]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/ARM/ARMAsmPrinter.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / ARM / ARMAsmPrinter.cpp
1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to GAS-format ARM assembly language.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ARMAsmPrinter.h"
15 #include "ARM.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "ARMTargetMachine.h"
19 #include "ARMTargetObjectFile.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMInstPrinter.h"
22 #include "MCTargetDesc/ARMMCExpr.h"
23 #include "TargetInfo/ARMTargetInfo.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/BinaryFormat/COFF.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Mangler.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCAssembler.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCELFStreamer.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCObjectStreamer.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/TargetParser.h"
48 #include "llvm/Support/TargetRegistry.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Target/TargetMachine.h"
51 using namespace llvm;
52
53 #define DEBUG_TYPE "asm-printer"
54
55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
56                              std::unique_ptr<MCStreamer> Streamer)
57     : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
58       InConstantPool(false), OptimizationGoals(-1) {}
59
60 void ARMAsmPrinter::EmitFunctionBodyEnd() {
61   // Make sure to terminate any constant pools that were at the end
62   // of the function.
63   if (!InConstantPool)
64     return;
65   InConstantPool = false;
66   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
67 }
68
69 void ARMAsmPrinter::EmitFunctionEntryLabel() {
70   if (AFI->isThumbFunction()) {
71     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
72     OutStreamer->EmitThumbFunc(CurrentFnSym);
73   } else {
74     OutStreamer->EmitAssemblerFlag(MCAF_Code32);
75   }
76   OutStreamer->EmitLabel(CurrentFnSym);
77 }
78
79 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
80   uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
81   assert(Size && "C++ constructor pointer had zero size!");
82
83   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
84   assert(GV && "C++ constructor pointer was not a GlobalValue!");
85
86   const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
87                                                            ARMII::MO_NO_FLAG),
88                                             (Subtarget->isTargetELF()
89                                              ? MCSymbolRefExpr::VK_ARM_TARGET1
90                                              : MCSymbolRefExpr::VK_None),
91                                             OutContext);
92
93   OutStreamer->EmitValue(E, Size);
94 }
95
96 void ARMAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
97   if (PromotedGlobals.count(GV))
98     // The global was promoted into a constant pool. It should not be emitted.
99     return;
100   AsmPrinter::EmitGlobalVariable(GV);
101 }
102
103 /// runOnMachineFunction - This uses the EmitInstruction()
104 /// method to print assembly for each instruction.
105 ///
106 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
107   AFI = MF.getInfo<ARMFunctionInfo>();
108   MCP = MF.getConstantPool();
109   Subtarget = &MF.getSubtarget<ARMSubtarget>();
110
111   SetupMachineFunction(MF);
112   const Function &F = MF.getFunction();
113   const TargetMachine& TM = MF.getTarget();
114
115   // Collect all globals that had their storage promoted to a constant pool.
116   // Functions are emitted before variables, so this accumulates promoted
117   // globals from all functions in PromotedGlobals.
118   for (auto *GV : AFI->getGlobalsPromotedToConstantPool())
119     PromotedGlobals.insert(GV);
120
121   // Calculate this function's optimization goal.
122   unsigned OptimizationGoal;
123   if (F.hasOptNone())
124     // For best debugging illusion, speed and small size sacrificed
125     OptimizationGoal = 6;
126   else if (F.hasMinSize())
127     // Aggressively for small size, speed and debug illusion sacrificed
128     OptimizationGoal = 4;
129   else if (F.hasOptSize())
130     // For small size, but speed and debugging illusion preserved
131     OptimizationGoal = 3;
132   else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
133     // Aggressively for speed, small size and debug illusion sacrificed
134     OptimizationGoal = 2;
135   else if (TM.getOptLevel() > CodeGenOpt::None)
136     // For speed, but small size and good debug illusion preserved
137     OptimizationGoal = 1;
138   else // TM.getOptLevel() == CodeGenOpt::None
139     // For good debugging, but speed and small size preserved
140     OptimizationGoal = 5;
141
142   // Combine a new optimization goal with existing ones.
143   if (OptimizationGoals == -1) // uninitialized goals
144     OptimizationGoals = OptimizationGoal;
145   else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
146     OptimizationGoals = 0;
147
148   if (Subtarget->isTargetCOFF()) {
149     bool Internal = F.hasInternalLinkage();
150     COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
151                                             : COFF::IMAGE_SYM_CLASS_EXTERNAL;
152     int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
153
154     OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
155     OutStreamer->EmitCOFFSymbolStorageClass(Scl);
156     OutStreamer->EmitCOFFSymbolType(Type);
157     OutStreamer->EndCOFFSymbolDef();
158   }
159
160   // Emit the rest of the function body.
161   EmitFunctionBody();
162
163   // Emit the XRay table for this function.
164   emitXRayTable();
165
166   // If we need V4T thumb mode Register Indirect Jump pads, emit them.
167   // These are created per function, rather than per TU, since it's
168   // relatively easy to exceed the thumb branch range within a TU.
169   if (! ThumbIndirectPads.empty()) {
170     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
171     EmitAlignment(1);
172     for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
173       OutStreamer->EmitLabel(TIP.second);
174       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
175         .addReg(TIP.first)
176         // Add predicate operands.
177         .addImm(ARMCC::AL)
178         .addReg(0));
179     }
180     ThumbIndirectPads.clear();
181   }
182
183   // We didn't modify anything.
184   return false;
185 }
186
187 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
188                                        raw_ostream &O) {
189   assert(MO.isGlobal() && "caller should check MO.isGlobal");
190   unsigned TF = MO.getTargetFlags();
191   if (TF & ARMII::MO_LO16)
192     O << ":lower16:";
193   else if (TF & ARMII::MO_HI16)
194     O << ":upper16:";
195   GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI);
196   printOffset(MO.getOffset(), O);
197 }
198
199 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
200                                  raw_ostream &O) {
201   const MachineOperand &MO = MI->getOperand(OpNum);
202
203   switch (MO.getType()) {
204   default: llvm_unreachable("<unknown operand type>");
205   case MachineOperand::MO_Register: {
206     unsigned Reg = MO.getReg();
207     assert(TargetRegisterInfo::isPhysicalRegister(Reg));
208     assert(!MO.getSubReg() && "Subregs should be eliminated!");
209     if(ARM::GPRPairRegClass.contains(Reg)) {
210       const MachineFunction &MF = *MI->getParent()->getParent();
211       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
212       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
213     }
214     O << ARMInstPrinter::getRegisterName(Reg);
215     break;
216   }
217   case MachineOperand::MO_Immediate: {
218     O << '#';
219     unsigned TF = MO.getTargetFlags();
220     if (TF == ARMII::MO_LO16)
221       O << ":lower16:";
222     else if (TF == ARMII::MO_HI16)
223       O << ":upper16:";
224     O << MO.getImm();
225     break;
226   }
227   case MachineOperand::MO_MachineBasicBlock:
228     MO.getMBB()->getSymbol()->print(O, MAI);
229     return;
230   case MachineOperand::MO_GlobalAddress: {
231     PrintSymbolOperand(MO, O);
232     break;
233   }
234   case MachineOperand::MO_ConstantPoolIndex:
235     if (Subtarget->genExecuteOnly())
236       llvm_unreachable("execute-only should not generate constant pools");
237     GetCPISymbol(MO.getIndex())->print(O, MAI);
238     break;
239   }
240 }
241
242 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const {
243   // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as
244   // indexes in MachineConstantPool, which isn't in sync with indexes used here.
