485   // for now.
486   if (Subtarget->hasBFE())
487     setHasExtractBitsInsn(true);
488
489   setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
490   setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
491   setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
492   setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
493
494
495   // These are really only legal for ieee_mode functions. We should be avoiding
496   // them for functions that don't have ieee_mode enabled, so just say they are
497   // legal.
498   setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
499   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
500   setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
501   setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
502
503
504   if (Subtarget->haveRoundOpsF64()) {
505     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
506     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
507     setOperationAction(ISD::FRINT, MVT::f64, Legal);
508   } else {
509     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
510     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
511     setOperationAction(ISD::FRINT, MVT::f64, Custom);
512     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
513   }
514
515   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
516
517   setOperationAction(ISD::FSIN, MVT::f32, Custom);
518   setOperationAction(ISD::FCOS, MVT::f32, Custom);
519   setOperationAction(ISD::FDIV, MVT::f32, Custom);
520   setOperationAction(ISD::FDIV, MVT::f64, Custom);
521
522   if (Subtarget->has16BitInsts()) {
523     setOperationAction(ISD::Constant, MVT::i16, Legal);
524
525     setOperationAction(ISD::SMIN, MVT::i16, Legal);
526     setOperationAction(ISD::SMAX, MVT::i16, Legal);
527
528     setOperationAction(ISD::UMIN, MVT::i16, Legal);
529     setOperationAction(ISD::UMAX, MVT::i16, Legal);
530
531     setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
532     AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
533
534     setOperationAction(ISD::ROTR, MVT::i16, Promote);
535     setOperationAction(ISD::ROTL, MVT::i16, Promote);
536
537     setOperationAction(ISD::SDIV, MVT::i16, Promote);
538     setOperationAction(ISD::UDIV, MVT::i16, Promote);
539     setOperationAction(ISD::SREM, MVT::i16, Promote);
540     setOperationAction(ISD::UREM, MVT::i16, Promote);
541
542     setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
543
544     setOperationAction(ISD::CTTZ, MVT::i16, Promote);
545     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
546     setOperationAction(ISD::CTLZ, MVT::i16, Promote);
547     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
548     setOperationAction(ISD::CTPOP, MVT::i16, Promote);
549
550     setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
551
552     setOperationAction(ISD::BR_CC, MVT::i16, Expand);
553
554     setOperationAction(ISD::LOAD, MVT::i16, Custom);
555
556     setTruncStoreAction(MVT::i64, MVT::i16, Expand);
557
558     setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
559     AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
560     setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
561     AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
562
563     setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
564     setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
565
566     // F16 - Constant Actions.
567     setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
568
569     // F16 - Load/Store Actions.
570     setOperationAction(ISD::LOAD, MVT::f16, Promote);
571     AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
572     setOperationAction(ISD::STORE, MVT::f16, Promote);
573     AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
574
575     // F16 - VOP1 Actions.
576     setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
577     setOperationAction(ISD::FCOS, MVT::f16, Custom);
578     setOperationAction(ISD::FSIN, MVT::f16, Custom);
579
580     setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
581     setOperationAction(ISD::UINT_TO_FP, MVT::i16, Custom);
582
583     setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
584     setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
585     setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
586     setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
587     setOperationAction(ISD::FROUND, MVT::f16, Custom);
588
589     // F16 - VOP2 Actions.
590     setOperationAction(ISD::BR_CC, MVT::f16, Expand);
591     setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
592
593     setOperationAction(ISD::FDIV, MVT::f16, Custom);
594
595     // F16 - VOP3 Actions.
596     setOperationAction(ISD::FMA, MVT::f16, Legal);
597     if (STI.hasMadF16())
598       setOperationAction(ISD::FMAD, MVT::f16, Legal);
599
600     for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
601       for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
602         switch (Op) {
603         case ISD::LOAD:
604         case ISD::STORE:
605         case ISD::BUILD_VECTOR:
606         case ISD::BITCAST:
607         case ISD::EXTRACT_VECTOR_ELT:
608         case ISD::INSERT_VECTOR_ELT:
609         case ISD::INSERT_SUBVECTOR:
610         case ISD::EXTRACT_SUBVECTOR:
611         case ISD::SCALAR_TO_VECTOR:
612           break;
613         case ISD::CONCAT_VECTORS:
614           setOperationAction(Op, VT, Custom);
615           break;
616         default:
617           setOperationAction(Op, VT, Expand);
618           break;
619         }
620       }
621     }
622
623     // v_perm_b32 can handle either of these.
624     setOperationAction(ISD::BSWAP, MVT::i16, Legal);
625     setOperationAction(ISD::BSWAP, MVT::v2i16, Legal);
626     setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
627
628     // XXX - Do these do anything? Vector constants turn into build_vector.
629     setOperationAction(ISD::Constant, MVT::v2i16, Legal);
630     setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
631
632     setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
633     setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
634
635     setOperationAction(ISD::STORE, MVT::v2i16, Promote);
636     AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
637     setOperationAction(ISD::STORE, MVT::v2f16, Promote);
638     AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
639
640     setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
641     AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
642     setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
643     AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
644
645     setOperationAction(ISD::AND, MVT::v2i16, Promote);
646     AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
647     setOperationAction(ISD::OR, MVT::v2i16, Promote);
648     AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
649     setOperationAction(ISD::XOR, MVT::v2i16, Promote);
650     AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
651
652     setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
653     AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
654     setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
655     AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
656
657     setOperationAction(ISD::STORE, MVT::v4i16, Promote);
658     AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
659     setOperationAction(ISD::STORE, MVT::v4f16, Promote);
660     AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
661
662     setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
663     setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
664     setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
665     setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
666
667     setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
668     setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
669     setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
670
671     if (!Subtarget->hasVOP3PInsts()) {
672       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
673       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
674     }
675
676     setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
677     // This isn't really legal, but this avoids the legalizer unrolling it (and
678     // allows matching fneg (fabs x) patterns)
679     setOperationAction(ISD::FABS, MVT::v2f16, Legal);
680
681     setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
682     setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
683     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
684     setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
685
686     setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
687     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
688
689     setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
690     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
691   }
692
693   if (Subtarget->hasVOP3PInsts()) {
694     setOperationAction(ISD::ADD, MVT::v2i16, Legal);
695     setOperationAction(ISD::SUB, MVT::v2i16, Legal);
696     setOperationAction(ISD::MUL, MVT::v2i16, Legal);
697     setOperationAction(ISD::SHL, MVT::v2i16, Legal);
698     setOperationAction(ISD::SRL, MVT::v2i16, Legal);
699     setOperationAction(ISD::SRA, MVT::v2i16, Legal);
700     setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
701     setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
702     setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
703     setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
704
705     setOperationAction(ISD::FADD, MVT::v2f16, Legal);
706     setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
707     setOperationAction(ISD::FMA, MVT::v2f16, Legal);
708
709     setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
710     setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
711
712     setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
713
714     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
715     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
716
717     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
718     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
719
720     setOperationAction(ISD::SHL, MVT::v4i16, Custom);
721     setOperationAction(ISD::SRA, MVT::v4i16, Custom);
722     setOperationAction(ISD::SRL, MVT::v4i16, Custom);
723     setOperationAction(ISD::ADD, MVT::v4i16, Custom);
724     setOperationAction(ISD::SUB, MVT::v4i16, Custom);
725     setOperationAction(ISD::MUL, MVT::v4i16, Custom);
726
727     setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
728     setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
729     setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
730     setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
731
732     setOperationAction(ISD::FADD, MVT::v4f16, Custom);
733     setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
734     setOperationAction(ISD::FMA, MVT::v4f16, Custom);
735
736     setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
737     setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
738
739     setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
740     setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
741     setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
742
743     setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
744     setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
745     setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
746   }
747
748   setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
749   setOperationAction(ISD::FABS, MVT::v4f16, Custom);
750
751   if (Subtarget->has16BitInsts()) {
752     setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
753     AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
754     setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
755     AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
756   } else {
757     // Legalization hack.
758     setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
759     setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
760
761     setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
762     setOperationAction(ISD::FABS, MVT::v2f16, Custom);
763   }
764
765   for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
766     setOperationAction(ISD::SELECT, VT, Custom);
767   }
768
769   setOperationAction(ISD::SMULO, MVT::i64, Custom);
770   setOperationAction(ISD::UMULO, MVT::i64, Custom);
771
772   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
773   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
774   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
775   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
776   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
777   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
778   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
779
780   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
781   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
782   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
783   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
784   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
785   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
786   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
787   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
788   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
789
790   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
791   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
792   setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
793   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
794   setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
795   setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
796   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
797   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
798
799   setTargetDAGCombine(ISD::ADD);
800   setTargetDAGCombine(ISD::ADDCARRY);
801   setTargetDAGCombine(ISD::SUB);
802   setTargetDAGCombine(ISD::SUBCARRY);
803   setTargetDAGCombine(ISD::FADD);
804   setTargetDAGCombine(ISD::FSUB);
805   setTargetDAGCombine(ISD::FMINNUM);
806   setTargetDAGCombine(ISD::FMAXNUM);
807   setTargetDAGCombine(ISD::FMINNUM_IEEE);
808   setTargetDAGCombine(ISD::FMAXNUM_IEEE);
809   setTargetDAGCombine(ISD::FMA);
810   setTargetDAGCombine(ISD::SMIN);
811   setTargetDAGCombine(ISD::SMAX);
812   setTargetDAGCombine(ISD::UMIN);
813   setTargetDAGCombine(ISD::UMAX);
814   setTargetDAGCombine(ISD::SETCC);
815   setTargetDAGCombine(ISD::AND);
816   setTargetDAGCombine(ISD::OR);
817   setTargetDAGCombine(ISD::XOR);
818   setTargetDAGCombine(ISD::SINT_TO_FP);
819   setTargetDAGCombine(ISD::UINT_TO_FP);
820   setTargetDAGCombine(ISD::FCANONICALIZE);
821   setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
822   setTargetDAGCombine(ISD::ZERO_EXTEND);
823   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
824   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
825   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
826
827   // All memory operations. Some folding on the pointer operand is done to help
828   // matching the constant offsets in the addressing modes.
829   setTargetDAGCombine(ISD::LOAD);
830   setTargetDAGCombine(ISD::STORE);
831   setTargetDAGCombine(ISD::ATOMIC_LOAD);
832   setTargetDAGCombine(ISD::ATOMIC_STORE);
833   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
834   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
835   setTargetDAGCombine(ISD::ATOMIC_SWAP);
836   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
837   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
838   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
839   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
840   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
841   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
842   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
843   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
844   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
845   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
846   setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
847
848   // FIXME: In other contexts we pretend this is a per-function property.
849   setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
850
851   setSchedulingPreference(Sched::RegPressure);
852 }
853
854 const GCNSubtarget *SITargetLowering::getSubtarget() const {
855   return Subtarget;
856 }
857
858 //===----------------------------------------------------------------------===//
859 // TargetLowering queries
860 //===----------------------------------------------------------------------===//
861
862 // v_mad_mix* support a conversion from f16 to f32.
863 //
864 // There is only one special case when denormals are enabled we don't currently,
865 // where this is OK to use.
866 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
867                                        EVT DestVT, EVT SrcVT) const {
868   return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
869           (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
870     DestVT.getScalarType() == MVT::f32 &&
871     SrcVT.getScalarType() == MVT::f16 &&
872     // TODO: This probably only requires no input flushing?
873     !hasFP32Denormals(DAG.getMachineFunction());
874 }
875
876 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
877   // SI has some legal vector types, but no legal vector operations. Say no
878   // shuffles are legal in order to prefer scalarizing some vector operations.
879   return false;
880 }
881
882 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
883                                                     CallingConv::ID CC,
884                                                     EVT VT) const {
885   if (CC == CallingConv::AMDGPU_KERNEL)
886     return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
887
888   if (VT.isVector()) {
889     EVT ScalarVT = VT.getScalarType();
890     unsigned Size = ScalarVT.getSizeInBits();
891     if (Size == 32)
892       return ScalarVT.getSimpleVT();
893
894     if (Size > 32)
895       return MVT::i32;
896
897     if (Size == 16 && Subtarget->has16BitInsts())
898       return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
899   } else if (VT.getSizeInBits() > 32)
900     return MVT::i32;
901
902   return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
903 }
904
905 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
906                                                          CallingConv::ID CC,
907                                                          EVT VT) const {
908   if (CC == CallingConv::AMDGPU_KERNEL)
909     return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
910
911   if (VT.isVector()) {
912     unsigned NumElts = VT.getVectorNumElements();
913     EVT ScalarVT = VT.getScalarType();
914     unsigned Size = ScalarVT.getSizeInBits();
915
916     if (Size == 32)
917       return NumElts;
918
919     if (Size > 32)
920       return NumElts * ((Size + 31) / 32);
921
922     if (Size == 16 && Subtarget->has16BitInsts())
923       return (NumElts + 1) / 2;
924   } else if (VT.getSizeInBits() > 32)
925     return (VT.getSizeInBits() + 31) / 32;
926
927   return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
928 }
929
930 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
931   LLVMContext &Context, CallingConv::ID CC,
932   EVT VT, EVT &IntermediateVT,
933   unsigned &NumIntermediates, MVT &RegisterVT) const {
934   if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
935     unsigned NumElts = VT.getVectorNumElements();
936     EVT ScalarVT = VT.getScalarType();
937     unsigned Size = ScalarVT.getSizeInBits();
938     if (Size == 32) {
939       RegisterVT = ScalarVT.getSimpleVT();
940       IntermediateVT = RegisterVT;
941       NumIntermediates = NumElts;
942       return NumIntermediates;
943     }
944
945     if (Size > 32) {
946       RegisterVT = MVT::i32;
947       IntermediateVT = RegisterVT;
948       NumIntermediates = NumElts * ((Size + 31) / 32);
949       return NumIntermediates;
950     }
951
952     // FIXME: We should fix the ABI to be the same on targets without 16-bit
953     // support, but unless we can properly handle 3-vectors, it will be still be
954     // inconsistent.
955     if (Size == 16 && Subtarget->has16BitInsts()) {
956       RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
957       IntermediateVT = RegisterVT;
958       NumIntermediates = (NumElts + 1) / 2;
959       return NumIntermediates;
960     }
961   }
962
963   return TargetLowering::getVectorTypeBreakdownForCallingConv(
964     Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
965 }
966
967 static EVT memVTFromImageData(Type *Ty, unsigned DMaskLanes) {
968   assert(DMaskLanes != 0);
969
970   if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
971     unsigned NumElts = std::min(DMaskLanes, VT->getNumElements());
972     return EVT::getVectorVT(Ty->getContext(),
973                             EVT::getEVT(VT->getElementType()),
974                             NumElts);
975   }
976
977   return EVT::getEVT(Ty);
978 }
979
980 // Peek through TFE struct returns to only use the data size.
981 static EVT memVTFromImageReturn(Type *Ty, unsigned DMaskLanes) {
982   auto *ST = dyn_cast<StructType>(Ty);
983   if (!ST)
984     return memVTFromImageData(Ty, DMaskLanes);
985
986   // Some intrinsics return an aggregate type - special case to work out the
987   // correct memVT.
988   //
989   // Only limited forms of aggregate type currently expected.
990   if (ST->getNumContainedTypes() != 2 ||
991       !ST->getContainedType(1)->isIntegerTy(32))
992     return EVT();
993   return memVTFromImageData(ST->getContainedType(0), DMaskLanes);
994 }
995
996 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
997                                           const CallInst &CI,
998                                           MachineFunction &MF,
999                                           unsigned IntrID) const {
1000   if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1001           AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1002     AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
1003                                                   (Intrinsic::ID)IntrID);
1004     if (Attr.hasFnAttribute(Attribute::ReadNone))
1005       return false;
1006
1007     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1008
1009     if (RsrcIntr->IsImage) {
1010       Info.ptrVal = MFI->getImagePSV(
1011         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1012         CI.getArgOperand(RsrcIntr->RsrcArg));
1013       Info.align.reset();
1014     } else {
1015       Info.ptrVal = MFI->getBufferPSV(
1016         *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1017         CI.getArgOperand(RsrcIntr->RsrcArg));
1018     }
1019
1020     Info.flags = MachineMemOperand::MODereferenceable;
1021     if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
1022       unsigned DMaskLanes = 4;
1023
1024       if (RsrcIntr->IsImage) {
1025         const AMDGPU::ImageDimIntrinsicInfo *Intr
1026           = AMDGPU::getImageDimIntrinsicInfo(IntrID);
1027         const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
1028           AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1029
1030         if (!BaseOpcode->Gather4) {
1031           // If this isn't a gather, we may have excess loaded elements in the
1032           // IR type. Check the dmask for the real number of elements loaded.
1033           unsigned DMask
1034             = cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1035           DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1036         }
1037
1038         Info.memVT = memVTFromImageReturn(CI.getType(), DMaskLanes);
1039       } else
1040         Info.memVT = EVT::getEVT(CI.getType());
1041
1042       // FIXME: What does alignment mean for an image?
1043       Info.opc = ISD::INTRINSIC_W_CHAIN;
1044       Info.flags |= MachineMemOperand::MOLoad;
1045     } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
1046       Info.opc = ISD::INTRINSIC_VOID;
1047
1048       Type *DataTy = CI.getArgOperand(0)->getType();
1049       if (RsrcIntr->IsImage) {
1050         unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1051         unsigned DMaskLanes = DMask == 0 ? 1 : countPopulation(DMask);
1052         Info.memVT = memVTFromImageData(DataTy, DMaskLanes);
1053       } else
1054         Info.memVT = EVT::getEVT(DataTy);
1055
1056       Info.flags |= MachineMemOperand::MOStore;
1057     } else {
1058       // Atomic
1059       Info.opc = ISD::INTRINSIC_W_CHAIN;
1060       Info.memVT = MVT::getVT(CI.getType());
1061       Info.flags = MachineMemOperand::MOLoad |
1062                    MachineMemOperand::MOStore |
1063                    MachineMemOperand::MODereferenceable;
1064
1065       // XXX - Should this be volatile without known ordering?
1066       Info.flags |= MachineMemOperand::MOVolatile;
1067     }
1068     return true;
1069   }
1070
1071   switch (IntrID) {
1072   case Intrinsic::amdgcn_atomic_inc:
1073   case Intrinsic::amdgcn_atomic_dec:
1074   case Intrinsic::amdgcn_ds_ordered_add:
1075   case Intrinsic::amdgcn_ds_ordered_swap:
1076   case Intrinsic::amdgcn_ds_fadd:
1077   case Intrinsic::amdgcn_ds_fmin:
1078   case Intrinsic::amdgcn_ds_fmax: {
1079     Info.opc = ISD::INTRINSIC_W_CHAIN;
1080     Info.memVT = MVT::getVT(CI.getType());
1081     Info.ptrVal = CI.getOperand(0);
1082     Info.align.reset();
1083     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1084
1085     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1086     if (!Vol->isZero())
1087       Info.flags |= MachineMemOperand::MOVolatile;
1088
1089     return true;
1090   }
1091   case Intrinsic::amdgcn_buffer_atomic_fadd: {
1092     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1093
1094     Info.opc = ISD::INTRINSIC_VOID;
1095     Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1096     Info.ptrVal = MFI->getBufferPSV(
1097       *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
1098       CI.getArgOperand(1));
1099     Info.align.reset();
1100     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1101
1102     const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
1103     if (!Vol || !Vol->isZero())
1104       Info.flags |= MachineMemOperand::MOVolatile;
1105
1106     return true;
1107   }
1108   case Intrinsic::amdgcn_global_atomic_fadd: {
1109     Info.opc = ISD::INTRINSIC_VOID;
1110     Info.memVT = MVT::getVT(CI.getOperand(0)->getType()
1111                             ->getPointerElementType());
1112     Info.ptrVal = CI.getOperand(0);
1113     Info.align.reset();
1114     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1115
1116     return true;
1117   }
1118   case Intrinsic::amdgcn_ds_append:
1119   case Intrinsic::amdgcn_ds_consume: {
1120     Info.opc = ISD::INTRINSIC_W_CHAIN;
1121     Info.memVT = MVT::getVT(CI.getType());
1122     Info.ptrVal = CI.getOperand(0);
1123     Info.align.reset();
1124     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1125
1126     const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1127     if (!Vol->isZero())
1128       Info.flags |= MachineMemOperand::MOVolatile;
1129
1130     return true;
1131   }
1132   case Intrinsic::amdgcn_global_atomic_csub: {
1133     Info.opc = ISD::INTRINSIC_W_CHAIN;
1134     Info.memVT = MVT::getVT(CI.getType());
1135     Info.ptrVal = CI.getOperand(0);
1136     Info.align.reset();
1137     Info.flags = MachineMemOperand::MOLoad |
1138                  MachineMemOperand::MOStore |
1139                  MachineMemOperand::MODereferenceable |
1140                  MachineMemOperand::MOVolatile;
1141     return true;
1142   }
1143   case Intrinsic::amdgcn_ds_gws_init:
1144   case Intrinsic::amdgcn_ds_gws_barrier:
1145   case Intrinsic::amdgcn_ds_gws_sema_v:
1146   case Intrinsic::amdgcn_ds_gws_sema_br:
1147   case Intrinsic::amdgcn_ds_gws_sema_p:
1148   case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1149     Info.opc = ISD::INTRINSIC_VOID;
1150
1151     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1152     Info.ptrVal =
1153         MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1154
1155     // This is an abstract access, but we need to specify a type and size.
1156     Info.memVT = MVT::i32;
1157     Info.size = 4;
1158     Info.align = Align(4);
1159
1160     Info.flags = MachineMemOperand::MOStore;
1161     if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1162       Info.flags = MachineMemOperand::MOLoad;
1163     return true;
1164   }
1165   default:
1166     return false;
1167   }
1168 }
1169
1170 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1171                                             SmallVectorImpl<Value*> &Ops,
1172                                             Type *&AccessTy) const {
1173   switch (II->getIntrinsicID()) {
1174   case Intrinsic::amdgcn_atomic_inc:
1175   case Intrinsic::amdgcn_atomic_dec:
1176   case Intrinsic::amdgcn_ds_ordered_add:
1177   case Intrinsic::amdgcn_ds_ordered_swap:
1178   case Intrinsic::amdgcn_ds_fadd:
1179   case Intrinsic::amdgcn_ds_fmin:
1180   case Intrinsic::amdgcn_ds_fmax: {
1181     Value *Ptr = II->getArgOperand(0);
1182     AccessTy = II->getType();
1183     Ops.push_back(Ptr);
1184     return true;
1185   }
1186   default:
1187     return false;
1188   }
1189 }
1190
1191 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1192   if (!Subtarget->hasFlatInstOffsets()) {
1193     // Flat instructions do not have offsets, and only have the register
1194     // address.
1195     return AM.BaseOffs == 0 && AM.Scale == 0;
1196   }
1197
1198   return AM.Scale == 0 &&
1199          (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1200                                   AM.BaseOffs, AMDGPUAS::FLAT_ADDRESS,
1201                                   /*Signed=*/false));
1202 }
1203
1204 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1205   if (Subtarget->hasFlatGlobalInsts())
1206     return AM.Scale == 0 &&
1207            (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1208                                     AM.BaseOffs, AMDGPUAS::GLOBAL_ADDRESS,
1209                                     /*Signed=*/true));
1210
1211   if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1212       // Assume the we will use FLAT for all global memory accesses
1213       // on VI.
1214       // FIXME: This assumption is currently wrong.  On VI we still use
1215       // MUBUF instructions for the r + i addressing mode.  As currently
1216       // implemented, the MUBUF instructions only work on buffer < 4GB.
1217       // It may be possible to support > 4GB buffers with MUBUF instructions,
1218       // by setting the stride value in the resource descriptor which would
1219       // increase the size limit to (stride * 4GB).  However, this is risky,
1220       // because it has never been validated.
1221     return isLegalFlatAddressingMode(AM);
1222   }
1223
1224   return isLegalMUBUFAddressingMode(AM);
1225 }
1226
1227 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1228   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1229   // additionally can do r + r + i with addr64. 32-bit has more addressing
1230   // mode options. Depending on the resource constant, it can also do
1231   // (i64 r0) + (i32 r1) * (i14 i).
1232   //
1233   // Private arrays end up using a scratch buffer most of the time, so also
1234   // assume those use MUBUF instructions. Scratch loads / stores are currently
1235   // implemented as mubuf instructions with offen bit set, so slightly
1236   // different than the normal addr64.
1237   if (!isUInt<12>(AM.BaseOffs))
1238     return false;
1239
1240   // FIXME: Since we can split immediate into soffset and immediate offset,
1241   // would it make sense to allow any immediate?
1242
1243   switch (AM.Scale) {
1244   case 0: // r + i or just i, depending on HasBaseReg.
1245     return true;
1246   case 1:
1247     return true; // We have r + r or r + i.
1248   case 2:
1249     if (AM.HasBaseReg) {
1250       // Reject 2 * r + r.
1251       return false;
1252     }
1253
1254     // Allow 2 * r as r + r
1255     // Or  2 * r + i is allowed as r + r + i.
1256     return true;
1257   default: // Don't allow n * r
1258     return false;
1259   }
1260 }
1261
1262 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1263                                              const AddrMode &AM, Type *Ty,
1264                                              unsigned AS, Instruction *I) const {
1265   // No global is ever allowed as a base.
1266   if (AM.BaseGV)
1267     return false;
1268
1269   if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1270     return isLegalGlobalAddressingMode(AM);
1271
1272   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1273       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1274       AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1275     // If the offset isn't a multiple of 4, it probably isn't going to be
1276     // correctly aligned.
1277     // FIXME: Can we get the real alignment here?
1278     if (AM.BaseOffs % 4 != 0)
1279       return isLegalMUBUFAddressingMode(AM);
1280
1281     // There are no SMRD extloads, so if we have to do a small type access we
1282     // will use a MUBUF load.
1283     // FIXME?: We also need to do this if unaligned, but we don't know the
1284     // alignment here.
1285     if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1286       return isLegalGlobalAddressingMode(AM);
1287
1288     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1289       // SMRD instructions have an 8-bit, dword offset on SI.
1290       if (!isUInt<8>(AM.BaseOffs / 4))
1291         return false;
1292     } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1293       // On CI+, this can also be a 32-bit literal constant offset. If it fits
1294       // in 8-bits, it can use a smaller encoding.
1295       if (!isUInt<32>(AM.BaseOffs / 4))
1296         return false;
1297     } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1298       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1299       if (!isUInt<20>(AM.BaseOffs))
1300         return false;
1301     } else
1302       llvm_unreachable("unhandled generation");
1303
1304     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1305       return true;
1306
1307     if (AM.Scale == 1 && AM.HasBaseReg)
1308       return true;
1309
1310     return false;
1311
1312   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1313     return isLegalMUBUFAddressingMode(AM);
1314   } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1315              AS == AMDGPUAS::REGION_ADDRESS) {
1316     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1317     // field.
1318     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1319     // an 8-bit dword offset but we don't know the alignment here.
1320     if (!isUInt<16>(AM.BaseOffs))
1321       return false;
1322
1323     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1324       return true;
1325
1326     if (AM.Scale == 1 && AM.HasBaseReg)
1327       return true;
1328
1329     return false;
1330   } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1331              AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1332     // For an unknown address space, this usually means that this is for some
1333     // reason being used for pure arithmetic, and not based on some addressing
1334     // computation. We don't have instructions that compute pointers with any
1335     // addressing modes, so treat them as having no offset like flat
1336     // instructions.
1337     return isLegalFlatAddressingMode(AM);
1338   }
1339
1340   // Assume a user alias of global for unknown address spaces.
1341   return isLegalGlobalAddressingMode(AM);
1342 }
1343
1344 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1345                                         const SelectionDAG &DAG) const {
1346   if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1347     return (MemVT.getSizeInBits() <= 4 * 32);
1348   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1349     unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1350     return (MemVT.getSizeInBits() <= MaxPrivateBits);
1351   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1352     return (MemVT.getSizeInBits() <= 2 * 32);
1353   }
1354   return true;
1355 }
1356
1357 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1358     unsigned Size, unsigned AddrSpace, unsigned Align,
1359     MachineMemOperand::Flags Flags, bool *IsFast) const {
1360   if (IsFast)
1361     *IsFast = false;
1362
1363   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1364       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1365     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1366     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1367     // with adjacent offsets.
1368     bool AlignedBy4 = (Align % 4 == 0);
1369     if (IsFast)
1370       *IsFast = AlignedBy4;
1371
1372     return AlignedBy4;
1373   }
1374
1375   // FIXME: We have to be conservative here and assume that flat operations
1376   // will access scratch.  If we had access to the IR function, then we
1377   // could determine if any private memory was used in the function.
1378   if (!Subtarget->hasUnalignedScratchAccess() &&
1379       (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
1380        AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
1381     bool AlignedBy4 = Align >= 4;
1382     if (IsFast)
1383       *IsFast = AlignedBy4;
1384
1385     return AlignedBy4;
1386   }
1387
1388   if (Subtarget->hasUnalignedBufferAccess()) {
1389     // If we have an uniform constant load, it still requires using a slow
1390     // buffer instruction if unaligned.
1391     if (IsFast) {
1392       // Accesses can really be issued as 1-byte aligned or 4-byte aligned, so
1393       // 2-byte alignment is worse than 1 unless doing a 2-byte accesss.
1394       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1395                  AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1396         Align >= 4 : Align != 2;
1397     }
1398
1399     return true;
1400   }
1401
1402   // Smaller than dword value must be aligned.
1403   if (Size < 32)
1404     return false;
1405
1406   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1407   // byte-address are ignored, thus forcing Dword alignment.
1408   // This applies to private, global, and constant memory.
1409   if (IsFast)
1410     *IsFast = true;
1411
1412   return Size >= 32 && Align >= 4;
1413 }
1414
1415 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1416     EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1417     bool *IsFast) const {
1418   if (IsFast)
1419     *IsFast = false;
1420
1421   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1422   // which isn't a simple VT.
1423   // Until MVT is extended to handle this, simply check for the size and
1424   // rely on the condition below: allow accesses if the size is a multiple of 4.
1425   if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1426                            VT.getStoreSize() > 16)) {
1427     return false;
1428   }
1429
1430   return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1431                                             Align, Flags, IsFast);
1432 }
1433
1434 EVT SITargetLowering::getOptimalMemOpType(
1435     const MemOp &Op, const AttributeList &FuncAttributes) const {
1436   // FIXME: Should account for address space here.
1437
1438   // The default fallback uses the private pointer size as a guess for a type to
1439   // use. Make sure we switch these to 64-bit accesses.
1440
1441   if (Op.size() >= 16 &&
1442       Op.isDstAligned(Align(4))) // XXX: Should only do for global
1443     return MVT::v4i32;
1444
1445   if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1446     return MVT::v2i32;
1447
1448   // Use the default.
1449   return MVT::Other;
1450 }
1451
1452 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1453                                            unsigned DestAS) const {
1454   return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
1455 }
1456
1457 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1458   const MemSDNode *MemNode = cast<MemSDNode>(N);
1459   const Value *Ptr = MemNode->getMemOperand()->getValue();
1460   const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1461   return I && I->getMetadata("amdgpu.noclobber");
1462 }
1463
1464 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1465                                            unsigned DestAS) const {
1466   // Flat -> private/local is a simple truncate.
1467   // Flat -> global is no-op
1468   if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1469     return true;
1470
1471   return isNoopAddrSpaceCast(SrcAS, DestAS);
1472 }
1473
1474 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1475   const MemSDNode *MemNode = cast<MemSDNode>(N);
1476
1477   return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1478 }
1479
1480 TargetLoweringBase::LegalizeTypeAction
1481 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1482   int NumElts = VT.getVectorNumElements();
1483   if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16))
1484     return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1485   return TargetLoweringBase::getPreferredVectorAction(VT);
1486 }
1487
1488 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1489                                                          Type *Ty) const {
1490   // FIXME: Could be smarter if called for vector constants.
1491   return true;
1492 }
1493
1494 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1495   if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1496     switch (Op) {
1497     case ISD::LOAD:
1498     case ISD::STORE:
1499
1500     // These operations are done with 32-bit instructions anyway.
1501     case ISD::AND:
1502     case ISD::OR:
1503     case ISD::XOR:
1504     case ISD::SELECT:
1505       // TODO: Extensions?
1506       return true;
1507     default:
1508       return false;
1509     }
1510   }
1511
1512   // SimplifySetCC uses this function to determine whether or not it should
1513   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
1514   if (VT == MVT::i1 && Op == ISD::SETCC)
1515     return false;
1516
1517   return TargetLowering::isTypeDesirableForOp(Op, VT);
1518 }
1519
1520 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1521                                                    const SDLoc &SL,
1522                                                    SDValue Chain,
1523                                                    uint64_t Offset) const {
1524   const DataLayout &DL = DAG.getDataLayout();
1525   MachineFunction &MF = DAG.getMachineFunction();
1526   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1527
1528   const ArgDescriptor *InputPtrReg;
1529   const TargetRegisterClass *RC;
1530   LLT ArgTy;
1531
1532   std::tie(InputPtrReg, RC, ArgTy) =
1533       Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1534
1535   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1536   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1537   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1538     MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1539
1540   return DAG.getObjectPtrOffset(SL, BasePtr, Offset);
1541 }
1542
1543 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1544                                             const SDLoc &SL) const {
1545   uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1546                                                FIRST_IMPLICIT);
1547   return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1548 }
1549
1550 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1551                                          const SDLoc &SL, SDValue Val,
1552                                          bool Signed,
1553                                          const ISD::InputArg *Arg) const {
1554   // First, if it is a widened vector, narrow it.
1555   if (VT.isVector() &&
1556       VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1557     EVT NarrowedVT =
1558         EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1559                          VT.getVectorNumElements());
1560     Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1561                       DAG.getConstant(0, SL, MVT::i32));
1562   }
1563
1564   // Then convert the vector elements or scalar value.
1565   if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1566       VT.bitsLT(MemVT)) {
1567     unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1568     Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1569   }
1570
1571   if (MemVT.isFloatingPoint())
1572     Val = getFPExtOrFPRound(DAG, Val, SL, VT);
1573   else if (Signed)
1574     Val = DAG.getSExtOrTrunc(Val, SL, VT);
1575   else
1576     Val = DAG.getZExtOrTrunc(Val, SL, VT);
1577
1578   return Val;
1579 }
1580
1581 SDValue SITargetLowering::lowerKernargMemParameter(
1582     SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
1583     uint64_t Offset, Align Alignment, bool Signed,
1584     const ISD::InputArg *Arg) const {
1585   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1586
1587   // Try to avoid using an extload by loading earlier than the argument address,
1588   // and extracting the relevant bits. The load should hopefully be merged with
1589   // the previous argument.
1590   if (MemVT.getStoreSize() < 4 && Alignment < 4) {
1591     // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1592     int64_t AlignDownOffset = alignDown(Offset, 4);
1593     int64_t OffsetDiff = Offset - AlignDownOffset;
1594
1595     EVT IntVT = MemVT.changeTypeToInteger();
1596
1597     // TODO: If we passed in the base kernel offset we could have a better
1598     // alignment than 4, but we don't really need it.
1599     SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1600     SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4,
1601                                MachineMemOperand::MODereferenceable |
1602                                MachineMemOperand::MOInvariant);
1603
1604     SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1605     SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1606
1607     SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1608     ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1609     ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1610
1611
1612     return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1613   }
1614
1615   SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1616   SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
1617                              MachineMemOperand::MODereferenceable |
1618                                  MachineMemOperand::MOInvariant);
1619
1620   SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1621   return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1622 }
1623
1624 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1625                                               const SDLoc &SL, SDValue Chain,
1626                                               const ISD::InputArg &Arg) const {
1627   MachineFunction &MF = DAG.getMachineFunction();
1628   MachineFrameInfo &MFI = MF.getFrameInfo();
1629
1630   if (Arg.Flags.isByVal()) {
1631     unsigned Size = Arg.Flags.getByValSize();
1632     int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1633     return DAG.getFrameIndex(FrameIdx, MVT::i32);
1634   }
1635
1636   unsigned ArgOffset = VA.getLocMemOffset();
1637   unsigned ArgSize = VA.getValVT().getStoreSize();
1638
1639   int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1640
1641   // Create load nodes to retrieve arguments from the stack.
1642   SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1643   SDValue ArgValue;
1644
1645   // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1646   ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1647   MVT MemVT = VA.getValVT();
1648
1649   switch (VA.getLocInfo()) {
1650   default:
1651     break;
1652   case CCValAssign::BCvt:
1653     MemVT = VA.getLocVT();
1654     break;
1655   case CCValAssign::SExt:
1656     ExtType = ISD::SEXTLOAD;
1657     break;
1658   case CCValAssign::ZExt:
1659     ExtType = ISD::ZEXTLOAD;
1660     break;
1661   case CCValAssign::AExt:
1662     ExtType = ISD::EXTLOAD;
1663     break;
1664   }
1665
1666   ArgValue = DAG.getExtLoad(
1667     ExtType, SL, VA.getLocVT(), Chain, FIN,
1668     MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1669     MemVT);
1670   return ArgValue;
1671 }
1672
1673 SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1674   const SIMachineFunctionInfo &MFI,
1675   EVT VT,
1676   AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1677   const ArgDescriptor *Reg;
1678   const TargetRegisterClass *RC;
1679   LLT Ty;
1680
1681   std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
1682   return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1683 }
1684
1685 static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1686                                    CallingConv::ID CallConv,
1687                                    ArrayRef<ISD::InputArg> Ins,
1688                                    BitVector &Skipped,
1689                                    FunctionType *FType,
1690                                    SIMachineFunctionInfo *Info) {
1691   for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1692     const ISD::InputArg *Arg = &Ins[I];
1693
1694     assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
1695            "vector type argument should have been split");
1696
1697     // First check if it's a PS input addr.
1698     if (CallConv == CallingConv::AMDGPU_PS &&
1699         !Arg->Flags.isInReg() && PSInputNum <= 15) {
1700       bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1701
1702       // Inconveniently only the first part of the split is marked as isSplit,
1703       // so skip to the end. We only want to increment PSInputNum once for the
1704       // entire split argument.
1705       if (Arg->Flags.isSplit()) {
1706         while (!Arg->Flags.isSplitEnd()) {
1707           assert((!Arg->VT.isVector() ||
1708                   Arg->VT.getScalarSizeInBits() == 16) &&
1709                  "unexpected vector split in ps argument type");
1710           if (!SkipArg)
1711             Splits.push_back(*Arg);
1712           Arg = &Ins[++I];
1713         }
1714       }
1715
1716       if (SkipArg) {
1717         // We can safely skip PS inputs.
1718         Skipped.set(Arg->getOrigArgIndex());
1719         ++PSInputNum;
1720         continue;
1721       }
1722
1723       Info->markPSInputAllocated(PSInputNum);
1724       if (Arg->Used)
1725         Info->markPSInputEnabled(PSInputNum);
1726
1727       ++PSInputNum;
1728     }
1729
1730     Splits.push_back(*Arg);
1731   }
1732 }
1733
1734 // Allocate special inputs passed in VGPRs.
1735 void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1736                                                       MachineFunction &MF,
1737                                                       const SIRegisterInfo &TRI,
1738                                                       SIMachineFunctionInfo &Info) const {
1739   const LLT S32 = LLT::scalar(32);
1740   MachineRegisterInfo &MRI = MF.getRegInfo();
1741
1742   if (Info.hasWorkItemIDX()) {
1743     Register Reg = AMDGPU::VGPR0;
1744     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1745
1746     CCInfo.AllocateReg(Reg);
1747     Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1748   }
1749
1750   if (Info.hasWorkItemIDY()) {
1751     Register Reg = AMDGPU::VGPR1;
1752     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1753
1754     CCInfo.AllocateReg(Reg);
1755     Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1756   }
1757
1758   if (Info.hasWorkItemIDZ()) {
1759     Register Reg = AMDGPU::VGPR2;
1760     MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1761
1762     CCInfo.AllocateReg(Reg);
1763     Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1764   }
1765 }
1766
1767 // Try to allocate a VGPR at the end of the argument list, or if no argument
1768 // VGPRs are left allocating a stack slot.
1769 // If \p Mask is is given it indicates bitfield position in the register.
1770 // If \p Arg is given use it with new ]p Mask instead of allocating new.
1771 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1772                                          ArgDescriptor Arg = ArgDescriptor()) {
1773   if (Arg.isSet())
1774     return ArgDescriptor::createArg(Arg, Mask);
1775
1776   ArrayRef<MCPhysReg> ArgVGPRs
1777     = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1778   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1779   if (RegIdx == ArgVGPRs.size()) {
1780     // Spill to stack required.
1781     int64_t Offset = CCInfo.AllocateStack(4, Align(4));
1782
1783     return ArgDescriptor::createStack(Offset, Mask);
1784   }
1785
1786   unsigned Reg = ArgVGPRs[RegIdx];
1787   Reg = CCInfo.AllocateReg(Reg);
1788   assert(Reg != AMDGPU::NoRegister);
1789
1790   MachineFunction &MF = CCInfo.getMachineFunction();
1791   Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1792   MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1793   return ArgDescriptor::createRegister(Reg, Mask);
1794 }
1795
1796 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1797                                              const TargetRegisterClass *RC,
1798                                              unsigned NumArgRegs) {
1799   ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1800   unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1801   if (RegIdx == ArgSGPRs.size())
1802     report_fatal_error("ran out of SGPRs for arguments");
1803
1804   unsigned Reg = ArgSGPRs[RegIdx];
1805   Reg = CCInfo.AllocateReg(Reg);
1806   assert(Reg != AMDGPU::NoRegister);
1807
1808   MachineFunction &MF = CCInfo.getMachineFunction();
1809   MF.addLiveIn(Reg, RC);
1810   return ArgDescriptor::createRegister(Reg);
1811 }
1812
1813 static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1814   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1815 }
1816
1817 static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1818   return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1819 }
1820
1821 /// Allocate implicit function VGPR arguments at the end of allocated user
1822 /// arguments.
1823 void SITargetLowering::allocateSpecialInputVGPRs(
1824   CCState &CCInfo, MachineFunction &MF,
1825   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1826   const unsigned Mask = 0x3ff;
1827   ArgDescriptor Arg;
1828
1829   if (Info.hasWorkItemIDX()) {
1830     Arg = allocateVGPR32Input(CCInfo, Mask);
1831     Info.setWorkItemIDX(Arg);
1832   }
1833
1834   if (Info.hasWorkItemIDY()) {
1835     Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1836     Info.setWorkItemIDY(Arg);
1837   }
1838
1839   if (Info.hasWorkItemIDZ())
1840     Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1841 }
1842
1843 /// Allocate implicit function VGPR arguments in fixed registers.
1844 void SITargetLowering::allocateSpecialInputVGPRsFixed(
1845   CCState &CCInfo, MachineFunction &MF,
1846   const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
1847   Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
1848   if (!Reg)
1849     report_fatal_error("failed to allocated VGPR for implicit arguments");
1850
1851   const unsigned Mask = 0x3ff;
1852   Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
1853   Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
1854   Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
1855 }
1856
1857 void SITargetLowering::allocateSpecialInputSGPRs(
1858   CCState &CCInfo,
1859   MachineFunction &MF,
1860   const SIRegisterInfo &TRI,
1861   SIMachineFunctionInfo &Info) const {
1862   auto &ArgInfo = Info.getArgInfo();
1863
1864   // TODO: Unify handling with private memory pointers.
1865
1866   if (Info.hasDispatchPtr())
1867     ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1868
1869   if (Info.hasQueuePtr())
1870     ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1871
1872   // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
1873   // constant offset from the kernarg segment.
1874   if (Info.hasImplicitArgPtr())
1875     ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1876
1877   if (Info.hasDispatchID())
1878     ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1879
1880   // flat_scratch_init is not applicable for non-kernel functions.
1881
1882   if (Info.hasWorkGroupIDX())
1883     ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1884
1885   if (Info.hasWorkGroupIDY())
1886     ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1887
1888   if (Info.hasWorkGroupIDZ())
1889     ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1890 }
1891
1892 // Allocate special inputs passed in user SGPRs.
1893 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
1894                                             MachineFunction &MF,
1895                                             const SIRegisterInfo &TRI,
1896                                             SIMachineFunctionInfo &Info) const {
1897   if (Info.hasImplicitBufferPtr()) {
1898     unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1899     MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1900     CCInfo.AllocateReg(ImplicitBufferPtrReg);
1901   }
1902
1903   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1904   if (Info.hasPrivateSegmentBuffer()) {
1905     unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1906     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1907     CCInfo.AllocateReg(PrivateSegmentBufferReg);
1908   }
1909
1910   if (Info.hasDispatchPtr()) {
1911     unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
1912     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1913     CCInfo.AllocateReg(DispatchPtrReg);
1914   }
1915
1916   if (Info.hasQueuePtr()) {
1917     unsigned QueuePtrReg = Info.addQueuePtr(TRI);
1918     MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1919     CCInfo.AllocateReg(QueuePtrReg);
1920   }
1921
1922   if (Info.hasKernargSegmentPtr()) {
1923     MachineRegisterInfo &MRI = MF.getRegInfo();
1924     Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
1925     CCInfo.AllocateReg(InputPtrReg);
1926
1927     Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1928     MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1929   }
1930
1931   if (Info.hasDispatchID()) {
1932     unsigned DispatchIDReg = Info.addDispatchID(TRI);
1933     MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1934     CCInfo.AllocateReg(DispatchIDReg);
1935   }
1936
1937   if (Info.hasFlatScratchInit()) {
1938     unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1939     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1940     CCInfo.AllocateReg(FlatScratchInitReg);
1941   }
1942
1943   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1944   // these from the dispatch pointer.
1945 }
1946
1947 // Allocate special input registers that are initialized per-wave.
1948 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
1949                                            MachineFunction &MF,
1950                                            SIMachineFunctionInfo &Info,
1951                                            CallingConv::ID CallConv,
1952                                            bool IsShader) const {
1953   if (Info.hasWorkGroupIDX()) {
1954     unsigned Reg = Info.addWorkGroupIDX();
1955     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1956     CCInfo.AllocateReg(Reg);
1957   }
1958
1959   if (Info.hasWorkGroupIDY()) {
1960     unsigned Reg = Info.addWorkGroupIDY();
1961     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1962     CCInfo.AllocateReg(Reg);
1963   }
1964
1965   if (Info.hasWorkGroupIDZ()) {
1966     unsigned Reg = Info.addWorkGroupIDZ();
1967     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1968     CCInfo.AllocateReg(Reg);
1969   }
1970
1971   if (Info.hasWorkGroupInfo()) {
1972     unsigned Reg = Info.addWorkGroupInfo();
1973     MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
1974     CCInfo.AllocateReg(Reg);
1975   }
1976
1977   if (Info.hasPrivateSegmentWaveByteOffset()) {
1978     // Scratch wave offset passed in system SGPR.
1979     unsigned PrivateSegmentWaveByteOffsetReg;
1980
1981     if (IsShader) {
1982       PrivateSegmentWaveByteOffsetReg =
1983         Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
1984
1985       // This is true if the scratch wave byte offset doesn't have a fixed
1986       // location.
1987       if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
1988         PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1989         Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1990       }
1991     } else
1992       PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
1993
1994     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1995     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1996   }
1997 }
1998
1999 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2000                                      MachineFunction &MF,
2001                                      const SIRegisterInfo &TRI,
2002                                      SIMachineFunctionInfo &Info) {
2003   // Now that we've figured out where the scratch register inputs are, see if
2004   // should reserve the arguments and use them directly.
2005   MachineFrameInfo &MFI = MF.getFrameInfo();
2006   bool HasStackObjects = MFI.hasStackObjects();
2007   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2008
2009   // Record that we know we have non-spill stack objects so we don't need to
2010   // check all stack objects later.
2011   if (HasStackObjects)
2012     Info.setHasNonSpillStackObjects(true);
2013
2014   // Everything live out of a block is spilled with fast regalloc, so it's
2015   // almost certain that spilling will be required.
2016   if (TM.getOptLevel() == CodeGenOpt::None)
2017     HasStackObjects = true;
2018
2019   // For now assume stack access is needed in any callee functions, so we need
2020   // the scratch registers to pass in.
2021   bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2022
2023   if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2024     // If we have stack objects, we unquestionably need the private buffer
2025     // resource. For the Code Object V2 ABI, this will be the first 4 user
2026     // SGPR inputs. We can reserve those and use them directly.
2027
2028     Register PrivateSegmentBufferReg =
2029         Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2030     Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2031   } else {
2032     unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2033     // We tentatively reserve the last registers (skipping the last registers
2034     // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2035     // we'll replace these with the ones immediately after those which were
2036     // really allocated. In the prologue copies will be inserted from the
2037     // argument to these reserved registers.
2038
2039     // Without HSA, relocations are used for the scratch pointer and the
2040     // buffer resource setup is always inserted in the prologue. Scratch wave
2041     // offset is still in an input SGPR.
2042     Info.setScratchRSrcReg(ReservedBufferReg);
2043   }
2044
2045   MachineRegisterInfo &MRI = MF.getRegInfo();
2046
2047   // For entry functions we have to set up the stack pointer if we use it,
2048   // whereas non-entry functions get this "for free". This means there is no
2049   // intrinsic advantage to using S32 over S34 in cases where we do not have
2050   // calls but do need a frame pointer (i.e. if we are requested to have one
2051   // because frame pointer elimination is disabled). To keep things simple we
2052   // only ever use S32 as the call ABI stack pointer, and so using it does not
2053   // imply we need a separate frame pointer.
2054   //
2055   // Try to use s32 as the SP, but move it if it would interfere with input
2056   // arguments. This won't work with calls though.
2057   //
2058   // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2059   // registers.
2060   if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2061     Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2062   } else {
2063     assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2064
2065     if (MFI.hasCalls())
2066       report_fatal_error("call in graphics shader with too many input SGPRs");
2067
2068     for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2069       if (!MRI.isLiveIn(Reg)) {
2070         Info.setStackPtrOffsetReg(Reg);
2071         break;
2072       }
2073     }
2074
2075     if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2076       report_fatal_error("failed to find register for SP");
2077   }
2078
2079   // hasFP should be accurate for entry functions even before the frame is
2080   // finalized, because it does not rely on the known stack size, only
2081   // properties like whether variable sized objects are present.
2082   if (ST.getFrameLowering()->hasFP(MF)) {
2083     Info.setFrameOffsetReg(AMDGPU::SGPR33);
2084   }
2085 }
2086
2087 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2088   const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2089   return !Info->isEntryFunction();
2090 }
2091
2092 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
2093
2094 }
2095
2096 void SITargetLowering::insertCopiesSplitCSR(
2097   MachineBasicBlock *Entry,
2098   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2099   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2100
2101   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2102   if (!IStart)
2103     return;
2104
2105   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2106   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2107   MachineBasicBlock::iterator MBBI = Entry->begin();
2108   for (const MCPhysReg *I = IStart; *I; ++I) {
2109     const TargetRegisterClass *RC = nullptr;
2110     if (AMDGPU::SReg_64RegClass.contains(*I))
2111       RC = &AMDGPU::SGPR_64RegClass;
2112     else if (AMDGPU::SReg_32RegClass.contains(*I))
2113       RC = &AMDGPU::SGPR_32RegClass;
2114     else
2115       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2116
2117     Register NewVR = MRI->createVirtualRegister(RC);
2118     // Create copy from CSR to a virtual register.
2119     Entry->addLiveIn(*I);
2120     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2121       .addReg(*I);
2122
2123     // Insert the copy-back instructions right before the terminator.
2124     for (auto *Exit : Exits)
2125       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2126               TII->get(TargetOpcode::COPY), *I)
2127         .addReg(NewVR);
2128   }
2129 }
2130
2131 SDValue SITargetLowering::LowerFormalArguments(
2132     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2133     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2134     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2135   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2136
2137   MachineFunction &MF = DAG.getMachineFunction();
2138   const Function &Fn = MF.getFunction();
2139   FunctionType *FType = MF.getFunction().getFunctionType();
2140   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2141
2142   if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
2143     DiagnosticInfoUnsupported NoGraphicsHSA(
2144         Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2145     DAG.getContext()->diagnose(NoGraphicsHSA);
2146     return DAG.getEntryNode();
2147   }
2148
2149   SmallVector<ISD::InputArg, 16> Splits;
2150   SmallVector<CCValAssign, 16> ArgLocs;
2151   BitVector Skipped(Ins.size());
2152   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2153                  *DAG.getContext());
2154
2155   bool IsShader = AMDGPU::isShader(CallConv);
2156   bool IsKernel = AMDGPU::isKernel(CallConv);
2157   bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2158
2159   if (IsShader) {
2160     processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2161
2162     // At least one interpolation mode must be enabled or else the GPU will
2163     // hang.
2164     //
2165     // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2166     // set PSInputAddr, the user wants to enable some bits after the compilation
2167     // based on run-time states. Since we can't know what the final PSInputEna
2168     // will look like, so we shouldn't do anything here and the user should take
2169     // responsibility for the correct programming.
2170     //
2171     // Otherwise, the following restrictions apply:
2172     // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2173     // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2174     //   enabled too.
2175     if (CallConv == CallingConv::AMDGPU_PS) {
2176       if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2177            ((Info->getPSInputAddr() & 0xF) == 0 &&
2178             Info->isPSInputAllocated(11))) {
2179         CCInfo.AllocateReg(AMDGPU::VGPR0);
2180         CCInfo.AllocateReg(AMDGPU::VGPR1);
2181         Info->markPSInputAllocated(0);
2182         Info->markPSInputEnabled(0);
2183       }
2184       if (Subtarget->isAmdPalOS()) {
2185         // For isAmdPalOS, the user does not enable some bits after compilation
2186         // based on run-time states; the register values being generated here are
2187         // the final ones set in hardware. Therefore we need to apply the
2188         // workaround to PSInputAddr and PSInputEnable together.  (The case where
2189         // a bit is set in PSInputAddr but not PSInputEnable is where the
2190         // frontend set up an input arg for a particular interpolation mode, but
2191         // nothing uses that input arg. Really we should have an earlier pass
2192         // that removes such an arg.)
2193         unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2194         if ((PsInputBits & 0x7F) == 0 ||
2195             ((PsInputBits & 0xF) == 0 &&
2196              (PsInputBits >> 11 & 1)))
2197           Info->markPSInputEnabled(
2198               countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2199       }
2200     }
2201
2202     assert(!Info->hasDispatchPtr() &&
2203            !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
2204            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2205            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
2206            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
2207            !Info->hasWorkItemIDZ());
2208   } else if (IsKernel) {
2209     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2210   } else {
2211     Splits.append(Ins.begin(), Ins.end());
2212   }
2213
2214   if (IsEntryFunc) {
2215     allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2216     allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2217   } else {
2218     // For the fixed ABI, pass workitem IDs in the last argument register.
2219     if (AMDGPUTargetMachine::EnableFixedFunctionABI)
2220       allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2221   }
2222
2223   if (IsKernel) {
2224     analyzeFormalArgumentsCompute(CCInfo, Ins);
2225   } else {
2226     CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2227     CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2228   }
2229
2230   SmallVector<SDValue, 16> Chains;
2231
2232   // FIXME: This is the minimum kernel argument alignment. We should improve
2233   // this to the maximum alignment of the arguments.
2234   //
2235   // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2236   // kern arg offset.
2237   const Align KernelArgBaseAlign = Align(16);
2238
2239   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2240     const ISD::InputArg &Arg = Ins[i];
2241     if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2242       InVals.push_back(DAG.getUNDEF(Arg.VT));
2243       continue;
2244     }
2245
2246     CCValAssign &VA = ArgLocs[ArgIdx++];
2247     MVT VT = VA.getLocVT();
2248
2249     if (IsEntryFunc && VA.isMemLoc()) {
2250       VT = Ins[i].VT;
2251       EVT MemVT = VA.getLocVT();
2252
2253       const uint64_t Offset = VA.getLocMemOffset();
2254       Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2255
2256       SDValue Arg =
2257           lowerKernargMemParameter(DAG, VT, MemVT, DL, Chain, Offset, Alignment,
2258                                    Ins[i].Flags.isSExt(), &Ins[i]);
2259       Chains.push_back(Arg.getValue(1));
2260
2261       auto *ParamTy =
2262         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2263       if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2264           ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2265                       ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2266         // On SI local pointers are just offsets into LDS, so they are always
2267         // less than 16-bits.  On CI and newer they could potentially be
2268         // real pointers, so we can't guarantee their size.
2269         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2270                           DAG.getValueType(MVT::i16));
2271       }
2272
2273       InVals.push_back(Arg);
2274       continue;
2275     } else if (!IsEntryFunc && VA.isMemLoc()) {
2276       SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2277       InVals.push_back(Val);
2278       if (!Arg.Flags.isByVal())
2279         Chains.push_back(Val.getValue(1));
2280       continue;
2281     }
2282
2283     assert(VA.isRegLoc() && "Parameter must be in a register!");
2284
2285     Register Reg = VA.getLocReg();
2286     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2287     EVT ValVT = VA.getValVT();
2288
2289     Reg = MF.addLiveIn(Reg, RC);
2290     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2291
2292     if (Arg.Flags.isSRet()) {
2293       // The return object should be reasonably addressable.
2294
2295       // FIXME: This helps when the return is a real sret. If it is a
2296       // automatically inserted sret (i.e. CanLowerReturn returns false), an
2297       // extra copy is inserted in SelectionDAGBuilder which obscures this.
2298       unsigned NumBits
2299         = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2300       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2301         DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2302     }
2303
2304     // If this is an 8 or 16-bit value, it is really passed promoted
2305     // to 32 bits. Insert an assert[sz]ext to capture this, then
2306     // truncate to the right size.
2307     switch (VA.getLocInfo()) {
2308     case CCValAssign::Full:
2309       break;
2310     case CCValAssign::BCvt:
2311       Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2312       break;
2313     case CCValAssign::SExt:
2314       Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2315                         DAG.getValueType(ValVT));
2316       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2317       break;
2318     case CCValAssign::ZExt:
2319       Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2320                         DAG.getValueType(ValVT));
2321       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2322       break;
2323     case CCValAssign::AExt:
2324       Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2325       break;
2326     default:
2327       llvm_unreachable("Unknown loc info!");
2328     }
2329
2330     InVals.push_back(Val);
2331   }
2332
2333   if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
2334     // Special inputs come after user arguments.
2335     allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2336   }
2337
2338   // Start adding system SGPRs.
2339   if (IsEntryFunc) {
2340     allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
2341   } else {
2342     CCInfo.AllocateReg(Info->getScratchRSrcReg());
2343     allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2344   }
2345
2346   auto &ArgUsageInfo =
2347     DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2348   ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2349
2350   unsigned StackArgSize = CCInfo.getNextStackOffset();
2351   Info->setBytesInStackArgArea(StackArgSize);
2352
2353   return Chains.empty() ? Chain :
2354     DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2355 }
2356
2357 // TODO: If return values can't fit in registers, we should return as many as
2358 // possible in registers before passing on stack.
2359 bool SITargetLowering::CanLowerReturn(
2360   CallingConv::ID CallConv,
2361   MachineFunction &MF, bool IsVarArg,
2362   const SmallVectorImpl<ISD::OutputArg> &Outs,
2363   LLVMContext &Context) const {
2364   // Replacing returns with sret/stack usage doesn't make sense for shaders.
2365   // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2366   // for shaders. Vector types should be explicitly handled by CC.
2367   if (AMDGPU::isEntryFunctionCC(CallConv))
2368     return true;
2369
2370   SmallVector<CCValAssign, 16> RVLocs;
2371   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2372   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2373 }
2374
2375 SDValue
2376 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2377                               bool isVarArg,
2378                               const SmallVectorImpl<ISD::OutputArg> &Outs,
2379                               const SmallVectorImpl<SDValue> &OutVals,
2380                               const SDLoc &DL, SelectionDAG &DAG) const {
2381   MachineFunction &MF = DAG.getMachineFunction();
2382   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2383
2384   if (AMDGPU::isKernel(CallConv)) {
2385     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2386                                              OutVals, DL, DAG);
2387   }
2388
2389   bool IsShader = AMDGPU::isShader(CallConv);
2390
2391   Info->setIfReturnsVoid(Outs.empty());
2392   bool IsWaveEnd = Info->returnsVoid() && IsShader;
2393
2394   // CCValAssign - represent the assignment of the return value to a location.
2395   SmallVector<CCValAssign, 48> RVLocs;
2396   SmallVector<ISD::OutputArg, 48> Splits;
2397
2398   // CCState - Info about the registers and stack slots.
2399   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2400                  *DAG.getContext());
2401
2402   // Analyze outgoing return values.
2403   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2404
2405   SDValue Flag;
2406   SmallVector<SDValue, 48> RetOps;
2407   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2408
2409   // Add return address for callable functions.
2410   if (!Info->isEntryFunction()) {
2411     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2412     SDValue ReturnAddrReg = CreateLiveInRegister(
2413       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2414
2415     SDValue ReturnAddrVirtualReg = DAG.getRegister(
2416         MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2417         MVT::i64);
2418     Chain =
2419         DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2420     Flag = Chain.getValue(1);
2421     RetOps.push_back(ReturnAddrVirtualReg);
2422   }
2423
2424   // Copy the result values into the output registers.
2425   for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2426        ++I, ++RealRVLocIdx) {
2427     CCValAssign &VA = RVLocs[I];
2428     assert(VA.isRegLoc() && "Can only return in registers!");
2429     // TODO: Partially return in registers if return values don't fit.
2430     SDValue Arg = OutVals[RealRVLocIdx];
2431
2432     // Copied from other backends.
2433     switch (VA.getLocInfo()) {
2434     case CCValAssign::Full:
2435       break;
2436     case CCValAssign::BCvt:
2437       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2438       break;
2439     case CCValAssign::SExt:
2440       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2441       break;
2442     case CCValAssign::ZExt:
2443       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2444       break;
2445     case CCValAssign::AExt:
2446       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2447       break;
2448     default:
2449       llvm_unreachable("Unknown loc info!");
2450     }
2451
2452     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2453     Flag = Chain.getValue(1);
2454     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2455   }
2456
2457   // FIXME: Does sret work properly?
2458   if (!Info->isEntryFunction()) {
2459     const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2460     const MCPhysReg *I =
2461       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2462     if (I) {
2463       for (; *I; ++I) {
2464         if (AMDGPU::SReg_64RegClass.contains(*I))
2465           RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2466         else if (AMDGPU::SReg_32RegClass.contains(*I))
2467           RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2468         else
2469           llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2470       }
2471     }
2472   }
2473
2474   // Update chain and glue.
2475   RetOps[0] = Chain;
2476   if (Flag.getNode())
2477     RetOps.push_back(Flag);
2478
2479   unsigned Opc = AMDGPUISD::ENDPGM;
2480   if (!IsWaveEnd)
2481     Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2482   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2483 }
2484
2485 SDValue SITargetLowering::LowerCallResult(
2486     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2487     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2488     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2489     SDValue ThisVal) const {
2490   CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2491
2492   // Assign locations to each value returned by this call.
2493   SmallVector<CCValAssign, 16> RVLocs;
2494   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2495                  *DAG.getContext());
2496   CCInfo.AnalyzeCallResult(Ins, RetCC);
2497
2498   // Copy all of the result registers out of their specified physreg.
2499   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2500     CCValAssign VA = RVLocs[i];
2501     SDValue Val;
2502
2503     if (VA.isRegLoc()) {
2504       Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2505       Chain = Val.getValue(1);
2506       InFlag = Val.getValue(2);
2507     } else if (VA.isMemLoc()) {
2508       report_fatal_error("TODO: return values in memory");
2509     } else
2510       llvm_unreachable("unknown argument location type");
2511
2512     switch (VA.getLocInfo()) {
2513     case CCValAssign::Full:
2514       break;
2515     case CCValAssign::BCvt:
2516       Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2517       break;
2518     case CCValAssign::ZExt:
2519       Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2520                         DAG.getValueType(VA.getValVT()));
2521       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2522       break;
2523     case CCValAssign::SExt:
2524       Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2525                         DAG.getValueType(VA.getValVT()));
2526       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2527       break;
2528     case CCValAssign::AExt:
2529       Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2530       break;
2531     default:
2532       llvm_unreachable("Unknown loc info!");
2533     }
2534
2535     InVals.push_back(Val);
2536   }
2537
2538   return Chain;
2539 }
2540
2541 // Add code to pass special inputs required depending on used features separate
2542 // from the explicit user arguments present in the IR.
2543 void SITargetLowering::passSpecialInputs(
2544     CallLoweringInfo &CLI,
2545     CCState &CCInfo,
2546     const SIMachineFunctionInfo &Info,
2547     SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2548     SmallVectorImpl<SDValue> &MemOpChains,
2549     SDValue Chain) const {
2550   // If we don't have a call site, this was a call inserted by
2551   // legalization. These can never use special inputs.
2552   if (!CLI.CB)
2553     return;
2554
2555   SelectionDAG &DAG = CLI.DAG;
2556   const SDLoc &DL = CLI.DL;
2557
2558   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2559   const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2560
2561   const AMDGPUFunctionArgInfo *CalleeArgInfo
2562     = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
2563   if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
2564     auto &ArgUsageInfo =
2565       DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2566     CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2567   }
2568
2569   // TODO: Unify with private memory register handling. This is complicated by
2570   // the fact that at least in kernels, the input argument is not necessarily
2571   // in the same location as the input.
2572   AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2573     AMDGPUFunctionArgInfo::DISPATCH_PTR,
2574     AMDGPUFunctionArgInfo::QUEUE_PTR,
2575     AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
2576     AMDGPUFunctionArgInfo::DISPATCH_ID,
2577     AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2578     AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2579     AMDGPUFunctionArgInfo::WORKGROUP_ID_Z
2580   };
2581
2582   for (auto InputID : InputRegs) {
2583     const ArgDescriptor *OutgoingArg;
2584     const TargetRegisterClass *ArgRC;
2585     LLT ArgTy;
2586
2587     std::tie(OutgoingArg, ArgRC, ArgTy) =
2588         CalleeArgInfo->getPreloadedValue(InputID);
2589     if (!OutgoingArg)
2590       continue;
2591
2592     const ArgDescriptor *IncomingArg;
2593     const TargetRegisterClass *IncomingArgRC;
2594     LLT Ty;
2595     std::tie(IncomingArg, IncomingArgRC, Ty) =
2596         CallerArgInfo.getPreloadedValue(InputID);
2597     assert(IncomingArgRC == ArgRC);
2598
2599     // All special arguments are ints for now.
2600     EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2601     SDValue InputReg;
2602
2603     if (IncomingArg) {
2604       InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2605     } else {
2606       // The implicit arg ptr is special because it doesn't have a corresponding
2607       // input for kernels, and is computed from the kernarg segment pointer.
2608       assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
2609       InputReg = getImplicitArgPtr(DAG, DL);
2610     }
2611
2612     if (OutgoingArg->isRegister()) {
2613       RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2614       if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
2615         report_fatal_error("failed to allocate implicit input argument");
2616     } else {
2617       unsigned SpecialArgOffset =
2618           CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
2619       SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2620                                               SpecialArgOffset);
2621       MemOpChains.push_back(ArgStore);
2622     }
2623   }
2624
2625   // Pack workitem IDs into a single register or pass it as is if already
2626   // packed.
2627   const ArgDescriptor *OutgoingArg;
2628   const TargetRegisterClass *ArgRC;
2629   LLT Ty;
2630
2631   std::tie(OutgoingArg, ArgRC, Ty) =
2632       CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2633   if (!OutgoingArg)
2634     std::tie(OutgoingArg, ArgRC, Ty) =
2635         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2636   if (!OutgoingArg)
2637     std::tie(OutgoingArg, ArgRC, Ty) =
2638         CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2639   if (!OutgoingArg)
2640     return;
2641
2642   const ArgDescriptor *IncomingArgX = std::get<0>(
2643       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
2644   const ArgDescriptor *IncomingArgY = std::get<0>(
2645       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
2646   const ArgDescriptor *IncomingArgZ = std::get<0>(
2647       CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
2648
2649   SDValue InputReg;
2650   SDLoc SL;
2651
2652   // If incoming ids are not packed we need to pack them.
2653   if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX)
2654     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2655
2656   if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY) {
2657     SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2658     Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2659                     DAG.getShiftAmountConstant(10, MVT::i32, SL));
2660     InputReg = InputReg.getNode() ?
2661                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2662   }
2663
2664   if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ) {
2665     SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2666     Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2667                     DAG.getShiftAmountConstant(20, MVT::i32, SL));
2668     InputReg = InputReg.getNode() ?
2669                  DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2670   }
2671
2672   if (!InputReg.getNode()) {
2673     // Workitem ids are already packed, any of present incoming arguments
2674     // will carry all required fields.
2675     ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2676       IncomingArgX ? *IncomingArgX :
2677       IncomingArgY ? *IncomingArgY :
2678                      *IncomingArgZ, ~0u);
2679     InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2680   }
2681
2682   if (OutgoingArg->isRegister()) {
2683     RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2684     CCInfo.AllocateReg(OutgoingArg->getRegister());
2685   } else {
2686     unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
2687     SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2688                                             SpecialArgOffset);
2689     MemOpChains.push_back(ArgStore);
2690   }
2691 }
2692
2693 static bool canGuaranteeTCO(CallingConv::ID CC) {
2694   return CC == CallingConv::Fast;
2695 }
2696
2697 /// Return true if we might ever do TCO for calls with this calling convention.
2698 static bool mayTailCallThisCC(CallingConv::ID CC) {
2699   switch (CC) {
2700   case CallingConv::C:
2701     return true;
2702   default:
2703     return canGuaranteeTCO(CC);
2704   }
2705 }
2706
2707 bool SITargetLowering::isEligibleForTailCallOptimization(
2708     SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2709     const SmallVectorImpl<ISD::OutputArg> &Outs,
2710     const SmallVectorImpl<SDValue> &OutVals,
2711     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2712   if (!mayTailCallThisCC(CalleeCC))
2713     return false;
2714
2715   MachineFunction &MF = DAG.getMachineFunction();
2716   const Function &CallerF = MF.getFunction();
2717   CallingConv::ID CallerCC = CallerF.getCallingConv();
2718   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2719   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2720
2721   // Kernels aren't callable, and don't have a live in return address so it
2722   // doesn't make sense to do a tail call with entry functions.
2723   if (!CallerPreserved)
2724     return false;
2725
2726   bool CCMatch = CallerCC == CalleeCC;
2727
2728   if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2729     if (canGuaranteeTCO(CalleeCC) && CCMatch)
2730       return true;
2731     return false;
2732   }
2733
2734   // TODO: Can we handle var args?
2735   if (IsVarArg)
2736     return false;
2737
2738   for (const Argument &Arg : CallerF.args()) {
2739     if (Arg.hasByValAttr())
2740       return false;
2741   }
2742
2743   LLVMContext &Ctx = *DAG.getContext();
2744
2745   // Check that the call results are passed in the same way.
2746   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2747                                   CCAssignFnForCall(CalleeCC, IsVarArg),
2748                                   CCAssignFnForCall(CallerCC, IsVarArg)))
2749     return false;
2750
2751   // The callee has to preserve all registers the caller needs to preserve.
2752   if (!CCMatch) {
2753     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2754     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2755       return false;
2756   }
2757
2758   // Nothing more to check if the callee is taking no arguments.
2759   if (Outs.empty())
2760     return true;
2761
2762   SmallVector<CCValAssign, 16> ArgLocs;
2763   CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2764
2765   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2766
2767   const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2768   // If the stack arguments for this call do not fit into our own save area then
2769   // the call cannot be made tail.
2770   // TODO: Is this really necessary?
2771   if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2772     return false;
2773
2774   const MachineRegisterInfo &MRI = MF.getRegInfo();
2775   return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2776 }
2777
2778 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2779   if (!CI->isTailCall())
2780     return false;
2781
2782   const Function *ParentFn = CI->getParent()->getParent();
2783   if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2784     return false;
2785   return true;
2786 }
2787
2788 // The wave scratch offset register is used as the global base pointer.
2789 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2790                                     SmallVectorImpl<SDValue> &InVals) const {
2791   SelectionDAG &DAG = CLI.DAG;
2792   const SDLoc &DL = CLI.DL;
2793   SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2794   SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2795   SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2796   SDValue Chain = CLI.Chain;
2797   SDValue Callee = CLI.Callee;
2798   bool &IsTailCall = CLI.IsTailCall;
2799   CallingConv::ID CallConv = CLI.CallConv;
2800   bool IsVarArg = CLI.IsVarArg;
2801   bool IsSibCall = false;
2802   bool IsThisReturn = false;
2803   MachineFunction &MF = DAG.getMachineFunction();
2804
2805   if (Callee.isUndef() || isNullConstant(Callee)) {
2806     if (!CLI.IsTailCall) {
2807       for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
2808         InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
2809     }
2810
2811     return Chain;
2812   }
2813
2814   if (IsVarArg) {
2815     return lowerUnhandledCall(CLI, InVals,
2816                               "unsupported call to variadic function ");
2817   }
2818
2819   if (!CLI.CB)
2820     report_fatal_error("unsupported libcall legalization");
2821
2822   if (!AMDGPUTargetMachine::EnableFixedFunctionABI &&
2823       !CLI.CB->getCalledFunction()) {
2824     return lowerUnhandledCall(CLI, InVals,
2825                               "unsupported indirect call to function ");
2826   }
2827
2828   if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2829     return lowerUnhandledCall(CLI, InVals,
2830                               "unsupported required tail call to function ");
2831   }
2832
2833   if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
2834     // Note the issue is with the CC of the calling function, not of the call
2835     // itself.
2836     return lowerUnhandledCall(CLI, InVals,
2837                           "unsupported call from graphics shader of function ");
2838   }
2839
2840   if (IsTailCall) {
2841     IsTailCall = isEligibleForTailCallOptimization(
2842       Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2843     if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) {
2844       report_fatal_error("failed to perform tail call elimination on a call "
2845                          "site marked musttail");
2846     }
2847
2848     bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2849
2850     // A sibling call is one where we're under the usual C ABI and not planning
2851     // to change that but can still do a tail call:
2852     if (!TailCallOpt && IsTailCall)
2853       IsSibCall = true;
2854
2855     if (IsTailCall)
2856       ++NumTailCalls;
2857   }
2858
2859   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2860   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2861   SmallVector<SDValue, 8> MemOpChains;
2862
2863   // Analyze operands of the call, assigning locations to each operand.
2864   SmallVector<CCValAssign, 16> ArgLocs;
2865   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2866   CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2867
2868   if (AMDGPUTargetMachine::EnableFixedFunctionABI) {
2869     // With a fixed ABI, allocate fixed registers before user arguments.
2870     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2871   }
2872
2873   CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2874
2875   // Get a count of how many bytes are to be pushed on the stack.
2876   unsigned NumBytes = CCInfo.getNextStackOffset();
2877
2878   if (IsSibCall) {
2879     // Since we're not changing the ABI to make this a tail call, the memory
2880     // operands are already available in the caller's incoming argument space.
2881     NumBytes = 0;
2882   }
2883
2884   // FPDiff is the byte offset of the call's argument area from the callee's.
2885   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2886   // by this amount for a tail call. In a sibling call it must be 0 because the
2887   // caller will deallocate the entire stack and the callee still expects its
2888   // arguments to begin at SP+0. Completely unused for non-tail calls.
2889   int32_t FPDiff = 0;
2890   MachineFrameInfo &MFI = MF.getFrameInfo();
2891
2892   // Adjust the stack pointer for the new arguments...
2893   // These operations are automatically eliminated by the prolog/epilog pass
2894   if (!IsSibCall) {
2895     Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2896
2897     SmallVector<SDValue, 4> CopyFromChains;
2898
2899     // In the HSA case, this should be an identity copy.
2900     SDValue ScratchRSrcReg
2901       = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2902     RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2903     CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
2904     Chain = DAG.getTokenFactor(DL, CopyFromChains);
2905   }
2906
2907   MVT PtrVT = MVT::i32;
2908
2909   // Walk the register/memloc assignments, inserting copies/loads.
2910   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2911     CCValAssign &VA = ArgLocs[i];
2912     SDValue Arg = OutVals[i];
2913
2914     // Promote the value if needed.
2915     switch (VA.getLocInfo()) {
2916     case CCValAssign::Full:
2917       break;
2918     case CCValAssign::BCvt:
2919       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2920       break;
2921     case CCValAssign::ZExt:
2922       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2923       break;
2924     case CCValAssign::SExt:
2925       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2926       break;
2927     case CCValAssign::AExt:
2928       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2929       break;
2930     case CCValAssign::FPExt:
2931       Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2932       break;
2933     default:
2934       llvm_unreachable("Unknown loc info!");
2935     }
2936
2937     if (VA.isRegLoc()) {
2938       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2939     } else {
2940       assert(VA.isMemLoc());
2941
2942       SDValue DstAddr;
2943       MachinePointerInfo DstInfo;
2944
2945       unsigned LocMemOffset = VA.getLocMemOffset();
2946       int32_t Offset = LocMemOffset;
2947
2948       SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
2949       MaybeAlign Alignment;
2950
2951       if (IsTailCall) {
2952         ISD::ArgFlagsTy Flags = Outs[i].Flags;
2953         unsigned OpSize = Flags.isByVal() ?
2954           Flags.getByValSize() : VA.getValVT().getStoreSize();
2955
2956         // FIXME: We can have better than the minimum byval required alignment.
2957         Alignment =
2958             Flags.isByVal()
2959                 ? Flags.getNonZeroByValAlign()
2960                 : commonAlignment(Subtarget->getStackAlignment(), Offset);
2961
2962         Offset = Offset + FPDiff;
2963         int FI = MFI.CreateFixedObject(OpSize, Offset, true);
2964
2965         DstAddr = DAG.getFrameIndex(FI, PtrVT);
2966         DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
2967
2968         // Make sure any stack arguments overlapping with where we're storing
2969         // are loaded before this eventual operation. Otherwise they'll be
2970         // clobbered.
2971
2972         // FIXME: Why is this really necessary? This seems to just result in a
2973         // lot of code to copy the stack and write them back to the same
2974         // locations, which are supposed to be immutable?
2975         Chain = addTokenForArgument(Chain, DAG, MFI, FI);
2976       } else {
2977         DstAddr = PtrOff;
2978         DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
2979         Alignment =
2980             commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
2981       }
2982
2983       if (Outs[i].Flags.isByVal()) {
2984         SDValue SizeNode =
2985             DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
2986         SDValue Cpy =
2987             DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
2988                           Outs[i].Flags.getNonZeroByValAlign(),
2989                           /*isVol = */ false, /*AlwaysInline = */ true,
2990                           /*isTailCall = */ false, DstInfo,
2991                           MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
2992
2993         MemOpChains.push_back(Cpy);
2994       } else {
2995         SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo,
2996                                      Alignment ? Alignment->value() : 0);
2997         MemOpChains.push_back(Store);
2998       }
2999     }
3000   }
3001
3002   if (!AMDGPUTargetMachine::EnableFixedFunctionABI) {
3003     // Copy special input registers after user input arguments.
3004     passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3005   }
3006
3007   if (!MemOpChains.empty())
3008     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3009
3010   // Build a sequence of copy-to-reg nodes chained together with token chain
3011   // and flag operands which copy the outgoing args into the appropriate regs.
3012   SDValue InFlag;
3013   for (auto &RegToPass : RegsToPass) {
3014     Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
3015                              RegToPass.second, InFlag);
3016     InFlag = Chain.getValue(1);
3017   }
3018
3019
3020   SDValue PhysReturnAddrReg;
3021   if (IsTailCall) {
3022     // Since the return is being combined with the call, we need to pass on the
3023     // return address.
3024
3025     const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3026     SDValue ReturnAddrReg = CreateLiveInRegister(
3027       DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
3028
3029     PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
3030                                         MVT::i64);
3031     Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
3032     InFlag = Chain.getValue(1);
3033   }
3034
3035   // We don't usually want to end the call-sequence here because we would tidy
3036   // the frame up *after* the call, however in the ABI-changing tail-call case
3037   // we've carefully laid out the parameters so that when sp is reset they'll be
3038   // in the correct location.
3039   if (IsTailCall && !IsSibCall) {
3040     Chain = DAG.getCALLSEQ_END(Chain,
3041                                DAG.getTargetConstant(NumBytes, DL, MVT::i32),
3042                                DAG.getTargetConstant(0, DL, MVT::i32),
3043                                InFlag, DL);
3044     InFlag = Chain.getValue(1);
3045   }
3046
3047   std::vector<SDValue> Ops;
3048   Ops.push_back(Chain);
3049   Ops.push_back(Callee);
3050   // Add a redundant copy of the callee global which will not be legalized, as
3051   // we need direct access to the callee later.
3052   if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3053     const GlobalValue *GV = GSD->getGlobal();
3054     Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3055   } else {
3056     Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3057   }
3058
3059   if (IsTailCall) {
3060     // Each tail call may have to adjust the stack by a different amount, so
3061     // this information must travel along with the operation for eventual
3062     // consumption by emitEpilogue.
3063     Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3064
3065     Ops.push_back(PhysReturnAddrReg);
3066   }
3067
3068   // Add argument registers to the end of the list so that they are known live
3069   // into the call.
3070   for (auto &RegToPass : RegsToPass) {
3071     Ops.push_back(DAG.getRegister(RegToPass.first,
3072                                   RegToPass.second.getValueType()));
3073   }
3074
3075   // Add a register mask operand representing the call-preserved registers.
3076
3077   auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
3078   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3079   assert(Mask && "Missing call preserved mask for calling convention");
3080   Ops.push_back(DAG.getRegisterMask(Mask));
3081
3082   if (InFlag.getNode())
3083     Ops.push_back(InFlag);
3084
3085   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3086
3087   // If we're doing a tall call, use a TC_RETURN here rather than an
3088   // actual call instruction.
3089   if (IsTailCall) {
3090     MFI.setHasTailCall();
3091     return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
3092   }
3093
3094   // Returns a chain and a flag for retval copy to use.
3095   SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
3096   Chain = Call.getValue(0);
3097   InFlag = Call.getValue(1);
3098
3099   uint64_t CalleePopBytes = NumBytes;
3100   Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
3101                              DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
3102                              InFlag, DL);
3103   if (!Ins.empty())
3104     InFlag = Chain.getValue(1);
3105
3106   // Handle result values, copying them out of physregs into vregs that we
3107   // return.
3108   return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
3109                          InVals, IsThisReturn,
3110                          IsThisReturn ? OutVals[0] : SDValue());
3111 }
3112
3113 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3114 // except for applying the wave size scale to the increment amount.
3115 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(
3116     SDValue Op, SelectionDAG &DAG) const {
3117   const MachineFunction &MF = DAG.getMachineFunction();
3118   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3119
3120   SDLoc dl(Op);
3121   EVT VT = Op.getValueType();
3122   SDValue Tmp1 = Op;
3123   SDValue Tmp2 = Op.getValue(1);
3124   SDValue Tmp3 = Op.getOperand(2);
3125   SDValue Chain = Tmp1.getOperand(0);
3126
3127   Register SPReg = Info->getStackPtrOffsetReg();
3128
3129   // Chain the dynamic stack allocation so that it doesn't modify the stack
3130   // pointer when other instructions are using the stack.
3131   Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
3132
3133   SDValue Size  = Tmp2.getOperand(1);
3134   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
3135   Chain = SP.getValue(1);
3136   MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
3137   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
3138   const TargetFrameLowering *TFL = ST.getFrameLowering();
3139   unsigned Opc =
3140     TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp ?
3141     ISD::ADD : ISD::SUB;
3142
3143   SDValue ScaledSize = DAG.getNode(
3144       ISD::SHL, dl, VT, Size,
3145       DAG.getConstant(ST.getWavefrontSizeLog2(), dl, MVT::i32));
3146
3147   Align StackAlign = TFL->getStackAlign();
3148   Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
3149   if (Alignment && *Alignment > StackAlign) {
3150     Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
3151                        DAG.getConstant(-(uint64_t)Alignment->value()
3152                                            << ST.getWavefrontSizeLog2(),
3153                                        dl, VT));
3154   }
3155
3156   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);    // Output chain
3157   Tmp2 = DAG.getCALLSEQ_END(
3158       Chain, DAG.getIntPtrConstant(0, dl, true),
3159       DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
3160
3161   return DAG.getMergeValues({Tmp1, Tmp2}, dl);
3162 }
3163
3164 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3165                                                   SelectionDAG &DAG) const {
3166   // We only handle constant sizes here to allow non-entry block, static sized
3167   // allocas. A truly dynamic value is more difficult to support because we
3168   // don't know if the size value is uniform or not. If the size isn't uniform,
3169   // we would need to do a wave reduction to get the maximum size to know how
3170   // much to increment the uniform stack pointer.
3171   SDValue Size = Op.getOperand(1);
3172   if (isa<ConstantSDNode>(Size))
3173       return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
3174
3175   return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
3176 }
3177
3178 Register SITargetLowering::getRegisterByName(const char* RegName, LLT VT,
3179                                              const MachineFunction &MF) const {
3180   Register Reg = StringSwitch<Register>(RegName)
3181     .Case("m0", AMDGPU::M0)
3182     .Case("exec", AMDGPU::EXEC)
3183     .Case("exec_lo", AMDGPU::EXEC_LO)
3184     .Case("exec_hi", AMDGPU::EXEC_HI)
3185     .Case("flat_scratch", AMDGPU::FLAT_SCR)
3186     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
3187     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
3188     .Default(Register());
3189
3190   if (Reg == AMDGPU::NoRegister) {
3191     report_fatal_error(Twine("invalid register name \""
3192                              + StringRef(RegName)  + "\"."));
3193
3194   }
3195
3196   if (!Subtarget->hasFlatScrRegister() &&
3197        Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
3198     report_fatal_error(Twine("invalid register \""
3199                              + StringRef(RegName)  + "\" for subtarget."));
3200   }
3201
3202   switch (Reg) {
3203   case AMDGPU::M0:
3204   case AMDGPU::EXEC_LO:
3205   case AMDGPU::EXEC_HI:
3206   case AMDGPU::FLAT_SCR_LO:
3207   case AMDGPU::FLAT_SCR_HI:
3208     if (VT.getSizeInBits() == 32)
3209       return Reg;
3210     break;
3211   case AMDGPU::EXEC:
3212   case AMDGPU::FLAT_SCR:
3213     if (VT.getSizeInBits() == 64)
3214       return Reg;
3215     break;
3216   default:
3217     llvm_unreachable("missing register type checking");
3218   }
3219
3220   report_fatal_error(Twine("invalid type for register \""
3221                            + StringRef(RegName) + "\"."));
3222 }
3223
3224 // If kill is not the last instruction, split the block so kill is always a
3225 // proper terminator.
3226 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
3227                                                     MachineBasicBlock *BB) const {
3228   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3229
3230   MachineBasicBlock::iterator SplitPoint(&MI);
3231   ++SplitPoint;
3232
3233   if (SplitPoint == BB->end()) {
3234     // Don't bother with a new block.
3235     MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3236     return BB;
3237   }
3238
3239   MachineFunction *MF = BB->getParent();
3240   MachineBasicBlock *SplitBB
3241     = MF->CreateMachineBasicBlock(BB->getBasicBlock());
3242
3243   MF->insert(++MachineFunction::iterator(BB), SplitBB);
3244   SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
3245
3246   SplitBB->transferSuccessorsAndUpdatePHIs(BB);
3247   BB->addSuccessor(SplitBB);
3248
3249   MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3250   return SplitBB;
3251 }
3252
3253 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3254 // \p MI will be the only instruction in the loop body block. Otherwise, it will
3255 // be the first instruction in the remainder block.
3256 //
3257 /// \returns { LoopBody, Remainder }
3258 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3259 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3260   MachineFunction *MF = MBB.getParent();
3261   MachineBasicBlock::iterator I(&MI);
3262
3263   // To insert the loop we need to split the block. Move everything after this
3264   // point to a new block, and insert a new empty block between the two.
3265   MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3266   MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3267   MachineFunction::iterator MBBI(MBB);
3268   ++MBBI;
3269
3270   MF->insert(MBBI, LoopBB);
3271   MF->insert(MBBI, RemainderBB);
3272
3273   LoopBB->addSuccessor(LoopBB);
3274   LoopBB->addSuccessor(RemainderBB);
3275
3276   // Move the rest of the block into a new block.
3277   RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3278
3279   if (InstInLoop) {
3280     auto Next = std::next(I);
3281
3282     // Move instruction to loop body.
3283     LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3284
3285     // Move the rest of the block.
3286     RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3287   } else {
3288     RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3289   }
3290
3291   MBB.addSuccessor(LoopBB);
3292
3293   return std::make_pair(LoopBB, RemainderBB);
3294 }
3295
3296 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3297 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3298   MachineBasicBlock *MBB = MI.getParent();
3299   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3300   auto I = MI.getIterator();
3301   auto E = std::next(I);
3302
3303   BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3304     .addImm(0);
3305
3306   MIBundleBuilder Bundler(*MBB, I, E);
3307   finalizeBundle(*MBB, Bundler.begin());
3308 }
3309
3310 MachineBasicBlock *
3311 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3312                                          MachineBasicBlock *BB) const {
3313   const DebugLoc &DL = MI.getDebugLoc();
3314
3315   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3316
3317   MachineBasicBlock *LoopBB;
3318   MachineBasicBlock *RemainderBB;
3319   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3320
3321   // Apparently kill flags are only valid if the def is in the same block?
3322   if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3323     Src->setIsKill(false);
3324
3325   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3326
3327   MachineBasicBlock::iterator I = LoopBB->end();
3328
3329   const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3330     AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3331
3332   // Clear TRAP_STS.MEM_VIOL
3333   BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3334     .addImm(0)
3335     .addImm(EncodedReg);
3336
3337   bundleInstWithWaitcnt(MI);
3338
3339   Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3340
3341   // Load and check TRAP_STS.MEM_VIOL
3342   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3343     .addImm(EncodedReg);
3344
3345   // FIXME: Do we need to use an isel pseudo that may clobber scc?
3346   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3347     .addReg(Reg, RegState::Kill)
3348     .addImm(0);
3349   BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3350     .addMBB(LoopBB);
3351
3352   return RemainderBB;
3353 }
3354
3355 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3356 // wavefront. If the value is uniform and just happens to be in a VGPR, this
3357 // will only do one iteration. In the worst case, this will loop 64 times.
3358 //
3359 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3360 static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
3361   const SIInstrInfo *TII,
3362   MachineRegisterInfo &MRI,
3363   MachineBasicBlock &OrigBB,
3364   MachineBasicBlock &LoopBB,
3365   const DebugLoc &DL,
3366   const MachineOperand &IdxReg,
3367   unsigned InitReg,
3368   unsigned ResultReg,
3369   unsigned PhiReg,
3370   unsigned InitSaveExecReg,
3371   int Offset,
3372   bool UseGPRIdxMode,
3373   bool IsIndirectSrc) {
3374   MachineFunction *MF = OrigBB.getParent();
3375   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3376   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3377   MachineBasicBlock::iterator I = LoopBB.begin();
3378
3379   const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3380   Register PhiExec = MRI.createVirtualRegister(BoolRC);
3381   Register NewExec = MRI.createVirtualRegister(BoolRC);
3382   Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3383   Register CondReg = MRI.createVirtualRegister(BoolRC);
3384
3385   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3386     .addReg(InitReg)
3387     .addMBB(&OrigBB)
3388     .addReg(ResultReg)
3389     .addMBB(&LoopBB);
3390
3391   BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3392     .addReg(InitSaveExecReg)
3393     .addMBB(&OrigBB)
3394     .addReg(NewExec)
3395     .addMBB(&LoopBB);
3396
3397   // Read the next variant <- also loop target.
3398   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3399     .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
3400
3401   // Compare the just read M0 value to all possible Idx values.
3402   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3403     .addReg(CurrentIdxReg)
3404     .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
3405
3406   // Update EXEC, save the original EXEC value to VCC.
3407   BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3408                                                 : AMDGPU::S_AND_SAVEEXEC_B64),
3409           NewExec)
3410     .addReg(CondReg, RegState::Kill);
3411
3412   MRI.setSimpleHint(NewExec, CondReg);
3413
3414   if (UseGPRIdxMode) {
3415     unsigned IdxReg;
3416     if (Offset == 0) {
3417       IdxReg = CurrentIdxReg;
3418     } else {
3419       IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3420       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
3421         .addReg(CurrentIdxReg, RegState::Kill)
3422         .addImm(Offset);
3423     }
3424     unsigned IdxMode = IsIndirectSrc ?