245   const DataLayout &DL = getDataLayout();
246   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
247                                       "CPI" + Twine(getFunctionNumber()) + "_" +
248                                       Twine(CPID));
249 }
250
251 //===--------------------------------------------------------------------===//
252
253 MCSymbol *ARMAsmPrinter::
254 GetARMJTIPICJumpTableLabel(unsigned uid) const {
255   const DataLayout &DL = getDataLayout();
256   SmallString<60> Name;
257   raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
258                             << getFunctionNumber() << '_' << uid;
259   return OutContext.getOrCreateSymbol(Name);
260 }
261
262 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
263                                     const char *ExtraCode, raw_ostream &O) {
264   // Does this asm operand have a single letter operand modifier?
265   if (ExtraCode && ExtraCode[0]) {
266     if (ExtraCode[1] != 0) return true; // Unknown modifier.
267
268     switch (ExtraCode[0]) {
269     default:
270       // See if this is a generic print operand
271       return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
272     case 'P': // Print a VFP double precision register.
273     case 'q': // Print a NEON quad precision register.
274       printOperand(MI, OpNum, O);
275       return false;
276     case 'y': // Print a VFP single precision register as indexed double.
277       if (MI->getOperand(OpNum).isReg()) {
278         unsigned Reg = MI->getOperand(OpNum).getReg();
279         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
280         // Find the 'd' register that has this 's' register as a sub-register,
281         // and determine the lane number.
282         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
283           if (!ARM::DPRRegClass.contains(*SR))
284             continue;
285           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
286           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
287           return false;
288         }
289       }
290       return true;
291     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
292       if (!MI->getOperand(OpNum).isImm())
293         return true;
294       O << ~(MI->getOperand(OpNum).getImm());
295       return false;
296     case 'L': // The low 16 bits of an immediate constant.
297       if (!MI->getOperand(OpNum).isImm())
298         return true;
299       O << (MI->getOperand(OpNum).getImm() & 0xffff);
300       return false;
301     case 'M': { // A register range suitable for LDM/STM.
302       if (!MI->getOperand(OpNum).isReg())
303         return true;
304       const MachineOperand &MO = MI->getOperand(OpNum);
305       unsigned RegBegin = MO.getReg();
306       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
307       // already got the operands in registers that are operands to the
308       // inline asm statement.
309       O << "{";
310       if (ARM::GPRPairRegClass.contains(RegBegin)) {
311         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
312         unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
313         O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
314         RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
315       }
316       O << ARMInstPrinter::getRegisterName(RegBegin);
317
318       // FIXME: The register allocator not only may not have given us the
319       // registers in sequence, but may not be in ascending registers. This
320       // will require changes in the register allocator that'll need to be
321       // propagated down here if the operands change.
322       unsigned RegOps = OpNum + 1;
323       while (MI->getOperand(RegOps).isReg()) {
324         O << ", "
325           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
326         RegOps++;
327       }
328
329       O << "}";
330
331       return false;
332     }
333     case 'R': // The most significant register of a pair.
334     case 'Q': { // The least significant register of a pair.
335       if (OpNum == 0)
336         return true;
337       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
338       if (!FlagsOP.isImm())
339         return true;
340       unsigned Flags = FlagsOP.getImm();
341
342       // This operand may not be the one that actually provides the register. If
343       // it's tied to a previous one then we should refer instead to that one
344       // for registers and their classes.
345       unsigned TiedIdx;
346       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
347         for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
348           unsigned OpFlags = MI->getOperand(OpNum).getImm();
349           OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
350         }
351         Flags = MI->getOperand(OpNum).getImm();
352
353         // Later code expects OpNum to be pointing at the register rather than
354         // the flags.
355         OpNum += 1;
356       }
357
358       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
359       unsigned RC;
360       bool FirstHalf;
361       const ARMBaseTargetMachine &ATM =
362         static_cast<const ARMBaseTargetMachine &>(TM);
363
364       // 'Q' should correspond to the low order register and 'R' to the high
365       // order register.  Whether this corresponds to the upper or lower half
366       // depends on the endianess mode.
367       if (ExtraCode[0] == 'Q')
368         FirstHalf = ATM.isLittleEndian();
369       else
370         // ExtraCode[0] == 'R'.
371         FirstHalf = !ATM.isLittleEndian();
372       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
373       if (InlineAsm::hasRegClassConstraint(Flags, RC) &&
374           ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) {
375         if (NumVals != 1)
376           return true;
377         const MachineOperand &MO = MI->getOperand(OpNum);
378         if (!MO.isReg())
379           return true;
380         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
381         unsigned Reg = TRI->getSubReg(MO.getReg(), FirstHalf ?
382             ARM::gsub_0 : ARM::gsub_1);
383         O << ARMInstPrinter::getRegisterName(Reg);
384         return false;
385       }
386       if (NumVals != 2)
387         return true;
388       unsigned RegOp = FirstHalf ? OpNum : OpNum + 1;
389       if (RegOp >= MI->getNumOperands())
390         return true;
391       const MachineOperand &MO = MI->getOperand(RegOp);
392       if (!MO.isReg())
393         return true;
394       unsigned Reg = MO.getReg();
395       O << ARMInstPrinter::getRegisterName(Reg);
396       return false;
397     }
398
399     case 'e': // The low doubleword register of a NEON quad register.
400     case 'f': { // The high doubleword register of a NEON quad register.
401       if (!MI->getOperand(OpNum).isReg())
402         return true;
403       unsigned Reg = MI->getOperand(OpNum).getReg();
404       if (!ARM::QPRRegClass.contains(Reg))
405         return true;
406       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
407       unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
408                                        ARM::dsub_0 : ARM::dsub_1);
409       O << ARMInstPrinter::getRegisterName(SubReg);
410       return false;
411     }
412
413     // This modifier is not yet supported.
414     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
415       return true;
416     case 'H': { // The highest-numbered register of a pair.
417       const MachineOperand &MO = MI->getOperand(OpNum);
418       if (!MO.isReg())
419         return true;
420       const MachineFunction &MF = *MI->getParent()->getParent();
421       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
422       unsigned Reg = MO.getReg();
423       if(!ARM::GPRPairRegClass.contains(Reg))
424         return false;
425       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
426       O << ARMInstPrinter::getRegisterName(Reg);
427       return false;
428     }
429     }
430   }
431
432   printOperand(MI, OpNum, O);
433   return false;
434 }
435
436 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
437                                           unsigned OpNum, const char *ExtraCode,
438                                           raw_ostream &O) {
439   // Does this asm operand have a single letter operand modifier?
440   if (ExtraCode && ExtraCode[0]) {
441     if (ExtraCode[1] != 0) return true; // Unknown modifier.
442
443     switch (ExtraCode[0]) {
444       case 'A': // A memory operand for a VLD1/VST1 instruction.
445       default: return true;  // Unknown modifier.
446       case 'm': // The base register of a memory operand.
447         if (!MI->getOperand(OpNum).isReg())
448           return true;
449         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
450         return false;
451     }
452   }
453
454   const MachineOperand &MO = MI->getOperand(OpNum);
455   assert(MO.isReg() && "unexpected inline asm memory operand");
456   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
457   return false;
458 }
459
460 static bool isThumb(const MCSubtargetInfo& STI) {
461   return STI.getFeatureBits()[ARM::ModeThumb];
462 }
463
464 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
465                                      const MCSubtargetInfo *EndInfo) const {
466   // If either end mode is unknown (EndInfo == NULL) or different than
467   // the start mode, then restore the start mode.
468   const bool WasThumb = isThumb(StartInfo);
469   if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
470     OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
471   }
472 }
473
474 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
475   const Triple &TT = TM.getTargetTriple();
476   // Use unified assembler syntax.
477   OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
478
479   // Emit ARM Build Attributes
480   if (TT.isOSBinFormatELF())
481     emitAttributes();
482
483   // Use the triple's architecture and subarchitecture to determine
484   // if we're thumb for the purposes of the top level code16 assembler
485   // flag.