3425       AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3426     MachineInstr *SetOn =
3427       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3428       .addReg(IdxReg, RegState::Kill)
3429       .addImm(IdxMode);
3430     SetOn->getOperand(3).setIsUndef();
3431   } else {
3432     // Move index from VCC into M0
3433     if (Offset == 0) {
3434       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3435         .addReg(CurrentIdxReg, RegState::Kill);
3436     } else {
3437       BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3438         .addReg(CurrentIdxReg, RegState::Kill)
3439         .addImm(Offset);
3440     }
3441   }
3442
3443   // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3444   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3445   MachineInstr *InsertPt =
3446     BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3447                                                   : AMDGPU::S_XOR_B64_term), Exec)
3448       .addReg(Exec)
3449       .addReg(NewExec);
3450
3451   // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3452   // s_cbranch_scc0?
3453
3454   // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3455   BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3456     .addMBB(&LoopBB);
3457
3458   return InsertPt->getIterator();
3459 }
3460
3461 // This has slightly sub-optimal regalloc when the source vector is killed by
3462 // the read. The register allocator does not understand that the kill is
3463 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
3464 // subregister from it, using 1 more VGPR than necessary. This was saved when
3465 // this was expanded after register allocation.
3466 static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
3467                                                   MachineBasicBlock &MBB,
3468                                                   MachineInstr &MI,
3469                                                   unsigned InitResultReg,
3470                                                   unsigned PhiReg,
3471                                                   int Offset,
3472                                                   bool UseGPRIdxMode,
3473                                                   bool IsIndirectSrc) {
3474   MachineFunction *MF = MBB.getParent();
3475   const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3476   const SIRegisterInfo *TRI = ST.getRegisterInfo();
3477   MachineRegisterInfo &MRI = MF->getRegInfo();
3478   const DebugLoc &DL = MI.getDebugLoc();
3479   MachineBasicBlock::iterator I(&MI);
3480
3481   const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3482   Register DstReg = MI.getOperand(0).getReg();
3483   Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3484   Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3485   unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3486   unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3487
3488   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3489
3490   // Save the EXEC mask
3491   BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3492     .addReg(Exec);
3493
3494   MachineBasicBlock *LoopBB;
3495   MachineBasicBlock *RemainderBB;
3496   std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3497
3498   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3499
3500   auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3501                                       InitResultReg, DstReg, PhiReg, TmpExec,
3502                                       Offset, UseGPRIdxMode, IsIndirectSrc);
3503   MachineBasicBlock* LandingPad = MF->CreateMachineBasicBlock();
3504   MachineFunction::iterator MBBI(LoopBB);
3505   ++MBBI;
3506   MF->insert(MBBI, LandingPad);
3507   LoopBB->removeSuccessor(RemainderBB);
3508   LandingPad->addSuccessor(RemainderBB);
3509   LoopBB->addSuccessor(LandingPad);
3510   MachineBasicBlock::iterator First = LandingPad->begin();
3511   BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
3512     .addReg(SaveExec);
3513
3514   return InsPt;
3515 }
3516
3517 // Returns subreg index, offset
3518 static std::pair<unsigned, int>
3519 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3520                             const TargetRegisterClass *SuperRC,
3521                             unsigned VecReg,
3522                             int Offset) {
3523   int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3524
3525   // Skip out of bounds offsets, or else we would end up using an undefined
3526   // register.
3527   if (Offset >= NumElts || Offset < 0)
3528     return std::make_pair(AMDGPU::sub0, Offset);
3529
3530   return std::make_pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
3531 }
3532
3533 // Return true if the index is an SGPR and was set.
3534 static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3535                                  MachineRegisterInfo &MRI,
3536                                  MachineInstr &MI,
3537                                  int Offset,
3538                                  bool UseGPRIdxMode,
3539                                  bool IsIndirectSrc) {
3540   MachineBasicBlock *MBB = MI.getParent();
3541   const DebugLoc &DL = MI.getDebugLoc();
3542   MachineBasicBlock::iterator I(&MI);
3543
3544   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3545   const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3546
3547   assert(Idx->getReg() != AMDGPU::NoRegister);
3548
3549   if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
3550     return false;
3551
3552   if (UseGPRIdxMode) {
3553     unsigned IdxMode = IsIndirectSrc ?
3554       AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3555     if (Offset == 0) {
3556       MachineInstr *SetOn =
3557           BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3558               .add(*Idx)
3559               .addImm(IdxMode);
3560
3561       SetOn->getOperand(3).setIsUndef();
3562     } else {
3563       Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3564       BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3565           .add(*Idx)
3566           .addImm(Offset);
3567       MachineInstr *SetOn =
3568         BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3569         .addReg(Tmp, RegState::Kill)
3570         .addImm(IdxMode);
3571
3572       SetOn->getOperand(3).setIsUndef();
3573     }
3574
3575     return true;
3576   }
3577
3578   if (Offset == 0) {
3579     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3580       .add(*Idx);
3581   } else {
3582     BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3583       .add(*Idx)
3584       .addImm(Offset);
3585   }
3586
3587   return true;
3588 }
3589
3590 // Control flow needs to be inserted if indexing with a VGPR.
3591 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3592                                           MachineBasicBlock &MBB,
3593                                           const GCNSubtarget &ST) {
3594   const SIInstrInfo *TII = ST.getInstrInfo();
3595   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3596   MachineFunction *MF = MBB.getParent();
3597   MachineRegisterInfo &MRI = MF->getRegInfo();
3598
3599   Register Dst = MI.getOperand(0).getReg();
3600   Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3601   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3602
3603   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3604
3605   unsigned SubReg;
3606   std::tie(SubReg, Offset)
3607     = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3608
3609   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3610
3611   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
3612     MachineBasicBlock::iterator I(&MI);
3613     const DebugLoc &DL = MI.getDebugLoc();
3614
3615     if (UseGPRIdxMode) {
3616       // TODO: Look at the uses to avoid the copy. This may require rescheduling
3617       // to avoid interfering with other uses, so probably requires a new
3618       // optimization pass.
3619       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3620         .addReg(SrcReg, RegState::Undef, SubReg)
3621         .addReg(SrcReg, RegState::Implicit)
3622         .addReg(AMDGPU::M0, RegState::Implicit);
3623       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3624     } else {
3625       BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3626         .addReg(SrcReg, RegState::Undef, SubReg)
3627         .addReg(SrcReg, RegState::Implicit);
3628     }
3629
3630     MI.eraseFromParent();
3631
3632     return &MBB;
3633   }
3634
3635   const DebugLoc &DL = MI.getDebugLoc();
3636   MachineBasicBlock::iterator I(&MI);
3637
3638   Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3639   Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3640
3641   BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3642
3643   auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
3644                               Offset, UseGPRIdxMode, true);
3645   MachineBasicBlock *LoopBB = InsPt->getParent();
3646
3647   if (UseGPRIdxMode) {
3648     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3649       .addReg(SrcReg, RegState::Undef, SubReg)
3650       .addReg(SrcReg, RegState::Implicit)
3651       .addReg(AMDGPU::M0, RegState::Implicit);
3652     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3653   } else {
3654     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3655       .addReg(SrcReg, RegState::Undef, SubReg)
3656       .addReg(SrcReg, RegState::Implicit);
3657   }
3658
3659   MI.eraseFromParent();
3660
3661   return LoopBB;
3662 }
3663
3664 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3665                                           MachineBasicBlock &MBB,
3666                                           const GCNSubtarget &ST) {
3667   const SIInstrInfo *TII = ST.getInstrInfo();
3668   const SIRegisterInfo &TRI = TII->getRegisterInfo();
3669   MachineFunction *MF = MBB.getParent();
3670   MachineRegisterInfo &MRI = MF->getRegInfo();
3671
3672   Register Dst = MI.getOperand(0).getReg();
3673   const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3674   const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3675   const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3676   int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3677   const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3678
3679   // This can be an immediate, but will be folded later.
3680   assert(Val->getReg());
3681
3682   unsigned SubReg;
3683   std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3684                                                          SrcVec->getReg(),
3685                                                          Offset);
3686   const bool UseGPRIdxMode = ST.useVGPRIndexMode();
3687
3688   if (Idx->getReg() == AMDGPU::NoRegister) {
3689     MachineBasicBlock::iterator I(&MI);
3690     const DebugLoc &DL = MI.getDebugLoc();
3691
3692     assert(Offset == 0);
3693
3694     BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3695         .add(*SrcVec)
3696         .add(*Val)
3697         .addImm(SubReg);
3698
3699     MI.eraseFromParent();
3700     return &MBB;
3701   }
3702
3703   const MCInstrDesc &MovRelDesc
3704     = TII->getIndirectRegWritePseudo(TRI.getRegSizeInBits(*VecRC), 32, false);
3705
3706   if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
3707     MachineBasicBlock::iterator I(&MI);
3708     const DebugLoc &DL = MI.getDebugLoc();
3709     BuildMI(MBB, I, DL, MovRelDesc, Dst)
3710       .addReg(SrcVec->getReg())
3711       .add(*Val)
3712       .addImm(SubReg);
3713     if (UseGPRIdxMode)
3714       BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3715
3716     MI.eraseFromParent();
3717     return &MBB;
3718   }
3719
3720   if (Val->isReg())
3721     MRI.clearKillFlags(Val->getReg());
3722
3723   const DebugLoc &DL = MI.getDebugLoc();
3724
3725   Register PhiReg = MRI.createVirtualRegister(VecRC);
3726
3727   auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
3728                               Offset, UseGPRIdxMode, false);
3729   MachineBasicBlock *LoopBB = InsPt->getParent();
3730
3731   BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
3732     .addReg(PhiReg)
3733     .add(*Val)
3734     .addImm(AMDGPU::sub0);
3735   if (UseGPRIdxMode)
3736     BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3737
3738   MI.eraseFromParent();
3739   return LoopBB;
3740 }
3741
3742 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3743   MachineInstr &MI, MachineBasicBlock *BB) const {
3744
3745   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3746   MachineFunction *MF = BB->getParent();
3747   SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3748
3749   switch (MI.getOpcode()) {
3750   case AMDGPU::S_UADDO_PSEUDO:
3751   case AMDGPU::S_USUBO_PSEUDO: {
3752     const DebugLoc &DL = MI.getDebugLoc();
3753     MachineOperand &Dest0 = MI.getOperand(0);
3754     MachineOperand &Dest1 = MI.getOperand(1);
3755     MachineOperand &Src0 = MI.getOperand(2);
3756     MachineOperand &Src1 = MI.getOperand(3);
3757
3758     unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
3759                        ? AMDGPU::S_ADD_I32
3760                        : AMDGPU::S_SUB_I32;
3761     BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg()).add(Src0).add(Src1);
3762
3763     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
3764         .addImm(1)
3765         .addImm(0);
3766
3767     MI.eraseFromParent();
3768     return BB;
3769   }
3770   case AMDGPU::S_ADD_U64_PSEUDO:
3771   case AMDGPU::S_SUB_U64_PSEUDO: {
3772     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3773     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3774     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3775     const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3776     const DebugLoc &DL = MI.getDebugLoc();
3777
3778     MachineOperand &Dest = MI.getOperand(0);
3779     MachineOperand &Src0 = MI.getOperand(1);
3780     MachineOperand &Src1 = MI.getOperand(2);
3781
3782     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3783     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3784
3785     MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
3786         MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3787     MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
3788         MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3789
3790     MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
3791         MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
3792     MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
3793         MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
3794
3795     bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3796
3797     unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3798     unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3799     BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0).add(Src0Sub0).add(Src1Sub0);
3800     BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1).add(Src0Sub1).add(Src1Sub1);
3801     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3802         .addReg(DestSub0)
3803         .addImm(AMDGPU::sub0)
3804         .addReg(DestSub1)
3805         .addImm(AMDGPU::sub1);
3806     MI.eraseFromParent();
3807     return BB;
3808   }
3809   case AMDGPU::V_ADD_U64_PSEUDO:
3810   case AMDGPU::V_SUB_U64_PSEUDO: {
3811     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3812     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3813     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3814     const DebugLoc &DL = MI.getDebugLoc();
3815
3816     bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
3817
3818     const auto *CarryRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3819
3820     Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3821     Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3822
3823     Register CarryReg = MRI.createVirtualRegister(CarryRC);
3824     Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
3825
3826     MachineOperand &Dest = MI.getOperand(0);
3827     MachineOperand &Src0 = MI.getOperand(1);
3828     MachineOperand &Src1 = MI.getOperand(2);
3829
3830     const TargetRegisterClass *Src0RC = Src0.isReg()
3831                                             ? MRI.getRegClass(Src0.getReg())
3832                                             : &AMDGPU::VReg_64RegClass;
3833     const TargetRegisterClass *Src1RC = Src1.isReg()
3834                                             ? MRI.getRegClass(Src1.getReg())
3835                                             : &AMDGPU::VReg_64RegClass;
3836
3837     const TargetRegisterClass *Src0SubRC =
3838         TRI->getSubRegClass(Src0RC, AMDGPU::sub0);
3839     const TargetRegisterClass *Src1SubRC =
3840         TRI->getSubRegClass(Src1RC, AMDGPU::sub1);
3841
3842     MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
3843         MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
3844     MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
3845         MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
3846
3847     MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
3848         MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
3849     MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
3850         MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
3851
3852     unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
3853     MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3854                                .addReg(CarryReg, RegState::Define)
3855                                .add(SrcReg0Sub0)
3856                                .add(SrcReg1Sub0)
3857                                .addImm(0); // clamp bit
3858
3859     unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
3860     MachineInstr *HiHalf =
3861         BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3862             .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
3863             .add(SrcReg0Sub1)
3864             .add(SrcReg1Sub1)
3865             .addReg(CarryReg, RegState::Kill)
3866             .addImm(0); // clamp bit
3867
3868     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3869         .addReg(DestSub0)
3870         .addImm(AMDGPU::sub0)
3871         .addReg(DestSub1)
3872         .addImm(AMDGPU::sub1);
3873     TII->legalizeOperands(*LoHalf);
3874     TII->legalizeOperands(*HiHalf);
3875     MI.eraseFromParent();
3876     return BB;
3877   }
3878   case AMDGPU::S_ADD_CO_PSEUDO:
3879   case AMDGPU::S_SUB_CO_PSEUDO: {
3880     // This pseudo has a chance to be selected
3881     // only from uniform add/subcarry node. All the VGPR operands
3882     // therefore assumed to be splat vectors.
3883     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3884     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3885     const SIRegisterInfo *TRI = ST.getRegisterInfo();
3886     MachineBasicBlock::iterator MII = MI;
3887     const DebugLoc &DL = MI.getDebugLoc();
3888     MachineOperand &Dest = MI.getOperand(0);
3889     MachineOperand &CarryDest = MI.getOperand(1);
3890     MachineOperand &Src0 = MI.getOperand(2);
3891     MachineOperand &Src1 = MI.getOperand(3);
3892     MachineOperand &Src2 = MI.getOperand(4);
3893     unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
3894                        ? AMDGPU::S_ADDC_U32
3895                        : AMDGPU::S_SUBB_U32;
3896     if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
3897       Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3898       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
3899           .addReg(Src0.getReg());
3900       Src0.setReg(RegOp0);
3901     }
3902     if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
3903       Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3904       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
3905           .addReg(Src1.getReg());
3906       Src1.setReg(RegOp1);
3907     }
3908     Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
3909     if (TRI->isVectorRegister(MRI, Src2.getReg())) {
3910       BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
3911           .addReg(Src2.getReg());
3912       Src2.setReg(RegOp2);
3913     }
3914
3915     if (TRI->getRegSizeInBits(*MRI.getRegClass(Src2.getReg())) == 64) {
3916       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
3917           .addReg(Src2.getReg())
3918           .addImm(0);
3919     } else {
3920       BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMPK_LG_U32))
3921           .addReg(Src2.getReg())
3922           .addImm(0);
3923     }
3924
3925     BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg()).add(Src0).add(Src1);
3926
3927     BuildMI(*BB, MII, DL, TII->get(AMDGPU::COPY), CarryDest.getReg())
3928       .addReg(AMDGPU::SCC);
3929     MI.eraseFromParent();
3930     return BB;
3931   }
3932   case AMDGPU::SI_INIT_M0: {
3933     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
3934             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3935         .add(MI.getOperand(0));
3936     MI.eraseFromParent();
3937     return BB;
3938   }
3939   case AMDGPU::SI_INIT_EXEC:
3940     // This should be before all vector instructions.
3941     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
3942             AMDGPU::EXEC)
3943         .addImm(MI.getOperand(0).getImm());
3944     MI.eraseFromParent();
3945     return BB;
3946
3947   case AMDGPU::SI_INIT_EXEC_LO:
3948     // This should be before all vector instructions.
3949     BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
3950             AMDGPU::EXEC_LO)
3951         .addImm(MI.getOperand(0).getImm());
3952     MI.eraseFromParent();
3953     return BB;
3954
3955   case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
3956     // Extract the thread count from an SGPR input and set EXEC accordingly.
3957     // Since BFM can't shift by 64, handle that case with CMP + CMOV.
3958     //
3959     // S_BFE_U32 count, input, {shift, 7}
3960     // S_BFM_B64 exec, count, 0
3961     // S_CMP_EQ_U32 count, 64
3962     // S_CMOV_B64 exec, -1
3963     MachineInstr *FirstMI = &*BB->begin();
3964     MachineRegisterInfo &MRI = MF->getRegInfo();
3965     Register InputReg = MI.getOperand(0).getReg();
3966     Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3967     bool Found = false;
3968
3969     // Move the COPY of the input reg to the beginning, so that we can use it.
3970     for (auto I = BB->begin(); I != &MI; I++) {
3971       if (I->getOpcode() != TargetOpcode::COPY ||
3972           I->getOperand(0).getReg() != InputReg)
3973         continue;
3974
3975       if (I == FirstMI) {
3976         FirstMI = &*++BB->begin();
3977       } else {
3978         I->removeFromParent();
3979         BB->insert(FirstMI, &*I);
3980       }
3981       Found = true;
3982       break;
3983     }
3984     assert(Found);
3985     (void)Found;
3986
3987     // This should be before all vector instructions.
3988     unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
3989     bool isWave32 = getSubtarget()->isWave32();
3990     unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3991     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
3992         .addReg(InputReg)
3993         .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
3994     BuildMI(*BB, FirstMI, DebugLoc(),
3995             TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
3996             Exec)
3997         .addReg(CountReg)
3998         .addImm(0);
3999     BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
4000         .addReg(CountReg, RegState::Kill)
4001         .addImm(getSubtarget()->getWavefrontSize());
4002     BuildMI(*BB, FirstMI, DebugLoc(),
4003             TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
4004             Exec)
4005         .addImm(-1);
4006     MI.eraseFromParent();
4007     return BB;
4008   }
4009
4010   case AMDGPU::GET_GROUPSTATICSIZE: {
4011     assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
4012            getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
4013     DebugLoc DL = MI.getDebugLoc();
4014     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
4015         .add(MI.getOperand(0))
4016         .addImm(MFI->getLDSSize());
4017     MI.eraseFromParent();
4018     return BB;
4019   }
4020   case AMDGPU::SI_INDIRECT_SRC_V1:
4021   case AMDGPU::SI_INDIRECT_SRC_V2:
4022   case AMDGPU::SI_INDIRECT_SRC_V4:
4023   case AMDGPU::SI_INDIRECT_SRC_V8:
4024   case AMDGPU::SI_INDIRECT_SRC_V16:
4025   case AMDGPU::SI_INDIRECT_SRC_V32:
4026     return emitIndirectSrc(MI, *BB, *getSubtarget());
4027   case AMDGPU::SI_INDIRECT_DST_V1:
4028   case AMDGPU::SI_INDIRECT_DST_V2:
4029   case AMDGPU::SI_INDIRECT_DST_V4:
4030   case AMDGPU::SI_INDIRECT_DST_V8:
4031   case AMDGPU::SI_INDIRECT_DST_V16:
4032   case AMDGPU::SI_INDIRECT_DST_V32:
4033     return emitIndirectDst(MI, *BB, *getSubtarget());
4034   case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
4035   case AMDGPU::SI_KILL_I1_PSEUDO:
4036     return splitKillBlock(MI, BB);
4037   case AMDGPU::V_CNDMASK_B64_PSEUDO: {
4038     MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4039     const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4040     const SIRegisterInfo *TRI = ST.getRegisterInfo();
4041
4042     Register Dst = MI.getOperand(0).getReg();
4043     Register Src0 = MI.getOperand(1).getReg();
4044     Register Src1 = MI.getOperand(2).getReg();
4045     const DebugLoc &DL = MI.getDebugLoc();
4046     Register SrcCond = MI.getOperand(3).getReg();
4047
4048     Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4049     Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4050     const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
4051     Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
4052
4053     BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
4054       .addReg(SrcCond);
4055     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
4056       .addImm(0)
4057       .addReg(Src0, 0, AMDGPU::sub0)
4058       .addImm(0)
4059       .addReg(Src1, 0, AMDGPU::sub0)
4060       .addReg(SrcCondCopy);
4061     BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
4062       .addImm(0)
4063       .addReg(Src0, 0, AMDGPU::sub1)
4064       .addImm(0)
4065       .addReg(Src1, 0, AMDGPU::sub1)
4066       .addReg(SrcCondCopy);
4067
4068     BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
4069       .addReg(DstLo)
4070       .addImm(AMDGPU::sub0)
4071       .addReg(DstHi)
4072       .addImm(AMDGPU::sub1);
4073     MI.eraseFromParent();
4074     return BB;
4075   }
4076   case AMDGPU::SI_BR_UNDEF: {
4077     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4078     const DebugLoc &DL = MI.getDebugLoc();
4079     MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4080                            .add(MI.getOperand(0));
4081     Br->getOperand(1).setIsUndef(true); // read undef SCC
4082     MI.eraseFromParent();
4083     return BB;
4084   }
4085   case AMDGPU::ADJCALLSTACKUP:
4086   case AMDGPU::ADJCALLSTACKDOWN: {
4087     const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
4088     MachineInstrBuilder MIB(*MF, &MI);
4089
4090     // Add an implicit use of the frame offset reg to prevent the restore copy
4091     // inserted after the call from being reorderd after stack operations in the
4092     // the caller's frame.
4093     MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
4094         .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
4095         .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
4096     return BB;
4097   }
4098   case AMDGPU::SI_CALL_ISEL: {
4099     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4100     const DebugLoc &DL = MI.getDebugLoc();
4101
4102     unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
4103
4104     MachineInstrBuilder MIB;
4105     MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
4106
4107     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
4108       MIB.add(MI.getOperand(I));
4109
4110     MIB.cloneMemRefs(MI);
4111     MI.eraseFromParent();
4112     return BB;
4113   }
4114   case AMDGPU::V_ADD_I32_e32:
4115   case AMDGPU::V_SUB_I32_e32:
4116   case AMDGPU::V_SUBREV_I32_e32: {
4117     // TODO: Define distinct V_*_I32_Pseudo instructions instead.
4118     const DebugLoc &DL = MI.getDebugLoc();
4119     unsigned Opc = MI.getOpcode();
4120
4121     bool NeedClampOperand = false;
4122     if (TII->pseudoToMCOpcode(Opc) == -1) {
4123       Opc = AMDGPU::getVOPe64(Opc);
4124       NeedClampOperand = true;
4125     }
4126
4127     auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
4128     if (TII->isVOP3(*I)) {
4129       const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4130       const SIRegisterInfo *TRI = ST.getRegisterInfo();
4131       I.addReg(TRI->getVCC(), RegState::Define);
4132     }
4133     I.add(MI.getOperand(1))
4134      .add(MI.getOperand(2));
4135     if (NeedClampOperand)
4136       I.addImm(0); // clamp bit for e64 encoding
4137
4138     TII->legalizeOperands(*I);
4139
4140     MI.eraseFromParent();
4141     return BB;
4142   }
4143   case AMDGPU::DS_GWS_INIT:
4144   case AMDGPU::DS_GWS_SEMA_V:
4145   case AMDGPU::DS_GWS_SEMA_BR:
4146   case AMDGPU::DS_GWS_SEMA_P:
4147   case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
4148   case AMDGPU::DS_GWS_BARRIER:
4149     // A s_waitcnt 0 is required to be the instruction immediately following.
4150     if (getSubtarget()->hasGWSAutoReplay()) {
4151       bundleInstWithWaitcnt(MI);
4152       return BB;
4153     }
4154
4155     return emitGWSMemViolTestLoop(MI, BB);
4156   case AMDGPU::S_SETREG_B32: {
4157     if (!getSubtarget()->hasDenormModeInst())
4158       return BB;
4159
4160     // Try to optimize cases that only set the denormal mode or rounding mode.
4161     //
4162     // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
4163     // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
4164     // instead.
4165     //
4166     // FIXME: This could be predicates on the immediate, but tablegen doesn't
4167     // allow you to have a no side effect instruction in the output of a
4168     // sideeffecting pattern.
4169
4170     // TODO: Should also emit a no side effects pseudo if only FP bits are
4171     // touched, even if not all of them or to a variable.
4172     unsigned ID, Offset, Width;
4173     AMDGPU::Hwreg::decodeHwreg(MI.getOperand(1).getImm(), ID, Offset, Width);
4174     if (ID != AMDGPU::Hwreg::ID_MODE)
4175       return BB;
4176
4177     const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
4178     const unsigned SetMask = WidthMask << Offset;
4179     unsigned SetDenormOp = 0;
4180     unsigned SetRoundOp = 0;
4181
4182     // The dedicated instructions can only set the whole denorm or round mode at
4183     // once, not a subset of bits in either.
4184     if (Width == 8 && (SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
4185                                   AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask) {
4186       // If this fully sets both the round and denorm mode, emit the two
4187       // dedicated instructions for these.
4188       assert(Offset == 0);
4189       SetRoundOp = AMDGPU::S_ROUND_MODE;
4190       SetDenormOp = AMDGPU::S_DENORM_MODE;
4191     } else if (Width == 4) {
4192       if ((SetMask & AMDGPU::Hwreg::FP_ROUND_MASK) == SetMask) {
4193         SetRoundOp = AMDGPU::S_ROUND_MODE;
4194         assert(Offset == 0);
4195       } else if ((SetMask & AMDGPU::Hwreg::FP_DENORM_MASK) == SetMask) {
4196         SetDenormOp = AMDGPU::S_DENORM_MODE;
4197         assert(Offset == 4);
4198       }
4199     }
4200
4201     if (SetRoundOp || SetDenormOp) {
4202       MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4203       MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
4204       if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
4205         unsigned ImmVal = Def->getOperand(1).getImm();
4206         if (SetRoundOp) {
4207           BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
4208             .addImm(ImmVal & 0xf);
4209
4210           // If we also have the denorm mode, get just the denorm mode bits.
4211           ImmVal >>= 4;
4212         }
4213
4214         if (SetDenormOp) {
4215           BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
4216             .addImm(ImmVal & 0xf);
4217         }
4218
4219         MI.eraseFromParent();
4220       }
4221     }
4222
4223     return BB;
4224   }
4225   default:
4226     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
4227   }
4228 }
4229
4230 bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
4231   return isTypeLegal(VT.getScalarType());
4232 }
4233
4234 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
4235   // This currently forces unfolding various combinations of fsub into fma with
4236   // free fneg'd operands. As long as we have fast FMA (controlled by
4237   // isFMAFasterThanFMulAndFAdd), we should perform these.
4238
4239   // When fma is quarter rate, for f64 where add / sub are at best half rate,
4240   // most of these combines appear to be cycle neutral but save on instruction
4241   // count / code size.
4242   return true;
4243 }
4244
4245 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
4246                                          EVT VT) const {
4247   if (!VT.isVector()) {
4248     return MVT::i1;
4249   }
4250   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
4251 }
4252
4253 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
4254   // TODO: Should i16 be used always if legal? For now it would force VALU
4255   // shifts.
4256   return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
4257 }
4258
4259 // Answering this is somewhat tricky and depends on the specific device which
4260 // have different rates for fma or all f64 operations.
4261 //
4262 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
4263 // regardless of which device (although the number of cycles differs between
4264 // devices), so it is always profitable for f64.
4265 //
4266 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
4267 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
4268 // which we can always do even without fused FP ops since it returns the same
4269 // result as the separate operations and since it is always full
4270 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
4271 // however does not support denormals, so we do report fma as faster if we have
4272 // a fast fma device and require denormals.
4273 //
4274 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
4275                                                   EVT VT) const {
4276   VT = VT.getScalarType();
4277
4278   switch (VT.getSimpleVT().SimpleTy) {
4279   case MVT::f32: {
4280     // If mad is not available this depends only on if f32 fma is full rate.
4281     if (!Subtarget->hasMadMacF32Insts())
4282       return Subtarget->hasFastFMAF32();
4283
4284     // Otherwise f32 mad is always full rate and returns the same result as
4285     // the separate operations so should be preferred over fma.
4286     // However does not support denomals.
4287     if (hasFP32Denormals(MF))
4288       return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
4289
4290     // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
4291     return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
4292   }
4293   case MVT::f64:
4294     return true;
4295   case MVT::f16:
4296     return Subtarget->has16BitInsts() && hasFP64FP16Denormals(MF);
4297   default:
4298     break;
4299   }
4300
4301   return false;
4302 }
4303
4304 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
4305                                    const SDNode *N) const {
4306   // TODO: Check future ftz flag
4307   // v_mad_f32/v_mac_f32 do not support denormals.
4308   EVT VT = N->getValueType(0);
4309   if (VT == MVT::f32)
4310     return Subtarget->hasMadMacF32Insts() &&
4311            !hasFP32Denormals(DAG.getMachineFunction());
4312   if (VT == MVT::f16) {
4313     return Subtarget->hasMadF16() &&
4314            !hasFP64FP16Denormals(DAG.getMachineFunction());
4315   }
4316
4317   return false;
4318 }
4319
4320 //===----------------------------------------------------------------------===//
4321 // Custom DAG Lowering Operations
4322 //===----------------------------------------------------------------------===//
4323
4324 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4325 // wider vector type is legal.
4326 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
4327                                              SelectionDAG &DAG) const {
4328   unsigned Opc = Op.getOpcode();
4329   EVT VT = Op.getValueType();
4330   assert(VT == MVT::v4f16 || VT == MVT::v4i16);
4331
4332   SDValue Lo, Hi;
4333   std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
4334
4335   SDLoc SL(Op);
4336   SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
4337                              Op->getFlags());
4338   SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
4339                              Op->getFlags());
4340
4341   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4342 }
4343
4344 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
4345 // wider vector type is legal.
4346 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
4347                                               SelectionDAG &DAG) const {
4348   unsigned Opc = Op.getOpcode();
4349   EVT VT = Op.getValueType();
4350   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4351
4352   SDValue Lo0, Hi0;
4353   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4354   SDValue Lo1, Hi1;
4355   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4356
4357   SDLoc SL(Op);
4358
4359   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
4360                              Op->getFlags());
4361   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
4362                              Op->getFlags());
4363
4364   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4365 }
4366
4367 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
4368                                               SelectionDAG &DAG) const {
4369   unsigned Opc = Op.getOpcode();
4370   EVT VT = Op.getValueType();
4371   assert(VT == MVT::v4i16 || VT == MVT::v4f16);
4372
4373   SDValue Lo0, Hi0;
4374   std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
4375   SDValue Lo1, Hi1;
4376   std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
4377   SDValue Lo2, Hi2;
4378   std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
4379
4380   SDLoc SL(Op);
4381
4382   SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
4383                              Op->getFlags());
4384   SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
4385                              Op->getFlags());
4386
4387   return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4388 }
4389
4390
4391 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4392   switch (Op.getOpcode()) {
4393   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4394   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4395   case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4396   case ISD::LOAD: {
4397     SDValue Result = LowerLOAD(Op, DAG);
4398     assert((!Result.getNode() ||
4399             Result.getNode()->getNumValues() == 2) &&
4400            "Load should return a value and a chain");
4401     return Result;
4402   }
4403
4404   case ISD::FSIN:
4405   case ISD::FCOS:
4406     return LowerTrig(Op, DAG);
4407   case ISD::SELECT: return LowerSELECT(Op, DAG);
4408   case ISD::FDIV: return LowerFDIV(Op, DAG);
4409   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4410   case ISD::STORE: return LowerSTORE(Op, DAG);
4411   case ISD::GlobalAddress: {
4412     MachineFunction &MF = DAG.getMachineFunction();
4413     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4414     return LowerGlobalAddress(MFI, Op, DAG);
4415   }
4416   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4417   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4418   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4419   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4420   case ISD::INSERT_SUBVECTOR:
4421     return lowerINSERT_SUBVECTOR(Op, DAG);
4422   case ISD::INSERT_VECTOR_ELT:
4423     return lowerINSERT_VECTOR_ELT(Op, DAG);
4424   case ISD::EXTRACT_VECTOR_ELT:
4425     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4426   case ISD::VECTOR_SHUFFLE:
4427     return lowerVECTOR_SHUFFLE(Op, DAG);
4428   case ISD::BUILD_VECTOR:
4429     return lowerBUILD_VECTOR(Op, DAG);
4430   case ISD::FP_ROUND:
4431     return lowerFP_ROUND(Op, DAG);
4432   case ISD::TRAP:
4433     return lowerTRAP(Op, DAG);
4434   case ISD::DEBUGTRAP:
4435     return lowerDEBUGTRAP(Op, DAG);
4436   case ISD::FABS:
4437   case ISD::FNEG:
4438   case ISD::FCANONICALIZE:
4439   case ISD::BSWAP:
4440     return splitUnaryVectorOp(Op, DAG);
4441   case ISD::FMINNUM:
4442   case ISD::FMAXNUM:
4443     return lowerFMINNUM_FMAXNUM(Op, DAG);
4444   case ISD::FMA:
4445     return splitTernaryVectorOp(Op, DAG);
4446   case ISD::SHL:
4447   case ISD::SRA:
4448   case ISD::SRL:
4449   case ISD::ADD:
4450   case ISD::SUB:
4451   case ISD::MUL:
4452   case ISD::SMIN:
4453   case ISD::SMAX:
4454   case ISD::UMIN:
4455   case ISD::UMAX:
4456   case ISD::FADD:
4457   case ISD::FMUL:
4458   case ISD::FMINNUM_IEEE:
4459   case ISD::FMAXNUM_IEEE:
4460     return splitBinaryVectorOp(Op, DAG);
4461   case ISD::SMULO:
4462   case ISD::UMULO:
4463     return lowerXMULO(Op, DAG);
4464   case ISD::DYNAMIC_STACKALLOC:
4465     return LowerDYNAMIC_STACKALLOC(Op, DAG);
4466   }
4467   return SDValue();
4468 }
4469
4470 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4471                                        const SDLoc &DL,
4472                                        SelectionDAG &DAG, bool Unpacked) {
4473   if (!LoadVT.isVector())
4474     return Result;
4475
4476   if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4477     // Truncate to v2i16/v4i16.
4478     EVT IntLoadVT = LoadVT.changeTypeToInteger();
4479
4480     // Workaround legalizer not scalarizing truncate after vector op
4481     // legalization byt not creating intermediate vector trunc.
4482     SmallVector<SDValue, 4> Elts;
4483     DAG.ExtractVectorElements(Result, Elts);
4484     for (SDValue &Elt : Elts)
4485       Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4486
4487     Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4488
4489     // Bitcast to original type (v2f16/v4f16).
4490     return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4491   }
4492
4493   // Cast back to the original packed type.
4494   return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4495 }
4496
4497 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4498                                               MemSDNode *M,
4499                                               SelectionDAG &DAG,
4500                                               ArrayRef<SDValue> Ops,
4501                                               bool IsIntrinsic) const {
4502   SDLoc DL(M);
4503
4504   bool Unpacked = Subtarget->hasUnpackedD16VMem();
4505   EVT LoadVT = M->getValueType(0);
4506
4507   EVT EquivLoadVT = LoadVT;
4508   if (Unpacked && LoadVT.isVector()) {
4509     EquivLoadVT = LoadVT.isVector() ?
4510       EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4511                        LoadVT.getVectorNumElements()) : LoadVT;
4512   }
4513
4514   // Change from v4f16/v2f16 to EquivLoadVT.
4515   SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4516
4517   SDValue Load
4518     = DAG.getMemIntrinsicNode(
4519       IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4520       VTList, Ops, M->getMemoryVT(),
4521       M->getMemOperand());
4522   if (!Unpacked) // Just adjusted the opcode.
4523     return Load;
4524
4525   SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4526
4527   return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4528 }
4529
4530 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4531                                              SelectionDAG &DAG,
4532                                              ArrayRef<SDValue> Ops) const {
4533   SDLoc DL(M);
4534   EVT LoadVT = M->getValueType(0);
4535   EVT EltType = LoadVT.getScalarType();
4536   EVT IntVT = LoadVT.changeTypeToInteger();
4537
4538   bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4539
4540   unsigned Opc =
4541       IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4542
4543   if (IsD16) {
4544     return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4545   }
4546
4547   // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4548   if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4549     return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4550
4551   if (isTypeLegal(LoadVT)) {
4552     return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4553                                M->getMemOperand(), DAG);
4554   }
4555
4556   EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4557   SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4558   SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4559                                         M->getMemOperand(), DAG);
4560   return DAG.getMergeValues(
4561       {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4562       DL);
4563 }
4564
4565 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4566                                   SDNode *N, SelectionDAG &DAG) {
4567   EVT VT = N->getValueType(0);
4568   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4569   unsigned CondCode = CD->getZExtValue();
4570   if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
4571     return DAG.getUNDEF(VT);
4572
4573   ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4574
4575   SDValue LHS = N->getOperand(1);
4576   SDValue RHS = N->getOperand(2);
4577
4578   SDLoc DL(N);
4579
4580   EVT CmpVT = LHS.getValueType();
4581   if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4582     unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4583       ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4584     LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4585     RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4586   }
4587
4588   ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4589
4590   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4591   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4592
4593   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4594                               DAG.getCondCode(CCOpcode));
4595   if (VT.bitsEq(CCVT))
4596     return SetCC;
4597   return DAG.getZExtOrTrunc(SetCC, DL, VT);
4598 }
4599
4600 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4601                                   SDNode *N, SelectionDAG &DAG) {
4602   EVT VT = N->getValueType(0);
4603   const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4604
4605   unsigned CondCode = CD->getZExtValue();
4606   if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
4607     return DAG.getUNDEF(VT);
4608
4609   SDValue Src0 = N->getOperand(1);
4610   SDValue Src1 = N->getOperand(2);
4611   EVT CmpVT = Src0.getValueType();
4612   SDLoc SL(N);
4613
4614   if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4615     Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4616     Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4617   }
4618
4619   FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4620   ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4621   unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4622   EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4623   SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4624                               Src1, DAG.getCondCode(CCOpcode));
4625   if (VT.bitsEq(CCVT))
4626     return SetCC;
4627   return DAG.getZExtOrTrunc(SetCC, SL, VT);
4628 }
4629
4630 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
4631                                     SelectionDAG &DAG) {
4632   EVT VT = N->getValueType(0);
4633   SDValue Src = N->getOperand(1);
4634   SDLoc SL(N);
4635
4636   if (Src.getOpcode() == ISD::SETCC) {
4637     // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
4638     return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
4639                        Src.getOperand(1), Src.getOperand(2));
4640   }
4641   if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
4642     // (ballot 0) -> 0
4643     if (Arg->isNullValue())
4644       return DAG.getConstant(0, SL, VT);
4645
4646     // (ballot 1) -> EXEC/EXEC_LO
4647     if (Arg->isOne()) {
4648       Register Exec;
4649       if (VT.getScalarSizeInBits() == 32)
4650         Exec = AMDGPU::EXEC_LO;
4651       else if (VT.getScalarSizeInBits() == 64)
4652         Exec = AMDGPU::EXEC;
4653       else
4654         return SDValue();
4655
4656       return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
4657     }
4658   }
4659
4660   // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
4661   // ISD::SETNE)
4662   return DAG.getNode(
4663       AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
4664       DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
4665 }
4666
4667 void SITargetLowering::ReplaceNodeResults(SDNode *N,
4668                                           SmallVectorImpl<SDValue> &Results,
4669                                           SelectionDAG &DAG) const {
4670   switch (N->getOpcode()) {
4671   case ISD::INSERT_VECTOR_ELT: {
4672     if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4673       Results.push_back(Res);
4674     return;
4675   }
4676   case ISD::EXTRACT_VECTOR_ELT: {
4677     if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4678       Results.push_back(Res);
4679     return;
4680   }
4681   case ISD::INTRINSIC_WO_CHAIN: {
4682     unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4683     switch (IID) {
4684     case Intrinsic::amdgcn_cvt_pkrtz: {
4685       SDValue Src0 = N->getOperand(1);
4686       SDValue Src1 = N->getOperand(2);
4687       SDLoc SL(N);
4688       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4689                                 Src0, Src1);
4690       Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4691       return;
4692     }
4693     case Intrinsic::amdgcn_cvt_pknorm_i16:
4694     case Intrinsic::amdgcn_cvt_pknorm_u16:
4695     case Intrinsic::amdgcn_cvt_pk_i16:
4696     case Intrinsic::amdgcn_cvt_pk_u16: {
4697       SDValue Src0 = N->getOperand(1);
4698       SDValue Src1 = N->getOperand(2);
4699       SDLoc SL(N);
4700       unsigned Opcode;
4701
4702       if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4703         Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4704       else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4705         Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4706       else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4707         Opcode = AMDGPUISD::CVT_PK_I16_I32;
4708       else
4709         Opcode = AMDGPUISD::CVT_PK_U16_U32;
4710
4711       EVT VT = N->getValueType(0);
4712       if (isTypeLegal(VT))
4713         Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4714       else {
4715         SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4716         Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4717       }
4718       return;
4719     }
4720     }
4721     break;
4722   }
4723   case ISD::INTRINSIC_W_CHAIN: {
4724     if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4725       if (Res.getOpcode() == ISD::MERGE_VALUES) {
4726         // FIXME: Hacky
4727         Results.push_back(Res.getOperand(0));
4728         Results.push_back(Res.getOperand(1));
4729       } else {
4730         Results.push_back(Res);
4731         Results.push_back(Res.getValue(1));
4732       }
4733       return;
4734     }
4735
4736     break;
4737   }
4738   case ISD::SELECT: {
4739     SDLoc SL(N);
4740     EVT VT = N->getValueType(0);
4741     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4742     SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4743     SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4744
4745     EVT SelectVT = NewVT;
4746     if (NewVT.bitsLT(MVT::i32)) {
4747       LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4748       RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4749       SelectVT = MVT::i32;
4750     }
4751
4752     SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4753                                     N->getOperand(0), LHS, RHS);
4754
4755     if (NewVT != SelectVT)
4756       NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4757     Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4758     return;
4759   }
4760   case ISD::FNEG: {
4761     if (N->getValueType(0) != MVT::v2f16)
4762       break;
4763
4764     SDLoc SL(N);
4765     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4766
4767     SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4768                              BC,
4769                              DAG.getConstant(0x80008000, SL, MVT::i32));
4770     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4771     return;
4772   }
4773   case ISD::FABS: {
4774     if (N->getValueType(0) != MVT::v2f16)
4775       break;
4776
4777     SDLoc SL(N);
4778     SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4779
4780     SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4781                              BC,
4782                              DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4783     Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4784     return;
4785   }
4786   default:
4787     break;
4788   }
4789 }
4790
4791 /// Helper function for LowerBRCOND
4792 static SDNode *findUser(SDValue Value, unsigned Opcode) {
4793
4794   SDNode *Parent = Value.getNode();
4795   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4796        I != E; ++I) {
4797
4798     if (I.getUse().get() != Value)
4799       continue;
4800
4801     if (I->getOpcode() == Opcode)
4802       return *I;
4803   }
4804   return nullptr;
4805 }
4806
4807 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4808   if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4809     switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4810     case Intrinsic::amdgcn_if:
4811       return AMDGPUISD::IF;
4812     case Intrinsic::amdgcn_else:
4813       return AMDGPUISD::ELSE;
4814     case Intrinsic::amdgcn_loop:
4815       return AMDGPUISD::LOOP;
4816     case Intrinsic::amdgcn_end_cf:
4817       llvm_unreachable("should not occur");
4818     default:
4819       return 0;
4820     }
4821   }
4822
4823   // break, if_break, else_break are all only used as inputs to loop, not
4824   // directly as branch conditions.
4825   return 0;
4826 }
4827
4828 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4829   const Triple &TT = getTargetMachine().getTargetTriple();
4830   return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4831           GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4832          AMDGPU::shouldEmitConstantsToTextSection(TT);
4833 }
4834
4835 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4836   // FIXME: Either avoid relying on address space here or change the default
4837   // address space for functions to avoid the explicit check.
4838   return (GV->getValueType()->isFunctionTy() ||
4839           !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
4840          !shouldEmitFixup(GV) &&
4841          !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
4842 }
4843
4844 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
4845   return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
4846 }
4847
4848 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
4849   if (!GV->hasExternalLinkage())
4850     return true;
4851
4852   const auto OS = getTargetMachine().getTargetTriple().getOS();
4853   return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
4854 }
4855
4856 /// This transforms the control flow intrinsics to get the branch destination as
4857 /// last parameter, also switches branch target with BR if the need arise
4858 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
4859                                       SelectionDAG &DAG) const {
4860   SDLoc DL(BRCOND);
4861
4862   SDNode *Intr = BRCOND.getOperand(1).getNode();
4863   SDValue Target = BRCOND.getOperand(2);
4864   SDNode *BR = nullptr;
4865   SDNode *SetCC = nullptr;
4866
4867   if (Intr->getOpcode() == ISD::SETCC) {
4868     // As long as we negate the condition everything is fine
4869     SetCC = Intr;
4870     Intr = SetCC->getOperand(0).getNode();
4871
4872   } else {
4873     // Get the target from BR if we don't negate the condition
4874     BR = findUser(BRCOND, ISD::BR);
4875     assert(BR && "brcond missing unconditional branch user");
4876     Target = BR->getOperand(1);
4877   }
4878
4879   unsigned CFNode = isCFIntrinsic(Intr);
4880   if (CFNode == 0) {
4881     // This is a uniform branch so we don't need to legalize.
4882     return BRCOND;
4883   }
4884
4885   bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
4886                    Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
4887
4888   assert(!SetCC ||
4889         (SetCC->getConstantOperandVal(1) == 1 &&
4890          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
4891                                                              ISD::SETNE));
4892
4893   // operands of the new intrinsic call
4894   SmallVector<SDValue, 4> Ops;
4895   if (HaveChain)
4896     Ops.push_back(BRCOND.getOperand(0));
4897
4898   Ops.append(Intr->op_begin() + (HaveChain ?  2 : 1), Intr->op_end());
4899   Ops.push_back(Target);
4900
4901   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
4902
4903   // build the new intrinsic call
4904   SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
4905
4906   if (!HaveChain) {
4907     SDValue Ops[] =  {
4908       SDValue(Result, 0),
4909       BRCOND.getOperand(0)
4910     };
4911
4912     Result = DAG.getMergeValues(Ops, DL).getNode();
4913   }
4914
4915   if (BR) {
4916     // Give the branch instruction our target
4917     SDValue Ops[] = {
4918       BR->getOperand(0),
4919       BRCOND.getOperand(2)
4920     };
4921     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
4922     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
4923   }
4924
4925   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
4926
4927   // Copy the intrinsic results to registers
4928   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
4929     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
4930     if (!CopyToReg)
4931       continue;
4932
4933     Chain = DAG.getCopyToReg(
4934       Chain, DL,
4935       CopyToReg->getOperand(1),
4936       SDValue(Result, i - 1),
4937       SDValue());
4938
4939     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
4940   }
4941
4942   // Remove the old intrinsic from the chain
4943   DAG.ReplaceAllUsesOfValueWith(
4944     SDValue(Intr, Intr->getNumValues() - 1),
4945     Intr->getOperand(0));
4946
4947   return Chain;
4948 }
4949
4950 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
4951                                           SelectionDAG &DAG) const {
4952   MVT VT = Op.getSimpleValueType();
4953   SDLoc DL(Op);
4954   // Checking the depth
4955   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
4956     return DAG.getConstant(0, DL, VT);
4957
4958   MachineFunction &MF = DAG.getMachineFunction();
4959   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4960   // Check for kernel and shader functions
4961   if (Info->isEntryFunction())
4962     return DAG.getConstant(0, DL, VT);
4963
4964   MachineFrameInfo &MFI = MF.getFrameInfo();
4965   // There is a call to @llvm.returnaddress in this function
4966   MFI.setReturnAddressIsTaken(true);
4967
4968   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
4969   // Get the return address reg and mark it as an implicit live-in
4970   unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
4971
4972   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4973 }
4974
4975 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG,
4976                                             SDValue Op,
4977                                             const SDLoc &DL,
4978                                             EVT VT) const {
4979   return Op.getValueType().bitsLE(VT) ?
4980       DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
4981     DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
4982                 DAG.getTargetConstant(0, DL, MVT::i32));
4983 }
4984
4985 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
4986   assert(Op.getValueType() == MVT::f16 &&
4987          "Do not know how to custom lower FP_ROUND for non-f16 type");
4988
4989   SDValue Src = Op.getOperand(0);
4990   EVT SrcVT = Src.getValueType();
4991   if (SrcVT != MVT::f64)
4992     return Op;
4993
4994   SDLoc DL(Op);
4995
4996   SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
4997   SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
4998   return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
4999 }
5000
5001 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
5002                                                SelectionDAG &DAG) const {
5003   EVT VT = Op.getValueType();
5004   const MachineFunction &MF = DAG.getMachineFunction();
5005   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5006   bool IsIEEEMode = Info->getMode().IEEE;
5007
5008   // FIXME: Assert during selection that this is only selected for
5009   // ieee_mode. Currently a combine can produce the ieee version for non-ieee
5010   // mode functions, but this happens to be OK since it's only done in cases
5011   // where there is known no sNaN.
5012   if (IsIEEEMode)
5013     return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
5014
5015   if (VT == MVT::v4f16)
5016     return splitBinaryVectorOp(Op, DAG);
5017   return Op;
5018 }
5019
5020 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
5021   EVT VT = Op.getValueType();
5022   SDLoc SL(Op);
5023   SDValue LHS = Op.getOperand(0);
5024   SDValue RHS = Op.getOperand(1);
5025   bool isSigned = Op.getOpcode() == ISD::SMULO;
5026
5027   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5028     const APInt &C = RHSC->getAPIntValue();
5029     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5030     if (C.isPowerOf2()) {
5031       // smulo(x, signed_min) is same as umulo(x, signed_min).
5032       bool UseArithShift = isSigned && !C.isMinSignedValue();
5033       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
5034       SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
5035       SDValue Overflow = DAG.getSetCC(SL, MVT::i1,
5036           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5037                       SL, VT, Result, ShiftAmt),
5038           LHS, ISD::SETNE);
5039       return DAG.getMergeValues({ Result, Overflow }, SL);
5040     }
5041   }
5042
5043   SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
5044   SDValue Top = DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU,
5045                             SL, VT, LHS, RHS);
5046
5047   SDValue Sign = isSigned
5048     ? DAG.getNode(ISD::SRA, SL, VT, Result,
5049                   DAG.getConstant(VT.getScalarSizeInBits() - 1, SL, MVT::i32))
5050     : DAG.getConstant(0, SL, VT);
5051   SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
5052
5053   return DAG.getMergeValues({ Result, Overflow }, SL);
5054 }
5055
5056 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
5057   SDLoc SL(Op);
5058   SDValue Chain = Op.getOperand(0);
5059
5060   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
5061       !Subtarget->isTrapHandlerEnabled())
5062     return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
5063
5064   MachineFunction &MF = DAG.getMachineFunction();
5065   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5066   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
5067   assert(UserSGPR != AMDGPU::NoRegister);
5068   SDValue QueuePtr = CreateLiveInRegister(
5069     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5070   SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
5071   SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
5072                                    QueuePtr, SDValue());
5073   SDValue Ops[] = {
5074     ToReg,
5075     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
5076     SGPR01,
5077     ToReg.getValue(1)
5078   };
5079   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5080 }
5081
5082 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
5083   SDLoc SL(Op);
5084   SDValue Chain = Op.getOperand(0);
5085   MachineFunction &MF = DAG.getMachineFunction();
5086
5087   if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
5088       !Subtarget->isTrapHandlerEnabled()) {
5089     DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
5090                                      "debugtrap handler not supported",
5091                                      Op.getDebugLoc(),
5092                                      DS_Warning);
5093     LLVMContext &Ctx = MF.getFunction().getContext();
5094     Ctx.diagnose(NoTrap);
5095     return Chain;
5096   }
5097
5098   SDValue Ops[] = {
5099     Chain,
5100     DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
5101   };
5102   return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
5103 }
5104
5105 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
5106                                              SelectionDAG &DAG) const {
5107   // FIXME: Use inline constants (src_{shared, private}_base) instead.
5108   if (Subtarget->hasApertureRegs()) {
5109     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
5110         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
5111         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
5112     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
5113         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
5114         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
5115     unsigned Encoding =
5116         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
5117         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
5118         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
5119
5120     SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
5121     SDValue ApertureReg = SDValue(
5122         DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
5123     SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
5124     return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
5125   }
5126
5127   MachineFunction &MF = DAG.getMachineFunction();
5128   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
5129   Register UserSGPR = Info->getQueuePtrUserSGPR();
5130   assert(UserSGPR != AMDGPU::NoRegister);
5131
5132   SDValue QueuePtr = CreateLiveInRegister(
5133     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
5134
5135   // Offset into amd_queue_t for group_segment_aperture_base_hi /
5136   // private_segment_aperture_base_hi.
5137   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
5138
5139   SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
5140
5141   // TODO: Use custom target PseudoSourceValue.
5142   // TODO: We should use the value from the IR intrinsic call, but it might not
5143   // be available and how do we get it?
5144   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
5145   return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
5146                      MinAlign(64, StructOffset),
5147                      MachineMemOperand::MODereferenceable |
5148                          MachineMemOperand::MOInvariant);
5149 }
5150
5151 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
5152                                              SelectionDAG &DAG) const {
5153   SDLoc SL(Op);
5154   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
5155
5156   SDValue Src = ASC->getOperand(0);
5157   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
5158
5159   const AMDGPUTargetMachine &TM =
5160     static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
5161
5162   // flat -> local/private
5163   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5164     unsigned DestAS = ASC->getDestAddressSpace();
5165
5166     if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
5167         DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
5168       unsigned NullVal = TM.getNullPointerValue(DestAS);
5169       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5170       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
5171       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5172
5173       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
5174                          NonNull, Ptr, SegmentNullPtr);
5175     }
5176   }
5177
5178   // local/private -> flat
5179   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
5180     unsigned SrcAS = ASC->getSrcAddressSpace();
5181
5182     if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
5183         SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
5184       unsigned NullVal = TM.getNullPointerValue(SrcAS);
5185       SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
5186
5187       SDValue NonNull
5188         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
5189
5190       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
5191       SDValue CvtPtr
5192         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
5193
5194       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
5195                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
5196                          FlatNullPtr);
5197     }
5198   }
5199
5200   if (ASC->getDestAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
5201       Src.getValueType() == MVT::i64)
5202     return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
5203
5204   // global <-> flat are no-ops and never emitted.
5205
5206   const MachineFunction &MF = DAG.getMachineFunction();
5207   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
5208     MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
5209   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
5210
5211   return DAG.getUNDEF(ASC->getValueType(0));
5212 }
5213
5214 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
5215 // the small vector and inserting them into the big vector. That is better than
5216 // the default expansion of doing it via a stack slot. Even though the use of
5217 // the stack slot would be optimized away afterwards, the stack slot itself
5218 // remains.
5219 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
5220                                                 SelectionDAG &DAG) const {
5221   SDValue Vec = Op.getOperand(0);
5222   SDValue Ins = Op.getOperand(1);
5223   SDValue Idx = Op.getOperand(2);
5224   EVT VecVT = Vec.getValueType();
5225   EVT InsVT = Ins.getValueType();
5226   EVT EltVT = VecVT.getVectorElementType();
5227   unsigned InsNumElts = InsVT.getVectorNumElements();
5228   unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5229   SDLoc SL(Op);
5230
5231   for (unsigned I = 0; I != InsNumElts; ++I) {
5232     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
5233                               DAG.getConstant(I, SL, MVT::i32));
5234     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
5235                       DAG.getConstant(IdxVal + I, SL, MVT::i32));
5236   }
5237   return Vec;
5238 }
5239
5240 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5241                                                  SelectionDAG &DAG) const {
5242   SDValue Vec = Op.getOperand(0);
5243   SDValue InsVal = Op.getOperand(1);
5244   SDValue Idx = Op.getOperand(2);
5245   EVT VecVT = Vec.getValueType();
5246   EVT EltVT = VecVT.getVectorElementType();
5247   unsigned VecSize = VecVT.getSizeInBits();
5248   unsigned EltSize = EltVT.getSizeInBits();
5249
5250
5251   assert(VecSize <= 64);
5252
5253   unsigned NumElts = VecVT.getVectorNumElements();
5254   SDLoc SL(Op);
5255   auto KIdx = dyn_cast<ConstantSDNode>(Idx);
5256
5257   if (NumElts == 4 && EltSize == 16 && KIdx) {
5258     SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
5259
5260     SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5261                                  DAG.getConstant(0, SL, MVT::i32));
5262     SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
5263                                  DAG.getConstant(1, SL, MVT::i32));
5264
5265     SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
5266     SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
5267
5268     unsigned Idx = KIdx->getZExtValue();
5269     bool InsertLo = Idx < 2;
5270     SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
5271       InsertLo ? LoVec : HiVec,
5272       DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
5273       DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
5274
5275     InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
5276
5277     SDValue Concat = InsertLo ?
5278       DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
5279       DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
5280
5281     return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
5282   }
5283
5284   if (isa<ConstantSDNode>(Idx))
5285     return SDValue();
5286
5287   MVT IntVT = MVT::getIntegerVT(VecSize);
5288
5289   // Avoid stack access for dynamic indexing.
5290   // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
5291
5292   // Create a congruent vector with the target value in each element so that
5293   // the required element can be masked and ORed into the target vector.
5294   SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
5295                                DAG.getSplatBuildVector(VecVT, SL, InsVal));
5296
5297   assert(isPowerOf2_32(EltSize));
5298   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5299
5300   // Convert vector index to bit-index.
5301   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5302
5303   SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5304   SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
5305                             DAG.getConstant(0xffff, SL, IntVT),
5306                             ScaledIdx);
5307
5308   SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
5309   SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
5310                             DAG.getNOT(SL, BFM, IntVT), BCVec);
5311
5312   SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
5313   return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
5314 }
5315
5316 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5317                                                   SelectionDAG &DAG) const {
5318   SDLoc SL(Op);
5319
5320   EVT ResultVT = Op.getValueType();
5321   SDValue Vec = Op.getOperand(0);
5322   SDValue Idx = Op.getOperand(1);
5323   EVT VecVT = Vec.getValueType();
5324   unsigned VecSize = VecVT.getSizeInBits();
5325   EVT EltVT = VecVT.getVectorElementType();
5326   assert(VecSize <= 64);
5327
5328   DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
5329
5330   // Make sure we do any optimizations that will make it easier to fold
5331   // source modifiers before obscuring it with bit operations.
5332
5333   // XXX - Why doesn't this get called when vector_shuffle is expanded?
5334   if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
5335     return Combined;
5336
5337   unsigned EltSize = EltVT.getSizeInBits();
5338   assert(isPowerOf2_32(EltSize));
5339
5340   MVT IntVT = MVT::getIntegerVT(VecSize);
5341   SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
5342
5343   // Convert vector index to bit-index (* EltSize)
5344   SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
5345
5346   SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
5347   SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
5348
5349   if (ResultVT == MVT::f16) {
5350     SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
5351     return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
5352   }
5353
5354   return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
5355 }
5356
5357 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
5358   assert(Elt % 2 == 0);
5359   return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
5360 }
5361
5362 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5363                                               SelectionDAG &DAG) const {
5364   SDLoc SL(Op);
5365   EVT ResultVT = Op.getValueType();
5366   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
5367
5368   EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
5369   EVT EltVT = PackVT.getVectorElementType();
5370   int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
5371
5372   // vector_shuffle <0,1,6,7> lhs, rhs
5373   // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
5374   //
5375   // vector_shuffle <6,7,2,3> lhs, rhs
5376   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
5377   //
5378   // vector_shuffle <6,7,0,1> lhs, rhs
5379   // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
5380
5381   // Avoid scalarizing when both halves are reading from consecutive elements.
5382   SmallVector<SDValue, 4> Pieces;
5383   for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
5384     if (elementPairIsContiguous(SVN->getMask(), I)) {
5385       const int Idx = SVN->getMaskElt(I);
5386       int VecIdx = Idx < SrcNumElts ? 0 : 1;
5387       int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
5388       SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
5389                                     PackVT, SVN->getOperand(VecIdx),
5390                                     DAG.getConstant(EltIdx, SL, MVT::i32));
5391       Pieces.push_back(SubVec);
5392     } else {
5393       const int Idx0 = SVN->getMaskElt(I);
5394       const int Idx1 = SVN->getMaskElt(I + 1);
5395       int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
5396       int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
5397       int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
5398       int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
5399
5400       SDValue Vec0 = SVN->getOperand(VecIdx0);
5401       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5402                                  Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
5403
5404       SDValue Vec1 = SVN->getOperand(VecIdx1);
5405       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
5406                                  Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
5407       Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
5408     }
5409   }
5410
5411   return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
5412 }
5413
5414 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
5415                                             SelectionDAG &DAG) const {
5416   SDLoc SL(Op);
5417   EVT VT = Op.getValueType();
5418
5419   if (VT == MVT::v4i16 || VT == MVT::v4f16) {
5420     EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
5421
5422     // Turn into pair of packed build_vectors.
5423     // TODO: Special case for constants that can be materialized with s_mov_b64.
5424     SDValue Lo = DAG.getBuildVector(HalfVT, SL,
5425                                     { Op.getOperand(0), Op.getOperand(1) });
5426     SDValue Hi = DAG.getBuildVector(HalfVT, SL,
5427                                     { Op.getOperand(2), Op.getOperand(3) });
5428
5429     SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
5430     SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
5431
5432     SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
5433     return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
5434   }
5435
5436   assert(VT == MVT::v2f16 || VT == MVT::v2i16);
5437   assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
5438
5439   SDValue Lo = Op.getOperand(0);
5440   SDValue Hi = Op.getOperand(1);
5441
5442   // Avoid adding defined bits with the zero_extend.
5443   if (Hi.isUndef()) {
5444     Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5445     SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
5446     return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
5447   }
5448
5449   Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
5450   Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
5451
5452   SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
5453                               DAG.getConstant(16, SL, MVT::i32));
5454   if (Lo.isUndef())
5455     return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
5456
5457   Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
5458   Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
5459
5460   SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
5461   return DAG.getNode(ISD::BITCAST, SL, VT, Or);
5462 }
5463
5464 bool
5465 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5466   // We can fold offsets for anything that doesn't require a GOT relocation.
5467   return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5468           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5469           GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5470          !shouldEmitGOTReloc(GA->getGlobal());
5471 }
5472
5473 static SDValue
5474 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5475                         const SDLoc &DL, int64_t Offset, EVT PtrVT,
5476                         unsigned GAFlags = SIInstrInfo::MO_NONE) {
5477   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
5478   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5479   // lowered to the following code sequence:
5480   //
5481   // For constant address space:
5482   //   s_getpc_b64 s[0:1]
5483   //   s_add_u32 s0, s0, $symbol
5484   //   s_addc_u32 s1, s1, 0
5485   //
5486   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5487   //   a fixup or relocation is emitted to replace $symbol with a literal
5488   //   constant, which is a pc-relative offset from the encoding of the $symbol
5489   //   operand to the global variable.
5490   //
5491   // For global address space:
5492   //   s_getpc_b64 s[0:1]
5493   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5494   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5495   //
5496   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
5497   //   fixups or relocations are emitted to replace $symbol@*@lo and
5498   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5499   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
5500   //   operand to the global variable.
5501   //
5502   // What we want here is an offset from the value returned by s_getpc
5503   // (which is the address of the s_add_u32 instruction) to the global
5504   // variable, but since the encoding of $symbol starts 4 bytes after the start
5505   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5506   // small. This requires us to add 4 to the global variable offset in order to
5507   // compute the correct address.
5508   SDValue PtrLo =
5509       DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5510   SDValue PtrHi;
5511   if (GAFlags == SIInstrInfo::MO_NONE) {
5512     PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5513   } else {
5514     PtrHi =
5515         DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1);
5516   }
5517   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5518 }
5519
5520 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5521                                              SDValue Op,
5522                                              SelectionDAG &DAG) const {
5523   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5524   const GlobalValue *GV = GSD->getGlobal();
5525   if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5526        shouldUseLDSConstAddress(GV)) ||
5527       GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5528       GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS)
5529     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5530
5531   SDLoc DL(GSD);
5532   EVT PtrVT = Op.getValueType();
5533
5534   if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5535     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5536                                             SIInstrInfo::MO_ABS32_LO);
5537     return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5538   }
5539
5540   if (shouldEmitFixup(GV))
5541     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5542   else if (shouldEmitPCReloc(GV))
5543     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5544                                    SIInstrInfo::MO_REL32);
5545
5546   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5547                                             SIInstrInfo::MO_GOTPCREL32);
5548
5549   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5550   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5551   const DataLayout &DataLayout = DAG.getDataLayout();
5552   Align Alignment = DataLayout.getABITypeAlign(PtrTy);
5553   MachinePointerInfo PtrInfo
5554     = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5555
5556   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
5557                      MachineMemOperand::MODereferenceable |
5558                          MachineMemOperand::MOInvariant);
5559 }
5560
5561 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5562                                    const SDLoc &DL, SDValue V) const {
5563   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5564   // the destination register.
5565   //
5566   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5567   // so we will end up with redundant moves to m0.
5568   //
5569   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5570
5571   // A Null SDValue creates a glue result.
5572   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5573                                   V, Chain);
5574   return SDValue(M0, 0);
5575 }
5576
5577 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5578                                                  SDValue Op,
5579                                                  MVT VT,
5580                                                  unsigned Offset) const {
5581   SDLoc SL(Op);
5582   SDValue Param = lowerKernargMemParameter(
5583       DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
5584   // The local size values will have the hi 16-bits as zero.
5585   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5586                      DAG.getValueType(VT));
5587 }
5588
5589 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5590                                         EVT VT) {
5591   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5592                                       "non-hsa intrinsic with hsa target",
5593                                       DL.getDebugLoc());
5594   DAG.getContext()->diagnose(BadIntrin);
5595   return DAG.getUNDEF(VT);
5596 }
5597
5598 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5599                                          EVT VT) {
5600   DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5601                                       "intrinsic not supported on subtarget",
5602                                       DL.getDebugLoc());
5603   DAG.getContext()->diagnose(BadIntrin);
5604   return DAG.getUNDEF(VT);
5605 }
5606
5607 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5608                                     ArrayRef<SDValue> Elts) {
5609   assert(!Elts.empty());
5610   MVT Type;
5611   unsigned NumElts;
5612
5613   if (Elts.size() == 1) {
5614     Type = MVT::f32;
5615     NumElts = 1;
5616   } else if (Elts.size() == 2) {
5617     Type = MVT::v2f32;
5618     NumElts = 2;
5619   } else if (Elts.size() == 3) {
5620     Type = MVT::v3f32;
5621     NumElts = 3;
5622   } else if (Elts.size() <= 4) {
5623     Type = MVT::v4f32;
5624     NumElts = 4;
5625   } else if (Elts.size() <= 8) {
5626     Type = MVT::v8f32;
5627     NumElts = 8;
5628   } else {
5629     assert(Elts.size() <= 16);
5630     Type = MVT::v16f32;
5631     NumElts = 16;
5632   }
5633
5634   SmallVector<SDValue, 16> VecElts(NumElts);
5635   for (unsigned i = 0; i < Elts.size(); ++i) {
5636     SDValue Elt = Elts[i];
5637     if (Elt.getValueType() != MVT::f32)
5638       Elt = DAG.getBitcast(MVT::f32, Elt);
5639     VecElts[i] = Elt;
5640   }
5641   for (unsigned i = Elts.size(); i < NumElts; ++i)
5642     VecElts[i] = DAG.getUNDEF(MVT::f32);
5643
5644   if (NumElts == 1)
5645     return VecElts[0];
5646   return DAG.getBuildVector(Type, DL, VecElts);
5647 }
5648
5649 static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5650                              SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5651   auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5652
5653   uint64_t Value = CachePolicyConst->getZExtValue();
5654   SDLoc DL(CachePolicy);
5655   if (GLC) {
5656     *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5657     Value &= ~(uint64_t)0x1;
5658   }
5659   if (SLC) {
5660     *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5661     Value &= ~(uint64_t)0x2;
5662   }
5663   if (DLC) {
5664     *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5665     Value &= ~(uint64_t)0x4;
5666   }
5667
5668   return Value == 0;
5669 }
5670
5671 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
5672                               SDValue Src, int ExtraElts) {
5673   EVT SrcVT = Src.getValueType();
5674
5675   SmallVector<SDValue, 8> Elts;
5676
5677   if (SrcVT.isVector())
5678     DAG.ExtractVectorElements(Src, Elts);
5679   else
5680     Elts.push_back(Src);
5681
5682   SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
5683   while (ExtraElts--)
5684     Elts.push_back(Undef);
5685
5686   return DAG.getBuildVector(CastVT, DL, Elts);
5687 }
5688
5689 // Re-construct the required return value for a image load intrinsic.
5690 // This is more complicated due to the optional use TexFailCtrl which means the required
5691 // return type is an aggregate
5692 static SDValue constructRetValue(SelectionDAG &DAG,
5693                                  MachineSDNode *Result,
5694                                  ArrayRef<EVT> ResultTypes,
5695                                  bool IsTexFail, bool Unpacked, bool IsD16,
5696                                  int DMaskPop, int NumVDataDwords,
5697                                  const SDLoc &DL, LLVMContext &Context) {
5698   // Determine the required return type. This is the same regardless of IsTexFail flag
5699   EVT ReqRetVT = ResultTypes[0];
5700   int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5701   int NumDataDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5702     ReqRetNumElts : (ReqRetNumElts + 1) / 2;
5703
5704   int MaskPopDwords = (!IsD16 || (IsD16 && Unpacked)) ?
5705     DMaskPop : (DMaskPop + 1) / 2;
5706
5707   MVT DataDwordVT = NumDataDwords == 1 ?
5708     MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
5709
5710   MVT MaskPopVT = MaskPopDwords == 1 ?
5711     MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
5712
5713   SDValue Data(Result, 0);
5714   SDValue TexFail;
5715
5716   if (IsTexFail) {
5717     SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
5718     if (MaskPopVT.isVector()) {
5719       Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
5720                          SDValue(Result, 0), ZeroIdx);
5721     } else {
5722       Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
5723                          SDValue(Result, 0), ZeroIdx);
5724     }
5725
5726     TexFail = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32,
5727                           SDValue(Result, 0),
5728                           DAG.getConstant(MaskPopDwords, DL, MVT::i32));
5729   }
5730
5731   if (DataDwordVT.isVector())
5732     Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
5733                           NumDataDwords - MaskPopDwords);
5734
5735   if (IsD16)
5736     Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
5737
5738   if (!ReqRetVT.isVector())
5739     Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
5740
5741   Data = DAG.getNode(ISD::BITCAST, DL, ReqRetVT, Data);
5742
5743   if (TexFail)
5744     return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
5745
5746   if (Result->getNumValues() == 1)
5747     return Data;
5748
5749   return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
5750 }
5751
5752 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5753                          SDValue *LWE, bool &IsTexFail) {
5754   auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5755
5756   uint64_t Value = TexFailCtrlConst->getZExtValue();
5757   if (Value) {
5758     IsTexFail = true;
5759   }
5760
5761   SDLoc DL(TexFailCtrlConst);
5762   *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5763   Value &= ~(uint64_t)0x1;
5764   *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5765   Value &= ~(uint64_t)0x2;
5766
5767   return Value == 0;
5768 }
5769
5770 static void packImageA16AddressToDwords(SelectionDAG &DAG, SDValue Op,
5771                                         MVT PackVectorVT,
5772                                         SmallVectorImpl<SDValue> &PackedAddrs,
5773                                         unsigned DimIdx, unsigned EndIdx,
5774                                         unsigned NumGradients) {
5775   SDLoc DL(Op);
5776   for (unsigned I = DimIdx; I < EndIdx; I++) {
5777     SDValue Addr = Op.getOperand(I);
5778
5779     // Gradients are packed with undef for each coordinate.
5780     // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
5781     // 1D: undef,dx/dh; undef,dx/dv
5782     // 2D: dy/dh,dx/dh; dy/dv,dx/dv
5783     // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
5784     if (((I + 1) >= EndIdx) ||
5785         ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
5786                                          I == DimIdx + NumGradients - 1))) {
5787       if (Addr.getValueType() != MVT::i16)
5788         Addr = DAG.getBitcast(MVT::i16, Addr);
5789       Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
5790     } else {
5791       Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
5792       I++;
5793     }
5794     Addr = DAG.getBitcast(MVT::f32, Addr);
5795     PackedAddrs.push_back(Addr);
5796   }
5797 }
5798
5799 SDValue SITargetLowering::lowerImage(SDValue Op,
5800                                      const AMDGPU::ImageDimIntrinsicInfo *Intr,
5801                                      SelectionDAG &DAG) const {
5802   SDLoc DL(Op);
5803   MachineFunction &MF = DAG.getMachineFunction();
5804   const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5805   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5806       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5807   const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5808   const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5809       AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5810   const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
5811       AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
5812   unsigned IntrOpcode = Intr->BaseOpcode;
5813   bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5814
5815   SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
5816   SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
5817   bool IsD16 = false;
5818   bool IsG16 = false;
5819   bool IsA16 = false;
5820   SDValue VData;
5821   int NumVDataDwords;
5822   bool AdjustRetType = false;
5823
5824   unsigned AddrIdx; // Index of first address argument
5825   unsigned DMask;
5826   unsigned DMaskLanes = 0;
5827
5828   if (BaseOpcode->Atomic) {
5829     VData = Op.getOperand(2);
5830
5831     bool Is64Bit = VData.getValueType() == MVT::i64;
5832     if (BaseOpcode->AtomicX2) {
5833       SDValue VData2 = Op.getOperand(3);
5834       VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
5835                                  {VData, VData2});
5836       if (Is64Bit)
5837         VData = DAG.getBitcast(MVT::v4i32, VData);
5838
5839       ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
5840       DMask = Is64Bit ? 0xf : 0x3;
5841       NumVDataDwords = Is64Bit ? 4 : 2;
5842       AddrIdx = 4;
5843     } else {
5844       DMask = Is64Bit ? 0x3 : 0x1;
5845       NumVDataDwords = Is64Bit ? 2 : 1;
5846       AddrIdx = 3;
5847     }
5848   } else {
5849     unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1;
5850     auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx));
5851     DMask = DMaskConst->getZExtValue();
5852     DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
5853
5854     if (BaseOpcode->Store) {
5855       VData = Op.getOperand(2);
5856
5857       MVT StoreVT = VData.getSimpleValueType();
5858       if (StoreVT.getScalarType() == MVT::f16) {
5859         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5860           return Op; // D16 is unsupported for this instruction
5861
5862         IsD16 = true;
5863         VData = handleD16VData(VData, DAG);
5864       }
5865
5866       NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
5867     } else {
5868       // Work out the num dwords based on the dmask popcount and underlying type
5869       // and whether packing is supported.
5870       MVT LoadVT = ResultTypes[0].getSimpleVT();
5871       if (LoadVT.getScalarType() == MVT::f16) {
5872         if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5873           return Op; // D16 is unsupported for this instruction
5874
5875         IsD16 = true;
5876       }
5877
5878       // Confirm that the return type is large enough for the dmask specified
5879       if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
5880           (!LoadVT.isVector() && DMaskLanes > 1))
5881           return Op;
5882
5883       if (IsD16 && !Subtarget->hasUnpackedD16VMem())
5884         NumVDataDwords = (DMaskLanes + 1) / 2;
5885       else
5886         NumVDataDwords = DMaskLanes;
5887
5888       AdjustRetType = true;
5889     }
5890
5891     AddrIdx = DMaskIdx + 1;
5892   }
5893
5894   unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0;
5895   unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0;
5896   unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0;
5897   unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients +
5898                        NumCoords + NumLCM;
5899   unsigned NumMIVAddrs = NumVAddrs;
5900
5901   SmallVector<SDValue, 4> VAddrs;
5902
5903   // Optimize _L to _LZ when _L is zero
5904   if (LZMappingInfo) {
5905     if (auto ConstantLod =
5906          dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5907       if (ConstantLod->isZero() || ConstantLod->isNegative()) {
5908         IntrOpcode = LZMappingInfo->LZ;  // set new opcode to _lz variant of _l
5909         NumMIVAddrs--;               // remove 'lod'
5910       }
5911     }
5912   }
5913
5914   // Optimize _mip away, when 'lod' is zero
5915   if (MIPMappingInfo) {
5916     if (auto ConstantLod =
5917          dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5918       if (ConstantLod->isNullValue()) {
5919         IntrOpcode = MIPMappingInfo->NONMIP;  // set new opcode to variant without _mip
5920         NumMIVAddrs--;               // remove 'lod'
5921       }
5922     }
5923   }
5924
5925   // Push back extra arguments.
5926   for (unsigned I = 0; I < BaseOpcode->NumExtraArgs; I++)
5927     VAddrs.push_back(Op.getOperand(AddrIdx + I));
5928
5929   // Check for 16 bit addresses or derivatives and pack if true.
5930   unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs;
5931   unsigned CoordIdx = DimIdx + NumGradients;
5932   unsigned CoordsEnd = AddrIdx + NumMIVAddrs;
5933
5934   MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType();
5935   MVT VAddrScalarVT = VAddrVT.getScalarType();
5936   MVT PackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
5937   IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
5938
5939   VAddrVT = Op.getOperand(CoordIdx).getSimpleValueType();
5940   VAddrScalarVT = VAddrVT.getScalarType();
5941   IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
5942   if (IsA16 || IsG16) {
5943     if (IsA16) {
5944       if (!ST->hasA16()) {
5945         LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
5946                              "support 16 bit addresses\n");
5947         return Op;
5948       }
5949       if (!IsG16) {
5950         LLVM_DEBUG(
5951             dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
5952                       "need 16 bit derivatives but got 32 bit derivatives\n");
5953         return Op;
5954       }
5955     } else if (!ST->hasG16()) {
5956       LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
5957                            "support 16 bit derivatives\n");
5958       return Op;
5959     }
5960
5961     if (BaseOpcode->Gradients && !IsA16) {
5962       if (!ST->hasG16()) {
5963         LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
5964                              "support 16 bit derivatives\n");
5965         return Op;
5966       }
5967       // Activate g16
5968       const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
5969           AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
5970       IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
5971     }
5972
5973     // Don't compress addresses for G16
5974     const int PackEndIdx = IsA16 ? CoordsEnd : CoordIdx;
5975     packImageA16AddressToDwords(DAG, Op, PackVectorVT, VAddrs, DimIdx,
5976                                 PackEndIdx, NumGradients);
5977
5978     if (!IsA16) {
5979       // Add uncompressed address
5980       for (unsigned I = CoordIdx; I < CoordsEnd; I++)
5981         VAddrs.push_back(Op.getOperand(I));
5982     }
5983   } else {
5984     for (unsigned I = DimIdx; I < CoordsEnd; I++)
5985       VAddrs.push_back(Op.getOperand(I));
5986   }
5987
5988   // If the register allocator cannot place the address registers contiguously
5989   // without introducing moves, then using the non-sequential address encoding
5990   // is always preferable, since it saves VALU instructions and is usually a
5991   // wash in terms of code size or even better.
5992   //
5993   // However, we currently have no way of hinting to the register allocator that
5994   // MIMG addresses should be placed contiguously when it is possible to do so,
5995   // so force non-NSA for the common 2-address case as a heuristic.
5996   //
5997   // SIShrinkInstructions will convert NSA encodings to non-NSA after register
5998   // allocation when possible.
5999   bool UseNSA =
6000       ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
6001   SDValue VAddr;
6002   if (!UseNSA)
6003     VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
6004
6005   SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
6006   SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
6007   unsigned CtrlIdx; // Index of texfailctrl argument
6008   SDValue Unorm;
6009   if (!BaseOpcode->Sampler) {
6010     Unorm = True;
6011     CtrlIdx = AddrIdx + NumVAddrs + 1;
6012   } else {
6013     auto UnormConst =
6014         cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2));
6015
6016     Unorm = UnormConst->getZExtValue() ? True : False;
6017     CtrlIdx = AddrIdx + NumVAddrs + 3;
6018   }
6019
6020   SDValue TFE;
6021   SDValue LWE;
6022   SDValue TexFail = Op.getOperand(CtrlIdx);
6023   bool IsTexFail = false;
6024   if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
6025     return Op;
6026
6027   if (IsTexFail) {
6028     if (!DMaskLanes) {
6029       // Expecting to get an error flag since TFC is on - and dmask is 0
6030       // Force dmask to be at least 1 otherwise the instruction will fail
6031       DMask = 0x1;
6032       DMaskLanes = 1;
6033       NumVDataDwords = 1;
6034     }
6035     NumVDataDwords += 1;
6036     AdjustRetType = true;
6037   }
6038
6039   // Has something earlier tagged that the return type needs adjusting
6040   // This happens if the instruction is a load or has set TexFailCtrl flags
6041   if (AdjustRetType) {
6042     // NumVDataDwords reflects the true number of dwords required in the return type
6043     if (DMaskLanes == 0 && !BaseOpcode->Store) {
6044       // This is a no-op load. This can be eliminated
6045       SDValue Undef = DAG.getUNDEF(Op.getValueType());
6046       if (isa<MemSDNode>(Op))
6047         return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
6048       return Undef;
6049     }
6050
6051     EVT NewVT = NumVDataDwords > 1 ?
6052                   EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumVDataDwords)
6053                 : MVT::i32;
6054
6055     ResultTypes[0] = NewVT;
6056     if (ResultTypes.size() == 3) {
6057       // Original result was aggregate type used for TexFailCtrl results
6058       // The actual instruction returns as a vector type which has now been
6059       // created. Remove the aggregate result.
6060       ResultTypes.erase(&ResultTypes[1]);
6061     }
6062   }
6063
6064   SDValue GLC;
6065   SDValue SLC;
6066   SDValue DLC;
6067   if (BaseOpcode->Atomic) {
6068     GLC = True; // TODO no-return optimization
6069     if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC,
6070                           IsGFX10 ? &DLC : nullptr))
6071       return Op;
6072   } else {
6073     if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC,
6074                           IsGFX10 ? &DLC : nullptr))
6075       return Op;
6076   }
6077
6078   SmallVector<SDValue, 26> Ops;
6079   if (BaseOpcode->Store || BaseOpcode->Atomic)
6080     Ops.push_back(VData); // vdata
6081   if (UseNSA) {
6082     for (const SDValue &Addr : VAddrs)
6083       Ops.push_back(Addr);
6084   } else {
6085     Ops.push_back(VAddr);
6086   }
6087   Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc
6088   if (BaseOpcode->Sampler)
6089     Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler
6090   Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
6091   if (IsGFX10)
6092     Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
6093   Ops.push_back(Unorm);
6094   if (IsGFX10)
6095     Ops.push_back(DLC);
6096   Ops.push_back(GLC);
6097   Ops.push_back(SLC);
6098   Ops.push_back(IsA16 &&  // r128, a16 for gfx9
6099                 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
6100   if (IsGFX10)
6101     Ops.push_back(IsA16 ? True : False);
6102   Ops.push_back(TFE);
6103   Ops.push_back(LWE);
6104   if (!IsGFX10)
6105     Ops.push_back(DimInfo->DA ? True : False);
6106   if (BaseOpcode->HasD16)
6107     Ops.push_back(IsD16 ? True : False);
6108   if (isa<MemSDNode>(Op))
6109     Ops.push_back(Op.getOperand(0)); // chain
6110
6111   int NumVAddrDwords =
6112       UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
6113   int Opcode = -1;
6114
6115   if (IsGFX10) {
6116     Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
6117                                    UseNSA ? AMDGPU::MIMGEncGfx10NSA
6118                                           : AMDGPU::MIMGEncGfx10Default,
6119                                    NumVDataDwords, NumVAddrDwords);
6120   } else {
6121     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6122       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
6123                                      NumVDataDwords, NumVAddrDwords);
6124     if (Opcode == -1)
6125       Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
6126                                      NumVDataDwords, NumVAddrDwords);
6127   }
6128   assert(Opcode != -1);
6129
6130   MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
6131   if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
6132     MachineMemOperand *MemRef = MemOp->getMemOperand();
6133     DAG.setNodeMemRefs(NewNode, {MemRef});
6134   }
6135
6136   if (BaseOpcode->AtomicX2) {
6137     SmallVector<SDValue, 1> Elt;
6138     DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
6139     return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
6140   } else if (!BaseOpcode->Store) {
6141     return constructRetValue(DAG, NewNode,
6142                              OrigResultTypes, IsTexFail,
6143                              Subtarget->hasUnpackedD16VMem(), IsD16,
6144                              DMaskLanes, NumVDataDwords, DL,
6145                              *DAG.getContext());
6146   }
6147
6148   return SDValue(NewNode, 0);
6149 }
6150
6151 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
6152                                        SDValue Offset, SDValue CachePolicy,
6153                                        SelectionDAG &DAG) const {
6154   MachineFunction &MF = DAG.getMachineFunction();
6155
6156   const DataLayout &DataLayout = DAG.getDataLayout();
6157   Align Alignment =
6158       DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6159
6160   MachineMemOperand *MMO = MF.getMachineMemOperand(
6161       MachinePointerInfo(),
6162       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6163           MachineMemOperand::MOInvariant,
6164       VT.getStoreSize(), Alignment);
6165
6166   if (!Offset->isDivergent()) {
6167     SDValue Ops[] = {
6168         Rsrc,
6169         Offset, // Offset
6170         CachePolicy
6171     };
6172
6173     // Widen vec3 load to vec4.
6174     if (VT.isVector() && VT.getVectorNumElements() == 3) {
6175       EVT WidenedVT =
6176           EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
6177       auto WidenedOp = DAG.getMemIntrinsicNode(
6178           AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
6179           MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
6180       auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
6181                                    DAG.getVectorIdxConstant(0, DL));
6182       return Subvector;
6183     }
6184
6185     return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
6186                                    DAG.getVTList(VT), Ops, VT, MMO);
6187   }
6188
6189   // We have a divergent offset. Emit a MUBUF buffer load instead. We can
6190   // assume that the buffer is unswizzled.
6191   SmallVector<SDValue, 4> Loads;
6192   unsigned NumLoads = 1;
6193   MVT LoadVT = VT.getSimpleVT();
6194   unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
6195   assert((LoadVT.getScalarType() == MVT::i32 ||
6196           LoadVT.getScalarType() == MVT::f32));
6197
6198   if (NumElts == 8 || NumElts == 16) {
6199     NumLoads = NumElts / 4;
6200     LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
6201   }
6202
6203   SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
6204   SDValue Ops[] = {
6205       DAG.getEntryNode(),                               // Chain
6206       Rsrc,                                             // rsrc
6207       DAG.getConstant(0, DL, MVT::i32),                 // vindex
6208       {},                                               // voffset
6209       {},                                               // soffset
6210       {},                                               // offset
6211       CachePolicy,                                      // cachepolicy
6212       DAG.getTargetConstant(0, DL, MVT::i1),            // idxen
6213   };
6214
6215   // Use the alignment to ensure that the required offsets will fit into the
6216   // immediate offsets.
6217   setBufferOffsets(Offset, DAG, &Ops[3],
6218                    NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
6219
6220   uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
6221   for (unsigned i = 0; i < NumLoads; ++i) {
6222     Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
6223     Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
6224                                         LoadVT, MMO, DAG));
6225   }
6226
6227   if (NumElts == 8 || NumElts == 16)
6228     return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
6229
6230   return Loads[0];
6231 }
6232
6233 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
6234                                                   SelectionDAG &DAG) const {
6235   MachineFunction &MF = DAG.getMachineFunction();
6236   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
6237
6238   EVT VT = Op.getValueType();
6239   SDLoc DL(Op);
6240   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6241
6242   // TODO: Should this propagate fast-math-flags?
6243
6244   switch (IntrinsicID) {
6245   case Intrinsic::amdgcn_implicit_buffer_ptr: {
6246     if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
6247       return emitNonHSAIntrinsicError(DAG, DL, VT);
6248     return getPreloadedValue(DAG, *MFI, VT,
6249                              AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
6250   }
6251   case Intrinsic::amdgcn_dispatch_ptr:
6252   case Intrinsic::amdgcn_queue_ptr: {
6253     if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
6254       DiagnosticInfoUnsupported BadIntrin(
6255           MF.getFunction(), "unsupported hsa intrinsic without hsa target",
6256           DL.getDebugLoc());
6257       DAG.getContext()->diagnose(BadIntrin);
6258       return DAG.getUNDEF(VT);
6259     }
6260
6261     auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
6262       AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
6263     return getPreloadedValue(DAG, *MFI, VT, RegID);
6264   }
6265   case Intrinsic::amdgcn_implicitarg_ptr: {
6266     if (MFI->isEntryFunction())
6267       return getImplicitArgPtr(DAG, DL);
6268     return getPreloadedValue(DAG, *MFI, VT,
6269                              AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
6270   }
6271   case Intrinsic::amdgcn_kernarg_segment_ptr: {
6272     if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
6273       // This only makes sense to call in a kernel, so just lower to null.
6274       return DAG.getConstant(0, DL, VT);
6275     }
6276
6277     return getPreloadedValue(DAG, *MFI, VT,
6278                              AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
6279   }
6280   case Intrinsic::amdgcn_dispatch_id: {
6281     return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
6282   }
6283   case Intrinsic::amdgcn_rcp:
6284     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
6285   case Intrinsic::amdgcn_rsq:
6286     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6287   case Intrinsic::amdgcn_rsq_legacy:
6288     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6289       return emitRemovedIntrinsicError(DAG, DL, VT);
6290     return SDValue();
6291   case Intrinsic::amdgcn_rcp_legacy:
6292     if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
6293       return emitRemovedIntrinsicError(DAG, DL, VT);
6294     return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
6295   case Intrinsic::amdgcn_rsq_clamp: {
6296     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6297       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
6298
6299     Type *Type = VT.getTypeForEVT(*DAG.getContext());
6300     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
6301     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
6302
6303     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
6304     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
6305                               DAG.getConstantFP(Max, DL, VT));
6306     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
6307                        DAG.getConstantFP(Min, DL, VT));
6308   }
6309   case Intrinsic::r600_read_ngroups_x:
6310     if (Subtarget->isAmdHsaOS())
6311       return emitNonHSAIntrinsicError(DAG, DL, VT);
6312
6313     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6314                                     SI::KernelInputOffsets::NGROUPS_X, Align(4),
6315                                     false);
6316   case Intrinsic::r600_read_ngroups_y:
6317     if (Subtarget->isAmdHsaOS())
6318       return emitNonHSAIntrinsicError(DAG, DL, VT);
6319
6320     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6321                                     SI::KernelInputOffsets::NGROUPS_Y, Align(4),
6322                                     false);
6323   case Intrinsic::r600_read_ngroups_z:
6324     if (Subtarget->isAmdHsaOS())
6325       return emitNonHSAIntrinsicError(DAG, DL, VT);
6326
6327     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6328                                     SI::KernelInputOffsets::NGROUPS_Z, Align(4),
6329                                     false);
6330   case Intrinsic::r600_read_global_size_x:
6331     if (Subtarget->isAmdHsaOS())
6332       return emitNonHSAIntrinsicError(DAG, DL, VT);
6333
6334     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6335                                     SI::KernelInputOffsets::GLOBAL_SIZE_X,
6336                                     Align(4), false);
6337   case Intrinsic::r600_read_global_size_y:
6338     if (Subtarget->isAmdHsaOS())
6339       return emitNonHSAIntrinsicError(DAG, DL, VT);
6340
6341     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6342                                     SI::KernelInputOffsets::GLOBAL_SIZE_Y,
6343                                     Align(4), false);
6344   case Intrinsic::r600_read_global_size_z:
6345     if (Subtarget->isAmdHsaOS())
6346       return emitNonHSAIntrinsicError(DAG, DL, VT);
6347
6348     return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
6349                                     SI::KernelInputOffsets::GLOBAL_SIZE_Z,
6350                                     Align(4), false);
6351   case Intrinsic::r600_read_local_size_x:
6352     if (Subtarget->isAmdHsaOS())
6353       return emitNonHSAIntrinsicError(DAG, DL, VT);
6354
6355     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6356                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
6357   case Intrinsic::r600_read_local_size_y:
6358     if (Subtarget->isAmdHsaOS())
6359       return emitNonHSAIntrinsicError(DAG, DL, VT);
6360
6361     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6362                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
6363   case Intrinsic::r600_read_local_size_z:
6364     if (Subtarget->isAmdHsaOS())
6365       return emitNonHSAIntrinsicError(DAG, DL, VT);
6366
6367     return lowerImplicitZextParam(DAG, Op, MVT::i16,
6368                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
6369   case Intrinsic::amdgcn_workgroup_id_x:
6370     return getPreloadedValue(DAG, *MFI, VT,
6371                              AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
6372   case Intrinsic::amdgcn_workgroup_id_y:
6373     return getPreloadedValue(DAG, *MFI, VT,
6374                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
6375   case Intrinsic::amdgcn_workgroup_id_z:
6376     return getPreloadedValue(DAG, *MFI, VT,
6377                              AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
6378   case Intrinsic::amdgcn_workitem_id_x:
6379     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6380                           SDLoc(DAG.getEntryNode()),
6381                           MFI->getArgInfo().WorkItemIDX);
6382   case Intrinsic::amdgcn_workitem_id_y:
6383     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6384                           SDLoc(DAG.getEntryNode()),
6385                           MFI->getArgInfo().WorkItemIDY);
6386   case Intrinsic::amdgcn_workitem_id_z:
6387     return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
6388                           SDLoc(DAG.getEntryNode()),
6389                           MFI->getArgInfo().WorkItemIDZ);
6390   case Intrinsic::amdgcn_wavefrontsize:
6391     return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
6392                            SDLoc(Op), MVT::i32);
6393   case Intrinsic::amdgcn_s_buffer_load: {
6394     bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
6395     SDValue GLC;
6396     SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
6397     if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
6398                           IsGFX10 ? &DLC : nullptr))
6399       return Op;
6400     return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6401                         DAG);
6402   }
6403   case Intrinsic::amdgcn_fdiv_fast:
6404     return lowerFDIV_FAST(Op, DAG);
6405   case Intrinsic::amdgcn_sin:
6406     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
6407
6408   case Intrinsic::amdgcn_cos:
6409     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
6410
6411   case Intrinsic::amdgcn_mul_u24:
6412     return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6413   case Intrinsic::amdgcn_mul_i24:
6414     return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
6415
6416   case Intrinsic::amdgcn_log_clamp: {
6417     if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
6418       return SDValue();
6419
6420     DiagnosticInfoUnsupported BadIntrin(
6421       MF.getFunction(), "intrinsic not supported on subtarget",
6422       DL.getDebugLoc());
6423       DAG.getContext()->diagnose(BadIntrin);
6424       return DAG.getUNDEF(VT);
6425   }
6426   case Intrinsic::amdgcn_ldexp:
6427     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
6428                        Op.getOperand(1), Op.getOperand(2));
6429
6430   case Intrinsic::amdgcn_fract:
6431     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
6432
6433   case Intrinsic::amdgcn_class:
6434     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
6435                        Op.getOperand(1), Op.getOperand(2));
6436   case Intrinsic::amdgcn_div_fmas:
6437     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
6438                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6439                        Op.getOperand(4));
6440
6441   case Intrinsic::amdgcn_div_fixup:
6442     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
6443                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6444
6445   case Intrinsic::amdgcn_div_scale: {
6446     const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
6447
6448     // Translate to the operands expected by the machine instruction. The
6449     // first parameter must be the same as the first instruction.