486   if (!M.getModuleInlineAsm().empty() && TT.isThumb())
487     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
488 }
489
490 static void
491 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
492                          MachineModuleInfoImpl::StubValueTy &MCSym) {
493   // L_foo$stub:
494   OutStreamer.EmitLabel(StubLabel);
495   //   .indirect_symbol _foo
496   OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
497
498   if (MCSym.getInt())
499     // External to current translation unit.
500     OutStreamer.EmitIntValue(0, 4/*size*/);
501   else
502     // Internal to current translation unit.
503     //
504     // When we place the LSDA into the TEXT section, the type info
505     // pointers need to be indirect and pc-rel. We accomplish this by
506     // using NLPs; however, sometimes the types are local to the file.
507     // We need to fill in the value for the NLP in those cases.
508     OutStreamer.EmitValue(
509         MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
510         4 /*size*/);
511 }
512
513
514 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
515   const Triple &TT = TM.getTargetTriple();
516   if (TT.isOSBinFormatMachO()) {
517     // All darwin targets use mach-o.
518     const TargetLoweringObjectFileMachO &TLOFMacho =
519       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
520     MachineModuleInfoMachO &MMIMacho =
521       MMI->getObjFileInfo<MachineModuleInfoMachO>();
522
523     // Output non-lazy-pointers for external and common global variables.
524     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
525
526     if (!Stubs.empty()) {
527       // Switch with ".non_lazy_symbol_pointer" directive.
528       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
529       EmitAlignment(2);
530
531       for (auto &Stub : Stubs)
532         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
533
534       Stubs.clear();
535       OutStreamer->AddBlankLine();
536     }
537
538     Stubs = MMIMacho.GetThreadLocalGVStubList();
539     if (!Stubs.empty()) {
540       // Switch with ".non_lazy_symbol_pointer" directive.
541       OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection());
542       EmitAlignment(2);
543
544       for (auto &Stub : Stubs)
545         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
546
547       Stubs.clear();
548       OutStreamer->AddBlankLine();
549     }
550
551     // Funny Darwin hack: This flag tells the linker that no global symbols
552     // contain code that falls through to other global symbols (e.g. the obvious
553     // implementation of multiple entry points).  If this doesn't occur, the
554     // linker can safely perform dead code stripping.  Since LLVM never
555     // generates code that does this, it is always safe to set.
556     OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
557   }
558
559   // The last attribute to be emitted is ABI_optimization_goals
560   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
561   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
562
563   if (OptimizationGoals > 0 &&
564       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
565        Subtarget->isTargetMuslAEABI()))
566     ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
567   OptimizationGoals = -1;
568
569   ATS.finishAttributeSection();
570 }
571
572 //===----------------------------------------------------------------------===//
573 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
574 // FIXME:
575 // The following seem like one-off assembler flags, but they actually need
576 // to appear in the .ARM.attributes section in ELF.
577 // Instead of subclassing the MCELFStreamer, we do the work here.
578
579 // Returns true if all functions have the same function attribute value.
580 // It also returns true when the module has no functions.
581 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr,
582                                                StringRef Value) {
583   return !any_of(M, [&](const Function &F) {
584     return F.getFnAttribute(Attr).getValueAsString() != Value;
585   });
586 }
587
588 void ARMAsmPrinter::emitAttributes() {
589   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
590   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
591
592   ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
593
594   ATS.switchVendor("aeabi");
595
596   // Compute ARM ELF Attributes based on the default subtarget that
597   // we'd have constructed. The existing ARM behavior isn't LTO clean
598   // anyhow.
599   // FIXME: For ifunc related functions we could iterate over and look
600   // for a feature string that doesn't match the default one.
601   const Triple &TT = TM.getTargetTriple();
602   StringRef CPU = TM.getTargetCPU();
603   StringRef FS = TM.getTargetFeatureString();
604   std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
605   if (!FS.empty()) {
606     if (!ArchFS.empty())
607       ArchFS = (Twine(ArchFS) + "," + FS).str();
608     else
609       ArchFS = FS;
610   }
611   const ARMBaseTargetMachine &ATM =
612       static_cast<const ARMBaseTargetMachine &>(TM);
613   const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
614
615   // Emit build attributes for the available hardware.
616   ATS.emitTargetAttributes(STI);
617
618   // RW data addressing.
619   if (isPositionIndependent()) {
620     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
621                       ARMBuildAttrs::AddressRWPCRel);
622   } else if (STI.isRWPI()) {
623     // RWPI specific attributes.
624     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
625                       ARMBuildAttrs::AddressRWSBRel);
626   }
627
628   // RO data addressing.
629   if (isPositionIndependent() || STI.isROPI()) {
630     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
631                       ARMBuildAttrs::AddressROPCRel);
632   }
633
634   // GOT use.
635   if (isPositionIndependent()) {
636     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
637                       ARMBuildAttrs::AddressGOT);
638   } else {
639     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
640                       ARMBuildAttrs::AddressDirect);
641   }
642
643   // Set FP Denormals.
644   if (checkFunctionsAttributeConsistency(*MMI->getModule(),
645                                          "denormal-fp-math",
646                                          "preserve-sign") ||
647       TM.Options.FPDenormalMode == FPDenormal::PreserveSign)
648     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
649                       ARMBuildAttrs::PreserveFPSign);
650   else if (checkFunctionsAttributeConsistency(*MMI->getModule(),
651                                               "denormal-fp-math",
652                                               "positive-zero") ||
653            TM.Options.FPDenormalMode == FPDenormal::PositiveZero)
654     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
655                       ARMBuildAttrs::PositiveZero);
656   else if (!TM.Options.UnsafeFPMath)
657     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
658                       ARMBuildAttrs::IEEEDenormals);
659   else {
660     if (!STI.hasVFP2Base()) {
661       // When the target doesn't have an FPU (by design or
662       // intention), the assumptions made on the software support
663       // mirror that of the equivalent hardware support *if it
664       // existed*. For v7 and better we indicate that denormals are
665       // flushed preserving sign, and for V6 we indicate that
666       // denormals are flushed to positive zero.
667       if (STI.hasV7Ops())
668         ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
669                           ARMBuildAttrs::PreserveFPSign);
670     } else if (STI.hasVFP3Base()) {
671       // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
672       // the sign bit of the zero matches the sign bit of the input or
673       // result that is being flushed to zero.
674       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
675                         ARMBuildAttrs::PreserveFPSign);
676     }
677     // For VFPv2 implementations it is implementation defined as
678     // to whether denormals are flushed to positive zero or to
679     // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
680     // LLVM has chosen to flush this to positive zero (most likely for
681     // GCC compatibility), so that's the chosen value here (the
682     // absence of its emission implies zero).
683   }
684
685   // Set FP exceptions and rounding
686   if (checkFunctionsAttributeConsistency(*MMI->getModule(),
687                                          "no-trapping-math", "true") ||
688       TM.Options.NoTrappingFPMath)
689     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions,
690                       ARMBuildAttrs::Not_Allowed);
691   else if (!TM.Options.UnsafeFPMath) {
692     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
693
694     // If the user has permitted this code to choose the IEEE 754
695     // rounding at run-time, emit the rounding attribute.
696     if (TM.Options.HonorSignDependentRoundingFPMathOption)
697       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
698   }
699
700   // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
701   // equivalent of GCC's -ffinite-math-only flag.
702   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
703     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
704                       ARMBuildAttrs::Allowed);
705   else
706     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
707                       ARMBuildAttrs::AllowIEEE754);
708
709   // FIXME: add more flags to ARMBuildAttributes.h
710   // 8-bytes alignment stuff.