6450     SDValue Numerator = Op.getOperand(1);
6451     SDValue Denominator = Op.getOperand(2);
6452
6453     // Note this order is opposite of the machine instruction's operations,
6454     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
6455     // intrinsic has the numerator as the first operand to match a normal
6456     // division operation.
6457
6458     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
6459
6460     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
6461                        Denominator, Numerator);
6462   }
6463   case Intrinsic::amdgcn_icmp: {
6464     // There is a Pat that handles this variant, so return it as-is.
6465     if (Op.getOperand(1).getValueType() == MVT::i1 &&
6466         Op.getConstantOperandVal(2) == 0 &&
6467         Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6468       return Op;
6469     return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6470   }
6471   case Intrinsic::amdgcn_fcmp: {
6472     return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6473   }
6474   case Intrinsic::amdgcn_ballot:
6475     return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
6476   case Intrinsic::amdgcn_fmed3:
6477     return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6478                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6479   case Intrinsic::amdgcn_fdot2:
6480     return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6481                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6482                        Op.getOperand(4));
6483   case Intrinsic::amdgcn_fmul_legacy:
6484     return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6485                        Op.getOperand(1), Op.getOperand(2));
6486   case Intrinsic::amdgcn_sffbh:
6487     return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6488   case Intrinsic::amdgcn_sbfe:
6489     return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6490                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6491   case Intrinsic::amdgcn_ubfe:
6492     return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6493                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6494   case Intrinsic::amdgcn_cvt_pkrtz:
6495   case Intrinsic::amdgcn_cvt_pknorm_i16:
6496   case Intrinsic::amdgcn_cvt_pknorm_u16:
6497   case Intrinsic::amdgcn_cvt_pk_i16:
6498   case Intrinsic::amdgcn_cvt_pk_u16: {
6499     // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6500     EVT VT = Op.getValueType();
6501     unsigned Opcode;
6502
6503     if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6504       Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6505     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6506       Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6507     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6508       Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6509     else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6510       Opcode = AMDGPUISD::CVT_PK_I16_I32;
6511     else
6512       Opcode = AMDGPUISD::CVT_PK_U16_U32;
6513
6514     if (isTypeLegal(VT))
6515       return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6516
6517     SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6518                                Op.getOperand(1), Op.getOperand(2));
6519     return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6520   }
6521   case Intrinsic::amdgcn_fmad_ftz:
6522     return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6523                        Op.getOperand(2), Op.getOperand(3));
6524
6525   case Intrinsic::amdgcn_if_break:
6526     return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6527                                       Op->getOperand(1), Op->getOperand(2)), 0);
6528
6529   case Intrinsic::amdgcn_groupstaticsize: {
6530     Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6531     if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6532       return Op;
6533
6534     const Module *M = MF.getFunction().getParent();
6535     const GlobalValue *GV =
6536         M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6537     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6538                                             SIInstrInfo::MO_ABS32_LO);
6539     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6540   }
6541   case Intrinsic::amdgcn_is_shared:
6542   case Intrinsic::amdgcn_is_private: {
6543     SDLoc SL(Op);
6544     unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6545       AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6546     SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6547     SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6548                                  Op.getOperand(1));
6549
6550     SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6551                                 DAG.getConstant(1, SL, MVT::i32));
6552     return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6553   }
6554   case Intrinsic::amdgcn_alignbit:
6555     return DAG.getNode(ISD::FSHR, DL, VT,
6556                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6557   case Intrinsic::amdgcn_reloc_constant: {
6558     Module *M = const_cast<Module *>(MF.getFunction().getParent());
6559     const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
6560     auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
6561     auto RelocSymbol = cast<GlobalVariable>(
6562         M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
6563     SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
6564                                             SIInstrInfo::MO_ABS32_LO);
6565     return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6566   }
6567   default:
6568     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6569             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6570       return lowerImage(Op, ImageDimIntr, DAG);
6571
6572     return Op;
6573   }
6574 }
6575
6576 // This function computes an appropriate offset to pass to
6577 // MachineMemOperand::setOffset() based on the offset inputs to
6578 // an intrinsic.  If any of the offsets are non-contstant or
6579 // if VIndex is non-zero then this function returns 0.  Otherwise,
6580 // it returns the sum of VOffset, SOffset, and Offset.
6581 static unsigned getBufferOffsetForMMO(SDValue VOffset,
6582                                       SDValue SOffset,
6583                                       SDValue Offset,
6584                                       SDValue VIndex = SDValue()) {
6585
6586   if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6587       !isa<ConstantSDNode>(Offset))
6588     return 0;
6589
6590   if (VIndex) {
6591     if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue())
6592       return 0;
6593   }
6594
6595   return cast<ConstantSDNode>(VOffset)->getSExtValue() +
6596          cast<ConstantSDNode>(SOffset)->getSExtValue() +
6597          cast<ConstantSDNode>(Offset)->getSExtValue();
6598 }
6599
6600 static unsigned getDSShaderTypeValue(const MachineFunction &MF) {
6601   switch (MF.getFunction().getCallingConv()) {
6602   case CallingConv::AMDGPU_PS:
6603     return 1;
6604   case CallingConv::AMDGPU_VS:
6605     return 2;
6606   case CallingConv::AMDGPU_GS:
6607     return 3;
6608   case CallingConv::AMDGPU_HS:
6609   case CallingConv::AMDGPU_LS:
6610   case CallingConv::AMDGPU_ES:
6611     report_fatal_error("ds_ordered_count unsupported for this calling conv");
6612   case CallingConv::AMDGPU_CS:
6613   case CallingConv::AMDGPU_KERNEL:
6614   case CallingConv::C:
6615   case CallingConv::Fast:
6616   default:
6617     // Assume other calling conventions are various compute callable functions
6618     return 0;
6619   }
6620 }
6621
6622 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6623                                                  SelectionDAG &DAG) const {
6624   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6625   SDLoc DL(Op);
6626
6627   switch (IntrID) {
6628   case Intrinsic::amdgcn_ds_ordered_add:
6629   case Intrinsic::amdgcn_ds_ordered_swap: {
6630     MemSDNode *M = cast<MemSDNode>(Op);
6631     SDValue Chain = M->getOperand(0);
6632     SDValue M0 = M->getOperand(2);
6633     SDValue Value = M->getOperand(3);
6634     unsigned IndexOperand = M->getConstantOperandVal(7);
6635     unsigned WaveRelease = M->getConstantOperandVal(8);
6636     unsigned WaveDone = M->getConstantOperandVal(9);
6637
6638     unsigned OrderedCountIndex = IndexOperand & 0x3f;
6639     IndexOperand &= ~0x3f;
6640     unsigned CountDw = 0;
6641
6642     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6643       CountDw = (IndexOperand >> 24) & 0xf;
6644       IndexOperand &= ~(0xf << 24);
6645
6646       if (CountDw < 1 || CountDw > 4) {
6647         report_fatal_error(
6648             "ds_ordered_count: dword count must be between 1 and 4");
6649       }
6650     }
6651
6652     if (IndexOperand)
6653       report_fatal_error("ds_ordered_count: bad index operand");
6654
6655     if (WaveDone && !WaveRelease)
6656       report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6657
6658     unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
6659     unsigned ShaderType = getDSShaderTypeValue(DAG.getMachineFunction());
6660     unsigned Offset0 = OrderedCountIndex << 2;
6661     unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6662                        (Instruction << 4);
6663
6664     if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6665       Offset1 |= (CountDw - 1) << 6;
6666
6667     unsigned Offset = Offset0 | (Offset1 << 8);
6668
6669     SDValue Ops[] = {
6670       Chain,
6671       Value,
6672       DAG.getTargetConstant(Offset, DL, MVT::i16),
6673       copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6674     };
6675     return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6676                                    M->getVTList(), Ops, M->getMemoryVT(),
6677                                    M->getMemOperand());
6678   }
6679   case Intrinsic::amdgcn_ds_fadd: {
6680     MemSDNode *M = cast<MemSDNode>(Op);
6681     unsigned Opc;
6682     switch (IntrID) {
6683     case Intrinsic::amdgcn_ds_fadd:
6684       Opc = ISD::ATOMIC_LOAD_FADD;
6685       break;
6686     }
6687
6688     return DAG.getAtomic(Opc, SDLoc(Op), M->getMemoryVT(),
6689                          M->getOperand(0), M->getOperand(2), M->getOperand(3),
6690                          M->getMemOperand());
6691   }
6692   case Intrinsic::amdgcn_atomic_inc:
6693   case Intrinsic::amdgcn_atomic_dec:
6694   case Intrinsic::amdgcn_ds_fmin:
6695   case Intrinsic::amdgcn_ds_fmax: {
6696     MemSDNode *M = cast<MemSDNode>(Op);
6697     unsigned Opc;
6698     switch (IntrID) {
6699     case Intrinsic::amdgcn_atomic_inc:
6700       Opc = AMDGPUISD::ATOMIC_INC;
6701       break;
6702     case Intrinsic::amdgcn_atomic_dec:
6703       Opc = AMDGPUISD::ATOMIC_DEC;
6704       break;
6705     case Intrinsic::amdgcn_ds_fmin:
6706       Opc = AMDGPUISD::ATOMIC_LOAD_FMIN;
6707       break;
6708     case Intrinsic::amdgcn_ds_fmax:
6709       Opc = AMDGPUISD::ATOMIC_LOAD_FMAX;
6710       break;
6711     default:
6712       llvm_unreachable("Unknown intrinsic!");
6713     }
6714     SDValue Ops[] = {
6715       M->getOperand(0), // Chain
6716       M->getOperand(2), // Ptr
6717       M->getOperand(3)  // Value
6718     };
6719
6720     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
6721                                    M->getMemoryVT(), M->getMemOperand());
6722   }
6723   case Intrinsic::amdgcn_buffer_load:
6724   case Intrinsic::amdgcn_buffer_load_format: {
6725     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
6726     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6727     unsigned IdxEn = 1;
6728     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6729       IdxEn = Idx->getZExtValue() != 0;
6730     SDValue Ops[] = {
6731       Op.getOperand(0), // Chain
6732       Op.getOperand(2), // rsrc
6733       Op.getOperand(3), // vindex
6734       SDValue(),        // voffset -- will be set by setBufferOffsets
6735       SDValue(),        // soffset -- will be set by setBufferOffsets
6736       SDValue(),        // offset -- will be set by setBufferOffsets
6737       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6738       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6739     };
6740
6741     unsigned Offset = setBufferOffsets(Op.getOperand(4), DAG, &Ops[3]);
6742     // We don't know the offset if vindex is non-zero, so clear it.
6743     if (IdxEn)
6744       Offset = 0;
6745
6746     unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
6747         AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
6748
6749     EVT VT = Op.getValueType();
6750     EVT IntVT = VT.changeTypeToInteger();
6751     auto *M = cast<MemSDNode>(Op);
6752     M->getMemOperand()->setOffset(Offset);
6753     EVT LoadVT = Op.getValueType();
6754
6755     if (LoadVT.getScalarType() == MVT::f16)
6756       return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16,
6757                                  M, DAG, Ops);
6758
6759     // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6760     if (LoadVT.getScalarType() == MVT::i8 ||
6761         LoadVT.getScalarType() == MVT::i16)
6762       return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
6763
6764     return getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT,
6765                                M->getMemOperand(), DAG);
6766   }
6767   case Intrinsic::amdgcn_raw_buffer_load:
6768   case Intrinsic::amdgcn_raw_buffer_load_format: {
6769     const bool IsFormat = IntrID == Intrinsic::amdgcn_raw_buffer_load_format;
6770
6771     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6772     SDValue Ops[] = {
6773       Op.getOperand(0), // Chain
6774       Op.getOperand(2), // rsrc
6775       DAG.getConstant(0, DL, MVT::i32), // vindex
6776       Offsets.first,    // voffset
6777       Op.getOperand(4), // soffset
6778       Offsets.second,   // offset
6779       Op.getOperand(5), // cachepolicy, swizzled buffer
6780       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6781     };
6782
6783     auto *M = cast<MemSDNode>(Op);
6784     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5]));
6785     return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
6786   }
6787   case Intrinsic::amdgcn_struct_buffer_load:
6788   case Intrinsic::amdgcn_struct_buffer_load_format: {
6789     const bool IsFormat = IntrID == Intrinsic::amdgcn_struct_buffer_load_format;
6790
6791     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6792     SDValue Ops[] = {
6793       Op.getOperand(0), // Chain
6794       Op.getOperand(2), // rsrc
6795       Op.getOperand(3), // vindex
6796       Offsets.first,    // voffset
6797       Op.getOperand(5), // soffset
6798       Offsets.second,   // offset
6799       Op.getOperand(6), // cachepolicy, swizzled buffer
6800       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6801     };
6802
6803     auto *M = cast<MemSDNode>(Op);
6804     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[3], Ops[4], Ops[5],
6805                                                         Ops[2]));
6806     return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
6807   }
6808   case Intrinsic::amdgcn_tbuffer_load: {
6809     MemSDNode *M = cast<MemSDNode>(Op);
6810     EVT LoadVT = Op.getValueType();
6811
6812     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
6813     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
6814     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
6815     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
6816     unsigned IdxEn = 1;
6817     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(3)))
6818       IdxEn = Idx->getZExtValue() != 0;
6819     SDValue Ops[] = {
6820       Op.getOperand(0),  // Chain
6821       Op.getOperand(2),  // rsrc
6822       Op.getOperand(3),  // vindex
6823       Op.getOperand(4),  // voffset
6824       Op.getOperand(5),  // soffset
6825       Op.getOperand(6),  // offset
6826       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
6827       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
6828       DAG.getTargetConstant(IdxEn, DL, MVT::i1) // idxen
6829     };
6830
6831     if (LoadVT.getScalarType() == MVT::f16)
6832       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6833                                  M, DAG, Ops);
6834     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6835                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6836                                DAG);
6837   }
6838   case Intrinsic::amdgcn_raw_tbuffer_load: {
6839     MemSDNode *M = cast<MemSDNode>(Op);
6840     EVT LoadVT = Op.getValueType();
6841     auto Offsets = splitBufferOffsets(Op.getOperand(3), DAG);
6842
6843     SDValue Ops[] = {
6844       Op.getOperand(0),  // Chain
6845       Op.getOperand(2),  // rsrc
6846       DAG.getConstant(0, DL, MVT::i32), // vindex
6847       Offsets.first,     // voffset
6848       Op.getOperand(4),  // soffset
6849       Offsets.second,    // offset
6850       Op.getOperand(5),  // format
6851       Op.getOperand(6),  // cachepolicy, swizzled buffer
6852       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6853     };
6854
6855     if (LoadVT.getScalarType() == MVT::f16)
6856       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6857                                  M, DAG, Ops);
6858     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6859                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6860                                DAG);
6861   }
6862   case Intrinsic::amdgcn_struct_tbuffer_load: {
6863     MemSDNode *M = cast<MemSDNode>(Op);
6864     EVT LoadVT = Op.getValueType();
6865     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6866
6867     SDValue Ops[] = {
6868       Op.getOperand(0),  // Chain
6869       Op.getOperand(2),  // rsrc
6870       Op.getOperand(3),  // vindex
6871       Offsets.first,     // voffset
6872       Op.getOperand(5),  // soffset
6873       Offsets.second,    // offset
6874       Op.getOperand(6),  // format
6875       Op.getOperand(7),  // cachepolicy, swizzled buffer
6876       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
6877     };
6878
6879     if (LoadVT.getScalarType() == MVT::f16)
6880       return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16,
6881                                  M, DAG, Ops);
6882     return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
6883                                Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
6884                                DAG);
6885   }
6886   case Intrinsic::amdgcn_buffer_atomic_swap:
6887   case Intrinsic::amdgcn_buffer_atomic_add:
6888   case Intrinsic::amdgcn_buffer_atomic_sub:
6889   case Intrinsic::amdgcn_buffer_atomic_csub:
6890   case Intrinsic::amdgcn_buffer_atomic_smin:
6891   case Intrinsic::amdgcn_buffer_atomic_umin:
6892   case Intrinsic::amdgcn_buffer_atomic_smax:
6893   case Intrinsic::amdgcn_buffer_atomic_umax:
6894   case Intrinsic::amdgcn_buffer_atomic_and:
6895   case Intrinsic::amdgcn_buffer_atomic_or:
6896   case Intrinsic::amdgcn_buffer_atomic_xor: {
6897     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
6898     unsigned IdxEn = 1;
6899     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
6900       IdxEn = Idx->getZExtValue() != 0;
6901     SDValue Ops[] = {
6902       Op.getOperand(0), // Chain
6903       Op.getOperand(2), // vdata
6904       Op.getOperand(3), // rsrc
6905       Op.getOperand(4), // vindex
6906       SDValue(),        // voffset -- will be set by setBufferOffsets
6907       SDValue(),        // soffset -- will be set by setBufferOffsets
6908       SDValue(),        // offset -- will be set by setBufferOffsets
6909       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
6910       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
6911     };
6912     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
6913     // We don't know the offset if vindex is non-zero, so clear it.
6914     if (IdxEn)
6915       Offset = 0;
6916     EVT VT = Op.getValueType();
6917
6918     auto *M = cast<MemSDNode>(Op);
6919     M->getMemOperand()->setOffset(Offset);
6920     unsigned Opcode = 0;
6921
6922     switch (IntrID) {
6923     case Intrinsic::amdgcn_buffer_atomic_swap:
6924       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6925       break;
6926     case Intrinsic::amdgcn_buffer_atomic_add:
6927       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6928       break;
6929     case Intrinsic::amdgcn_buffer_atomic_sub:
6930       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
6931       break;
6932     case Intrinsic::amdgcn_buffer_atomic_csub:
6933       Opcode = AMDGPUISD::BUFFER_ATOMIC_CSUB;
6934       break;
6935     case Intrinsic::amdgcn_buffer_atomic_smin:
6936       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
6937       break;
6938     case Intrinsic::amdgcn_buffer_atomic_umin:
6939       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
6940       break;
6941     case Intrinsic::amdgcn_buffer_atomic_smax:
6942       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
6943       break;
6944     case Intrinsic::amdgcn_buffer_atomic_umax:
6945       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
6946       break;
6947     case Intrinsic::amdgcn_buffer_atomic_and:
6948       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
6949       break;
6950     case Intrinsic::amdgcn_buffer_atomic_or:
6951       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
6952       break;
6953     case Intrinsic::amdgcn_buffer_atomic_xor:
6954       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
6955       break;
6956     default:
6957       llvm_unreachable("unhandled atomic opcode");
6958     }
6959
6960     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
6961                                    M->getMemOperand());
6962   }
6963   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6964   case Intrinsic::amdgcn_raw_buffer_atomic_add:
6965   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
6966   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
6967   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
6968   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
6969   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
6970   case Intrinsic::amdgcn_raw_buffer_atomic_and:
6971   case Intrinsic::amdgcn_raw_buffer_atomic_or:
6972   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
6973   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
6974   case Intrinsic::amdgcn_raw_buffer_atomic_dec: {
6975     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
6976     SDValue Ops[] = {
6977       Op.getOperand(0), // Chain
6978       Op.getOperand(2), // vdata
6979       Op.getOperand(3), // rsrc
6980       DAG.getConstant(0, DL, MVT::i32), // vindex
6981       Offsets.first,    // voffset
6982       Op.getOperand(5), // soffset
6983       Offsets.second,   // offset
6984       Op.getOperand(6), // cachepolicy
6985       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6986     };
6987     EVT VT = Op.getValueType();
6988
6989     auto *M = cast<MemSDNode>(Op);
6990     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
6991     unsigned Opcode = 0;
6992
6993     switch (IntrID) {
6994     case Intrinsic::amdgcn_raw_buffer_atomic_swap:
6995       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
6996       break;
6997     case Intrinsic::amdgcn_raw_buffer_atomic_add:
6998       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
6999       break;
7000     case Intrinsic::amdgcn_raw_buffer_atomic_sub:
7001       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7002       break;
7003     case Intrinsic::amdgcn_raw_buffer_atomic_smin:
7004       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7005       break;
7006     case Intrinsic::amdgcn_raw_buffer_atomic_umin:
7007       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7008       break;
7009     case Intrinsic::amdgcn_raw_buffer_atomic_smax:
7010       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7011       break;
7012     case Intrinsic::amdgcn_raw_buffer_atomic_umax:
7013       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7014       break;
7015     case Intrinsic::amdgcn_raw_buffer_atomic_and:
7016       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7017       break;
7018     case Intrinsic::amdgcn_raw_buffer_atomic_or:
7019       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7020       break;
7021     case Intrinsic::amdgcn_raw_buffer_atomic_xor:
7022       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7023       break;
7024     case Intrinsic::amdgcn_raw_buffer_atomic_inc:
7025       Opcode = AMDGPUISD::BUFFER_ATOMIC_INC;
7026       break;
7027     case Intrinsic::amdgcn_raw_buffer_atomic_dec:
7028       Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC;
7029       break;
7030     default:
7031       llvm_unreachable("unhandled atomic opcode");
7032     }
7033
7034     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7035                                    M->getMemOperand());
7036   }
7037   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7038   case Intrinsic::amdgcn_struct_buffer_atomic_add:
7039   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7040   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7041   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7042   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7043   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7044   case Intrinsic::amdgcn_struct_buffer_atomic_and:
7045   case Intrinsic::amdgcn_struct_buffer_atomic_or:
7046   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7047   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7048   case Intrinsic::amdgcn_struct_buffer_atomic_dec: {
7049     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7050     SDValue Ops[] = {
7051       Op.getOperand(0), // Chain
7052       Op.getOperand(2), // vdata
7053       Op.getOperand(3), // rsrc
7054       Op.getOperand(4), // vindex
7055       Offsets.first,    // voffset
7056       Op.getOperand(6), // soffset
7057       Offsets.second,   // offset
7058       Op.getOperand(7), // cachepolicy
7059       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7060     };
7061     EVT VT = Op.getValueType();
7062
7063     auto *M = cast<MemSDNode>(Op);
7064     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
7065                                                         Ops[3]));
7066     unsigned Opcode = 0;
7067
7068     switch (IntrID) {
7069     case Intrinsic::amdgcn_struct_buffer_atomic_swap:
7070       Opcode = AMDGPUISD::BUFFER_ATOMIC_SWAP;
7071       break;
7072     case Intrinsic::amdgcn_struct_buffer_atomic_add:
7073       Opcode = AMDGPUISD::BUFFER_ATOMIC_ADD;
7074       break;
7075     case Intrinsic::amdgcn_struct_buffer_atomic_sub:
7076       Opcode = AMDGPUISD::BUFFER_ATOMIC_SUB;
7077       break;
7078     case Intrinsic::amdgcn_struct_buffer_atomic_smin:
7079       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMIN;
7080       break;
7081     case Intrinsic::amdgcn_struct_buffer_atomic_umin:
7082       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMIN;
7083       break;
7084     case Intrinsic::amdgcn_struct_buffer_atomic_smax:
7085       Opcode = AMDGPUISD::BUFFER_ATOMIC_SMAX;
7086       break;
7087     case Intrinsic::amdgcn_struct_buffer_atomic_umax:
7088       Opcode = AMDGPUISD::BUFFER_ATOMIC_UMAX;
7089       break;
7090     case Intrinsic::amdgcn_struct_buffer_atomic_and:
7091       Opcode = AMDGPUISD::BUFFER_ATOMIC_AND;
7092       break;
7093     case Intrinsic::amdgcn_struct_buffer_atomic_or:
7094       Opcode = AMDGPUISD::BUFFER_ATOMIC_OR;
7095       break;
7096     case Intrinsic::amdgcn_struct_buffer_atomic_xor:
7097       Opcode = AMDGPUISD::BUFFER_ATOMIC_XOR;
7098       break;
7099     case Intrinsic::amdgcn_struct_buffer_atomic_inc:
7100       Opcode = AMDGPUISD::BUFFER_ATOMIC_INC;
7101       break;
7102     case Intrinsic::amdgcn_struct_buffer_atomic_dec:
7103       Opcode = AMDGPUISD::BUFFER_ATOMIC_DEC;
7104       break;
7105     default:
7106       llvm_unreachable("unhandled atomic opcode");
7107     }
7108
7109     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7110                                    M->getMemOperand());
7111   }
7112   case Intrinsic::amdgcn_buffer_atomic_cmpswap: {
7113     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7114     unsigned IdxEn = 1;
7115     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(5)))
7116       IdxEn = Idx->getZExtValue() != 0;
7117     SDValue Ops[] = {
7118       Op.getOperand(0), // Chain
7119       Op.getOperand(2), // src
7120       Op.getOperand(3), // cmp
7121       Op.getOperand(4), // rsrc
7122       Op.getOperand(5), // vindex
7123       SDValue(),        // voffset -- will be set by setBufferOffsets
7124       SDValue(),        // soffset -- will be set by setBufferOffsets
7125       SDValue(),        // offset -- will be set by setBufferOffsets
7126       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7127       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7128     };
7129     unsigned Offset = setBufferOffsets(Op.getOperand(6), DAG, &Ops[5]);
7130     // We don't know the offset if vindex is non-zero, so clear it.
7131     if (IdxEn)
7132       Offset = 0;
7133     EVT VT = Op.getValueType();
7134     auto *M = cast<MemSDNode>(Op);
7135     M->getMemOperand()->setOffset(Offset);
7136
7137     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7138                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7139   }
7140   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap: {
7141     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7142     SDValue Ops[] = {
7143       Op.getOperand(0), // Chain
7144       Op.getOperand(2), // src
7145       Op.getOperand(3), // cmp
7146       Op.getOperand(4), // rsrc
7147       DAG.getConstant(0, DL, MVT::i32), // vindex
7148       Offsets.first,    // voffset
7149       Op.getOperand(6), // soffset
7150       Offsets.second,   // offset
7151       Op.getOperand(7), // cachepolicy
7152       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7153     };
7154     EVT VT = Op.getValueType();
7155     auto *M = cast<MemSDNode>(Op);
7156     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7]));
7157
7158     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7159                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7160   }
7161   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap: {
7162     auto Offsets = splitBufferOffsets(Op.getOperand(6), DAG);
7163     SDValue Ops[] = {
7164       Op.getOperand(0), // Chain
7165       Op.getOperand(2), // src
7166       Op.getOperand(3), // cmp
7167       Op.getOperand(4), // rsrc
7168       Op.getOperand(5), // vindex
7169       Offsets.first,    // voffset
7170       Op.getOperand(7), // soffset
7171       Offsets.second,   // offset
7172       Op.getOperand(8), // cachepolicy
7173       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7174     };
7175     EVT VT = Op.getValueType();
7176     auto *M = cast<MemSDNode>(Op);
7177     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[5], Ops[6], Ops[7],
7178                                                         Ops[4]));
7179
7180     return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
7181                                    Op->getVTList(), Ops, VT, M->getMemOperand());
7182   }
7183   case Intrinsic::amdgcn_global_atomic_csub: {
7184     MemSDNode *M = cast<MemSDNode>(Op);
7185     SDValue Ops[] = {
7186       M->getOperand(0), // Chain
7187       M->getOperand(2), // Ptr
7188       M->getOperand(3)  // Value
7189     };
7190
7191     return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_LOAD_CSUB, SDLoc(Op),
7192                                    M->getVTList(), Ops, M->getMemoryVT(),
7193                                    M->getMemOperand());
7194   }
7195
7196   default:
7197     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7198             AMDGPU::getImageDimIntrinsicInfo(IntrID))
7199       return lowerImage(Op, ImageDimIntr, DAG);
7200
7201     return SDValue();
7202   }
7203 }
7204
7205 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
7206 // dwordx4 if on SI.
7207 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
7208                                               SDVTList VTList,
7209                                               ArrayRef<SDValue> Ops, EVT MemVT,
7210                                               MachineMemOperand *MMO,
7211                                               SelectionDAG &DAG) const {
7212   EVT VT = VTList.VTs[0];
7213   EVT WidenedVT = VT;
7214   EVT WidenedMemVT = MemVT;
7215   if (!Subtarget->hasDwordx3LoadStores() &&
7216       (WidenedVT == MVT::v3i32 || WidenedVT == MVT::v3f32)) {
7217     WidenedVT = EVT::getVectorVT(*DAG.getContext(),
7218                                  WidenedVT.getVectorElementType(), 4);
7219     WidenedMemVT = EVT::getVectorVT(*DAG.getContext(),
7220                                     WidenedMemVT.getVectorElementType(), 4);
7221     MMO = DAG.getMachineFunction().getMachineMemOperand(MMO, 0, 16);
7222   }
7223
7224   assert(VTList.NumVTs == 2);
7225   SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
7226
7227   auto NewOp = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
7228                                        WidenedMemVT, MMO);
7229   if (WidenedVT != VT) {
7230     auto Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, NewOp,
7231                                DAG.getVectorIdxConstant(0, DL));
7232     NewOp = DAG.getMergeValues({ Extract, SDValue(NewOp.getNode(), 1) }, DL);
7233   }
7234   return NewOp;
7235 }
7236
7237 SDValue SITargetLowering::handleD16VData(SDValue VData,
7238                                          SelectionDAG &DAG) const {
7239   EVT StoreVT = VData.getValueType();
7240
7241   // No change for f16 and legal vector D16 types.
7242   if (!StoreVT.isVector())
7243     return VData;
7244
7245   SDLoc DL(VData);
7246   assert((StoreVT.getVectorNumElements() != 3) && "Handle v3f16");
7247
7248   if (Subtarget->hasUnpackedD16VMem()) {
7249     // We need to unpack the packed data to store.
7250     EVT IntStoreVT = StoreVT.changeTypeToInteger();
7251     SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
7252
7253     EVT EquivStoreVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
7254                                         StoreVT.getVectorNumElements());
7255     SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
7256     return DAG.UnrollVectorOp(ZExt.getNode());
7257   }
7258
7259   assert(isTypeLegal(StoreVT));
7260   return VData;
7261 }
7262
7263 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
7264                                               SelectionDAG &DAG) const {
7265   SDLoc DL(Op);
7266   SDValue Chain = Op.getOperand(0);
7267   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7268   MachineFunction &MF = DAG.getMachineFunction();
7269
7270   switch (IntrinsicID) {
7271   case Intrinsic::amdgcn_exp_compr: {
7272     SDValue Src0 = Op.getOperand(4);
7273     SDValue Src1 = Op.getOperand(5);
7274     // Hack around illegal type on SI by directly selecting it.
7275     if (isTypeLegal(Src0.getValueType()))
7276       return SDValue();
7277
7278     const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
7279     SDValue Undef = DAG.getUNDEF(MVT::f32);
7280     const SDValue Ops[] = {
7281       Op.getOperand(2), // tgt
7282       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
7283       DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
7284       Undef, // src2
7285       Undef, // src3
7286       Op.getOperand(7), // vm
7287       DAG.getTargetConstant(1, DL, MVT::i1), // compr
7288       Op.getOperand(3), // en
7289       Op.getOperand(0) // Chain
7290     };
7291
7292     unsigned Opc = Done->isNullValue() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
7293     return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
7294   }
7295   case Intrinsic::amdgcn_s_barrier: {
7296     if (getTargetMachine().getOptLevel() > CodeGenOpt::None) {
7297       const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
7298       unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
7299       if (WGSize <= ST.getWavefrontSize())
7300         return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
7301                                           Op.getOperand(0)), 0);
7302     }
7303     return SDValue();
7304   };
7305   case Intrinsic::amdgcn_tbuffer_store: {
7306     SDValue VData = Op.getOperand(2);
7307     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7308     if (IsD16)
7309       VData = handleD16VData(VData, DAG);
7310     unsigned Dfmt = cast<ConstantSDNode>(Op.getOperand(8))->getZExtValue();
7311     unsigned Nfmt = cast<ConstantSDNode>(Op.getOperand(9))->getZExtValue();
7312     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(10))->getZExtValue();
7313     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(11))->getZExtValue();
7314     unsigned IdxEn = 1;
7315     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7316       IdxEn = Idx->getZExtValue() != 0;
7317     SDValue Ops[] = {
7318       Chain,
7319       VData,             // vdata
7320       Op.getOperand(3),  // rsrc
7321       Op.getOperand(4),  // vindex
7322       Op.getOperand(5),  // voffset
7323       Op.getOperand(6),  // soffset
7324       Op.getOperand(7),  // offset
7325       DAG.getTargetConstant(Dfmt | (Nfmt << 4), DL, MVT::i32), // format
7326       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7327       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idexen
7328     };
7329     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7330                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7331     MemSDNode *M = cast<MemSDNode>(Op);
7332     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7333                                    M->getMemoryVT(), M->getMemOperand());
7334   }
7335
7336   case Intrinsic::amdgcn_struct_tbuffer_store: {
7337     SDValue VData = Op.getOperand(2);
7338     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7339     if (IsD16)
7340       VData = handleD16VData(VData, DAG);
7341     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7342     SDValue Ops[] = {
7343       Chain,
7344       VData,             // vdata
7345       Op.getOperand(3),  // rsrc
7346       Op.getOperand(4),  // vindex
7347       Offsets.first,     // voffset
7348       Op.getOperand(6),  // soffset
7349       Offsets.second,    // offset
7350       Op.getOperand(7),  // format
7351       Op.getOperand(8),  // cachepolicy, swizzled buffer
7352       DAG.getTargetConstant(1, DL, MVT::i1), // idexen
7353     };
7354     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7355                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7356     MemSDNode *M = cast<MemSDNode>(Op);
7357     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7358                                    M->getMemoryVT(), M->getMemOperand());
7359   }
7360
7361   case Intrinsic::amdgcn_raw_tbuffer_store: {
7362     SDValue VData = Op.getOperand(2);
7363     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7364     if (IsD16)
7365       VData = handleD16VData(VData, DAG);
7366     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7367     SDValue Ops[] = {
7368       Chain,
7369       VData,             // vdata
7370       Op.getOperand(3),  // rsrc
7371       DAG.getConstant(0, DL, MVT::i32), // vindex
7372       Offsets.first,     // voffset
7373       Op.getOperand(5),  // soffset
7374       Offsets.second,    // offset
7375       Op.getOperand(6),  // format
7376       Op.getOperand(7),  // cachepolicy, swizzled buffer
7377       DAG.getTargetConstant(0, DL, MVT::i1), // idexen
7378     };
7379     unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16 :
7380                            AMDGPUISD::TBUFFER_STORE_FORMAT;
7381     MemSDNode *M = cast<MemSDNode>(Op);
7382     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7383                                    M->getMemoryVT(), M->getMemOperand());
7384   }
7385
7386   case Intrinsic::amdgcn_buffer_store:
7387   case Intrinsic::amdgcn_buffer_store_format: {
7388     SDValue VData = Op.getOperand(2);
7389     bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
7390     if (IsD16)
7391       VData = handleD16VData(VData, DAG);
7392     unsigned Glc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7393     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(7))->getZExtValue();
7394     unsigned IdxEn = 1;
7395     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7396       IdxEn = Idx->getZExtValue() != 0;
7397     SDValue Ops[] = {
7398       Chain,
7399       VData,
7400       Op.getOperand(3), // rsrc
7401       Op.getOperand(4), // vindex
7402       SDValue(), // voffset -- will be set by setBufferOffsets
7403       SDValue(), // soffset -- will be set by setBufferOffsets
7404       SDValue(), // offset -- will be set by setBufferOffsets
7405       DAG.getTargetConstant(Glc | (Slc << 1), DL, MVT::i32), // cachepolicy
7406       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7407     };
7408     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7409     // We don't know the offset if vindex is non-zero, so clear it.
7410     if (IdxEn)
7411       Offset = 0;
7412     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_buffer_store ?
7413                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7414     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7415     MemSDNode *M = cast<MemSDNode>(Op);
7416     M->getMemOperand()->setOffset(Offset);
7417
7418     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7419     EVT VDataType = VData.getValueType().getScalarType();
7420     if (VDataType == MVT::i8 || VDataType == MVT::i16)
7421       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7422
7423     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7424                                    M->getMemoryVT(), M->getMemOperand());
7425   }
7426
7427   case Intrinsic::amdgcn_raw_buffer_store:
7428   case Intrinsic::amdgcn_raw_buffer_store_format: {
7429     const bool IsFormat =
7430         IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format;
7431
7432     SDValue VData = Op.getOperand(2);
7433     EVT VDataVT = VData.getValueType();
7434     EVT EltType = VDataVT.getScalarType();
7435     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7436     if (IsD16)
7437       VData = handleD16VData(VData, DAG);
7438
7439     if (!isTypeLegal(VDataVT)) {
7440       VData =
7441           DAG.getNode(ISD::BITCAST, DL,
7442                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7443     }
7444
7445     auto Offsets = splitBufferOffsets(Op.getOperand(4), DAG);
7446     SDValue Ops[] = {
7447       Chain,
7448       VData,
7449       Op.getOperand(3), // rsrc
7450       DAG.getConstant(0, DL, MVT::i32), // vindex
7451       Offsets.first,    // voffset
7452       Op.getOperand(5), // soffset
7453       Offsets.second,   // offset
7454       Op.getOperand(6), // cachepolicy, swizzled buffer
7455       DAG.getTargetConstant(0, DL, MVT::i1), // idxen
7456     };
7457     unsigned Opc =
7458         IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
7459     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7460     MemSDNode *M = cast<MemSDNode>(Op);
7461     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6]));
7462
7463     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7464     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7465       return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
7466
7467     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7468                                    M->getMemoryVT(), M->getMemOperand());
7469   }
7470
7471   case Intrinsic::amdgcn_struct_buffer_store:
7472   case Intrinsic::amdgcn_struct_buffer_store_format: {
7473     const bool IsFormat =
7474         IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format;
7475
7476     SDValue VData = Op.getOperand(2);
7477     EVT VDataVT = VData.getValueType();
7478     EVT EltType = VDataVT.getScalarType();
7479     bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
7480
7481     if (IsD16)
7482       VData = handleD16VData(VData, DAG);
7483
7484     if (!isTypeLegal(VDataVT)) {
7485       VData =
7486           DAG.getNode(ISD::BITCAST, DL,
7487                       getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
7488     }
7489
7490     auto Offsets = splitBufferOffsets(Op.getOperand(5), DAG);
7491     SDValue Ops[] = {
7492       Chain,
7493       VData,
7494       Op.getOperand(3), // rsrc
7495       Op.getOperand(4), // vindex
7496       Offsets.first,    // voffset
7497       Op.getOperand(6), // soffset
7498       Offsets.second,   // offset
7499       Op.getOperand(7), // cachepolicy, swizzled buffer
7500       DAG.getTargetConstant(1, DL, MVT::i1), // idxen
7501     };
7502     unsigned Opc = IntrinsicID == Intrinsic::amdgcn_struct_buffer_store ?
7503                    AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
7504     Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
7505     MemSDNode *M = cast<MemSDNode>(Op);
7506     M->getMemOperand()->setOffset(getBufferOffsetForMMO(Ops[4], Ops[5], Ops[6],
7507                                                         Ops[3]));
7508
7509     // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
7510     EVT VDataType = VData.getValueType().getScalarType();
7511     if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
7512       return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
7513
7514     return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
7515                                    M->getMemoryVT(), M->getMemOperand());
7516   }
7517
7518   case Intrinsic::amdgcn_buffer_atomic_fadd: {
7519     unsigned Slc = cast<ConstantSDNode>(Op.getOperand(6))->getZExtValue();
7520     unsigned IdxEn = 1;
7521     if (auto Idx = dyn_cast<ConstantSDNode>(Op.getOperand(4)))
7522       IdxEn = Idx->getZExtValue() != 0;
7523     SDValue Ops[] = {
7524       Chain,
7525       Op.getOperand(2), // vdata
7526       Op.getOperand(3), // rsrc
7527       Op.getOperand(4), // vindex
7528       SDValue(),        // voffset -- will be set by setBufferOffsets
7529       SDValue(),        // soffset -- will be set by setBufferOffsets
7530       SDValue(),        // offset -- will be set by setBufferOffsets
7531       DAG.getTargetConstant(Slc << 1, DL, MVT::i32), // cachepolicy
7532       DAG.getTargetConstant(IdxEn, DL, MVT::i1), // idxen
7533     };
7534     unsigned Offset = setBufferOffsets(Op.getOperand(5), DAG, &Ops[4]);
7535     // We don't know the offset if vindex is non-zero, so clear it.
7536     if (IdxEn)
7537       Offset = 0;
7538     EVT VT = Op.getOperand(2).getValueType();
7539
7540     auto *M = cast<MemSDNode>(Op);
7541     M->getMemOperand()->setOffset(Offset);
7542     unsigned Opcode = VT.isVector() ? AMDGPUISD::BUFFER_ATOMIC_PK_FADD
7543                                     : AMDGPUISD::BUFFER_ATOMIC_FADD;
7544
7545     return DAG.getMemIntrinsicNode(Opcode, DL, Op->getVTList(), Ops, VT,
7546                                    M->getMemOperand());
7547   }
7548
7549   case Intrinsic::amdgcn_global_atomic_fadd: {
7550     SDValue Ops[] = {
7551       Chain,
7552       Op.getOperand(2), // ptr
7553       Op.getOperand(3)  // vdata
7554     };
7555     EVT VT = Op.getOperand(3).getValueType();
7556
7557     auto *M = cast<MemSDNode>(Op);
7558     if (VT.isVector()) {
7559       return DAG.getMemIntrinsicNode(
7560         AMDGPUISD::ATOMIC_PK_FADD, DL, Op->getVTList(), Ops, VT,
7561         M->getMemOperand());
7562     }
7563
7564     return DAG.getAtomic(ISD::ATOMIC_LOAD_FADD, DL, VT,
7565                          DAG.getVTList(VT, MVT::Other), Ops,
7566                          M->getMemOperand()).getValue(1);
7567   }
7568   case Intrinsic::amdgcn_end_cf:
7569     return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
7570                                       Op->getOperand(2), Chain), 0);
7571
7572   default: {
7573     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
7574             AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
7575       return lowerImage(Op, ImageDimIntr, DAG);
7576
7577     return Op;
7578   }
7579   }
7580 }
7581
7582 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
7583 // offset (the offset that is included in bounds checking and swizzling, to be
7584 // split between the instruction's voffset and immoffset fields) and soffset
7585 // (the offset that is excluded from bounds checking and swizzling, to go in
7586 // the instruction's soffset field).  This function takes the first kind of
7587 // offset and figures out how to split it between voffset and immoffset.
7588 std::pair<SDValue, SDValue> SITargetLowering::splitBufferOffsets(
7589     SDValue Offset, SelectionDAG &DAG) const {
7590   SDLoc DL(Offset);
7591   const unsigned MaxImm = 4095;
7592   SDValue N0 = Offset;
7593   ConstantSDNode *C1 = nullptr;
7594
7595   if ((C1 = dyn_cast<ConstantSDNode>(N0)))
7596     N0 = SDValue();
7597   else if (DAG.isBaseWithConstantOffset(N0)) {
7598     C1 = cast<ConstantSDNode>(N0.getOperand(1));
7599     N0 = N0.getOperand(0);
7600   }
7601
7602   if (C1) {
7603     unsigned ImmOffset = C1->getZExtValue();
7604     // If the immediate value is too big for the immoffset field, put the value
7605     // and -4096 into the immoffset field so that the value that is copied/added
7606     // for the voffset field is a multiple of 4096, and it stands more chance
7607     // of being CSEd with the copy/add for another similar load/store.