711   ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
712   ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
713
714   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
715   if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
716     ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
717
718   // FIXME: To support emitting this build attribute as GCC does, the
719   // -mfp16-format option and associated plumbing must be
720   // supported. For now the __fp16 type is exposed by default, so this
721   // attribute should be emitted with value 1.
722   ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
723                     ARMBuildAttrs::FP16FormatIEEE);
724
725   if (MMI) {
726     if (const Module *SourceModule = MMI->getModule()) {
727       // ABI_PCS_wchar_t to indicate wchar_t width
728       // FIXME: There is no way to emit value 0 (wchar_t prohibited).
729       if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
730               SourceModule->getModuleFlag("wchar_size"))) {
731         int WCharWidth = WCharWidthValue->getZExtValue();
732         assert((WCharWidth == 2 || WCharWidth == 4) &&
733                "wchar_t width must be 2 or 4 bytes");
734         ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
735       }
736
737       // ABI_enum_size to indicate enum width
738       // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
739       //        (all enums contain a value needing 32 bits to encode).
740       if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
741               SourceModule->getModuleFlag("min_enum_size"))) {
742         int EnumWidth = EnumWidthValue->getZExtValue();
743         assert((EnumWidth == 1 || EnumWidth == 4) &&
744                "Minimum enum width must be 1 or 4 bytes");
745         int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
746         ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
747       }
748     }
749   }
750
751   // We currently do not support using R9 as the TLS pointer.
752   if (STI.isRWPI())
753     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
754                       ARMBuildAttrs::R9IsSB);
755   else if (STI.isR9Reserved())
756     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
757                       ARMBuildAttrs::R9Reserved);
758   else
759     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use,
760                       ARMBuildAttrs::R9IsGPR);
761 }
762
763 //===----------------------------------------------------------------------===//
764
765 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber,
766                              unsigned LabelId, MCContext &Ctx) {
767
768   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
769                        + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId));
770   return Label;
771 }
772
773 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber,
774                              unsigned LabelId, MCContext &Ctx) {
775
776   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
777                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
778   return Label;
779 }
780
781 static MCSymbolRefExpr::VariantKind
782 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
783   switch (Modifier) {
784   case ARMCP::no_modifier:
785     return MCSymbolRefExpr::VK_None;
786   case ARMCP::TLSGD:
787     return MCSymbolRefExpr::VK_TLSGD;
788   case ARMCP::TPOFF:
789     return MCSymbolRefExpr::VK_TPOFF;
790   case ARMCP::GOTTPOFF:
791     return MCSymbolRefExpr::VK_GOTTPOFF;
792   case ARMCP::SBREL:
793     return MCSymbolRefExpr::VK_ARM_SBREL;
794   case ARMCP::GOT_PREL:
795     return MCSymbolRefExpr::VK_ARM_GOT_PREL;
796   case ARMCP::SECREL:
797     return MCSymbolRefExpr::VK_SECREL;
798   }
799   llvm_unreachable("Invalid ARMCPModifier!");
800 }
801
802 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
803                                         unsigned char TargetFlags) {
804   if (Subtarget->isTargetMachO()) {
805     bool IsIndirect =
806         (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV);
807
808     if (!IsIndirect)
809       return getSymbol(GV);
810
811     // FIXME: Remove this when Darwin transition to @GOT like syntax.
812     MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
813     MachineModuleInfoMachO &MMIMachO =
814       MMI->getObjFileInfo<MachineModuleInfoMachO>();
815     MachineModuleInfoImpl::StubValueTy &StubSym =
816         GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym)
817                             : MMIMachO.getGVStubEntry(MCSym);
818
819     if (!StubSym.getPointer())
820       StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
821                                                    !GV->hasInternalLinkage());
822     return MCSym;
823   } else if (Subtarget->isTargetCOFF()) {
824     assert(Subtarget->isTargetWindows() &&
825            "Windows is the only supported COFF target");
826
827     bool IsIndirect =
828         (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB));
829     if (!IsIndirect)
830       return getSymbol(GV);
831
832     SmallString<128> Name;
833     if (TargetFlags & ARMII::MO_DLLIMPORT)
834       Name = "__imp_";
835     else if (TargetFlags & ARMII::MO_COFFSTUB)
836       Name = ".refptr.";
837     getNameWithPrefix(Name, GV);
838
839     MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name);
840
841     if (TargetFlags & ARMII::MO_COFFSTUB) {
842       MachineModuleInfoCOFF &MMICOFF =
843           MMI->getObjFileInfo<MachineModuleInfoCOFF>();
844       MachineModuleInfoImpl::StubValueTy &StubSym =
845           MMICOFF.getGVStubEntry(MCSym);
846
847       if (!StubSym.getPointer())
848         StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true);
849     }
850
851     return MCSym;
852   } else if (Subtarget->isTargetELF()) {
853     return getSymbol(GV);
854   }
855   llvm_unreachable("unexpected target");
856 }
857
858 void ARMAsmPrinter::
859 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
860   const DataLayout &DL = getDataLayout();
861   int Size = DL.getTypeAllocSize(MCPV->getType());
862
863   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
864
865   if (ACPV->isPromotedGlobal()) {
866     // This constant pool entry is actually a global whose storage has been
867     // promoted into the constant pool. This global may be referenced still
868     // by debug information, and due to the way AsmPrinter is set up, the debug
869     // info is immutable by the time we decide to promote globals to constant
870     // pools. Because of this, we need to ensure we emit a symbol for the global
871     // with private linkage (the default) so debug info can refer to it.
872     //
873     // However, if this global is promoted into several functions we must ensure
874     // we don't try and emit duplicate symbols!
875     auto *ACPC = cast<ARMConstantPoolConstant>(ACPV);
876     for (const auto *GV : ACPC->promotedGlobals()) {
877       if (!EmittedPromotedGlobalLabels.count(GV)) {
878         MCSymbol *GVSym = getSymbol(GV);
879         OutStreamer->EmitLabel(GVSym);
880         EmittedPromotedGlobalLabels.insert(GV);
881       }
882     }
883     return EmitGlobalConstant(DL, ACPC->getPromotedGlobalInit());
884   }
885
886   MCSymbol *MCSym;
887   if (ACPV->isLSDA()) {
888     MCSym = getCurExceptionSym();
889   } else if (ACPV->isBlockAddress()) {
890     const BlockAddress *BA =
891       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
892     MCSym = GetBlockAddressSymbol(BA);
893   } else if (ACPV->isGlobalValue()) {
894     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
895
896     // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
897     // flag the global as MO_NONLAZY.
898     unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
899     MCSym = GetARMGVSymbol(GV, TF);
900   } else if (ACPV->isMachineBasicBlock()) {
901     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
902     MCSym = MBB->getSymbol();
903   } else {
904     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
905     auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
906     MCSym = GetExternalSymbolSymbol(Sym);
907   }
908
909   // Create an MCSymbol for the reference.
910   const MCExpr *Expr =
911     MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
912                             OutContext);
913
914   if (ACPV->getPCAdjustment()) {
915     MCSymbol *PCLabel =
916         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
917                     ACPV->getLabelId(), OutContext);
918     const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
919     PCRelExpr =
920       MCBinaryExpr::createAdd(PCRelExpr,
921                               MCConstantExpr::create(ACPV->getPCAdjustment(),
922                                                      OutContext),
923                               OutContext);
924     if (ACPV->mustAddCurrentAddress()) {
925       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
926       // label, so just emit a local label end reference that instead.
927       MCSymbol *DotSym = OutContext.createTempSymbol();
928       OutStreamer->EmitLabel(DotSym);
929       const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
930       PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
931     }
932     Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
933   }
934   OutStreamer->EmitValue(Expr, Size);
935 }
936
937 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
938   const MachineOperand &MO1 = MI->getOperand(1);
939   unsigned JTI = MO1.getIndex();
940
941   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
942   // ARM mode tables.
943   EmitAlignment(2);
944
945   // Emit a label for the jump table.
946   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
947   OutStreamer->EmitLabel(JTISymbol);
948
949   // Mark the jump table as data-in-code.
950   OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
951
952   // Emit each entry of the table.
953   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
954   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
955   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
956
957   for (MachineBasicBlock *MBB : JTBBs) {
958     // Construct an MCExpr for the entry. We want a value of the form:
959     // (BasicBlockAddr - TableBeginAddr)
960     //
961     // For example, a table with entries jumping to basic blocks BB0 and BB1
962     // would look like:
963     // LJTI_0_0:
964     //    .word (LBB0 - LJTI_0_0)
965     //    .word (LBB1 - LJTI_0_0)
966     const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
967
968     if (isPositionIndependent() || Subtarget->isROPI())
969       Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
970                                                                    OutContext),
971                                      OutContext);
972     // If we're generating a table of Thumb addresses in static relocation
973     // model, we need to add one to keep interworking correctly.
974     else if (AFI->isThumbFunction())
975       Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
976                                      OutContext);
977     OutStreamer->EmitValue(Expr, 4);
978   }
979   // Mark the end of jump table data-in-code region.
980   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
981 }
982
983 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
984   const MachineOperand &MO1 = MI->getOperand(1);
985   unsigned JTI = MO1.getIndex();
986
987   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
988   // ARM mode tables.
989   EmitAlignment(2);
990
991   // Emit a label for the jump table.
992   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
993   OutStreamer->EmitLabel(JTISymbol);
994
995   // Emit each entry of the table.
996   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
997   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
998   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
999
1000   for (MachineBasicBlock *MBB : JTBBs) {
1001     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1002                                                           OutContext);
1003     // If this isn't a TBB or TBH, the entries are direct branch instructions.
1004     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
1005         .addExpr(MBBSymbolExpr)
1006         .addImm(ARMCC::AL)
1007         .addReg(0));
1008   }
1009 }
1010
1011 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
1012                                         unsigned OffsetWidth) {
1013   assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
1014   const MachineOperand &MO1 = MI->getOperand(1);
1015   unsigned JTI = MO1.getIndex();
1016
1017   if (Subtarget->isThumb1Only())
1018     EmitAlignment(2);
1019
1020   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
1021   OutStreamer->EmitLabel(JTISymbol);
1022
1023   // Emit each entry of the table.
1024   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1025   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1026   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1027
1028   // Mark the jump table as data-in-code.
1029   OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
1030                                                : MCDR_DataRegionJT16);
1031
1032   for (auto MBB : JTBBs) {
1033     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
1034                                                           OutContext);
1035     // Otherwise it's an offset from the dispatch instruction. Construct an
1036     // MCExpr for the entry. We want a value of the form:
1037     // (BasicBlockAddr - TBBInstAddr + 4) / 2
1038     //
1039     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
1040     // would look like:
1041     // LJTI_0_0:
1042     //    .byte (LBB0 - (LCPI0_0 + 4)) / 2
1043     //    .byte (LBB1 - (LCPI0_0 + 4)) / 2
1044     // where LCPI0_0 is a label defined just before the TBB instruction using
1045     // this table.
1046     MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
1047     const MCExpr *Expr = MCBinaryExpr::createAdd(
1048         MCSymbolRefExpr::create(TBInstPC, OutContext),
1049         MCConstantExpr::create(4, OutContext), OutContext);
1050     Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
1051     Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
1052                                    OutContext);
1053     OutStreamer->EmitValue(Expr, OffsetWidth);
1054   }
1055   // Mark the end of jump table data-in-code region. 32-bit offsets use
1056   // actual branch instructions here, so we don't mark those as a data-region
1057   // at all.
1058   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1059
1060   // Make sure the next instruction is 2-byte aligned.
1061   EmitAlignment(1);
1062 }
1063
1064 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
1065   assert(MI->getFlag(MachineInstr::FrameSetup) &&
1066       "Only instruction which are involved into frame setup code are allowed");
1067
1068   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1069   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1070   const MachineFunction &MF = *MI->getParent()->getParent();
1071   const TargetRegisterInfo *TargetRegInfo =
1072     MF.getSubtarget().getRegisterInfo();
1073   const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo();
1074
1075   unsigned FramePtr = TargetRegInfo->getFrameRegister(MF);
1076   unsigned Opc = MI->getOpcode();
1077   unsigned SrcReg, DstReg;
1078
1079   if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
1080     // Two special cases:
1081     // 1) tPUSH does not have src/dst regs.
1082     // 2) for Thumb1 code we sometimes materialize the constant via constpool
1083     // load. Yes, this is pretty fragile, but for now I don't see better
1084     // way... :(
1085     SrcReg = DstReg = ARM::SP;
1086   } else {
1087     SrcReg = MI->getOperand(1).getReg();
1088     DstReg = MI->getOperand(0).getReg();
1089   }
1090
1091   // Try to figure out the unwinding opcode out of src / dst regs.
1092   if (MI->mayStore()) {
1093     // Register saves.
1094     assert(DstReg == ARM::SP &&
1095            "Only stack pointer as a destination reg is supported");
1096
1097     SmallVector<unsigned, 4> RegList;
1098     // Skip src & dst reg, and pred ops.
1099     unsigned StartOp = 2 + 2;
1100     // Use all the operands.
1101     unsigned NumOffset = 0;
1102     // Amount of SP adjustment folded into a push.
1103     unsigned Pad = 0;
1104
1105     switch (Opc) {
1106     default:
1107       MI->print(errs());
1108       llvm_unreachable("Unsupported opcode for unwinding information");
1109     case ARM::tPUSH:
1110       // Special case here: no src & dst reg, but two extra imp ops.
1111       StartOp = 2; NumOffset = 2;
1112       LLVM_FALLTHROUGH;
1113     case ARM::STMDB_UPD:
1114     case ARM::t2STMDB_UPD:
1115     case ARM::VSTMDDB_UPD:
1116       assert(SrcReg == ARM::SP &&
1117              "Only stack pointer as a source reg is supported");
1118       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
1119            i != NumOps; ++i) {
1120         const MachineOperand &MO = MI->getOperand(i);
1121         // Actually, there should never be any impdef stuff here. Skip it
1122         // temporary to workaround PR11902.
1123         if (MO.isImplicit())
1124           continue;
1125         // Registers, pushed as a part of folding an SP update into the
1126         // push instruction are marked as undef and should not be
1127         // restored when unwinding, because the function can modify the
1128         // corresponding stack slots.
1129         if (MO.isUndef()) {
1130           assert(RegList.empty() &&
1131                  "Pad registers must come before restored ones");
1132           unsigned Width =
1133             TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8;
1134           Pad += Width;
1135           continue;
1136         }
1137         // Check for registers that are remapped (for a Thumb1 prologue that
1138         // saves high registers).
1139         unsigned Reg = MO.getReg();
1140         if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg))
1141           Reg = RemappedReg;
1142         RegList.push_back(Reg);
1143       }
1144       break;
1145     case ARM::STR_PRE_IMM:
1146     case ARM::STR_PRE_REG:
1147     case ARM::t2STR_PRE:
1148       assert(MI->getOperand(2).getReg() == ARM::SP &&
1149              "Only stack pointer as a source reg is supported");
1150       RegList.push_back(SrcReg);
1151       break;
1152     }
1153     if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1154       ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
1155       // Account for the SP adjustment, folded into the push.
1156       if (Pad)
1157         ATS.emitPad(Pad);
1158     }
1159   } else {
1160     // Changes of stack / frame pointer.