7608     // However, do not do that rounding down to a multiple of 4096 if that is a
7609     // negative number, as it appears to be illegal to have a negative offset
7610     // in the vgpr, even if adding the immediate offset makes it positive.
7611     unsigned Overflow = ImmOffset & ~MaxImm;
7612     ImmOffset -= Overflow;
7613     if ((int32_t)Overflow < 0) {
7614       Overflow += ImmOffset;
7615       ImmOffset = 0;
7616     }
7617     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
7618     if (Overflow) {
7619       auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
7620       if (!N0)
7621         N0 = OverflowVal;
7622       else {
7623         SDValue Ops[] = { N0, OverflowVal };
7624         N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
7625       }
7626     }
7627   }
7628   if (!N0)
7629     N0 = DAG.getConstant(0, DL, MVT::i32);
7630   if (!C1)
7631     C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
7632   return {N0, SDValue(C1, 0)};
7633 }
7634
7635 // Analyze a combined offset from an amdgcn_buffer_ intrinsic and store the
7636 // three offsets (voffset, soffset and instoffset) into the SDValue[3] array
7637 // pointed to by Offsets.
7638 unsigned SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
7639                                             SelectionDAG &DAG, SDValue *Offsets,
7640                                             Align Alignment) const {
7641   SDLoc DL(CombinedOffset);
7642   if (auto C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
7643     uint32_t Imm = C->getZExtValue();
7644     uint32_t SOffset, ImmOffset;
7645     if (AMDGPU::splitMUBUFOffset(Imm, SOffset, ImmOffset, Subtarget,
7646                                  Alignment)) {
7647       Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
7648       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7649       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7650       return SOffset + ImmOffset;
7651     }
7652   }
7653   if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
7654     SDValue N0 = CombinedOffset.getOperand(0);
7655     SDValue N1 = CombinedOffset.getOperand(1);
7656     uint32_t SOffset, ImmOffset;
7657     int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
7658     if (Offset >= 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
7659                                                 Subtarget, Alignment)) {
7660       Offsets[0] = N0;
7661       Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
7662       Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
7663       return 0;
7664     }
7665   }
7666   Offsets[0] = CombinedOffset;
7667   Offsets[1] = DAG.getConstant(0, DL, MVT::i32);
7668   Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
7669   return 0;
7670 }
7671
7672 // Handle 8 bit and 16 bit buffer loads
7673 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
7674                                                      EVT LoadVT, SDLoc DL,
7675                                                      ArrayRef<SDValue> Ops,
7676                                                      MemSDNode *M) const {
7677   EVT IntVT = LoadVT.changeTypeToInteger();
7678   unsigned Opc = (LoadVT.getScalarType() == MVT::i8) ?
7679          AMDGPUISD::BUFFER_LOAD_UBYTE : AMDGPUISD::BUFFER_LOAD_USHORT;
7680
7681   SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
7682   SDValue BufferLoad = DAG.getMemIntrinsicNode(Opc, DL, ResList,
7683                                                Ops, IntVT,
7684                                                M->getMemOperand());
7685   SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
7686   LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
7687
7688   return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
7689 }
7690
7691 // Handle 8 bit and 16 bit buffer stores
7692 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
7693                                                       EVT VDataType, SDLoc DL,
7694                                                       SDValue Ops[],
7695                                                       MemSDNode *M) const {
7696   if (VDataType == MVT::f16)
7697     Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
7698
7699   SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
7700   Ops[1] = BufferStoreExt;
7701   unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE :
7702                                  AMDGPUISD::BUFFER_STORE_SHORT;
7703   ArrayRef<SDValue> OpsRef = makeArrayRef(&Ops[0], 9);
7704   return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
7705                                      M->getMemOperand());
7706 }
7707
7708 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG,
7709                                  ISD::LoadExtType ExtType, SDValue Op,
7710                                  const SDLoc &SL, EVT VT) {
7711   if (VT.bitsLT(Op.getValueType()))
7712     return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
7713
7714   switch (ExtType) {
7715   case ISD::SEXTLOAD:
7716     return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
7717   case ISD::ZEXTLOAD:
7718     return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
7719   case ISD::EXTLOAD:
7720     return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
7721   case ISD::NON_EXTLOAD:
7722     return Op;
7723   }
7724
7725   llvm_unreachable("invalid ext type");
7726 }
7727
7728 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld, DAGCombinerInfo &DCI) const {
7729   SelectionDAG &DAG = DCI.DAG;
7730   if (Ld->getAlignment() < 4 || Ld->isDivergent())
7731     return SDValue();
7732
7733   // FIXME: Constant loads should all be marked invariant.
7734   unsigned AS = Ld->getAddressSpace();
7735   if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
7736       AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7737       (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
7738     return SDValue();
7739
7740   // Don't do this early, since it may interfere with adjacent load merging for
7741   // illegal types. We can avoid losing alignment information for exotic types
7742   // pre-legalize.
7743   EVT MemVT = Ld->getMemoryVT();
7744   if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
7745       MemVT.getSizeInBits() >= 32)
7746     return SDValue();
7747
7748   SDLoc SL(Ld);
7749
7750   assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
7751          "unexpected vector extload");
7752
7753   // TODO: Drop only high part of range.
7754   SDValue Ptr = Ld->getBasePtr();
7755   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
7756                                 MVT::i32, SL, Ld->getChain(), Ptr,
7757                                 Ld->getOffset(),
7758                                 Ld->getPointerInfo(), MVT::i32,
7759                                 Ld->getAlignment(),
7760                                 Ld->getMemOperand()->getFlags(),
7761                                 Ld->getAAInfo(),
7762                                 nullptr); // Drop ranges
7763
7764   EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
7765   if (MemVT.isFloatingPoint()) {
7766     assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
7767            "unexpected fp extload");
7768     TruncVT = MemVT.changeTypeToInteger();
7769   }
7770
7771   SDValue Cvt = NewLoad;
7772   if (Ld->getExtensionType() == ISD::SEXTLOAD) {
7773     Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
7774                       DAG.getValueType(TruncVT));
7775   } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
7776              Ld->getExtensionType() == ISD::NON_EXTLOAD) {
7777     Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
7778   } else {
7779     assert(Ld->getExtensionType() == ISD::EXTLOAD);
7780   }
7781
7782   EVT VT = Ld->getValueType(0);
7783   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7784
7785   DCI.AddToWorklist(Cvt.getNode());
7786
7787   // We may need to handle exotic cases, such as i16->i64 extloads, so insert
7788   // the appropriate extension from the 32-bit load.
7789   Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
7790   DCI.AddToWorklist(Cvt.getNode());
7791
7792   // Handle conversion back to floating point if necessary.
7793   Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
7794
7795   return DAG.getMergeValues({ Cvt, NewLoad.getValue(1) }, SL);
7796 }
7797
7798 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7799   SDLoc DL(Op);
7800   LoadSDNode *Load = cast<LoadSDNode>(Op);
7801   ISD::LoadExtType ExtType = Load->getExtensionType();
7802   EVT MemVT = Load->getMemoryVT();
7803
7804   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
7805     if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
7806       return SDValue();
7807
7808     // FIXME: Copied from PPC
7809     // First, load into 32 bits, then truncate to 1 bit.
7810
7811     SDValue Chain = Load->getChain();
7812     SDValue BasePtr = Load->getBasePtr();
7813     MachineMemOperand *MMO = Load->getMemOperand();
7814
7815     EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
7816
7817     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
7818                                    BasePtr, RealMemVT, MMO);
7819
7820     if (!MemVT.isVector()) {
7821       SDValue Ops[] = {
7822         DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
7823         NewLD.getValue(1)
7824       };
7825
7826       return DAG.getMergeValues(Ops, DL);
7827     }
7828
7829     SmallVector<SDValue, 3> Elts;
7830     for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
7831       SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
7832                                 DAG.getConstant(I, DL, MVT::i32));
7833
7834       Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
7835     }
7836
7837     SDValue Ops[] = {
7838       DAG.getBuildVector(MemVT, DL, Elts),
7839       NewLD.getValue(1)
7840     };
7841
7842     return DAG.getMergeValues(Ops, DL);
7843   }
7844
7845   if (!MemVT.isVector())
7846     return SDValue();
7847
7848   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
7849          "Custom lowering for non-i32 vectors hasn't been implemented.");
7850
7851   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
7852                                       MemVT, *Load->getMemOperand())) {
7853     SDValue Ops[2];
7854     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
7855     return DAG.getMergeValues(Ops, DL);
7856   }
7857
7858   unsigned Alignment = Load->getAlignment();
7859   unsigned AS = Load->getAddressSpace();
7860   if (Subtarget->hasLDSMisalignedBug() &&
7861       AS == AMDGPUAS::FLAT_ADDRESS &&
7862       Alignment < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
7863     return SplitVectorLoad(Op, DAG);
7864   }
7865
7866   MachineFunction &MF = DAG.getMachineFunction();
7867   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
7868   // If there is a possibilty that flat instruction access scratch memory
7869   // then we need to use the same legalization rules we use for private.
7870   if (AS == AMDGPUAS::FLAT_ADDRESS &&
7871       !Subtarget->hasMultiDwordFlatScratchAddressing())
7872     AS = MFI->hasFlatScratchInit() ?
7873          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
7874
7875   unsigned NumElements = MemVT.getVectorNumElements();
7876
7877   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7878       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
7879     if (!Op->isDivergent() && Alignment >= 4 && NumElements < 32) {
7880       if (MemVT.isPow2VectorType())
7881         return SDValue();
7882       if (NumElements == 3)
7883         return WidenVectorLoad(Op, DAG);
7884       return SplitVectorLoad(Op, DAG);
7885     }
7886     // Non-uniform loads will be selected to MUBUF instructions, so they
7887     // have the same legalization requirements as global and private
7888     // loads.
7889     //
7890   }
7891
7892   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7893       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7894       AS == AMDGPUAS::GLOBAL_ADDRESS) {
7895     if (Subtarget->getScalarizeGlobalBehavior() && !Op->isDivergent() &&
7896         Load->isSimple() && isMemOpHasNoClobberedMemOperand(Load) &&
7897         Alignment >= 4 && NumElements < 32) {
7898       if (MemVT.isPow2VectorType())
7899         return SDValue();
7900       if (NumElements == 3)
7901         return WidenVectorLoad(Op, DAG);
7902       return SplitVectorLoad(Op, DAG);
7903     }
7904     // Non-uniform loads will be selected to MUBUF instructions, so they
7905     // have the same legalization requirements as global and private
7906     // loads.
7907     //
7908   }
7909   if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
7910       AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
7911       AS == AMDGPUAS::GLOBAL_ADDRESS ||
7912       AS == AMDGPUAS::FLAT_ADDRESS) {
7913     if (NumElements > 4)
7914       return SplitVectorLoad(Op, DAG);
7915     // v3 loads not supported on SI.
7916     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7917       return WidenVectorLoad(Op, DAG);
7918     // v3 and v4 loads are supported for private and global memory.
7919     return SDValue();
7920   }
7921   if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
7922     // Depending on the setting of the private_element_size field in the
7923     // resource descriptor, we can only make private accesses up to a certain
7924     // size.
7925     switch (Subtarget->getMaxPrivateElementSize()) {
7926     case 4: {
7927       SDValue Ops[2];
7928       std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
7929       return DAG.getMergeValues(Ops, DL);
7930     }
7931     case 8:
7932       if (NumElements > 2)
7933         return SplitVectorLoad(Op, DAG);
7934       return SDValue();
7935     case 16:
7936       // Same as global/flat
7937       if (NumElements > 4)
7938         return SplitVectorLoad(Op, DAG);
7939       // v3 loads not supported on SI.
7940       if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
7941         return WidenVectorLoad(Op, DAG);
7942       return SDValue();
7943     default:
7944       llvm_unreachable("unsupported private_element_size");
7945     }
7946   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
7947     // Use ds_read_b128 if possible.
7948     if (Subtarget->useDS128() && Load->getAlignment() >= 16 &&
7949         MemVT.getStoreSize() == 16)
7950       return SDValue();
7951
7952     if (NumElements > 2)
7953       return SplitVectorLoad(Op, DAG);
7954
7955     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
7956     // address is negative, then the instruction is incorrectly treated as
7957     // out-of-bounds even if base + offsets is in bounds. Split vectorized
7958     // loads here to avoid emitting ds_read2_b32. We may re-combine the
7959     // load later in the SILoadStoreOptimizer.
7960     if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
7961         NumElements == 2 && MemVT.getStoreSize() == 8 &&
7962         Load->getAlignment() < 8) {
7963       return SplitVectorLoad(Op, DAG);
7964     }
7965   }
7966   return SDValue();
7967 }
7968
7969 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7970   EVT VT = Op.getValueType();
7971   assert(VT.getSizeInBits() == 64);
7972
7973   SDLoc DL(Op);
7974   SDValue Cond = Op.getOperand(0);
7975
7976   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
7977   SDValue One = DAG.getConstant(1, DL, MVT::i32);
7978
7979   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
7980   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
7981
7982   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
7983   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
7984
7985   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
7986
7987   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
7988   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
7989
7990   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
7991
7992   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
7993   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
7994 }
7995
7996 // Catch division cases where we can use shortcuts with rcp and rsq
7997 // instructions.
7998 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
7999                                               SelectionDAG &DAG) const {
8000   SDLoc SL(Op);
8001   SDValue LHS = Op.getOperand(0);
8002   SDValue RHS = Op.getOperand(1);
8003   EVT VT = Op.getValueType();
8004   const SDNodeFlags Flags = Op->getFlags();
8005
8006   bool AllowInaccurateRcp = DAG.getTarget().Options.UnsafeFPMath ||
8007                             Flags.hasApproximateFuncs();
8008
8009   // Without !fpmath accuracy information, we can't do more because we don't
8010   // know exactly whether rcp is accurate enough to meet !fpmath requirement.
8011   if (!AllowInaccurateRcp)
8012     return SDValue();
8013
8014   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
8015     if (CLHS->isExactlyValue(1.0)) {
8016       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
8017       // the CI documentation has a worst case error of 1 ulp.
8018       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
8019       // use it as long as we aren't trying to use denormals.
8020       //
8021       // v_rcp_f16 and v_rsq_f16 DO support denormals.
8022
8023       // 1.0 / sqrt(x) -> rsq(x)
8024
8025       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
8026       // error seems really high at 2^29 ULP.
8027       if (RHS.getOpcode() == ISD::FSQRT)
8028         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
8029
8030       // 1.0 / x -> rcp(x)
8031       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8032     }
8033
8034     // Same as for 1.0, but expand the sign out of the constant.
8035     if (CLHS->isExactlyValue(-1.0)) {
8036       // -1.0 / x -> rcp (fneg x)
8037       SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
8038       return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
8039     }
8040   }
8041
8042   // Turn into multiply by the reciprocal.
8043   // x / y -> x * (1.0 / y)
8044   SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
8045   return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
8046 }
8047
8048 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8049                           EVT VT, SDValue A, SDValue B, SDValue GlueChain,
8050                           SDNodeFlags Flags) {
8051   if (GlueChain->getNumValues() <= 1) {
8052     return DAG.getNode(Opcode, SL, VT, A, B, Flags);
8053   }
8054
8055   assert(GlueChain->getNumValues() == 3);
8056
8057   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8058   switch (Opcode) {
8059   default: llvm_unreachable("no chain equivalent for opcode");
8060   case ISD::FMUL:
8061     Opcode = AMDGPUISD::FMUL_W_CHAIN;
8062     break;
8063   }
8064
8065   return DAG.getNode(Opcode, SL, VTList,
8066                      {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
8067                      Flags);
8068 }
8069
8070 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
8071                            EVT VT, SDValue A, SDValue B, SDValue C,
8072                            SDValue GlueChain, SDNodeFlags Flags) {
8073   if (GlueChain->getNumValues() <= 1) {
8074     return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
8075   }
8076
8077   assert(GlueChain->getNumValues() == 3);
8078
8079   SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
8080   switch (Opcode) {
8081   default: llvm_unreachable("no chain equivalent for opcode");
8082   case ISD::FMA:
8083     Opcode = AMDGPUISD::FMA_W_CHAIN;
8084     break;
8085   }
8086
8087   return DAG.getNode(Opcode, SL, VTList,
8088                      {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
8089                      Flags);
8090 }
8091
8092 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
8093   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8094     return FastLowered;
8095
8096   SDLoc SL(Op);
8097   SDValue Src0 = Op.getOperand(0);
8098   SDValue Src1 = Op.getOperand(1);
8099
8100   SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
8101   SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
8102
8103   SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
8104   SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
8105
8106   SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
8107   SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
8108
8109   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
8110 }
8111
8112 // Faster 2.5 ULP division that does not support denormals.
8113 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
8114   SDLoc SL(Op);
8115   SDValue LHS = Op.getOperand(1);
8116   SDValue RHS = Op.getOperand(2);
8117
8118   SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
8119
8120   const APFloat K0Val(BitsToFloat(0x6f800000));
8121   const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
8122
8123   const APFloat K1Val(BitsToFloat(0x2f800000));
8124   const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
8125
8126   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8127
8128   EVT SetCCVT =
8129     getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
8130
8131   SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
8132
8133   SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
8134
8135   // TODO: Should this propagate fast-math-flags?
8136   r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
8137
8138   // rcp does not support denormals.
8139   SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
8140
8141   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
8142
8143   return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
8144 }
8145
8146 // Returns immediate value for setting the F32 denorm mode when using the
8147 // S_DENORM_MODE instruction.
8148 static const SDValue getSPDenormModeValue(int SPDenormMode, SelectionDAG &DAG,
8149                                           const SDLoc &SL, const GCNSubtarget *ST) {
8150   assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
8151   int DPDenormModeDefault = hasFP64FP16Denormals(DAG.getMachineFunction())
8152                                 ? FP_DENORM_FLUSH_NONE
8153                                 : FP_DENORM_FLUSH_IN_FLUSH_OUT;
8154
8155   int Mode = SPDenormMode | (DPDenormModeDefault << 2);
8156   return DAG.getTargetConstant(Mode, SL, MVT::i32);
8157 }
8158
8159 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
8160   if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
8161     return FastLowered;
8162
8163   // The selection matcher assumes anything with a chain selecting to a
8164   // mayRaiseFPException machine instruction. Since we're introducing a chain
8165   // here, we need to explicitly report nofpexcept for the regular fdiv
8166   // lowering.
8167   SDNodeFlags Flags = Op->getFlags();
8168   Flags.setNoFPExcept(true);
8169
8170   SDLoc SL(Op);
8171   SDValue LHS = Op.getOperand(0);
8172   SDValue RHS = Op.getOperand(1);
8173
8174   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
8175
8176   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
8177
8178   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8179                                           {RHS, RHS, LHS}, Flags);
8180   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
8181                                         {LHS, RHS, LHS}, Flags);
8182
8183   // Denominator is scaled to not be denormal, so using rcp is ok.
8184   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
8185                                   DenominatorScaled, Flags);
8186   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
8187                                      DenominatorScaled, Flags);
8188
8189   const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
8190                                (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
8191                                (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
8192   const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
8193
8194   const bool HasFP32Denormals = hasFP32Denormals(DAG.getMachineFunction());
8195
8196   if (!HasFP32Denormals) {
8197     // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
8198     // lowering. The chain dependence is insufficient, and we need glue. We do
8199     // not need the glue variants in a strictfp function.
8200
8201     SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
8202
8203     SDNode *EnableDenorm;
8204     if (Subtarget->hasDenormModeInst()) {
8205       const SDValue EnableDenormValue =
8206           getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, SL, Subtarget);
8207
8208       EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs,
8209                                  DAG.getEntryNode(), EnableDenormValue).getNode();
8210     } else {
8211       const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE,
8212                                                         SL, MVT::i32);
8213       EnableDenorm =
8214           DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
8215                              {EnableDenormValue, BitField, DAG.getEntryNode()});
8216     }
8217
8218     SDValue Ops[3] = {
8219       NegDivScale0,
8220       SDValue(EnableDenorm, 0),
8221       SDValue(EnableDenorm, 1)
8222     };
8223
8224     NegDivScale0 = DAG.getMergeValues(Ops, SL);
8225   }
8226
8227   SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
8228                              ApproxRcp, One, NegDivScale0, Flags);
8229
8230   SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
8231                              ApproxRcp, Fma0, Flags);
8232
8233   SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
8234                            Fma1, Fma1, Flags);
8235
8236   SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
8237                              NumeratorScaled, Mul, Flags);
8238
8239   SDValue Fma3 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32,
8240                              Fma2, Fma1, Mul, Fma2, Flags);
8241
8242   SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
8243                              NumeratorScaled, Fma3, Flags);
8244
8245   if (!HasFP32Denormals) {
8246     SDNode *DisableDenorm;
8247     if (Subtarget->hasDenormModeInst()) {
8248       const SDValue DisableDenormValue =
8249           getSPDenormModeValue(FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, SL, Subtarget);
8250
8251       DisableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other,
8252                                   Fma4.getValue(1), DisableDenormValue,
8253                                   Fma4.getValue(2)).getNode();
8254     } else {
8255       const SDValue DisableDenormValue =
8256           DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
8257
8258       DisableDenorm = DAG.getMachineNode(
8259           AMDGPU::S_SETREG_B32, SL, MVT::Other,
8260           {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
8261     }
8262
8263     SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
8264                                       SDValue(DisableDenorm, 0), DAG.getRoot());
8265     DAG.setRoot(OutputChain);
8266   }
8267
8268   SDValue Scale = NumeratorScaled.getValue(1);
8269   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
8270                              {Fma4, Fma1, Fma3, Scale}, Flags);
8271
8272   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
8273 }
8274
8275 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
8276   if (DAG.getTarget().Options.UnsafeFPMath)
8277     return lowerFastUnsafeFDIV(Op, DAG);
8278
8279   SDLoc SL(Op);
8280   SDValue X = Op.getOperand(0);
8281   SDValue Y = Op.getOperand(1);
8282
8283   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
8284
8285   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
8286
8287   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
8288
8289   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
8290
8291   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
8292
8293   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
8294
8295   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
8296
8297   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
8298
8299   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
8300
8301   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
8302   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
8303
8304   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
8305                              NegDivScale0, Mul, DivScale1);
8306
8307   SDValue Scale;
8308
8309   if (!Subtarget->hasUsableDivScaleConditionOutput()) {
8310     // Workaround a hardware bug on SI where the condition output from div_scale
8311     // is not usable.
8312
8313     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
8314
8315     // Figure out if the scale to use for div_fmas.
8316     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
8317     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
8318     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
8319     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
8320
8321     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
8322     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
8323
8324     SDValue Scale0Hi
8325       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
8326     SDValue Scale1Hi
8327       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
8328
8329     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
8330     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
8331     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
8332   } else {
8333     Scale = DivScale1.getValue(1);
8334   }
8335
8336   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
8337                              Fma4, Fma3, Mul, Scale);
8338
8339   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
8340 }
8341
8342 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
8343   EVT VT = Op.getValueType();
8344
8345   if (VT == MVT::f32)
8346     return LowerFDIV32(Op, DAG);
8347
8348   if (VT == MVT::f64)
8349     return LowerFDIV64(Op, DAG);
8350
8351   if (VT == MVT::f16)
8352     return LowerFDIV16(Op, DAG);
8353
8354   llvm_unreachable("Unexpected type for fdiv");
8355 }
8356
8357 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
8358   SDLoc DL(Op);
8359   StoreSDNode *Store = cast<StoreSDNode>(Op);
8360   EVT VT = Store->getMemoryVT();
8361
8362   if (VT == MVT::i1) {
8363     return DAG.getTruncStore(Store->getChain(), DL,
8364        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
8365        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
8366   }
8367
8368   assert(VT.isVector() &&
8369          Store->getValue().getValueType().getScalarType() == MVT::i32);
8370
8371   if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
8372                                       VT, *Store->getMemOperand())) {
8373     return expandUnalignedStore(Store, DAG);
8374   }
8375
8376   unsigned AS = Store->getAddressSpace();
8377   if (Subtarget->hasLDSMisalignedBug() &&
8378       AS == AMDGPUAS::FLAT_ADDRESS &&
8379       Store->getAlignment() < VT.getStoreSize() && VT.getSizeInBits() > 32) {
8380     return SplitVectorStore(Op, DAG);
8381   }
8382
8383   MachineFunction &MF = DAG.getMachineFunction();
8384   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8385   // If there is a possibilty that flat instruction access scratch memory
8386   // then we need to use the same legalization rules we use for private.
8387   if (AS == AMDGPUAS::FLAT_ADDRESS &&
8388       !Subtarget->hasMultiDwordFlatScratchAddressing())
8389     AS = MFI->hasFlatScratchInit() ?
8390          AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
8391
8392   unsigned NumElements = VT.getVectorNumElements();
8393   if (AS == AMDGPUAS::GLOBAL_ADDRESS ||
8394       AS == AMDGPUAS::FLAT_ADDRESS) {
8395     if (NumElements > 4)
8396       return SplitVectorStore(Op, DAG);
8397     // v3 stores not supported on SI.
8398     if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
8399       return SplitVectorStore(Op, DAG);
8400     return SDValue();
8401   } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
8402     switch (Subtarget->getMaxPrivateElementSize()) {
8403     case 4:
8404       return scalarizeVectorStore(Store, DAG);
8405     case 8:
8406       if (NumElements > 2)
8407         return SplitVectorStore(Op, DAG);
8408       return SDValue();
8409     case 16:
8410       if (NumElements > 4 || NumElements == 3)
8411         return SplitVectorStore(Op, DAG);
8412       return SDValue();
8413     default:
8414       llvm_unreachable("unsupported private_element_size");
8415     }
8416   } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
8417     // Use ds_write_b128 if possible.
8418     if (Subtarget->useDS128() && Store->getAlignment() >= 16 &&
8419         VT.getStoreSize() == 16 && NumElements != 3)
8420       return SDValue();
8421
8422     if (NumElements > 2)
8423       return SplitVectorStore(Op, DAG);
8424
8425     // SI has a hardware bug in the LDS / GDS boounds checking: if the base
8426     // address is negative, then the instruction is incorrectly treated as
8427     // out-of-bounds even if base + offsets is in bounds. Split vectorized
8428     // stores here to avoid emitting ds_write2_b32. We may re-combine the
8429     // store later in the SILoadStoreOptimizer.
8430     if (!Subtarget->hasUsableDSOffset() &&
8431         NumElements == 2 && VT.getStoreSize() == 8 &&
8432         Store->getAlignment() < 8) {
8433       return SplitVectorStore(Op, DAG);
8434     }
8435
8436     return SDValue();
8437   } else {
8438     llvm_unreachable("unhandled address space");
8439   }
8440 }
8441
8442 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
8443   SDLoc DL(Op);
8444   EVT VT = Op.getValueType();
8445   SDValue Arg = Op.getOperand(0);
8446   SDValue TrigVal;
8447
8448   // Propagate fast-math flags so that the multiply we introduce can be folded
8449   // if Arg is already the result of a multiply by constant.
8450   auto Flags = Op->getFlags();
8451
8452   SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
8453
8454   if (Subtarget->hasTrigReducedRange()) {
8455     SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8456     TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
8457   } else {
8458     TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
8459   }
8460
8461   switch (Op.getOpcode()) {
8462   case ISD::FCOS:
8463     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
8464   case ISD::FSIN:
8465     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
8466   default:
8467     llvm_unreachable("Wrong trig opcode");
8468   }
8469 }
8470
8471 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8472   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
8473   assert(AtomicNode->isCompareAndSwap());
8474   unsigned AS = AtomicNode->getAddressSpace();
8475
8476   // No custom lowering required for local address space
8477   if (!isFlatGlobalAddrSpace(AS))
8478     return Op;
8479
8480   // Non-local address space requires custom lowering for atomic compare
8481   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
8482   SDLoc DL(Op);
8483   SDValue ChainIn = Op.getOperand(0);
8484   SDValue Addr = Op.getOperand(1);
8485   SDValue Old = Op.getOperand(2);
8486   SDValue New = Op.getOperand(3);
8487   EVT VT = Op.getValueType();
8488   MVT SimpleVT = VT.getSimpleVT();
8489   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
8490
8491   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
8492   SDValue Ops[] = { ChainIn, Addr, NewOld };
8493
8494   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
8495                                  Ops, VT, AtomicNode->getMemOperand());
8496 }
8497
8498 //===----------------------------------------------------------------------===//
8499 // Custom DAG optimizations
8500 //===----------------------------------------------------------------------===//
8501
8502 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
8503                                                      DAGCombinerInfo &DCI) const {
8504   EVT VT = N->getValueType(0);
8505   EVT ScalarVT = VT.getScalarType();
8506   if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
8507     return SDValue();
8508
8509   SelectionDAG &DAG = DCI.DAG;
8510   SDLoc DL(N);
8511
8512   SDValue Src = N->getOperand(0);
8513   EVT SrcVT = Src.getValueType();
8514
8515   // TODO: We could try to match extracting the higher bytes, which would be
8516   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
8517   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
8518   // about in practice.
8519   if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
8520     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
8521       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
8522       DCI.AddToWorklist(Cvt.getNode());
8523
8524       // For the f16 case, fold to a cast to f32 and then cast back to f16.
8525       if (ScalarVT != MVT::f32) {
8526         Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
8527                           DAG.getTargetConstant(0, DL, MVT::i32));
8528       }
8529       return Cvt;
8530     }
8531   }
8532
8533   return SDValue();
8534 }
8535
8536 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
8537
8538 // This is a variant of
8539 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
8540 //
8541 // The normal DAG combiner will do this, but only if the add has one use since
8542 // that would increase the number of instructions.
8543 //
8544 // This prevents us from seeing a constant offset that can be folded into a
8545 // memory instruction's addressing mode. If we know the resulting add offset of
8546 // a pointer can be folded into an addressing offset, we can replace the pointer
8547 // operand with the add of new constant offset. This eliminates one of the uses,
8548 // and may allow the remaining use to also be simplified.
8549 //
8550 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
8551                                                unsigned AddrSpace,
8552                                                EVT MemVT,
8553                                                DAGCombinerInfo &DCI) const {
8554   SDValue N0 = N->getOperand(0);
8555   SDValue N1 = N->getOperand(1);
8556
8557   // We only do this to handle cases where it's profitable when there are
8558   // multiple uses of the add, so defer to the standard combine.
8559   if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
8560       N0->hasOneUse())
8561     return SDValue();
8562
8563   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
8564   if (!CN1)
8565     return SDValue();
8566
8567   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
8568   if (!CAdd)
8569     return SDValue();
8570
8571   // If the resulting offset is too large, we can't fold it into the addressing
8572   // mode offset.
8573   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
8574   Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
8575
8576   AddrMode AM;
8577   AM.HasBaseReg = true;
8578   AM.BaseOffs = Offset.getSExtValue();
8579   if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
8580     return SDValue();
8581
8582   SelectionDAG &DAG = DCI.DAG;
8583   SDLoc SL(N);
8584   EVT VT = N->getValueType(0);
8585
8586   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
8587   SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
8588
8589   SDNodeFlags Flags;
8590   Flags.setNoUnsignedWrap(N->getFlags().hasNoUnsignedWrap() &&
8591                           (N0.getOpcode() == ISD::OR ||
8592                            N0->getFlags().hasNoUnsignedWrap()));
8593
8594   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
8595 }
8596
8597 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
8598                                                   DAGCombinerInfo &DCI) const {
8599   SDValue Ptr = N->getBasePtr();
8600   SelectionDAG &DAG = DCI.DAG;
8601   SDLoc SL(N);
8602
8603   // TODO: We could also do this for multiplies.
8604   if (Ptr.getOpcode() == ISD::SHL) {
8605     SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(),  N->getAddressSpace(),
8606                                           N->getMemoryVT(), DCI);
8607     if (NewPtr) {
8608       SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
8609
8610       NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
8611       return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
8612     }
8613   }
8614
8615   return SDValue();
8616 }
8617
8618 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
8619   return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
8620          (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
8621          (Opc == ISD::XOR && Val == 0);
8622 }
8623
8624 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
8625 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
8626 // integer combine opportunities since most 64-bit operations are decomposed
8627 // this way.  TODO: We won't want this for SALU especially if it is an inline
8628 // immediate.
8629 SDValue SITargetLowering::splitBinaryBitConstantOp(
8630   DAGCombinerInfo &DCI,
8631   const SDLoc &SL,
8632   unsigned Opc, SDValue LHS,
8633   const ConstantSDNode *CRHS) const {
8634   uint64_t Val = CRHS->getZExtValue();
8635   uint32_t ValLo = Lo_32(Val);
8636   uint32_t ValHi = Hi_32(Val);
8637   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8638
8639     if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
8640          bitOpWithConstantIsReducible(Opc, ValHi)) ||
8641         (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
8642     // If we need to materialize a 64-bit immediate, it will be split up later
8643     // anyway. Avoid creating the harder to understand 64-bit immediate
8644     // materialization.
8645     return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
8646   }
8647
8648   return SDValue();
8649 }
8650
8651 // Returns true if argument is a boolean value which is not serialized into
8652 // memory or argument and does not require v_cmdmask_b32 to be deserialized.
8653 static bool isBoolSGPR(SDValue V) {
8654   if (V.getValueType() != MVT::i1)
8655     return false;
8656   switch (V.getOpcode()) {
8657   default: break;
8658   case ISD::SETCC:
8659   case ISD::AND:
8660   case ISD::OR:
8661   case ISD::XOR:
8662   case AMDGPUISD::FP_CLASS:
8663     return true;
8664   }
8665   return false;
8666 }
8667
8668 // If a constant has all zeroes or all ones within each byte return it.
8669 // Otherwise return 0.
8670 static uint32_t getConstantPermuteMask(uint32_t C) {
8671   // 0xff for any zero byte in the mask
8672   uint32_t ZeroByteMask = 0;
8673   if (!(C & 0x000000ff)) ZeroByteMask |= 0x000000ff;
8674   if (!(C & 0x0000ff00)) ZeroByteMask |= 0x0000ff00;
8675   if (!(C & 0x00ff0000)) ZeroByteMask |= 0x00ff0000;
8676   if (!(C & 0xff000000)) ZeroByteMask |= 0xff000000;
8677   uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
8678   if ((NonZeroByteMask & C) != NonZeroByteMask)
8679     return 0; // Partial bytes selected.
8680   return C;
8681 }
8682
8683 // Check if a node selects whole bytes from its operand 0 starting at a byte
8684 // boundary while masking the rest. Returns select mask as in the v_perm_b32
8685 // or -1 if not succeeded.
8686 // Note byte select encoding:
8687 // value 0-3 selects corresponding source byte;
8688 // value 0xc selects zero;
8689 // value 0xff selects 0xff.
8690 static uint32_t getPermuteMask(SelectionDAG &DAG, SDValue V) {
8691   assert(V.getValueSizeInBits() == 32);
8692
8693   if (V.getNumOperands() != 2)
8694     return ~0;
8695
8696   ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
8697   if (!N1)
8698     return ~0;
8699
8700   uint32_t C = N1->getZExtValue();
8701
8702   switch (V.getOpcode()) {
8703   default:
8704     break;
8705   case ISD::AND:
8706     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8707       return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
8708     }
8709     break;
8710
8711   case ISD::OR:
8712     if (uint32_t ConstMask = getConstantPermuteMask(C)) {
8713       return (0x03020100 & ~ConstMask) | ConstMask;
8714     }
8715     break;
8716
8717   case ISD::SHL:
8718     if (C % 8)
8719       return ~0;
8720
8721     return uint32_t((0x030201000c0c0c0cull << C) >> 32);
8722
8723   case ISD::SRL:
8724     if (C % 8)
8725       return ~0;
8726
8727     return uint32_t(0x0c0c0c0c03020100ull >> C);
8728   }
8729
8730   return ~0;
8731 }
8732
8733 SDValue SITargetLowering::performAndCombine(SDNode *N,
8734                                             DAGCombinerInfo &DCI) const {
8735   if (DCI.isBeforeLegalize())
8736     return SDValue();
8737
8738   SelectionDAG &DAG = DCI.DAG;
8739   EVT VT = N->getValueType(0);
8740   SDValue LHS = N->getOperand(0);
8741   SDValue RHS = N->getOperand(1);
8742
8743
8744   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
8745   if (VT == MVT::i64 && CRHS) {
8746     if (SDValue Split
8747         = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
8748       return Split;
8749   }
8750
8751   if (CRHS && VT == MVT::i32) {
8752     // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
8753     // nb = number of trailing zeroes in mask
8754     // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
8755     // given that we are selecting 8 or 16 bit fields starting at byte boundary.
8756     uint64_t Mask = CRHS->getZExtValue();
8757     unsigned Bits = countPopulation(Mask);
8758     if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
8759         (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
8760       if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
8761         unsigned Shift = CShift->getZExtValue();
8762         unsigned NB = CRHS->getAPIntValue().countTrailingZeros();
8763         unsigned Offset = NB + Shift;
8764         if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
8765           SDLoc SL(N);
8766           SDValue BFE = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
8767                                     LHS->getOperand(0),
8768                                     DAG.getConstant(Offset, SL, MVT::i32),
8769                                     DAG.getConstant(Bits, SL, MVT::i32));
8770           EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8771           SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
8772                                     DAG.getValueType(NarrowVT));
8773           SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
8774                                     DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
8775           return Shl;
8776         }
8777       }
8778     }
8779
8780     // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8781     if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
8782         isa<ConstantSDNode>(LHS.getOperand(2))) {
8783       uint32_t Sel = getConstantPermuteMask(Mask);
8784       if (!Sel)
8785         return SDValue();
8786
8787       // Select 0xc for all zero bytes
8788       Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
8789       SDLoc DL(N);
8790       return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8791                          LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8792     }
8793   }
8794
8795   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
8796   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
8797   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
8798     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8799     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
8800
8801     SDValue X = LHS.getOperand(0);
8802     SDValue Y = RHS.getOperand(0);
8803     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
8804       return SDValue();
8805
8806     if (LCC == ISD::SETO) {
8807       if (X != LHS.getOperand(1))
8808         return SDValue();
8809
8810       if (RCC == ISD::SETUNE) {
8811         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
8812         if (!C1 || !C1->isInfinity() || C1->isNegative())
8813           return SDValue();
8814
8815         const uint32_t Mask = SIInstrFlags::N_NORMAL |
8816                               SIInstrFlags::N_SUBNORMAL |
8817                               SIInstrFlags::N_ZERO |
8818                               SIInstrFlags::P_ZERO |
8819                               SIInstrFlags::P_SUBNORMAL |
8820                               SIInstrFlags::P_NORMAL;
8821
8822         static_assert(((~(SIInstrFlags::S_NAN |
8823                           SIInstrFlags::Q_NAN |
8824                           SIInstrFlags::N_INFINITY |
8825                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
8826                       "mask not equal");
8827
8828         SDLoc DL(N);
8829         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8830                            X, DAG.getConstant(Mask, DL, MVT::i32));
8831       }
8832     }
8833   }
8834
8835   if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
8836     std::swap(LHS, RHS);
8837
8838   if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8839       RHS.hasOneUse()) {
8840     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
8841     // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan | n_nan)
8842     // and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan | n_nan)
8843     const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8844     if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
8845         (RHS.getOperand(0) == LHS.getOperand(0) &&
8846          LHS.getOperand(0) == LHS.getOperand(1))) {
8847       const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
8848       unsigned NewMask = LCC == ISD::SETO ?
8849         Mask->getZExtValue() & ~OrdMask :
8850         Mask->getZExtValue() & OrdMask;
8851
8852       SDLoc DL(N);
8853       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
8854                          DAG.getConstant(NewMask, DL, MVT::i32));
8855     }
8856   }
8857
8858   if (VT == MVT::i32 &&
8859       (RHS.getOpcode() == ISD::SIGN_EXTEND || LHS.getOpcode() == ISD::SIGN_EXTEND)) {
8860     // and x, (sext cc from i1) => select cc, x, 0
8861     if (RHS.getOpcode() != ISD::SIGN_EXTEND)
8862       std::swap(LHS, RHS);
8863     if (isBoolSGPR(RHS.getOperand(0)))
8864       return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0),
8865                            LHS, DAG.getConstant(0, SDLoc(N), MVT::i32));
8866   }
8867
8868   // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8869   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8870   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8871       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8872     uint32_t LHSMask = getPermuteMask(DAG, LHS);
8873     uint32_t RHSMask = getPermuteMask(DAG, RHS);
8874     if (LHSMask != ~0u && RHSMask != ~0u) {
8875       // Canonicalize the expression in an attempt to have fewer unique masks
8876       // and therefore fewer registers used to hold the masks.
8877       if (LHSMask > RHSMask) {
8878         std::swap(LHSMask, RHSMask);
8879         std::swap(LHS, RHS);
8880       }
8881
8882       // Select 0xc for each lane used from source operand. Zero has 0xc mask
8883       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8884       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8885       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8886
8887       // Check of we need to combine values from two sources within a byte.
8888       if (!(LHSUsedLanes & RHSUsedLanes) &&
8889           // If we select high and lower word keep it for SDWA.
8890           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8891           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8892         // Each byte in each mask is either selector mask 0-3, or has higher
8893         // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
8894         // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
8895         // mask which is not 0xff wins. By anding both masks we have a correct
8896         // result except that 0x0c shall be corrected to give 0x0c only.
8897         uint32_t Mask = LHSMask & RHSMask;
8898         for (unsigned I = 0; I < 32; I += 8) {
8899           uint32_t ByteSel = 0xff << I;
8900           if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
8901             Mask &= (0x0c << I) & 0xffffffff;
8902         }
8903
8904         // Add 4 to each active LHS lane. It will not affect any existing 0xff
8905         // or 0x0c.
8906         uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
8907         SDLoc DL(N);
8908
8909         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8910                            LHS.getOperand(0), RHS.getOperand(0),
8911                            DAG.getConstant(Sel, DL, MVT::i32));
8912       }
8913     }
8914   }
8915
8916   return SDValue();
8917 }
8918
8919 SDValue SITargetLowering::performOrCombine(SDNode *N,
8920                                            DAGCombinerInfo &DCI) const {
8921   SelectionDAG &DAG = DCI.DAG;
8922   SDValue LHS = N->getOperand(0);
8923   SDValue RHS = N->getOperand(1);
8924
8925   EVT VT = N->getValueType(0);
8926   if (VT == MVT::i1) {
8927     // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
8928     if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
8929         RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
8930       SDValue Src = LHS.getOperand(0);
8931       if (Src != RHS.getOperand(0))
8932         return SDValue();
8933
8934       const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
8935       const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
8936       if (!CLHS || !CRHS)
8937         return SDValue();
8938
8939       // Only 10 bits are used.
8940       static const uint32_t MaxMask = 0x3ff;
8941
8942       uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
8943       SDLoc DL(N);
8944       return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
8945                          Src, DAG.getConstant(NewMask, DL, MVT::i32));
8946     }
8947
8948     return SDValue();
8949   }
8950
8951   // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
8952   if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
8953       LHS.getOpcode() == AMDGPUISD::PERM &&
8954       isa<ConstantSDNode>(LHS.getOperand(2))) {
8955     uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
8956     if (!Sel)
8957       return SDValue();
8958
8959     Sel |= LHS.getConstantOperandVal(2);
8960     SDLoc DL(N);
8961     return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
8962                        LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
8963   }
8964
8965   // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
8966   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
8967   if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
8968       N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32) != -1) {
8969     uint32_t LHSMask = getPermuteMask(DAG, LHS);
8970     uint32_t RHSMask = getPermuteMask(DAG, RHS);
8971     if (LHSMask != ~0u && RHSMask != ~0u) {
8972       // Canonicalize the expression in an attempt to have fewer unique masks
8973       // and therefore fewer registers used to hold the masks.
8974       if (LHSMask > RHSMask) {
8975         std::swap(LHSMask, RHSMask);
8976         std::swap(LHS, RHS);
8977       }
8978
8979       // Select 0xc for each lane used from source operand. Zero has 0xc mask
8980       // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
8981       uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8982       uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
8983
8984       // Check of we need to combine values from two sources within a byte.
8985       if (!(LHSUsedLanes & RHSUsedLanes) &&
8986           // If we select high and lower word keep it for SDWA.
8987           // TODO: teach SDWA to work with v_perm_b32 and remove the check.
8988           !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
8989         // Kill zero bytes selected by other mask. Zero value is 0xc.
8990         LHSMask &= ~RHSUsedLanes;
8991         RHSMask &= ~LHSUsedLanes;
8992         // Add 4 to each active LHS lane
8993         LHSMask |= LHSUsedLanes & 0x04040404;
8994         // Combine masks
8995         uint32_t Sel = LHSMask | RHSMask;
8996         SDLoc DL(N);
8997
8998         return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32,
8999                            LHS.getOperand(0), RHS.getOperand(0),
9000                            DAG.getConstant(Sel, DL, MVT::i32));
9001       }
9002     }
9003   }
9004
9005   if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
9006     return SDValue();
9007
9008   // TODO: This could be a generic combine with a predicate for extracting the
9009   // high half of an integer being free.
9010
9011   // (or i64:x, (zero_extend i32:y)) ->
9012   //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
9013   if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
9014       RHS.getOpcode() != ISD::ZERO_EXTEND)
9015     std::swap(LHS, RHS);
9016
9017   if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
9018     SDValue ExtSrc = RHS.getOperand(0);
9019     EVT SrcVT = ExtSrc.getValueType();
9020     if (SrcVT == MVT::i32) {
9021       SDLoc SL(N);
9022       SDValue LowLHS, HiBits;
9023       std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
9024       SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
9025
9026       DCI.AddToWorklist(LowOr.getNode());
9027       DCI.AddToWorklist(HiBits.getNode());
9028
9029       SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
9030                                 LowOr, HiBits);
9031       return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
9032     }
9033   }
9034
9035   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
9036   if (CRHS) {
9037     if (SDValue Split
9038           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
9039       return Split;
9040   }
9041
9042   return SDValue();
9043 }
9044
9045 SDValue SITargetLowering::performXorCombine(SDNode *N,
9046                                             DAGCombinerInfo &DCI) const {
9047   EVT VT = N->getValueType(0);
9048   if (VT != MVT::i64)
9049     return SDValue();
9050
9051   SDValue LHS = N->getOperand(0);
9052   SDValue RHS = N->getOperand(1);
9053
9054   const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
9055   if (CRHS) {
9056     if (SDValue Split
9057           = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
9058       return Split;
9059   }
9060
9061   return SDValue();
9062 }
9063
9064 // Instructions that will be lowered with a final instruction that zeros the
9065 // high result bits.