1161     if (SrcReg == ARM::SP) {
1162       int64_t Offset = 0;
1163       switch (Opc) {
1164       default:
1165         MI->print(errs());
1166         llvm_unreachable("Unsupported opcode for unwinding information");
1167       case ARM::MOVr:
1168       case ARM::tMOVr:
1169         Offset = 0;
1170         break;
1171       case ARM::ADDri:
1172       case ARM::t2ADDri:
1173         Offset = -MI->getOperand(2).getImm();
1174         break;
1175       case ARM::SUBri:
1176       case ARM::t2SUBri:
1177         Offset = MI->getOperand(2).getImm();
1178         break;
1179       case ARM::tSUBspi:
1180         Offset = MI->getOperand(2).getImm()*4;
1181         break;
1182       case ARM::tADDspi:
1183       case ARM::tADDrSPi:
1184         Offset = -MI->getOperand(2).getImm()*4;
1185         break;
1186       case ARM::tLDRpci: {
1187         // Grab the constpool index and check, whether it corresponds to
1188         // original or cloned constpool entry.
1189         unsigned CPI = MI->getOperand(1).getIndex();
1190         const MachineConstantPool *MCP = MF.getConstantPool();
1191         if (CPI >= MCP->getConstants().size())
1192           CPI = AFI->getOriginalCPIdx(CPI);
1193         assert(CPI != -1U && "Invalid constpool index");
1194
1195         // Derive the actual offset.
1196         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
1197         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
1198         // FIXME: Check for user, it should be "add" instruction!
1199         Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
1200         break;
1201       }
1202       }
1203
1204       if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
1205         if (DstReg == FramePtr && FramePtr != ARM::SP)
1206           // Set-up of the frame pointer. Positive values correspond to "add"
1207           // instruction.
1208           ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
1209         else if (DstReg == ARM::SP) {
1210           // Change of SP by an offset. Positive values correspond to "sub"
1211           // instruction.
1212           ATS.emitPad(Offset);
1213         } else {
1214           // Move of SP to a register.  Positive values correspond to an "add"
1215           // instruction.
1216           ATS.emitMovSP(DstReg, -Offset);
1217         }
1218       }
1219     } else if (DstReg == ARM::SP) {
1220       MI->print(errs());
1221       llvm_unreachable("Unsupported opcode for unwinding information");
1222     } else if (Opc == ARM::tMOVr) {
1223       // If a Thumb1 function spills r8-r11, we copy the values to low
1224       // registers before pushing them. Record the copy so we can emit the
1225       // correct ".save" later.
1226       AFI->EHPrologueRemappedRegs[DstReg] = SrcReg;
1227     } else {
1228       MI->print(errs());
1229       llvm_unreachable("Unsupported opcode for unwinding information");
1230     }
1231   }
1232 }
1233
1234 // Simple pseudo-instructions have their lowering (with expansion to real
1235 // instructions) auto-generated.
1236 #include "ARMGenMCPseudoLowering.inc"
1237
1238 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
1239   const DataLayout &DL = getDataLayout();
1240   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
1241   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
1242
1243   const MachineFunction &MF = *MI->getParent()->getParent();
1244   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
1245   unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11;
1246
1247   // If we just ended a constant pool, mark it as such.
1248   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
1249     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1250     InConstantPool = false;
1251   }
1252
1253   // Emit unwinding stuff for frame-related instructions
1254   if (Subtarget->isTargetEHABICompatible() &&
1255        MI->getFlag(MachineInstr::FrameSetup))
1256     EmitUnwindingInstruction(MI);
1257
1258   // Do any auto-generated pseudo lowerings.
1259   if (emitPseudoExpansionLowering(*OutStreamer, MI))
1260     return;
1261
1262   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
1263          "Pseudo flag setting opcode should be expanded early");
1264
1265   // Check for manual lowerings.
1266   unsigned Opc = MI->getOpcode();
1267   switch (Opc) {
1268   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
1269   case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
1270   case ARM::LEApcrel:
1271   case ARM::tLEApcrel:
1272   case ARM::t2LEApcrel: {
1273     // FIXME: Need to also handle globals and externals
1274     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
1275     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1276                                                ARM::t2LEApcrel ? ARM::t2ADR
1277                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
1278                      : ARM::ADR))
1279       .addReg(MI->getOperand(0).getReg())
1280       .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
1281       // Add predicate operands.
1282       .addImm(MI->getOperand(2).getImm())
1283       .addReg(MI->getOperand(3).getReg()));
1284     return;
1285   }
1286   case ARM::LEApcrelJT:
1287   case ARM::tLEApcrelJT:
1288   case ARM::t2LEApcrelJT: {
1289     MCSymbol *JTIPICSymbol =
1290       GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
1291     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
1292                                                ARM::t2LEApcrelJT ? ARM::t2ADR
1293                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
1294                      : ARM::ADR))
1295       .addReg(MI->getOperand(0).getReg())
1296       .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
1297       // Add predicate operands.
1298       .addImm(MI->getOperand(2).getImm())
1299       .addReg(MI->getOperand(3).getReg()));
1300     return;
1301   }
1302   // Darwin call instructions are just normal call instructions with different
1303   // clobber semantics (they clobber R9).
1304   case ARM::BX_CALL: {
1305     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1306       .addReg(ARM::LR)
1307       .addReg(ARM::PC)
1308       // Add predicate operands.
1309       .addImm(ARMCC::AL)
1310       .addReg(0)
1311       // Add 's' bit operand (always reg0 for this)
1312       .addReg(0));
1313
1314     assert(Subtarget->hasV4TOps());
1315     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
1316       .addReg(MI->getOperand(0).getReg()));
1317     return;
1318   }
1319   case ARM::tBX_CALL: {
1320     if (Subtarget->hasV5TOps())
1321       llvm_unreachable("Expected BLX to be selected for v5t+");
1322
1323     // On ARM v4t, when doing a call from thumb mode, we need to ensure
1324     // that the saved lr has its LSB set correctly (the arch doesn't
1325     // have blx).
1326     // So here we generate a bl to a small jump pad that does bx rN.
1327     // The jump pads are emitted after the function body.
1328
1329     unsigned TReg = MI->getOperand(0).getReg();
1330     MCSymbol *TRegSym = nullptr;
1331     for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) {
1332       if (TIP.first == TReg) {
1333         TRegSym = TIP.second;
1334         break;
1335       }
1336     }
1337
1338     if (!TRegSym) {
1339       TRegSym = OutContext.createTempSymbol();
1340       ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
1341     }
1342
1343     // Create a link-saving branch to the Reg Indirect Jump Pad.
1344     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
1345         // Predicate comes first here.
1346         .addImm(ARMCC::AL).addReg(0)
1347         .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
1348     return;
1349   }
1350   case ARM::BMOVPCRX_CALL: {
1351     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1352       .addReg(ARM::LR)
1353       .addReg(ARM::PC)
1354       // Add predicate operands.
1355       .addImm(ARMCC::AL)
1356       .addReg(0)
1357       // Add 's' bit operand (always reg0 for this)
1358       .addReg(0));
1359
1360     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1361       .addReg(ARM::PC)
1362       .addReg(MI->getOperand(0).getReg())
1363       // Add predicate operands.
1364       .addImm(ARMCC::AL)
1365       .addReg(0)
1366       // Add 's' bit operand (always reg0 for this)
1367       .addReg(0));
1368     return;
1369   }
1370   case ARM::BMOVPCB_CALL: {
1371     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
1372       .addReg(ARM::LR)
1373       .addReg(ARM::PC)
1374       // Add predicate operands.
1375       .addImm(ARMCC::AL)
1376       .addReg(0)
1377       // Add 's' bit operand (always reg0 for this)
1378       .addReg(0));
1379
1380     const MachineOperand &Op = MI->getOperand(0);
1381     const GlobalValue *GV = Op.getGlobal();
1382     const unsigned TF = Op.getTargetFlags();
1383     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1384     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1385     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
1386       .addExpr(GVSymExpr)
1387       // Add predicate operands.
1388       .addImm(ARMCC::AL)
1389       .addReg(0));
1390     return;
1391   }
1392   case ARM::MOVi16_ga_pcrel:
1393   case ARM::t2MOVi16_ga_pcrel: {
1394     MCInst TmpInst;
1395     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
1396     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1397
1398     unsigned TF = MI->getOperand(1).getTargetFlags();
1399     const GlobalValue *GV = MI->getOperand(1).getGlobal();
1400     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1401     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1402
1403     MCSymbol *LabelSym =
1404         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1405                     MI->getOperand(2).getImm(), OutContext);
1406     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1407     unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
1408     const MCExpr *PCRelExpr =
1409       ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
1410                                       MCBinaryExpr::createAdd(LabelSymExpr,
1411                                       MCConstantExpr::create(PCAdj, OutContext),
1412                                       OutContext), OutContext), OutContext);
1413       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1414
1415     // Add predicate operands.
1416     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1417     TmpInst.addOperand(MCOperand::createReg(0));
1418     // Add 's' bit operand (always reg0 for this)
1419     TmpInst.addOperand(MCOperand::createReg(0));
1420     EmitToStreamer(*OutStreamer, TmpInst);
1421     return;
1422   }
1423   case ARM::MOVTi16_ga_pcrel:
1424   case ARM::t2MOVTi16_ga_pcrel: {
1425     MCInst TmpInst;
1426     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
1427                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
1428     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1429     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1430
1431     unsigned TF = MI->getOperand(2).getTargetFlags();
1432     const GlobalValue *GV = MI->getOperand(2).getGlobal();
1433     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
1434     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
1435
1436     MCSymbol *LabelSym =
1437         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1438                     MI->getOperand(3).getImm(), OutContext);
1439     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
1440     unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
1441     const MCExpr *PCRelExpr =
1442         ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
1443                                    MCBinaryExpr::createAdd(LabelSymExpr,
1444                                       MCConstantExpr::create(PCAdj, OutContext),
1445                                           OutContext), OutContext), OutContext);
1446       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
1447     // Add predicate operands.
1448     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1449     TmpInst.addOperand(MCOperand::createReg(0));
1450     // Add 's' bit operand (always reg0 for this)
1451     TmpInst.addOperand(MCOperand::createReg(0));
1452     EmitToStreamer(*OutStreamer, TmpInst);
1453     return;
1454   }
1455   case ARM::t2BFi:
1456   case ARM::t2BFic:
1457   case ARM::t2BFLi:
1458   case ARM::t2BFr:
1459   case ARM::t2BFLr: {
1460     // This is a Branch Future instruction.
1461
1462     const MCExpr *BranchLabel = MCSymbolRefExpr::create(
1463         getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1464                    MI->getOperand(0).getIndex(), OutContext),
1465         OutContext);
1466
1467     auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel);
1468     if (MI->getOperand(1).isReg()) {
1469       // For BFr/BFLr
1470       MCInst.addReg(MI->getOperand(1).getReg());
1471     } else {
1472       // For BFi/BFLi/BFic
1473       const MCExpr *BranchTarget;
1474       if (MI->getOperand(1).isMBB())
1475         BranchTarget = MCSymbolRefExpr::create(
1476             MI->getOperand(1).getMBB()->getSymbol(), OutContext);
1477       else if (MI->getOperand(1).isGlobal()) {
1478         const GlobalValue *GV = MI->getOperand(1).getGlobal();
1479         BranchTarget = MCSymbolRefExpr::create(
1480             GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext);
1481       } else if (MI->getOperand(1).isSymbol()) {
1482         BranchTarget = MCSymbolRefExpr::create(
1483             GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()),
1484             OutContext);
1485       } else
1486         llvm_unreachable("Unhandled operand kind in Branch Future instruction");
1487
1488       MCInst.addExpr(BranchTarget);
1489     }
1490
1491       if (Opc == ARM::t2BFic) {
1492         const MCExpr *ElseLabel = MCSymbolRefExpr::create(
1493             getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
1494                        MI->getOperand(2).getIndex(), OutContext),
1495             OutContext);
1496         MCInst.addExpr(ElseLabel);
1497         MCInst.addImm(MI->getOperand(3).getImm());
1498       } else {
1499         MCInst.addImm(MI->getOperand(2).getImm())
1500             .addReg(MI->getOperand(3).getReg());
1501       }
1502
1503     EmitToStreamer(*OutStreamer, MCInst);
1504     return;
1505   }
1506   case ARM::t2BF_LabelPseudo: {
1507     // This is a pseudo op for a label used by a branch future instruction
1508
1509     // Emit the label.
1510     OutStreamer->EmitLabel(getBFLabel(DL.getPrivateGlobalPrefix(),
1511                                        getFunctionNumber(),
1512                                        MI->getOperand(0).getIndex(), OutContext));
1513     return;
1514   }
1515   case ARM::tPICADD: {
1516     // This is a pseudo op for a label + instruction sequence, which looks like:
1517     // LPC0:
1518     //     add r0, pc
1519     // This adds the address of LPC0 to r0.
1520
1521     // Emit the label.
1522     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1523                                        getFunctionNumber(),
1524                                        MI->getOperand(2).getImm(), OutContext));
1525
1526     // Form and emit the add.
1527     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1528       .addReg(MI->getOperand(0).getReg())
1529       .addReg(MI->getOperand(0).getReg())
1530       .addReg(ARM::PC)
1531       // Add predicate operands.
1532       .addImm(ARMCC::AL)
1533       .addReg(0));
1534     return;
1535   }
1536   case ARM::PICADD: {
1537     // This is a pseudo op for a label + instruction sequence, which looks like:
1538     // LPC0:
1539     //     add r0, pc, r0
1540     // This adds the address of LPC0 to r0.
1541
1542     // Emit the label.
1543     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1544                                        getFunctionNumber(),
1545                                        MI->getOperand(2).getImm(), OutContext));
1546
1547     // Form and emit the add.
1548     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1549       .addReg(MI->getOperand(0).getReg())
1550       .addReg(ARM::PC)
1551       .addReg(MI->getOperand(1).getReg())
1552       // Add predicate operands.
1553       .addImm(MI->getOperand(3).getImm())
1554       .addReg(MI->getOperand(4).getReg())
1555       // Add 's' bit operand (always reg0 for this)
1556       .addReg(0));
1557     return;
1558   }
1559   case ARM::PICSTR:
1560   case ARM::PICSTRB:
1561   case ARM::PICSTRH:
1562   case ARM::PICLDR:
1563   case ARM::PICLDRB:
1564   case ARM::PICLDRH:
1565   case ARM::PICLDRSB:
1566   case ARM::PICLDRSH: {
1567     // This is a pseudo op for a label + instruction sequence, which looks like:
1568     // LPC0:
1569     //     OP r0, [pc, r0]
1570     // The LCP0 label is referenced by a constant pool entry in order to get
1571     // a PC-relative address at the ldr instruction.
1572
1573     // Emit the label.
1574     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
1575                                        getFunctionNumber(),
1576                                        MI->getOperand(2).getImm(), OutContext));
1577
1578     // Form and emit the load
1579     unsigned Opcode;
1580     switch (MI->getOpcode()) {
1581     default:
1582       llvm_unreachable("Unexpected opcode!");
1583     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
1584     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
1585     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
1586     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
1587     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
1588     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
1589     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
1590     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
1591     }
1592     EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
1593       .addReg(MI->getOperand(0).getReg())
1594       .addReg(ARM::PC)
1595       .addReg(MI->getOperand(1).getReg())
1596       .addImm(0)
1597       // Add predicate operands.