9066 // XXX - probably only need to list legal operations.
9067 static bool fp16SrcZerosHighBits(unsigned Opc) {
9068   switch (Opc) {
9069   case ISD::FADD:
9070   case ISD::FSUB:
9071   case ISD::FMUL:
9072   case ISD::FDIV:
9073   case ISD::FREM:
9074   case ISD::FMA:
9075   case ISD::FMAD:
9076   case ISD::FCANONICALIZE:
9077   case ISD::FP_ROUND:
9078   case ISD::UINT_TO_FP:
9079   case ISD::SINT_TO_FP:
9080   case ISD::FABS:
9081     // Fabs is lowered to a bit operation, but it's an and which will clear the
9082     // high bits anyway.
9083   case ISD::FSQRT:
9084   case ISD::FSIN:
9085   case ISD::FCOS:
9086   case ISD::FPOWI:
9087   case ISD::FPOW:
9088   case ISD::FLOG:
9089   case ISD::FLOG2:
9090   case ISD::FLOG10:
9091   case ISD::FEXP:
9092   case ISD::FEXP2:
9093   case ISD::FCEIL:
9094   case ISD::FTRUNC:
9095   case ISD::FRINT:
9096   case ISD::FNEARBYINT:
9097   case ISD::FROUND:
9098   case ISD::FFLOOR:
9099   case ISD::FMINNUM:
9100   case ISD::FMAXNUM:
9101   case AMDGPUISD::FRACT:
9102   case AMDGPUISD::CLAMP:
9103   case AMDGPUISD::COS_HW:
9104   case AMDGPUISD::SIN_HW:
9105   case AMDGPUISD::FMIN3:
9106   case AMDGPUISD::FMAX3:
9107   case AMDGPUISD::FMED3:
9108   case AMDGPUISD::FMAD_FTZ:
9109   case AMDGPUISD::RCP:
9110   case AMDGPUISD::RSQ:
9111   case AMDGPUISD::RCP_IFLAG:
9112   case AMDGPUISD::LDEXP:
9113     return true;
9114   default:
9115     // fcopysign, select and others may be lowered to 32-bit bit operations
9116     // which don't zero the high bits.
9117     return false;
9118   }
9119 }
9120
9121 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
9122                                                    DAGCombinerInfo &DCI) const {
9123   if (!Subtarget->has16BitInsts() ||
9124       DCI.getDAGCombineLevel() < AfterLegalizeDAG)
9125     return SDValue();
9126
9127   EVT VT = N->getValueType(0);
9128   if (VT != MVT::i32)
9129     return SDValue();
9130
9131   SDValue Src = N->getOperand(0);
9132   if (Src.getValueType() != MVT::i16)
9133     return SDValue();
9134
9135   // (i32 zext (i16 (bitcast f16:$src))) -> fp16_zext $src
9136   // FIXME: It is not universally true that the high bits are zeroed on gfx9.
9137   if (Src.getOpcode() == ISD::BITCAST) {
9138     SDValue BCSrc = Src.getOperand(0);
9139     if (BCSrc.getValueType() == MVT::f16 &&
9140         fp16SrcZerosHighBits(BCSrc.getOpcode()))
9141       return DCI.DAG.getNode(AMDGPUISD::FP16_ZEXT, SDLoc(N), VT, BCSrc);
9142   }
9143
9144   return SDValue();
9145 }
9146
9147 SDValue SITargetLowering::performSignExtendInRegCombine(SDNode *N,
9148                                                         DAGCombinerInfo &DCI)
9149                                                         const {
9150   SDValue Src = N->getOperand(0);
9151   auto *VTSign = cast<VTSDNode>(N->getOperand(1));
9152
9153   if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
9154       VTSign->getVT() == MVT::i8) ||
9155       (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
9156       VTSign->getVT() == MVT::i16)) &&
9157       Src.hasOneUse()) {
9158     auto *M = cast<MemSDNode>(Src);
9159     SDValue Ops[] = {
9160       Src.getOperand(0), // Chain
9161       Src.getOperand(1), // rsrc
9162       Src.getOperand(2), // vindex
9163       Src.getOperand(3), // voffset
9164       Src.getOperand(4), // soffset
9165       Src.getOperand(5), // offset
9166       Src.getOperand(6),
9167       Src.getOperand(7)
9168     };
9169     // replace with BUFFER_LOAD_BYTE/SHORT
9170     SDVTList ResList = DCI.DAG.getVTList(MVT::i32,
9171                                          Src.getOperand(0).getValueType());
9172     unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE) ?
9173                    AMDGPUISD::BUFFER_LOAD_BYTE : AMDGPUISD::BUFFER_LOAD_SHORT;
9174     SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(Opc, SDLoc(N),
9175                                                           ResList,
9176                                                           Ops, M->getMemoryVT(),
9177                                                           M->getMemOperand());
9178     return DCI.DAG.getMergeValues({BufferLoadSignExt,
9179                                   BufferLoadSignExt.getValue(1)}, SDLoc(N));
9180   }
9181   return SDValue();
9182 }
9183
9184 SDValue SITargetLowering::performClassCombine(SDNode *N,
9185                                               DAGCombinerInfo &DCI) const {
9186   SelectionDAG &DAG = DCI.DAG;
9187   SDValue Mask = N->getOperand(1);
9188
9189   // fp_class x, 0 -> false
9190   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
9191     if (CMask->isNullValue())
9192       return DAG.getConstant(0, SDLoc(N), MVT::i1);
9193   }
9194
9195   if (N->getOperand(0).isUndef())
9196     return DAG.getUNDEF(MVT::i1);
9197
9198   return SDValue();
9199 }
9200
9201 SDValue SITargetLowering::performRcpCombine(SDNode *N,
9202                                             DAGCombinerInfo &DCI) const {
9203   EVT VT = N->getValueType(0);
9204   SDValue N0 = N->getOperand(0);
9205
9206   if (N0.isUndef())
9207     return N0;
9208
9209   if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
9210                          N0.getOpcode() == ISD::SINT_TO_FP)) {
9211     return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
9212                            N->getFlags());
9213   }
9214
9215   if ((VT == MVT::f32 || VT == MVT::f16) && N0.getOpcode() == ISD::FSQRT) {
9216     return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT,
9217                            N0.getOperand(0), N->getFlags());
9218   }
9219
9220   return AMDGPUTargetLowering::performRcpCombine(N, DCI);
9221 }
9222
9223 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
9224                                        unsigned MaxDepth) const {
9225   unsigned Opcode = Op.getOpcode();
9226   if (Opcode == ISD::FCANONICALIZE)
9227     return true;
9228
9229   if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9230     auto F = CFP->getValueAPF();
9231     if (F.isNaN() && F.isSignaling())
9232       return false;
9233     return !F.isDenormal() || denormalsEnabledForType(DAG, Op.getValueType());
9234   }
9235
9236   // If source is a result of another standard FP operation it is already in
9237   // canonical form.
9238   if (MaxDepth == 0)
9239     return false;
9240
9241   switch (Opcode) {
9242   // These will flush denorms if required.
9243   case ISD::FADD:
9244   case ISD::FSUB:
9245   case ISD::FMUL:
9246   case ISD::FCEIL:
9247   case ISD::FFLOOR:
9248   case ISD::FMA:
9249   case ISD::FMAD:
9250   case ISD::FSQRT:
9251   case ISD::FDIV:
9252   case ISD::FREM:
9253   case ISD::FP_ROUND:
9254   case ISD::FP_EXTEND:
9255   case AMDGPUISD::FMUL_LEGACY:
9256   case AMDGPUISD::FMAD_FTZ:
9257   case AMDGPUISD::RCP:
9258   case AMDGPUISD::RSQ:
9259   case AMDGPUISD::RSQ_CLAMP:
9260   case AMDGPUISD::RCP_LEGACY:
9261   case AMDGPUISD::RCP_IFLAG:
9262   case AMDGPUISD::DIV_SCALE:
9263   case AMDGPUISD::DIV_FMAS:
9264   case AMDGPUISD::DIV_FIXUP:
9265   case AMDGPUISD::FRACT:
9266   case AMDGPUISD::LDEXP:
9267   case AMDGPUISD::CVT_PKRTZ_F16_F32:
9268   case AMDGPUISD::CVT_F32_UBYTE0:
9269   case AMDGPUISD::CVT_F32_UBYTE1:
9270   case AMDGPUISD::CVT_F32_UBYTE2:
9271   case AMDGPUISD::CVT_F32_UBYTE3:
9272     return true;
9273
9274   // It can/will be lowered or combined as a bit operation.
9275   // Need to check their input recursively to handle.
9276   case ISD::FNEG:
9277   case ISD::FABS:
9278   case ISD::FCOPYSIGN:
9279     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9280
9281   case ISD::FSIN:
9282   case ISD::FCOS:
9283   case ISD::FSINCOS:
9284     return Op.getValueType().getScalarType() != MVT::f16;
9285
9286   case ISD::FMINNUM:
9287   case ISD::FMAXNUM:
9288   case ISD::FMINNUM_IEEE:
9289   case ISD::FMAXNUM_IEEE:
9290   case AMDGPUISD::CLAMP:
9291   case AMDGPUISD::FMED3:
9292   case AMDGPUISD::FMAX3:
9293   case AMDGPUISD::FMIN3: {
9294     // FIXME: Shouldn't treat the generic operations different based these.
9295     // However, we aren't really required to flush the result from
9296     // minnum/maxnum..
9297
9298     // snans will be quieted, so we only need to worry about denormals.
9299     if (Subtarget->supportsMinMaxDenormModes() ||
9300         denormalsEnabledForType(DAG, Op.getValueType()))
9301       return true;
9302
9303     // Flushing may be required.
9304     // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
9305     // targets need to check their input recursively.
9306
9307     // FIXME: Does this apply with clamp? It's implemented with max.
9308     for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
9309       if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
9310         return false;
9311     }
9312
9313     return true;
9314   }
9315   case ISD::SELECT: {
9316     return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
9317            isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
9318   }
9319   case ISD::BUILD_VECTOR: {
9320     for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
9321       SDValue SrcOp = Op.getOperand(i);
9322       if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
9323         return false;
9324     }
9325
9326     return true;
9327   }
9328   case ISD::EXTRACT_VECTOR_ELT:
9329   case ISD::EXTRACT_SUBVECTOR: {
9330     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
9331   }
9332   case ISD::INSERT_VECTOR_ELT: {
9333     return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
9334            isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
9335   }
9336   case ISD::UNDEF:
9337     // Could be anything.
9338     return false;
9339
9340   case ISD::BITCAST: {
9341     // Hack round the mess we make when legalizing extract_vector_elt
9342     SDValue Src = Op.getOperand(0);
9343     if (Src.getValueType() == MVT::i16 &&
9344         Src.getOpcode() == ISD::TRUNCATE) {
9345       SDValue TruncSrc = Src.getOperand(0);
9346       if (TruncSrc.getValueType() == MVT::i32 &&
9347           TruncSrc.getOpcode() == ISD::BITCAST &&
9348           TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
9349         return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
9350       }
9351     }
9352
9353     return false;
9354   }
9355   case ISD::INTRINSIC_WO_CHAIN: {
9356     unsigned IntrinsicID
9357       = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9358     // TODO: Handle more intrinsics
9359     switch (IntrinsicID) {
9360     case Intrinsic::amdgcn_cvt_pkrtz:
9361     case Intrinsic::amdgcn_cubeid:
9362     case Intrinsic::amdgcn_frexp_mant:
9363     case Intrinsic::amdgcn_fdot2:
9364     case Intrinsic::amdgcn_rcp:
9365     case Intrinsic::amdgcn_rsq:
9366     case Intrinsic::amdgcn_rsq_clamp:
9367     case Intrinsic::amdgcn_rcp_legacy:
9368     case Intrinsic::amdgcn_rsq_legacy:
9369     case Intrinsic::amdgcn_trig_preop:
9370       return true;
9371     default:
9372       break;
9373     }
9374
9375     LLVM_FALLTHROUGH;
9376   }
9377   default:
9378     return denormalsEnabledForType(DAG, Op.getValueType()) &&
9379            DAG.isKnownNeverSNaN(Op);
9380   }
9381
9382   llvm_unreachable("invalid operation");
9383 }
9384
9385 // Constant fold canonicalize.
9386 SDValue SITargetLowering::getCanonicalConstantFP(
9387   SelectionDAG &DAG, const SDLoc &SL, EVT VT, const APFloat &C) const {
9388   // Flush denormals to 0 if not enabled.
9389   if (C.isDenormal() && !denormalsEnabledForType(DAG, VT))
9390     return DAG.getConstantFP(0.0, SL, VT);
9391
9392   if (C.isNaN()) {
9393     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
9394     if (C.isSignaling()) {
9395       // Quiet a signaling NaN.
9396       // FIXME: Is this supposed to preserve payload bits?
9397       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9398     }
9399
9400     // Make sure it is the canonical NaN bitpattern.
9401     //
9402     // TODO: Can we use -1 as the canonical NaN value since it's an inline
9403     // immediate?
9404     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
9405       return DAG.getConstantFP(CanonicalQNaN, SL, VT);
9406   }
9407
9408   // Already canonical.
9409   return DAG.getConstantFP(C, SL, VT);
9410 }
9411
9412 static bool vectorEltWillFoldAway(SDValue Op) {
9413   return Op.isUndef() || isa<ConstantFPSDNode>(Op);
9414 }
9415
9416 SDValue SITargetLowering::performFCanonicalizeCombine(
9417   SDNode *N,
9418   DAGCombinerInfo &DCI) const {
9419   SelectionDAG &DAG = DCI.DAG;
9420   SDValue N0 = N->getOperand(0);
9421   EVT VT = N->getValueType(0);
9422
9423   // fcanonicalize undef -> qnan
9424   if (N0.isUndef()) {
9425     APFloat QNaN = APFloat::getQNaN(SelectionDAG::EVTToAPFloatSemantics(VT));
9426     return DAG.getConstantFP(QNaN, SDLoc(N), VT);
9427   }
9428
9429   if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
9430     EVT VT = N->getValueType(0);
9431     return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
9432   }
9433
9434   // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
9435   //                                                   (fcanonicalize k)
9436   //
9437   // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
9438
9439   // TODO: This could be better with wider vectors that will be split to v2f16,
9440   // and to consider uses since there aren't that many packed operations.
9441   if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
9442       isTypeLegal(MVT::v2f16)) {
9443     SDLoc SL(N);
9444     SDValue NewElts[2];
9445     SDValue Lo = N0.getOperand(0);
9446     SDValue Hi = N0.getOperand(1);
9447     EVT EltVT = Lo.getValueType();
9448
9449     if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
9450       for (unsigned I = 0; I != 2; ++I) {
9451         SDValue Op = N0.getOperand(I);
9452         if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
9453           NewElts[I] = getCanonicalConstantFP(DAG, SL, EltVT,
9454                                               CFP->getValueAPF());
9455         } else if (Op.isUndef()) {
9456           // Handled below based on what the other operand is.
9457           NewElts[I] = Op;
9458         } else {
9459           NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
9460         }
9461       }
9462
9463       // If one half is undef, and one is constant, perfer a splat vector rather
9464       // than the normal qNaN. If it's a register, prefer 0.0 since that's
9465       // cheaper to use and may be free with a packed operation.
9466       if (NewElts[0].isUndef()) {
9467         if (isa<ConstantFPSDNode>(NewElts[1]))
9468           NewElts[0] = isa<ConstantFPSDNode>(NewElts[1]) ?
9469             NewElts[1]: DAG.getConstantFP(0.0f, SL, EltVT);
9470       }
9471
9472       if (NewElts[1].isUndef()) {
9473         NewElts[1] = isa<ConstantFPSDNode>(NewElts[0]) ?
9474           NewElts[0] : DAG.getConstantFP(0.0f, SL, EltVT);
9475       }
9476
9477       return DAG.getBuildVector(VT, SL, NewElts);
9478     }
9479   }
9480
9481   unsigned SrcOpc = N0.getOpcode();
9482
9483   // If it's free to do so, push canonicalizes further up the source, which may
9484   // find a canonical source.
9485   //
9486   // TODO: More opcodes. Note this is unsafe for the the _ieee minnum/maxnum for
9487   // sNaNs.
9488   if (SrcOpc == ISD::FMINNUM || SrcOpc == ISD::FMAXNUM) {
9489     auto *CRHS = dyn_cast<ConstantFPSDNode>(N0.getOperand(1));
9490     if (CRHS && N0.hasOneUse()) {
9491       SDLoc SL(N);
9492       SDValue Canon0 = DAG.getNode(ISD::FCANONICALIZE, SL, VT,
9493                                    N0.getOperand(0));
9494       SDValue Canon1 = getCanonicalConstantFP(DAG, SL, VT, CRHS->getValueAPF());
9495       DCI.AddToWorklist(Canon0.getNode());
9496
9497       return DAG.getNode(N0.getOpcode(), SL, VT, Canon0, Canon1);
9498     }
9499   }
9500
9501   return isCanonicalized(DAG, N0) ? N0 : SDValue();
9502 }
9503
9504 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
9505   switch (Opc) {
9506   case ISD::FMAXNUM:
9507   case ISD::FMAXNUM_IEEE:
9508     return AMDGPUISD::FMAX3;
9509   case ISD::SMAX:
9510     return AMDGPUISD::SMAX3;
9511   case ISD::UMAX:
9512     return AMDGPUISD::UMAX3;
9513   case ISD::FMINNUM:
9514   case ISD::FMINNUM_IEEE:
9515     return AMDGPUISD::FMIN3;
9516   case ISD::SMIN:
9517     return AMDGPUISD::SMIN3;
9518   case ISD::UMIN:
9519     return AMDGPUISD::UMIN3;
9520   default:
9521     llvm_unreachable("Not a min/max opcode");
9522   }
9523 }
9524
9525 SDValue SITargetLowering::performIntMed3ImmCombine(
9526   SelectionDAG &DAG, const SDLoc &SL,
9527   SDValue Op0, SDValue Op1, bool Signed) const {
9528   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
9529   if (!K1)
9530     return SDValue();
9531
9532   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
9533   if (!K0)
9534     return SDValue();
9535
9536   if (Signed) {
9537     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
9538       return SDValue();
9539   } else {
9540     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
9541       return SDValue();
9542   }
9543
9544   EVT VT = K0->getValueType(0);
9545   unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
9546   if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16())) {
9547     return DAG.getNode(Med3Opc, SL, VT,
9548                        Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
9549   }
9550
9551   // If there isn't a 16-bit med3 operation, convert to 32-bit.
9552   MVT NVT = MVT::i32;
9553   unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9554
9555   SDValue Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
9556   SDValue Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
9557   SDValue Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
9558
9559   SDValue Med3 = DAG.getNode(Med3Opc, SL, NVT, Tmp1, Tmp2, Tmp3);
9560   return DAG.getNode(ISD::TRUNCATE, SL, VT, Med3);
9561 }
9562
9563 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
9564   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
9565     return C;
9566
9567   if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
9568     if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
9569       return C;
9570   }
9571
9572   return nullptr;
9573 }
9574
9575 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
9576                                                   const SDLoc &SL,
9577                                                   SDValue Op0,
9578                                                   SDValue Op1) const {
9579   ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
9580   if (!K1)
9581     return SDValue();
9582
9583   ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
9584   if (!K0)
9585     return SDValue();
9586
9587   // Ordered >= (although NaN inputs should have folded away by now).
9588   if (K0->getValueAPF() > K1->getValueAPF())
9589     return SDValue();
9590
9591   const MachineFunction &MF = DAG.getMachineFunction();
9592   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9593
9594   // TODO: Check IEEE bit enabled?
9595   EVT VT = Op0.getValueType();
9596   if (Info->getMode().DX10Clamp) {
9597     // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
9598     // hardware fmed3 behavior converting to a min.
9599     // FIXME: Should this be allowing -0.0?
9600     if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
9601       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
9602   }
9603
9604   // med3 for f16 is only available on gfx9+, and not available for v2f16.
9605   if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
9606     // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
9607     // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
9608     // then give the other result, which is different from med3 with a NaN
9609     // input.
9610     SDValue Var = Op0.getOperand(0);
9611     if (!DAG.isKnownNeverSNaN(Var))
9612       return SDValue();
9613
9614     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
9615
9616     if ((!K0->hasOneUse() ||
9617          TII->isInlineConstant(K0->getValueAPF().bitcastToAPInt())) &&
9618         (!K1->hasOneUse() ||
9619          TII->isInlineConstant(K1->getValueAPF().bitcastToAPInt()))) {
9620       return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
9621                          Var, SDValue(K0, 0), SDValue(K1, 0));
9622     }
9623   }
9624
9625   return SDValue();
9626 }
9627
9628 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
9629                                                DAGCombinerInfo &DCI) const {
9630   SelectionDAG &DAG = DCI.DAG;
9631
9632   EVT VT = N->getValueType(0);
9633   unsigned Opc = N->getOpcode();
9634   SDValue Op0 = N->getOperand(0);
9635   SDValue Op1 = N->getOperand(1);
9636
9637   // Only do this if the inner op has one use since this will just increases
9638   // register pressure for no benefit.
9639
9640   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY &&
9641       !VT.isVector() &&
9642       (VT == MVT::i32 || VT == MVT::f32 ||
9643        ((VT == MVT::f16 || VT == MVT::i16) && Subtarget->hasMin3Max3_16()))) {
9644     // max(max(a, b), c) -> max3(a, b, c)
9645     // min(min(a, b), c) -> min3(a, b, c)
9646     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
9647       SDLoc DL(N);
9648       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9649                          DL,
9650                          N->getValueType(0),
9651                          Op0.getOperand(0),
9652                          Op0.getOperand(1),
9653                          Op1);
9654     }
9655
9656     // Try commuted.
9657     // max(a, max(b, c)) -> max3(a, b, c)
9658     // min(a, min(b, c)) -> min3(a, b, c)
9659     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
9660       SDLoc DL(N);
9661       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
9662                          DL,
9663                          N->getValueType(0),
9664                          Op0,
9665                          Op1.getOperand(0),
9666                          Op1.getOperand(1));
9667     }
9668   }
9669
9670   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
9671   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
9672     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
9673       return Med3;
9674   }
9675
9676   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
9677     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
9678       return Med3;
9679   }
9680
9681   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
9682   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
9683        (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
9684        (Opc == AMDGPUISD::FMIN_LEGACY &&
9685         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
9686       (VT == MVT::f32 || VT == MVT::f64 ||
9687        (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
9688        (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
9689       Op0.hasOneUse()) {
9690     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
9691       return Res;
9692   }
9693
9694   return SDValue();
9695 }
9696
9697 static bool isClampZeroToOne(SDValue A, SDValue B) {
9698   if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
9699     if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
9700       // FIXME: Should this be allowing -0.0?
9701       return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
9702              (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
9703     }
9704   }
9705
9706   return false;
9707 }
9708
9709 // FIXME: Should only worry about snans for version with chain.
9710 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
9711                                               DAGCombinerInfo &DCI) const {
9712   EVT VT = N->getValueType(0);
9713   // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
9714   // NaNs. With a NaN input, the order of the operands may change the result.
9715
9716   SelectionDAG &DAG = DCI.DAG;
9717   SDLoc SL(N);
9718
9719   SDValue Src0 = N->getOperand(0);
9720   SDValue Src1 = N->getOperand(1);
9721   SDValue Src2 = N->getOperand(2);
9722
9723   if (isClampZeroToOne(Src0, Src1)) {
9724     // const_a, const_b, x -> clamp is safe in all cases including signaling
9725     // nans.
9726     // FIXME: Should this be allowing -0.0?
9727     return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
9728   }
9729
9730   const MachineFunction &MF = DAG.getMachineFunction();
9731   const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
9732
9733   // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
9734   // handling no dx10-clamp?
9735   if (Info->getMode().DX10Clamp) {
9736     // If NaNs is clamped to 0, we are free to reorder the inputs.
9737
9738     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9739       std::swap(Src0, Src1);
9740
9741     if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
9742       std::swap(Src1, Src2);
9743
9744     if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
9745       std::swap(Src0, Src1);
9746
9747     if (isClampZeroToOne(Src1, Src2))
9748       return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
9749   }
9750
9751   return SDValue();
9752 }
9753
9754 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
9755                                                  DAGCombinerInfo &DCI) const {
9756   SDValue Src0 = N->getOperand(0);
9757   SDValue Src1 = N->getOperand(1);
9758   if (Src0.isUndef() && Src1.isUndef())
9759     return DCI.DAG.getUNDEF(N->getValueType(0));
9760   return SDValue();
9761 }
9762
9763 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
9764 // expanded into a set of cmp/select instructions.
9765 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
9766                                                 unsigned NumElem,
9767                                                 bool IsDivergentIdx) {
9768   if (UseDivergentRegisterIndexing)
9769     return false;
9770
9771   unsigned VecSize = EltSize * NumElem;
9772
9773   // Sub-dword vectors of size 2 dword or less have better implementation.
9774   if (VecSize <= 64 && EltSize < 32)
9775     return false;
9776
9777   // Always expand the rest of sub-dword instructions, otherwise it will be
9778   // lowered via memory.
9779   if (EltSize < 32)
9780     return true;
9781
9782   // Always do this if var-idx is divergent, otherwise it will become a loop.
9783   if (IsDivergentIdx)
9784     return true;
9785
9786   // Large vectors would yield too many compares and v_cndmask_b32 instructions.
9787   unsigned NumInsts = NumElem /* Number of compares */ +
9788                       ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
9789   return NumInsts <= 16;
9790 }
9791
9792 static bool shouldExpandVectorDynExt(SDNode *N) {
9793   SDValue Idx = N->getOperand(N->getNumOperands() - 1);
9794   if (isa<ConstantSDNode>(Idx))
9795     return false;
9796
9797   SDValue Vec = N->getOperand(0);
9798   EVT VecVT = Vec.getValueType();
9799   EVT EltVT = VecVT.getVectorElementType();
9800   unsigned EltSize = EltVT.getSizeInBits();
9801   unsigned NumElem = VecVT.getVectorNumElements();
9802
9803   return SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
9804                                                     Idx->isDivergent());
9805 }
9806
9807 SDValue SITargetLowering::performExtractVectorEltCombine(
9808   SDNode *N, DAGCombinerInfo &DCI) const {
9809   SDValue Vec = N->getOperand(0);
9810   SelectionDAG &DAG = DCI.DAG;
9811
9812   EVT VecVT = Vec.getValueType();
9813   EVT EltVT = VecVT.getVectorElementType();
9814
9815   if ((Vec.getOpcode() == ISD::FNEG ||
9816        Vec.getOpcode() == ISD::FABS) && allUsesHaveSourceMods(N)) {
9817     SDLoc SL(N);
9818     EVT EltVT = N->getValueType(0);
9819     SDValue Idx = N->getOperand(1);
9820     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9821                               Vec.getOperand(0), Idx);
9822     return DAG.getNode(Vec.getOpcode(), SL, EltVT, Elt);
9823   }
9824
9825   // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
9826   //    =>
9827   // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
9828   // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
9829   // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
9830   if (Vec.hasOneUse() && DCI.isBeforeLegalize()) {
9831     SDLoc SL(N);
9832     EVT EltVT = N->getValueType(0);
9833     SDValue Idx = N->getOperand(1);
9834     unsigned Opc = Vec.getOpcode();
9835
9836     switch(Opc) {
9837     default:
9838       break;
9839       // TODO: Support other binary operations.
9840     case ISD::FADD:
9841     case ISD::FSUB:
9842     case ISD::FMUL:
9843     case ISD::ADD:
9844     case ISD::UMIN:
9845     case ISD::UMAX:
9846     case ISD::SMIN:
9847     case ISD::SMAX:
9848     case ISD::FMAXNUM:
9849     case ISD::FMINNUM:
9850     case ISD::FMAXNUM_IEEE:
9851     case ISD::FMINNUM_IEEE: {
9852       SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9853                                  Vec.getOperand(0), Idx);
9854       SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
9855                                  Vec.getOperand(1), Idx);
9856
9857       DCI.AddToWorklist(Elt0.getNode());
9858       DCI.AddToWorklist(Elt1.getNode());
9859       return DAG.getNode(Opc, SL, EltVT, Elt0, Elt1, Vec->getFlags());
9860     }
9861     }
9862   }
9863
9864   unsigned VecSize = VecVT.getSizeInBits();
9865   unsigned EltSize = EltVT.getSizeInBits();
9866
9867   // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
9868   if (::shouldExpandVectorDynExt(N)) {
9869     SDLoc SL(N);
9870     SDValue Idx = N->getOperand(1);
9871     SDValue V;
9872     for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9873       SDValue IC = DAG.getVectorIdxConstant(I, SL);
9874       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9875       if (I == 0)
9876         V = Elt;
9877       else
9878         V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
9879     }
9880     return V;
9881   }
9882
9883   if (!DCI.isBeforeLegalize())
9884     return SDValue();
9885
9886   // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
9887   // elements. This exposes more load reduction opportunities by replacing
9888   // multiple small extract_vector_elements with a single 32-bit extract.
9889   auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
9890   if (isa<MemSDNode>(Vec) &&
9891       EltSize <= 16 &&
9892       EltVT.isByteSized() &&
9893       VecSize > 32 &&
9894       VecSize % 32 == 0 &&
9895       Idx) {
9896     EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
9897
9898     unsigned BitIndex = Idx->getZExtValue() * EltSize;
9899     unsigned EltIdx = BitIndex / 32;
9900     unsigned LeftoverBitIdx = BitIndex % 32;
9901     SDLoc SL(N);
9902
9903     SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
9904     DCI.AddToWorklist(Cast.getNode());
9905
9906     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
9907                               DAG.getConstant(EltIdx, SL, MVT::i32));
9908     DCI.AddToWorklist(Elt.getNode());
9909     SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
9910                               DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
9911     DCI.AddToWorklist(Srl.getNode());
9912
9913     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, EltVT.changeTypeToInteger(), Srl);
9914     DCI.AddToWorklist(Trunc.getNode());
9915     return DAG.getNode(ISD::BITCAST, SL, EltVT, Trunc);
9916   }
9917
9918   return SDValue();
9919 }
9920
9921 SDValue
9922 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
9923                                                 DAGCombinerInfo &DCI) const {
9924   SDValue Vec = N->getOperand(0);
9925   SDValue Idx = N->getOperand(2);
9926   EVT VecVT = Vec.getValueType();
9927   EVT EltVT = VecVT.getVectorElementType();
9928
9929   // INSERT_VECTOR_ELT (<n x e>, var-idx)
9930   // => BUILD_VECTOR n x select (e, const-idx)
9931   if (!::shouldExpandVectorDynExt(N))
9932     return SDValue();
9933
9934   SelectionDAG &DAG = DCI.DAG;
9935   SDLoc SL(N);
9936   SDValue Ins = N->getOperand(1);
9937   EVT IdxVT = Idx.getValueType();
9938
9939   SmallVector<SDValue, 16> Ops;
9940   for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
9941     SDValue IC = DAG.getConstant(I, SL, IdxVT);
9942     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
9943     SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
9944     Ops.push_back(V);
9945   }
9946
9947   return DAG.getBuildVector(VecVT, SL, Ops);
9948 }
9949
9950 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
9951                                           const SDNode *N0,
9952                                           const SDNode *N1) const {
9953   EVT VT = N0->getValueType(0);
9954
9955   // Only do this if we are not trying to support denormals. v_mad_f32 does not
9956   // support denormals ever.
9957   if (((VT == MVT::f32 && !hasFP32Denormals(DAG.getMachineFunction())) ||
9958        (VT == MVT::f16 && !hasFP64FP16Denormals(DAG.getMachineFunction()) &&
9959         getSubtarget()->hasMadF16())) &&
9960        isOperationLegal(ISD::FMAD, VT))
9961     return ISD::FMAD;
9962
9963   const TargetOptions &Options = DAG.getTarget().Options;
9964   if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
9965        (N0->getFlags().hasAllowContract() &&
9966         N1->getFlags().hasAllowContract())) &&
9967       isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
9968     return ISD::FMA;
9969   }
9970
9971   return 0;
9972 }
9973
9974 // For a reassociatable opcode perform:
9975 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
9976 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
9977                                                SelectionDAG &DAG) const {
9978   EVT VT = N->getValueType(0);
9979   if (VT != MVT::i32 && VT != MVT::i64)
9980     return SDValue();
9981
9982   unsigned Opc = N->getOpcode();
9983   SDValue Op0 = N->getOperand(0);
9984   SDValue Op1 = N->getOperand(1);
9985
9986   if (!(Op0->isDivergent() ^ Op1->isDivergent()))
9987     return SDValue();
9988
9989   if (Op0->isDivergent())
9990     std::swap(Op0, Op1);
9991
9992   if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
9993     return SDValue();
9994
9995   SDValue Op2 = Op1.getOperand(1);
9996   Op1 = Op1.getOperand(0);
9997   if (!(Op1->isDivergent() ^ Op2->isDivergent()))
9998     return SDValue();
9999
10000   if (Op1->isDivergent())
10001     std::swap(Op1, Op2);
10002
10003   // If either operand is constant this will conflict with
10004   // DAGCombiner::ReassociateOps().
10005   if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
10006       DAG.isConstantIntBuildVectorOrConstantInt(Op1))
10007     return SDValue();
10008
10009   SDLoc SL(N);
10010   SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
10011   return DAG.getNode(Opc, SL, VT, Add1, Op2);
10012 }
10013
10014 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL,
10015                            EVT VT,
10016                            SDValue N0, SDValue N1, SDValue N2,
10017                            bool Signed) {
10018   unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
10019   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
10020   SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
10021   return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
10022 }
10023
10024 SDValue SITargetLowering::performAddCombine(SDNode *N,
10025                                             DAGCombinerInfo &DCI) const {
10026   SelectionDAG &DAG = DCI.DAG;
10027   EVT VT = N->getValueType(0);
10028   SDLoc SL(N);
10029   SDValue LHS = N->getOperand(0);
10030   SDValue RHS = N->getOperand(1);
10031
10032   if ((LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL)
10033       && Subtarget->hasMad64_32() &&
10034       !VT.isVector() && VT.getScalarSizeInBits() > 32 &&
10035       VT.getScalarSizeInBits() <= 64) {
10036     if (LHS.getOpcode() != ISD::MUL)
10037       std::swap(LHS, RHS);
10038
10039     SDValue MulLHS = LHS.getOperand(0);
10040     SDValue MulRHS = LHS.getOperand(1);
10041     SDValue AddRHS = RHS;
10042
10043     // TODO: Maybe restrict if SGPR inputs.
10044     if (numBitsUnsigned(MulLHS, DAG) <= 32 &&
10045         numBitsUnsigned(MulRHS, DAG) <= 32) {
10046       MulLHS = DAG.getZExtOrTrunc(MulLHS, SL, MVT::i32);
10047       MulRHS = DAG.getZExtOrTrunc(MulRHS, SL, MVT::i32);
10048       AddRHS = DAG.getZExtOrTrunc(AddRHS, SL, MVT::i64);
10049       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, false);
10050     }
10051
10052     if (numBitsSigned(MulLHS, DAG) < 32 && numBitsSigned(MulRHS, DAG) < 32) {
10053       MulLHS = DAG.getSExtOrTrunc(MulLHS, SL, MVT::i32);
10054       MulRHS = DAG.getSExtOrTrunc(MulRHS, SL, MVT::i32);
10055       AddRHS = DAG.getSExtOrTrunc(AddRHS, SL, MVT::i64);
10056       return getMad64_32(DAG, SL, VT, MulLHS, MulRHS, AddRHS, true);
10057     }
10058
10059     return SDValue();
10060   }
10061
10062   if (SDValue V = reassociateScalarOps(N, DAG)) {
10063     return V;
10064   }
10065
10066   if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
10067     return SDValue();
10068
10069   // add x, zext (setcc) => addcarry x, 0, setcc
10070   // add x, sext (setcc) => subcarry x, 0, setcc
10071   unsigned Opc = LHS.getOpcode();
10072   if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
10073       Opc == ISD::ANY_EXTEND || Opc == ISD::ADDCARRY)
10074     std::swap(RHS, LHS);
10075
10076   Opc = RHS.getOpcode();
10077   switch (Opc) {
10078   default: break;
10079   case ISD::ZERO_EXTEND:
10080   case ISD::SIGN_EXTEND:
10081   case ISD::ANY_EXTEND: {
10082     auto Cond = RHS.getOperand(0);
10083     // If this won't be a real VOPC output, we would still need to insert an
10084     // extra instruction anyway.
10085     if (!isBoolSGPR(Cond))
10086       break;
10087     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10088     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10089     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::SUBCARRY : ISD::ADDCARRY;
10090     return DAG.getNode(Opc, SL, VTList, Args);
10091   }
10092   case ISD::ADDCARRY: {
10093     // add x, (addcarry y, 0, cc) => addcarry x, y, cc
10094     auto C = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
10095     if (!C || C->getZExtValue() != 0) break;
10096     SDValue Args[] = { LHS, RHS.getOperand(0), RHS.getOperand(2) };
10097     return DAG.getNode(ISD::ADDCARRY, SDLoc(N), RHS->getVTList(), Args);
10098   }
10099   }
10100   return SDValue();
10101 }
10102
10103 SDValue SITargetLowering::performSubCombine(SDNode *N,
10104                                             DAGCombinerInfo &DCI) const {
10105   SelectionDAG &DAG = DCI.DAG;
10106   EVT VT = N->getValueType(0);
10107
10108   if (VT != MVT::i32)
10109     return SDValue();
10110
10111   SDLoc SL(N);
10112   SDValue LHS = N->getOperand(0);
10113   SDValue RHS = N->getOperand(1);
10114
10115   // sub x, zext (setcc) => subcarry x, 0, setcc
10116   // sub x, sext (setcc) => addcarry x, 0, setcc
10117   unsigned Opc = RHS.getOpcode();
10118   switch (Opc) {
10119   default: break;
10120   case ISD::ZERO_EXTEND:
10121   case ISD::SIGN_EXTEND:
10122   case ISD::ANY_EXTEND: {
10123     auto Cond = RHS.getOperand(0);
10124     // If this won't be a real VOPC output, we would still need to insert an
10125     // extra instruction anyway.
10126     if (!isBoolSGPR(Cond))
10127       break;
10128     SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
10129     SDValue Args[] = { LHS, DAG.getConstant(0, SL, MVT::i32), Cond };
10130     Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::ADDCARRY : ISD::SUBCARRY;
10131     return DAG.getNode(Opc, SL, VTList, Args);
10132   }
10133   }
10134
10135   if (LHS.getOpcode() == ISD::SUBCARRY) {
10136     // sub (subcarry x, 0, cc), y => subcarry x, y, cc
10137     auto C = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
10138     if (!C || !C->isNullValue())
10139       return SDValue();
10140     SDValue Args[] = { LHS.getOperand(0), RHS, LHS.getOperand(2) };
10141     return DAG.getNode(ISD::SUBCARRY, SDLoc(N), LHS->getVTList(), Args);
10142   }
10143   return SDValue();
10144 }
10145
10146 SDValue SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
10147   DAGCombinerInfo &DCI) const {
10148
10149   if (N->getValueType(0) != MVT::i32)
10150     return SDValue();
10151
10152   auto C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10153   if (!C || C->getZExtValue() != 0)
10154     return SDValue();
10155
10156   SelectionDAG &DAG = DCI.DAG;
10157   SDValue LHS = N->getOperand(0);
10158
10159   // addcarry (add x, y), 0, cc => addcarry x, y, cc
10160   // subcarry (sub x, y), 0, cc => subcarry x, y, cc
10161   unsigned LHSOpc = LHS.getOpcode();
10162   unsigned Opc = N->getOpcode();
10163   if ((LHSOpc == ISD::ADD && Opc == ISD::ADDCARRY) ||
10164       (LHSOpc == ISD::SUB && Opc == ISD::SUBCARRY)) {
10165     SDValue Args[] = { LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2) };
10166     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
10167   }
10168   return SDValue();
10169 }
10170
10171 SDValue SITargetLowering::performFAddCombine(SDNode *N,
10172                                              DAGCombinerInfo &DCI) const {
10173   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10174     return SDValue();
10175
10176   SelectionDAG &DAG = DCI.DAG;
10177   EVT VT = N->getValueType(0);
10178
10179   SDLoc SL(N);
10180   SDValue LHS = N->getOperand(0);
10181   SDValue RHS = N->getOperand(1);
10182
10183   // These should really be instruction patterns, but writing patterns with
10184   // source modiifiers is a pain.
10185
10186   // fadd (fadd (a, a), b) -> mad 2.0, a, b
10187   if (LHS.getOpcode() == ISD::FADD) {
10188     SDValue A = LHS.getOperand(0);
10189     if (A == LHS.getOperand(1)) {
10190       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10191       if (FusedOp != 0) {
10192         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10193         return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
10194       }
10195     }
10196   }
10197
10198   // fadd (b, fadd (a, a)) -> mad 2.0, a, b
10199   if (RHS.getOpcode() == ISD::FADD) {
10200     SDValue A = RHS.getOperand(0);
10201     if (A == RHS.getOperand(1)) {
10202       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10203       if (FusedOp != 0) {
10204         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10205         return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
10206       }
10207     }
10208   }
10209
10210   return SDValue();
10211 }
10212
10213 SDValue SITargetLowering::performFSubCombine(SDNode *N,
10214                                              DAGCombinerInfo &DCI) const {
10215   if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
10216     return SDValue();
10217
10218   SelectionDAG &DAG = DCI.DAG;
10219   SDLoc SL(N);
10220   EVT VT = N->getValueType(0);
10221   assert(!VT.isVector());
10222
10223   // Try to get the fneg to fold into the source modifier. This undoes generic
10224   // DAG combines and folds them into the mad.
10225   //
10226   // Only do this if we are not trying to support denormals. v_mad_f32 does
10227   // not support denormals ever.
10228   SDValue LHS = N->getOperand(0);
10229   SDValue RHS = N->getOperand(1);
10230   if (LHS.getOpcode() == ISD::FADD) {
10231     // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
10232     SDValue A = LHS.getOperand(0);
10233     if (A == LHS.getOperand(1)) {
10234       unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
10235       if (FusedOp != 0){
10236         const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
10237         SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10238
10239         return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
10240       }
10241     }
10242   }
10243
10244   if (RHS.getOpcode() == ISD::FADD) {
10245     // (fsub c, (fadd a, a)) -> mad -2.0, a, c
10246
10247     SDValue A = RHS.getOperand(0);
10248     if (A == RHS.getOperand(1)) {
10249       unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
10250       if (FusedOp != 0){
10251         const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
10252         return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
10253       }
10254     }
10255   }
10256
10257   return SDValue();
10258 }
10259
10260 SDValue SITargetLowering::performFMACombine(SDNode *N,
10261                                             DAGCombinerInfo &DCI) const {
10262   SelectionDAG &DAG = DCI.DAG;
10263   EVT VT = N->getValueType(0);
10264   SDLoc SL(N);
10265
10266   if (!Subtarget->hasDot2Insts() || VT != MVT::f32)
10267     return SDValue();
10268
10269   // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
10270   //   FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
10271   SDValue Op1 = N->getOperand(0);
10272   SDValue Op2 = N->getOperand(1);
10273   SDValue FMA = N->getOperand(2);
10274
10275   if (FMA.getOpcode() != ISD::FMA ||
10276       Op1.getOpcode() != ISD::FP_EXTEND ||
10277       Op2.getOpcode() != ISD::FP_EXTEND)
10278     return SDValue();
10279
10280   // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
10281   // regardless of the denorm mode setting. Therefore, unsafe-fp-math/fp-contract
10282   // is sufficient to allow generaing fdot2.
10283   const TargetOptions &Options = DAG.getTarget().Options;
10284   if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
10285       (N->getFlags().hasAllowContract() &&
10286        FMA->getFlags().hasAllowContract())) {
10287     Op1 = Op1.getOperand(0);
10288     Op2 = Op2.getOperand(0);
10289     if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10290         Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10291       return SDValue();
10292
10293     SDValue Vec1 = Op1.getOperand(0);
10294     SDValue Idx1 = Op1.getOperand(1);
10295     SDValue Vec2 = Op2.getOperand(0);
10296
10297     SDValue FMAOp1 = FMA.getOperand(0);
10298     SDValue FMAOp2 = FMA.getOperand(1);
10299     SDValue FMAAcc = FMA.getOperand(2);
10300
10301     if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
10302         FMAOp2.getOpcode() != ISD::FP_EXTEND)
10303       return SDValue();
10304
10305     FMAOp1 = FMAOp1.getOperand(0);
10306     FMAOp2 = FMAOp2.getOperand(0);
10307     if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
10308         FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10309       return SDValue();
10310
10311     SDValue Vec3 = FMAOp1.getOperand(0);
10312     SDValue Vec4 = FMAOp2.getOperand(0);
10313     SDValue Idx2 = FMAOp1.getOperand(1);
10314
10315     if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
10316         // Idx1 and Idx2 cannot be the same.
10317         Idx1 == Idx2)
10318       return SDValue();
10319
10320     if (Vec1 == Vec2 || Vec3 == Vec4)
10321       return SDValue();
10322
10323     if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
10324       return SDValue();
10325
10326     if ((Vec1 == Vec3 && Vec2 == Vec4) ||
10327         (Vec1 == Vec4 && Vec2 == Vec3)) {
10328       return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
10329                          DAG.getTargetConstant(0, SL, MVT::i1));
10330     }
10331   }
10332   return SDValue();
10333 }
10334
10335 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
10336                                               DAGCombinerInfo &DCI) const {
10337   SelectionDAG &DAG = DCI.DAG;
10338   SDLoc SL(N);
10339
10340   SDValue LHS = N->getOperand(0);
10341   SDValue RHS = N->getOperand(1);
10342   EVT VT = LHS.getValueType();
10343   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
10344
10345   auto CRHS = dyn_cast<ConstantSDNode>(RHS);
10346   if (!CRHS) {
10347     CRHS = dyn_cast<ConstantSDNode>(LHS);
10348     if (CRHS) {
10349       std::swap(LHS, RHS);
10350       CC = getSetCCSwappedOperands(CC);
10351     }
10352   }
10353
10354   if (CRHS) {
10355     if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
10356         isBoolSGPR(LHS.getOperand(0))) {
10357       // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
10358       // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
10359       // setcc (sext from i1 cc),  0, eq|sge|ule) => not cc => xor cc, -1
10360       // setcc (sext from i1 cc),  0, ne|ugt|slt) => cc
10361       if ((CRHS->isAllOnesValue() &&
10362            (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
10363           (CRHS->isNullValue() &&
10364            (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
10365         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10366                            DAG.getConstant(-1, SL, MVT::i1));
10367       if ((CRHS->isAllOnesValue() &&
10368            (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
10369           (CRHS->isNullValue() &&
10370            (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
10371         return LHS.getOperand(0);
10372     }
10373
10374     uint64_t CRHSVal = CRHS->getZExtValue();
10375     if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
10376         LHS.getOpcode() == ISD::SELECT &&
10377         isa<ConstantSDNode>(LHS.getOperand(1)) &&
10378         isa<ConstantSDNode>(LHS.getOperand(2)) &&
10379         LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
10380         isBoolSGPR(LHS.getOperand(0))) {
10381       // Given CT != FT:
10382       // setcc (select cc, CT, CF), CF, eq => xor cc, -1
10383       // setcc (select cc, CT, CF), CF, ne => cc
10384       // setcc (select cc, CT, CF), CT, ne => xor cc, -1
10385       // setcc (select cc, CT, CF), CT, eq => cc
10386       uint64_t CT = LHS.getConstantOperandVal(1);
10387       uint64_t CF = LHS.getConstantOperandVal(2);
10388
10389       if ((CF == CRHSVal && CC == ISD::SETEQ) ||
10390           (CT == CRHSVal && CC == ISD::SETNE))
10391         return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
10392                            DAG.getConstant(-1, SL, MVT::i1));
10393       if ((CF == CRHSVal && CC == ISD::SETNE) ||
10394           (CT == CRHSVal && CC == ISD::SETEQ))
10395         return LHS.getOperand(0);
10396     }
10397   }
10398
10399   if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
10400                                            VT != MVT::f16))
10401     return SDValue();
10402
10403   // Match isinf/isfinite pattern
10404   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
10405   // (fcmp one (fabs x), inf) -> (fp_class x,
10406   // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
10407   if ((CC == ISD::SETOEQ || CC == ISD::SETONE) && LHS.getOpcode() == ISD::FABS) {
10408     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
10409     if (!CRHS)
10410       return SDValue();
10411
10412     const APFloat &APF = CRHS->getValueAPF();
10413     if (APF.isInfinity() && !APF.isNegative()) {
10414       const unsigned IsInfMask = SIInstrFlags::P_INFINITY |
10415                                  SIInstrFlags::N_INFINITY;
10416       const unsigned IsFiniteMask = SIInstrFlags::N_ZERO |
10417                                     SIInstrFlags::P_ZERO |
10418                                     SIInstrFlags::N_NORMAL |
10419                                     SIInstrFlags::P_NORMAL |
10420                                     SIInstrFlags::N_SUBNORMAL |
10421                                     SIInstrFlags::P_SUBNORMAL;
10422       unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
10423       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
10424                          DAG.getConstant(Mask, SL, MVT::i32));
10425     }
10426   }
10427
10428   return SDValue();
10429 }
10430
10431 SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
10432                                                      DAGCombinerInfo &DCI) const {
10433   SelectionDAG &DAG = DCI.DAG;
10434   SDLoc SL(N);
10435   unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
10436
10437   SDValue Src = N->getOperand(0);
10438   SDValue Shift = N->getOperand(0);
10439
10440   // TODO: Extend type shouldn't matter (assuming legal types).
10441   if (Shift.getOpcode() == ISD::ZERO_EXTEND)
10442     Shift = Shift.getOperand(0);
10443
10444   if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
10445     // cvt_f32_ubyte1 (shl x,  8) -> cvt_f32_ubyte0 x
10446     // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
10447     // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
10448     // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
10449     // cvt_f32_ubyte0 (srl x,  8) -> cvt_f32_ubyte1 x
10450     if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
10451       Shift = DAG.getZExtOrTrunc(Shift.getOperand(0),
10452                                  SDLoc(Shift.getOperand(0)), MVT::i32);
10453
10454       unsigned ShiftOffset = 8 * Offset;
10455       if (Shift.getOpcode() == ISD::SHL)
10456         ShiftOffset -= C->getZExtValue();
10457       else
10458         ShiftOffset += C->getZExtValue();
10459
10460       if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
10461         return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
10462                            MVT::f32, Shift);
10463       }
10464     }
10465   }
10466
10467   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10468   APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
10469   if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
10470     // We simplified Src. If this node is not dead, visit it again so it is
10471     // folded properly.
10472     if (N->getOpcode() != ISD::DELETED_NODE)
10473       DCI.AddToWorklist(N);
10474     return SDValue(N, 0);
10475   }
10476
10477   // Handle (or x, (srl y, 8)) pattern when known bits are zero.
10478   if (SDValue DemandedSrc =
10479           TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
10480     return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
10481
10482   return SDValue();
10483 }
10484
10485 SDValue SITargetLowering::performClampCombine(SDNode *N,
10486                                               DAGCombinerInfo &DCI) const {
10487   ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
10488   if (!CSrc)
10489     return SDValue();
10490
10491   const MachineFunction &MF = DCI.DAG.getMachineFunction();
10492   const APFloat &F = CSrc->getValueAPF();
10493   APFloat Zero = APFloat::getZero(F.getSemantics());
10494   if (F < Zero ||
10495       (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
10496     return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
10497   }
10498
10499   APFloat One(F.getSemantics(), "1.0");
10500   if (F > One)
10501     return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
10502
10503   return SDValue(CSrc, 0);
10504 }
10505
10506
10507 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
10508                                             DAGCombinerInfo &DCI) const {
10509   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
10510     return SDValue();
10511   switch (N->getOpcode()) {
10512   default:
10513     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10514   case ISD::ADD:
10515     return performAddCombine(N, DCI);
10516   case ISD::SUB:
10517     return performSubCombine(N, DCI);
10518   case ISD::ADDCARRY:
10519   case ISD::SUBCARRY:
10520     return performAddCarrySubCarryCombine(N, DCI);
10521   case ISD::FADD:
10522     return performFAddCombine(N, DCI);
10523   case ISD::FSUB:
10524     return performFSubCombine(N, DCI);
10525   case ISD::SETCC:
10526     return performSetCCCombine(N, DCI);
10527   case ISD::FMAXNUM:
10528   case ISD::FMINNUM:
10529   case ISD::FMAXNUM_IEEE:
10530   case ISD::FMINNUM_IEEE:
10531   case ISD::SMAX:
10532   case ISD::SMIN:
10533   case ISD::UMAX:
10534   case ISD::UMIN:
10535   case AMDGPUISD::FMIN_LEGACY:
10536   case AMDGPUISD::FMAX_LEGACY:
10537     return performMinMaxCombine(N, DCI);
10538   case ISD::FMA:
10539     return performFMACombine(N, DCI);
10540   case ISD::LOAD: {
10541     if (SDValue Widended = widenLoad(cast<LoadSDNode>(N), DCI))
10542       return Widended;
10543     LLVM_FALLTHROUGH;
10544   }
10545   case ISD::STORE:
10546   case ISD::ATOMIC_LOAD:
10547   case ISD::ATOMIC_STORE:
10548   case ISD::ATOMIC_CMP_SWAP:
10549   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
10550   case ISD::ATOMIC_SWAP:
10551   case ISD::ATOMIC_LOAD_ADD:
10552   case ISD::ATOMIC_LOAD_SUB:
10553   case ISD::ATOMIC_LOAD_AND:
10554   case ISD::ATOMIC_LOAD_OR:
10555   case ISD::ATOMIC_LOAD_XOR:
10556   case ISD::ATOMIC_LOAD_NAND:
10557   case ISD::ATOMIC_LOAD_MIN:
10558   case ISD::ATOMIC_LOAD_MAX:
10559   case ISD::ATOMIC_LOAD_UMIN:
10560   case ISD::ATOMIC_LOAD_UMAX:
10561   case ISD::ATOMIC_LOAD_FADD:
10562   case AMDGPUISD::ATOMIC_INC:
10563   case AMDGPUISD::ATOMIC_DEC:
10564   case AMDGPUISD::ATOMIC_LOAD_FMIN:
10565   case AMDGPUISD::ATOMIC_LOAD_FMAX: // TODO: Target mem intrinsics.
10566     if (DCI.isBeforeLegalize())
10567       break;
10568     return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
10569   case ISD::AND:
10570     return performAndCombine(N, DCI);
10571   case ISD::OR:
10572     return performOrCombine(N, DCI);
10573   case ISD::XOR:
10574     return performXorCombine(N, DCI);
10575   case ISD::ZERO_EXTEND:
10576     return performZeroExtendCombine(N, DCI);
10577   case ISD::SIGN_EXTEND_INREG:
10578     return performSignExtendInRegCombine(N , DCI);
10579   case AMDGPUISD::FP_CLASS:
10580     return performClassCombine(N, DCI);
10581   case ISD::FCANONICALIZE:
10582     return performFCanonicalizeCombine(N, DCI);
10583   case AMDGPUISD::RCP:
10584     return performRcpCombine(N, DCI);
10585   case AMDGPUISD::FRACT:
10586   case AMDGPUISD::RSQ:
10587   case AMDGPUISD::RCP_LEGACY:
10588   case AMDGPUISD::RCP_IFLAG:
10589   case AMDGPUISD::RSQ_CLAMP:
10590   case AMDGPUISD::LDEXP: {
10591     // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
10592     SDValue Src = N->getOperand(0);
10593     if (Src.isUndef())
10594       return Src;
10595     break;
10596   }
10597   case ISD::SINT_TO_FP:
10598   case ISD::UINT_TO_FP:
10599     return performUCharToFloatCombine(N, DCI);
10600   case AMDGPUISD::CVT_F32_UBYTE0:
10601   case AMDGPUISD::CVT_F32_UBYTE1:
10602   case AMDGPUISD::CVT_F32_UBYTE2:
10603   case AMDGPUISD::CVT_F32_UBYTE3:
10604     return performCvtF32UByteNCombine(N, DCI);
10605   case AMDGPUISD::FMED3:
10606     return performFMed3Combine(N, DCI);
10607   case AMDGPUISD::CVT_PKRTZ_F16_F32:
10608     return performCvtPkRTZCombine(N, DCI);
10609   case AMDGPUISD::CLAMP:
10610     return performClampCombine(N, DCI);
10611   case ISD::SCALAR_TO_VECTOR: {
10612     SelectionDAG &DAG = DCI.DAG;
10613     EVT VT = N->getValueType(0);
10614
10615     // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
10616     if (VT == MVT::v2i16 || VT == MVT::v2f16) {
10617       SDLoc SL(N);
10618       SDValue Src = N->getOperand(0);
10619       EVT EltVT = Src.getValueType();
10620       if (EltVT == MVT::f16)
10621         Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
10622
10623       SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
10624       return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
10625     }
10626
10627     break;
10628   }
10629   case ISD::EXTRACT_VECTOR_ELT:
10630     return performExtractVectorEltCombine(N, DCI);
10631   case ISD::INSERT_VECTOR_ELT:
10632     return performInsertVectorEltCombine(N, DCI);
10633   }
10634   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
10635 }
10636
10637 /// Helper function for adjustWritemask
10638 static unsigned SubIdx2Lane(unsigned Idx) {
10639   switch (Idx) {
10640   default: return 0;
10641   case AMDGPU::sub0: return 0;
10642   case AMDGPU::sub1: return 1;
10643   case AMDGPU::sub2: return 2;
10644   case AMDGPU::sub3: return 3;
10645   case AMDGPU::sub4: return 4; // Possible with TFE/LWE
10646   }
10647 }
10648
10649 /// Adjust the writemask of MIMG instructions
10650 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
10651                                           SelectionDAG &DAG) const {
10652   unsigned Opcode = Node->getMachineOpcode();
10653
10654   // Subtract 1 because the vdata output is not a MachineSDNode operand.
10655   int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
10656   if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
10657     return Node; // not implemented for D16
10658
10659   SDNode *Users[5] = { nullptr };
10660   unsigned Lane = 0;
10661   unsigned DmaskIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
10662   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
10663   unsigned NewDmask = 0;
10664   unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
10665   unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
10666   bool UsesTFC = (Node->getConstantOperandVal(TFEIdx) ||
10667                   Node->getConstantOperandVal(LWEIdx)) ? 1 : 0;
10668   unsigned TFCLane = 0;
10669   bool HasChain = Node->getNumValues() > 1;
10670
10671   if (OldDmask == 0) {
10672     // These are folded out, but on the chance it happens don't assert.
10673     return Node;
10674   }
10675
10676   unsigned OldBitsSet = countPopulation(OldDmask);
10677   // Work out which is the TFE/LWE lane if that is enabled.
10678   if (UsesTFC) {
10679     TFCLane = OldBitsSet;
10680   }
10681
10682   // Try to figure out the used register components
10683   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
10684        I != E; ++I) {
10685
10686     // Don't look at users of the chain.
10687     if (I.getUse().getResNo() != 0)
10688       continue;
10689
10690     // Abort if we can't understand the usage
10691     if (!I->isMachineOpcode() ||
10692         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
10693       return Node;
10694
10695     // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
10696     // Note that subregs are packed, i.e. Lane==0 is the first bit set
10697     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
10698     // set, etc.
10699     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
10700
10701     // Check if the use is for the TFE/LWE generated result at VGPRn+1.
10702     if (UsesTFC && Lane == TFCLane) {
10703       Users[Lane] = *I;
10704     } else {
10705       // Set which texture component corresponds to the lane.
10706       unsigned Comp;
10707       for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
10708         Comp = countTrailingZeros(Dmask);
10709         Dmask &= ~(1 << Comp);
10710       }
10711
10712       // Abort if we have more than one user per component.
10713       if (Users[Lane])
10714         return Node;
10715
10716       Users[Lane] = *I;
10717       NewDmask |= 1 << Comp;
10718     }
10719   }
10720
10721   // Don't allow 0 dmask, as hardware assumes one channel enabled.
10722   bool NoChannels = !NewDmask;
10723   if (NoChannels) {
10724     if (!UsesTFC) {
10725       // No uses of the result and not using TFC. Then do nothing.
10726       return Node;
10727     }
10728     // If the original dmask has one channel - then nothing to do
10729     if (OldBitsSet == 1)
10730       return Node;
10731     // Use an arbitrary dmask - required for the instruction to work
10732     NewDmask = 1;
10733   }
10734   // Abort if there's no change
10735   if (NewDmask == OldDmask)
10736     return Node;
10737
10738   unsigned BitsSet = countPopulation(NewDmask);
10739
10740   // Check for TFE or LWE - increase the number of channels by one to account
10741   // for the extra return value
10742   // This will need adjustment for D16 if this is also included in
10743   // adjustWriteMask (this function) but at present D16 are excluded.
10744   unsigned NewChannels = BitsSet + UsesTFC;
10745
10746   int NewOpcode =
10747       AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
10748   assert(NewOpcode != -1 &&
10749          NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
10750          "failed to find equivalent MIMG op");
10751
10752   // Adjust the writemask in the node
10753   SmallVector<SDValue, 12> Ops;
10754   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
10755   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
10756   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
10757
10758   MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
10759
10760   MVT ResultVT = NewChannels == 1 ?
10761     SVT : MVT::getVectorVT(SVT, NewChannels == 3 ? 4 :
10762                            NewChannels == 5 ? 8 : NewChannels);
10763   SDVTList NewVTList = HasChain ?
10764     DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
10765
10766
10767   MachineSDNode *NewNode = DAG.getMachineNode(NewOpcode, SDLoc(Node),
10768                                               NewVTList, Ops);
10769
10770   if (HasChain) {
10771     // Update chain.
10772     DAG.setNodeMemRefs(NewNode, Node->memoperands());
10773     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
10774   }
10775
10776   if (NewChannels == 1) {
10777     assert(Node->hasNUsesOfValue(1, 0));
10778     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY,
10779                                       SDLoc(Node), Users[Lane]->getValueType(0),
10780                                       SDValue(NewNode, 0));
10781     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
10782     return nullptr;
10783   }
10784
10785   // Update the users of the node with the new indices
10786   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
10787     SDNode *User = Users[i];
10788     if (!User) {
10789       // Handle the special case of NoChannels. We set NewDmask to 1 above, but
10790       // Users[0] is still nullptr because channel 0 doesn't really have a use.
10791       if (i || !NoChannels)
10792         continue;
10793     } else {
10794       SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
10795       DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
10796     }
10797
10798     switch (Idx) {
10799     default: break;
10800     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
10801     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
10802     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
10803     case AMDGPU::sub3: Idx = AMDGPU::sub4; break;
10804     }
10805   }
10806
10807   DAG.RemoveDeadNode(Node);
10808   return nullptr;
10809 }
10810
10811 static bool isFrameIndexOp(SDValue Op) {
10812   if (Op.getOpcode() == ISD::AssertZext)
10813     Op = Op.getOperand(0);
10814
10815   return isa<FrameIndexSDNode>(Op);
10816 }
10817
10818 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
10819 /// with frame index operands.
10820 /// LLVM assumes that inputs are to these instructions are registers.
10821 SDNode *SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
10822                                                         SelectionDAG &DAG) const {
10823   if (Node->getOpcode() == ISD::CopyToReg) {
10824     RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
10825     SDValue SrcVal = Node->getOperand(2);
10826
10827     // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
10828     // to try understanding copies to physical registers.
10829     if (SrcVal.getValueType() == MVT::i1 &&
10830         Register::isPhysicalRegister(DestReg->getReg())) {
10831       SDLoc SL(Node);
10832       MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10833       SDValue VReg = DAG.getRegister(
10834         MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
10835
10836       SDNode *Glued = Node->getGluedNode();
10837       SDValue ToVReg
10838         = DAG.getCopyToReg(Node->getOperand(0), SL, VReg, SrcVal,
10839                          SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
10840       SDValue ToResultReg
10841         = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
10842                            VReg, ToVReg.getValue(1));
10843       DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
10844       DAG.RemoveDeadNode(Node);
10845       return ToResultReg.getNode();
10846     }
10847   }
10848
10849   SmallVector<SDValue, 8> Ops;
10850   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
10851     if (!isFrameIndexOp(Node->getOperand(i))) {
10852       Ops.push_back(Node->getOperand(i));
10853       continue;
10854     }
10855
10856     SDLoc DL(Node);
10857     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
10858                                      Node->getOperand(i).getValueType(),
10859                                      Node->getOperand(i)), 0));
10860   }
10861
10862   return DAG.UpdateNodeOperands(Node, Ops);
10863 }
10864
10865 /// Fold the instructions after selecting them.
10866 /// Returns null if users were already updated.
10867 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
10868                                           SelectionDAG &DAG) const {
10869   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10870   unsigned Opcode = Node->getMachineOpcode();
10871
10872   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
10873       !TII->isGather4(Opcode)) {
10874     return adjustWritemask(Node, DAG);
10875   }
10876
10877   if (Opcode == AMDGPU::INSERT_SUBREG ||
10878       Opcode == AMDGPU::REG_SEQUENCE) {
10879     legalizeTargetIndependentNode(Node, DAG);
10880     return Node;
10881   }
10882
10883   switch (Opcode) {
10884   case AMDGPU::V_DIV_SCALE_F32:
10885   case AMDGPU::V_DIV_SCALE_F64: {
10886     // Satisfy the operand register constraint when one of the inputs is
10887     // undefined. Ordinarily each undef value will have its own implicit_def of
10888     // a vreg, so force these to use a single register.
10889     SDValue Src0 = Node->getOperand(0);
10890     SDValue Src1 = Node->getOperand(1);
10891     SDValue Src2 = Node->getOperand(2);
10892
10893     if ((Src0.isMachineOpcode() &&
10894          Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
10895         (Src0 == Src1 || Src0 == Src2))
10896       break;
10897
10898     MVT VT = Src0.getValueType().getSimpleVT();
10899     const TargetRegisterClass *RC =
10900         getRegClassFor(VT, Src0.getNode()->isDivergent());
10901
10902     MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
10903     SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
10904
10905     SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node),
10906                                       UndefReg, Src0, SDValue());
10907
10908     // src0 must be the same register as src1 or src2, even if the value is
10909     // undefined, so make sure we don't violate this constraint.
10910     if (Src0.isMachineOpcode() &&
10911         Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
10912       if (Src1.isMachineOpcode() &&
10913           Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10914         Src0 = Src1;
10915       else if (Src2.isMachineOpcode() &&
10916                Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
10917         Src0 = Src2;
10918       else {
10919         assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
10920         Src0 = UndefReg;
10921         Src1 = UndefReg;
10922       }
10923     } else
10924       break;
10925
10926     SmallVector<SDValue, 4> Ops = { Src0, Src1, Src2 };
10927     for (unsigned I = 3, N = Node->getNumOperands(); I != N; ++I)
10928       Ops.push_back(Node->getOperand(I));
10929
10930     Ops.push_back(ImpDef.getValue(1));
10931     return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
10932   }
10933   default:
10934     break;
10935   }
10936
10937   return Node;
10938 }
10939
10940 /// Assign the register class depending on the number of
10941 /// bits set in the writemask
10942 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10943                                                      SDNode *Node) const {
10944   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10945
10946   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
10947
10948   if (TII->isVOP3(MI.getOpcode())) {
10949     // Make sure constant bus requirements are respected.
10950     TII->legalizeOperandsVOP3(MRI, MI);
10951
10952     // Prefer VGPRs over AGPRs in mAI instructions where possible.
10953     // This saves a chain-copy of registers and better ballance register
10954     // use between vgpr and agpr as agpr tuples tend to be big.
10955     if (const MCOperandInfo *OpInfo = MI.getDesc().OpInfo) {
10956       unsigned Opc = MI.getOpcode();
10957       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
10958       for (auto I : { AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
10959                       AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) }) {
10960         if (I == -1)
10961           break;
10962         MachineOperand &Op = MI.getOperand(I);
10963         if ((OpInfo[I].RegClass != llvm::AMDGPU::AV_64RegClassID &&
10964              OpInfo[I].RegClass != llvm::AMDGPU::AV_32RegClassID) ||
10965             !Register::isVirtualRegister(Op.getReg()) ||
10966             !TRI->isAGPR(MRI, Op.getReg()))
10967           continue;
10968         auto *Src = MRI.getUniqueVRegDef(Op.getReg());
10969         if (!Src || !Src->isCopy() ||
10970             !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
10971           continue;
10972         auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
10973         auto *NewRC = TRI->getEquivalentVGPRClass(RC);
10974         // All uses of agpr64 and agpr32 can also accept vgpr except for
10975         // v_accvgpr_read, but we do not produce agpr reads during selection,
10976         // so no use checks are needed.
10977         MRI.setRegClass(Op.getReg(), NewRC);
10978       }
10979     }
10980
10981     return;
10982   }
10983
10984   // Replace unused atomics with the no return version.
10985   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
10986   if (NoRetAtomicOp != -1) {
10987     if (!Node->hasAnyUseOfValue(0)) {
10988       MI.setDesc(TII->get(NoRetAtomicOp));
10989       MI.RemoveOperand(0);
10990       return;
10991     }
10992
10993     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
10994     // instruction, because the return type of these instructions is a vec2 of
10995     // the memory type, so it can be tied to the input operand.
10996     // This means these instructions always have a use, so we need to add a
10997     // special case to check if the atomic has only one extract_subreg use,
10998     // which itself has no uses.
10999     if ((Node->hasNUsesOfValue(1, 0) &&
11000          Node->use_begin()->isMachineOpcode() &&
11001          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
11002          !Node->use_begin()->hasAnyUseOfValue(0))) {
11003       Register Def = MI.getOperand(0).getReg();
11004
11005       // Change this into a noret atomic.
11006       MI.setDesc(TII->get(NoRetAtomicOp));
11007       MI.RemoveOperand(0);
11008
11009       // If we only remove the def operand from the atomic instruction, the
11010       // extract_subreg will be left with a use of a vreg without a def.
11011       // So we need to insert an implicit_def to avoid machine verifier
11012       // errors.
11013       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
11014               TII->get(AMDGPU::IMPLICIT_DEF), Def);
11015     }
11016     return;
11017   }
11018 }
11019
11020 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
11021                               uint64_t Val) {
11022   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
11023   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
11024 }
11025
11026 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
11027                                                 const SDLoc &DL,
11028                                                 SDValue Ptr) const {
11029   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11030
11031   // Build the half of the subregister with the constants before building the
11032   // full 128-bit register. If we are building multiple resource descriptors,
11033   // this will allow CSEing of the 2-component register.
11034   const SDValue Ops0[] = {
11035     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
11036     buildSMovImm32(DAG, DL, 0),
11037     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11038     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
11039     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
11040   };
11041
11042   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
11043                                                 MVT::v2i32, Ops0), 0);
11044
11045   // Combine the constants and the pointer.
11046   const SDValue Ops1[] = {
11047     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11048     Ptr,
11049     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
11050     SubRegHi,
11051     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
11052   };
11053
11054   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
11055 }
11056
11057 /// Return a resource descriptor with the 'Add TID' bit enabled
11058 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
11059 ///        of the resource descriptor) to create an offset, which is added to
11060 ///        the resource pointer.
11061 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
11062                                            SDValue Ptr, uint32_t RsrcDword1,
11063                                            uint64_t RsrcDword2And3) const {
11064   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
11065   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
11066   if (RsrcDword1) {
11067     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
11068                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
11069                     0);
11070   }
11071
11072   SDValue DataLo = buildSMovImm32(DAG, DL,
11073                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
11074   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
11075
11076   const SDValue Ops[] = {
11077     DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
11078     PtrLo,
11079     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
11080     PtrHi,
11081     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
11082     DataLo,
11083     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
11084     DataHi,
11085     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
11086   };
11087
11088   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
11089 }
11090
11091 //===----------------------------------------------------------------------===//
11092 //                         SI Inline Assembly Support
11093 //===----------------------------------------------------------------------===//
11094
11095 std::pair<unsigned, const TargetRegisterClass *>
11096 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
11097                                                StringRef Constraint,
11098                                                MVT VT) const {
11099   const TargetRegisterClass *RC = nullptr;
11100   if (Constraint.size() == 1) {
11101     const unsigned BitWidth = VT.getSizeInBits();
11102     switch (Constraint[0]) {
11103     default:
11104       return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11105     case 's':
11106     case 'r':
11107       switch (BitWidth) {
11108       case 16:
11109         RC = &AMDGPU::SReg_32RegClass;
11110         break;
11111       case 64:
11112         RC = &AMDGPU::SGPR_64RegClass;
11113         break;
11114       default:
11115         RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
11116         if (!RC)
11117           return std::make_pair(0U, nullptr);
11118         break;
11119       }
11120       break;
11121     case 'v':
11122       switch (BitWidth) {
11123       case 16:
11124         RC = &AMDGPU::VGPR_32RegClass;
11125         break;
11126       default:
11127         RC = SIRegisterInfo::getVGPRClassForBitWidth(BitWidth);
11128         if (!RC)
11129           return std::make_pair(0U, nullptr);
11130         break;
11131       }
11132       break;
11133     case 'a':
11134       if (!Subtarget->hasMAIInsts())
11135         break;
11136       switch (BitWidth) {
11137       case 16:
11138         RC = &AMDGPU::AGPR_32RegClass;
11139         break;
11140       default:
11141         RC = SIRegisterInfo::getAGPRClassForBitWidth(BitWidth);
11142         if (!RC)
11143           return std::make_pair(0U, nullptr);
11144         break;
11145       }
11146       break;
11147     }
11148     // We actually support i128, i16 and f16 as inline parameters
11149     // even if they are not reported as legal
11150     if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
11151                VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
11152       return std::make_pair(0U, RC);
11153   }
11154
11155   if (Constraint.size() > 1) {
11156     if (Constraint[1] == 'v') {
11157       RC = &AMDGPU::VGPR_32RegClass;
11158     } else if (Constraint[1] == 's') {
11159       RC = &AMDGPU::SGPR_32RegClass;
11160     } else if (Constraint[1] == 'a') {
11161       RC = &AMDGPU::AGPR_32RegClass;
11162     }
11163
11164     if (RC) {
11165       uint32_t Idx;
11166       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
11167       if (!Failed && Idx < RC->getNumRegs())
11168         return std::make_pair(RC->getRegister(Idx), RC);
11169     }
11170   }
11171
11172   // FIXME: Returns VS_32 for physical SGPR constraints
11173   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11174 }
11175
11176 static bool isImmConstraint(StringRef Constraint) {
11177   if (Constraint.size() == 1) {
11178     switch (Constraint[0]) {
11179     default: break;
11180     case 'I':
11181     case 'J':
11182     case 'A':
11183     case 'B':
11184     case 'C':
11185       return true;
11186     }
11187   } else if (Constraint == "DA" ||
11188              Constraint == "DB") {
11189     return true;
11190   }
11191   return false;
11192 }
11193
11194 SITargetLowering::ConstraintType
11195 SITargetLowering::getConstraintType(StringRef Constraint) const {
11196   if (Constraint.size() == 1) {
11197     switch (Constraint[0]) {
11198     default: break;
11199     case 's':
11200     case 'v':
11201     case 'a':
11202       return C_RegisterClass;
11203     }
11204   }
11205   if (isImmConstraint(Constraint)) {
11206     return C_Other;
11207   }
11208   return TargetLowering::getConstraintType(Constraint);
11209 }
11210
11211 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
11212   if (!AMDGPU::isInlinableIntLiteral(Val)) {
11213     Val = Val & maskTrailingOnes<uint64_t>(Size);
11214   }
11215   return Val;
11216 }
11217
11218 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11219                                                     std::string &Constraint,
11220                                                     std::vector<SDValue> &Ops,
11221                                                     SelectionDAG &DAG) const {
11222   if (isImmConstraint(Constraint)) {
11223     uint64_t Val;
11224     if (getAsmOperandConstVal(Op, Val) &&
11225         checkAsmConstraintVal(Op, Constraint, Val)) {
11226       Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
11227       Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
11228     }
11229   } else {
11230     TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11231   }
11232 }
11233
11234 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
11235   unsigned Size = Op.getScalarValueSizeInBits();
11236   if (Size > 64)
11237     return false;
11238
11239   if (Size == 16 && !Subtarget->has16BitInsts())
11240     return false;
11241
11242   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11243     Val = C->getSExtValue();
11244     return true;
11245   }
11246   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
11247     Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11248     return true;
11249   }
11250   if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
11251     if (Size != 16 || Op.getNumOperands() != 2)
11252       return false;
11253     if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
11254       return false;
11255     if (ConstantSDNode *C = V->getConstantSplatNode()) {
11256       Val = C->getSExtValue();
11257       return true;
11258     }
11259     if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
11260       Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
11261       return true;
11262     }
11263   }
11264
11265   return false;
11266 }
11267
11268 bool SITargetLowering::checkAsmConstraintVal(SDValue Op,
11269                                              const std::string &Constraint,
11270                                              uint64_t Val) const {
11271   if (Constraint.size() == 1) {
11272     switch (Constraint[0]) {
11273     case 'I':
11274       return AMDGPU::isInlinableIntLiteral(Val);
11275     case 'J':
11276       return isInt<16>(Val);
11277     case 'A':
11278       return checkAsmConstraintValA(Op, Val);
11279     case 'B':
11280       return isInt<32>(Val);
11281     case 'C':
11282       return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
11283              AMDGPU::isInlinableIntLiteral(Val);
11284     default:
11285       break;
11286     }
11287   } else if (Constraint.size() == 2) {
11288     if (Constraint == "DA") {
11289       int64_t HiBits = static_cast<int32_t>(Val >> 32);
11290       int64_t LoBits = static_cast<int32_t>(Val);
11291       return checkAsmConstraintValA(Op, HiBits, 32) &&
11292              checkAsmConstraintValA(Op, LoBits, 32);
11293     }
11294     if (Constraint == "DB") {
11295       return true;
11296     }
11297   }
11298   llvm_unreachable("Invalid asm constraint");
11299 }
11300
11301 bool SITargetLowering::checkAsmConstraintValA(SDValue Op,
11302                                               uint64_t Val,
11303                                               unsigned MaxSize) const {
11304   unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
11305   bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
11306   if ((Size == 16 && AMDGPU::isInlinableLiteral16(Val, HasInv2Pi)) ||
11307       (Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
11308       (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi))) {
11309     return true;
11310   }
11311   return false;
11312 }
11313
11314 // Figure out which registers should be reserved for stack access. Only after
11315 // the function is legalized do we know all of the non-spill stack objects or if
11316 // calls are present.
11317 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
11318   MachineRegisterInfo &MRI = MF.getRegInfo();
11319   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11320   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
11321   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11322
11323   if (Info->isEntryFunction()) {
11324     // Callable functions have fixed registers used for stack access.
11325     reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
11326   }
11327
11328   assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
11329                              Info->getStackPtrOffsetReg()));
11330   if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
11331     MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
11332
11333   // We need to worry about replacing the default register with itself in case
11334   // of MIR testcases missing the MFI.
11335   if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
11336     MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
11337
11338   if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
11339     MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
11340
11341   Info->limitOccupancy(MF);
11342
11343   if (ST.isWave32() && !MF.empty()) {
11344     // Add VCC_HI def because many instructions marked as imp-use VCC where
11345     // we may only define VCC_LO. If nothing defines VCC_HI we may end up
11346     // having a use of undef.
11347
11348     const SIInstrInfo *TII = ST.getInstrInfo();
11349     DebugLoc DL;
11350
11351     MachineBasicBlock &MBB = MF.front();
11352     MachineBasicBlock::iterator I = MBB.getFirstNonDebugInstr();
11353     BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), AMDGPU::VCC_HI);
11354
11355     for (auto &MBB : MF) {
11356       for (auto &MI : MBB) {
11357         TII->fixImplicitOperands(MI);
11358       }
11359     }
11360   }
11361
11362   TargetLoweringBase::finalizeLowering(MF);
11363
11364   // Allocate a VGPR for future SGPR Spill if
11365   // "amdgpu-reserve-vgpr-for-sgpr-spill" option is used
11366   // FIXME: We won't need this hack if we split SGPR allocation from VGPR
11367   if (VGPRReserveforSGPRSpill && !Info->VGPRReservedForSGPRSpill &&
11368       !Info->isEntryFunction() && MF.getFrameInfo().hasStackObjects())
11369     Info->reserveVGPRforSGPRSpills(MF);
11370 }
11371
11372 void SITargetLowering::computeKnownBitsForFrameIndex(
11373   const int FI, KnownBits &Known, const MachineFunction &MF) const {
11374   TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
11375
11376   // Set the high bits to zero based on the maximum allowed scratch size per
11377   // wave. We can't use vaddr in MUBUF instructions if we don't know the address
11378   // calculation won't overflow, so assume the sign bit is never set.
11379   Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
11380 }
11381
11382 Align SITargetLowering::computeKnownAlignForTargetInstr(
11383   GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
11384   unsigned Depth) const {
11385   const MachineInstr *MI = MRI.getVRegDef(R);
11386   switch (MI->getOpcode()) {
11387   case AMDGPU::G_INTRINSIC:
11388   case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
11389     // FIXME: Can this move to generic code? What about the case where the call
11390     // site specifies a lower alignment?
11391     Intrinsic::ID IID = MI->getIntrinsicID();
11392     LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
11393     AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
11394     if (MaybeAlign RetAlign = Attrs.getRetAlignment())
11395       return *RetAlign;
11396     return Align(1);
11397   }
11398   default:
11399     return Align(1);
11400   }
11401 }
11402
11403 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
11404   const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
11405   const Align CacheLineAlign = Align(64);
11406
11407   // Pre-GFX10 target did not benefit from loop alignment
11408   if (!ML || DisableLoopAlignment ||
11409       (getSubtarget()->getGeneration() < AMDGPUSubtarget::GFX10) ||
11410       getSubtarget()->hasInstFwdPrefetchBug())
11411     return PrefAlign;
11412
11413   // On GFX10 I$ is 4 x 64 bytes cache lines.
11414   // By default prefetcher keeps one cache line behind and reads two ahead.
11415   // We can modify it with S_INST_PREFETCH for larger loops to have two lines
11416   // behind and one ahead.
11417   // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
11418   // If loop fits 64 bytes it always spans no more than two cache lines and
11419   // does not need an alignment.
11420   // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
11421   // Else if loop is less or equal 192 bytes we need two lines behind.
11422
11423   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11424   const MachineBasicBlock *Header = ML->getHeader();
11425   if (Header->getAlignment() != PrefAlign)
11426     return Header->getAlignment(); // Already processed.
11427
11428   unsigned LoopSize = 0;
11429   for (const MachineBasicBlock *MBB : ML->blocks()) {
11430     // If inner loop block is aligned assume in average half of the alignment
11431     // size to be added as nops.
11432     if (MBB != Header)
11433       LoopSize += MBB->getAlignment().value() / 2;
11434
11435     for (const MachineInstr &MI : *MBB) {
11436       LoopSize += TII->getInstSizeInBytes(MI);
11437       if (LoopSize > 192)
11438         return PrefAlign;
11439     }
11440   }
11441
11442   if (LoopSize <= 64)
11443     return PrefAlign;
11444
11445   if (LoopSize <= 128)
11446     return CacheLineAlign;
11447
11448   // If any of parent loops is surrounded by prefetch instructions do not
11449   // insert new for inner loop, which would reset parent's settings.
11450   for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
11451     if (MachineBasicBlock *Exit = P->getExitBlock()) {
11452       auto I = Exit->getFirstNonDebugInstr();
11453       if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
11454         return CacheLineAlign;
11455     }
11456   }
11457
11458   MachineBasicBlock *Pre = ML->getLoopPreheader();
11459   MachineBasicBlock *Exit = ML->getExitBlock();
11460
11461   if (Pre && Exit) {
11462     BuildMI(*Pre, Pre->getFirstTerminator(), DebugLoc(),
11463             TII->get(AMDGPU::S_INST_PREFETCH))
11464       .addImm(1); // prefetch 2 lines behind PC
11465
11466     BuildMI(*Exit, Exit->getFirstNonDebugInstr(), DebugLoc(),
11467             TII->get(AMDGPU::S_INST_PREFETCH))
11468       .addImm(2); // prefetch 1 line behind PC
11469   }
11470
11471   return CacheLineAlign;
11472 }
11473
11474 LLVM_ATTRIBUTE_UNUSED
11475 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
11476   assert(N->getOpcode() == ISD::CopyFromReg);
11477   do {
11478     // Follow the chain until we find an INLINEASM node.
11479     N = N->getOperand(0).getNode();
11480     if (N->getOpcode() == ISD::INLINEASM ||
11481         N->getOpcode() == ISD::INLINEASM_BR)
11482       return true;
11483   } while (N->getOpcode() == ISD::CopyFromReg);
11484   return false;
11485 }
11486
11487 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode * N,
11488   FunctionLoweringInfo * FLI, LegacyDivergenceAnalysis * KDA) const
11489 {
11490   switch (N->getOpcode()) {
11491     case ISD::CopyFromReg:
11492     {
11493       const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
11494       const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
11495       const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11496       Register Reg = R->getReg();
11497
11498       // FIXME: Why does this need to consider isLiveIn?
11499       if (Reg.isPhysical() || MRI.isLiveIn(Reg))
11500         return !TRI->isSGPRReg(MRI, Reg);
11501
11502       if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
11503         return KDA->isDivergent(V);
11504
11505       assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
11506       return !TRI->isSGPRReg(MRI, Reg);
11507     }
11508     break;
11509     case ISD::LOAD: {
11510       const LoadSDNode *L = cast<LoadSDNode>(N);
11511       unsigned AS = L->getAddressSpace();
11512       // A flat load may access private memory.
11513       return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
11514     } break;
11515     case ISD::CALLSEQ_END:
11516     return true;
11517     break;
11518     case ISD::INTRINSIC_WO_CHAIN:
11519     {
11520
11521     }
11522       return AMDGPU::isIntrinsicSourceOfDivergence(
11523       cast<ConstantSDNode>(N->getOperand(0))->getZExtValue());
11524     case ISD::INTRINSIC_W_CHAIN:
11525       return AMDGPU::isIntrinsicSourceOfDivergence(
11526       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
11527   }
11528   return false;
11529 }
11530
11531 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
11532                                                EVT VT) const {
11533   switch (VT.getScalarType().getSimpleVT().SimpleTy) {
11534   case MVT::f32:
11535     return hasFP32Denormals(DAG.getMachineFunction());
11536   case MVT::f64:
11537   case MVT::f16:
11538     return hasFP64FP16Denormals(DAG.getMachineFunction());
11539   default:
11540     return false;
11541   }
11542 }
11543
11544 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
11545                                                     const SelectionDAG &DAG,
11546                                                     bool SNaN,
11547                                                     unsigned Depth) const {
11548   if (Op.getOpcode() == AMDGPUISD::CLAMP) {
11549     const MachineFunction &MF = DAG.getMachineFunction();
11550     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
11551
11552     if (Info->getMode().DX10Clamp)
11553       return true; // Clamped to 0.
11554     return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
11555   }
11556
11557   return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG,
11558                                                             SNaN, Depth);
11559 }
11560
11561 TargetLowering::AtomicExpansionKind
11562 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
11563   switch (RMW->getOperation()) {
11564   case AtomicRMWInst::FAdd: {
11565     Type *Ty = RMW->getType();
11566
11567     // We don't have a way to support 16-bit atomics now, so just leave them
11568     // as-is.
11569     if (Ty->isHalfTy())
11570       return AtomicExpansionKind::None;
11571
11572     if (!Ty->isFloatTy())
11573       return AtomicExpansionKind::CmpXChg;
11574
11575     // TODO: Do have these for flat. Older targets also had them for buffers.
11576     unsigned AS = RMW->getPointerAddressSpace();
11577
11578     if (AS == AMDGPUAS::GLOBAL_ADDRESS && Subtarget->hasAtomicFaddInsts()) {
11579       return RMW->use_empty() ? AtomicExpansionKind::None :
11580                                 AtomicExpansionKind::CmpXChg;
11581     }
11582
11583     return (AS == AMDGPUAS::LOCAL_ADDRESS && Subtarget->hasLDSFPAtomics()) ?
11584       AtomicExpansionKind::None : AtomicExpansionKind::CmpXChg;
11585   }
11586   default:
11587     break;
11588   }
11589
11590   return AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(RMW);
11591 }
11592
11593 const TargetRegisterClass *
11594 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
11595   const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
11596   const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
11597   if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
11598     return Subtarget->getWavefrontSize() == 64 ? &AMDGPU::SReg_64RegClass
11599                                                : &AMDGPU::SReg_32RegClass;
11600   if (!TRI->isSGPRClass(RC) && !isDivergent)
11601     return TRI->getEquivalentSGPRClass(RC);
11602   else if (TRI->isSGPRClass(RC) && isDivergent)
11603     return TRI->getEquivalentVGPRClass(RC);
11604
11605   return RC;
11606 }
11607
11608 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
11609 // uniform values (as produced by the mask results of control flow intrinsics)
11610 // used outside of divergent blocks. The phi users need to also be treated as
11611 // always uniform.
11612 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
11613                       unsigned WaveSize) {
11614   // FIXME: We asssume we never cast the mask results of a control flow
11615   // intrinsic.
11616   // Early exit if the type won't be consistent as a compile time hack.
11617   IntegerType *IT = dyn_cast<IntegerType>(V->getType());
11618   if (!IT || IT->getBitWidth() != WaveSize)
11619     return false;
11620
11621   if (!isa<Instruction>(V))
11622     return false;
11623   if (!Visited.insert(V).second)
11624     return false;
11625   bool Result = false;
11626   for (auto U : V->users()) {
11627     if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
11628       if (V == U->getOperand(1)) {
11629         switch (Intrinsic->getIntrinsicID()) {
11630         default:
11631           Result = false;
11632           break;
11633         case Intrinsic::amdgcn_if_break:
11634         case Intrinsic::amdgcn_if:
11635         case Intrinsic::amdgcn_else:
11636           Result = true;
11637           break;
11638         }
11639       }
11640       if (V == U->getOperand(0)) {
11641         switch (Intrinsic->getIntrinsicID()) {
11642         default:
11643           Result = false;
11644           break;
11645         case Intrinsic::amdgcn_end_cf:
11646         case Intrinsic::amdgcn_loop:
11647           Result = true;
11648           break;
11649         }
11650       }
11651     } else {
11652       Result = hasCFUser(U, Visited, WaveSize);
11653     }
11654     if (Result)
11655       break;
11656   }
11657   return Result;
11658 }
11659
11660 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
11661                                                const Value *V) const {
11662   if (const CallInst *CI = dyn_cast<CallInst>(V)) {
11663     if (CI->isInlineAsm()) {
11664       // FIXME: This cannot give a correct answer. This should only trigger in
11665       // the case where inline asm returns mixed SGPR and VGPR results, used
11666       // outside the defining block. We don't have a specific result to
11667       // consider, so this assumes if any value is SGPR, the overall register
11668       // also needs to be SGPR.
11669       const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
11670       TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
11671           MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
11672       for (auto &TC : TargetConstraints) {
11673         if (TC.Type == InlineAsm::isOutput) {
11674           ComputeConstraintToUse(TC, SDValue());
11675           unsigned AssignedReg;
11676           const TargetRegisterClass *RC;
11677           std::tie(AssignedReg, RC) = getRegForInlineAsmConstraint(
11678               SIRI, TC.ConstraintCode, TC.ConstraintVT);
11679           if (RC) {
11680             MachineRegisterInfo &MRI = MF.getRegInfo();
11681             if (AssignedReg != 0 && SIRI->isSGPRReg(MRI, AssignedReg))
11682               return true;
11683             else if (SIRI->isSGPRClass(RC))
11684               return true;
11685           }
11686         }
11687       }
11688     }
11689   }
11690   SmallPtrSet<const Value *, 16> Visited;
11691   return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
11692 }
11693
11694 std::pair<int, MVT>
11695 SITargetLowering::getTypeLegalizationCost(const DataLayout &DL,
11696                                           Type *Ty) const {
11697   auto Cost = TargetLoweringBase::getTypeLegalizationCost(DL, Ty);
11698   auto Size = DL.getTypeSizeInBits(Ty);
11699   // Maximum load or store can handle 8 dwords for scalar and 4 for
11700   // vector ALU. Let's assume anything above 8 dwords is expensive
11701   // even if legal.
11702   if (Size <= 256)
11703     return Cost;
11704
11705   Cost.first = (Size + 255) / 256;
11706   return Cost;
11707 }