1598       .addImm(MI->getOperand(3).getImm())
1599       .addReg(MI->getOperand(4).getReg()));
1600
1601     return;
1602   }
1603   case ARM::CONSTPOOL_ENTRY: {
1604     if (Subtarget->genExecuteOnly())
1605       llvm_unreachable("execute-only should not generate constant pools");
1606
1607     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
1608     /// in the function.  The first operand is the ID# for this instruction, the
1609     /// second is the index into the MachineConstantPool that this is, the third
1610     /// is the size in bytes of this constant pool entry.
1611     /// The required alignment is specified on the basic block holding this MI.
1612     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
1613     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
1614
1615     // If this is the first entry of the pool, mark it.
1616     if (!InConstantPool) {
1617       OutStreamer->EmitDataRegion(MCDR_DataRegion);
1618       InConstantPool = true;
1619     }
1620
1621     OutStreamer->EmitLabel(GetCPISymbol(LabelId));
1622
1623     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
1624     if (MCPE.isMachineConstantPoolEntry())
1625       EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
1626     else
1627       EmitGlobalConstant(DL, MCPE.Val.ConstVal);
1628     return;
1629   }
1630   case ARM::JUMPTABLE_ADDRS:
1631     EmitJumpTableAddrs(MI);
1632     return;
1633   case ARM::JUMPTABLE_INSTS:
1634     EmitJumpTableInsts(MI);
1635     return;
1636   case ARM::JUMPTABLE_TBB:
1637   case ARM::JUMPTABLE_TBH:
1638     EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
1639     return;
1640   case ARM::t2BR_JT: {
1641     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1642       .addReg(ARM::PC)
1643       .addReg(MI->getOperand(0).getReg())
1644       // Add predicate operands.
1645       .addImm(ARMCC::AL)
1646       .addReg(0));
1647     return;
1648   }
1649   case ARM::t2TBB_JT:
1650   case ARM::t2TBH_JT: {
1651     unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
1652     // Lower and emit the PC label, then the instruction itself.
1653     OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1654     EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1655                                      .addReg(MI->getOperand(0).getReg())
1656                                      .addReg(MI->getOperand(1).getReg())
1657                                      // Add predicate operands.
1658                                      .addImm(ARMCC::AL)
1659                                      .addReg(0));
1660     return;
1661   }
1662   case ARM::tTBB_JT:
1663   case ARM::tTBH_JT: {
1664
1665     bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT;
1666     unsigned Base = MI->getOperand(0).getReg();
1667     unsigned Idx = MI->getOperand(1).getReg();
1668     assert(MI->getOperand(1).isKill() && "We need the index register as scratch!");
1669
1670     // Multiply up idx if necessary.
1671     if (!Is8Bit)
1672       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1673                                        .addReg(Idx)
1674                                        .addReg(ARM::CPSR)
1675                                        .addReg(Idx)
1676                                        .addImm(1)
1677                                        // Add predicate operands.
1678                                        .addImm(ARMCC::AL)
1679                                        .addReg(0));
1680
1681     if (Base == ARM::PC) {
1682       // TBB [base, idx] =
1683       //    ADDS idx, idx, base
1684       //    LDRB idx, [idx, #4] ; or LDRH if TBH
1685       //    LSLS idx, #1
1686       //    ADDS pc, pc, idx
1687
1688       // When using PC as the base, it's important that there is no padding
1689       // between the last ADDS and the start of the jump table. The jump table
1690       // is 4-byte aligned, so we ensure we're 4 byte aligned here too.
1691       //
1692       // FIXME: Ideally we could vary the LDRB index based on the padding
1693       // between the sequence and jump table, however that relies on MCExprs
1694       // for load indexes which are currently not supported.
1695       OutStreamer->EmitCodeAlignment(4);
1696       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1697                                        .addReg(Idx)
1698                                        .addReg(Idx)
1699                                        .addReg(Base)
1700                                        // Add predicate operands.
1701                                        .addImm(ARMCC::AL)
1702                                        .addReg(0));
1703
1704       unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi;
1705       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1706                                        .addReg(Idx)
1707                                        .addReg(Idx)
1708                                        .addImm(Is8Bit ? 4 : 2)
1709                                        // Add predicate operands.
1710                                        .addImm(ARMCC::AL)
1711                                        .addReg(0));
1712     } else {
1713       // TBB [base, idx] =
1714       //    LDRB idx, [base, idx] ; or LDRH if TBH
1715       //    LSLS idx, #1
1716       //    ADDS pc, pc, idx
1717
1718       unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr;
1719       EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
1720                                        .addReg(Idx)
1721                                        .addReg(Base)
1722                                        .addReg(Idx)
1723                                        // Add predicate operands.
1724                                        .addImm(ARMCC::AL)
1725                                        .addReg(0));
1726     }
1727
1728     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri)
1729                                      .addReg(Idx)
1730                                      .addReg(ARM::CPSR)
1731                                      .addReg(Idx)
1732                                      .addImm(1)
1733                                      // Add predicate operands.
1734                                      .addImm(ARMCC::AL)
1735                                      .addReg(0));
1736
1737     OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
1738     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
1739                                      .addReg(ARM::PC)
1740                                      .addReg(ARM::PC)
1741                                      .addReg(Idx)
1742                                      // Add predicate operands.
1743                                      .addImm(ARMCC::AL)
1744                                      .addReg(0));
1745     return;
1746   }
1747   case ARM::tBR_JTr:
1748   case ARM::BR_JTr: {
1749     // mov pc, target
1750     MCInst TmpInst;
1751     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
1752       ARM::MOVr : ARM::tMOVr;
1753     TmpInst.setOpcode(Opc);
1754     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1755     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1756     // Add predicate operands.
1757     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1758     TmpInst.addOperand(MCOperand::createReg(0));
1759     // Add 's' bit operand (always reg0 for this)
1760     if (Opc == ARM::MOVr)
1761       TmpInst.addOperand(MCOperand::createReg(0));
1762     EmitToStreamer(*OutStreamer, TmpInst);
1763     return;
1764   }
1765   case ARM::BR_JTm_i12: {
1766     // ldr pc, target
1767     MCInst TmpInst;
1768     TmpInst.setOpcode(ARM::LDRi12);
1769     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1770     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1771     TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1772     // Add predicate operands.
1773     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1774     TmpInst.addOperand(MCOperand::createReg(0));
1775     EmitToStreamer(*OutStreamer, TmpInst);
1776     return;
1777   }
1778   case ARM::BR_JTm_rs: {
1779     // ldr pc, target
1780     MCInst TmpInst;
1781     TmpInst.setOpcode(ARM::LDRrs);
1782     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
1783     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1784     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
1785     TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
1786     // Add predicate operands.
1787     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
1788     TmpInst.addOperand(MCOperand::createReg(0));
1789     EmitToStreamer(*OutStreamer, TmpInst);
1790     return;
1791   }
1792   case ARM::BR_JTadd: {
1793     // add pc, target, idx
1794     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
1795       .addReg(ARM::PC)
1796       .addReg(MI->getOperand(0).getReg())
1797       .addReg(MI->getOperand(1).getReg())
1798       // Add predicate operands.
1799       .addImm(ARMCC::AL)
1800       .addReg(0)
1801       // Add 's' bit operand (always reg0 for this)
1802       .addReg(0));
1803     return;
1804   }
1805   case ARM::SPACE:
1806     OutStreamer->EmitZeros(MI->getOperand(1).getImm());
1807     return;
1808   case ARM::TRAP: {
1809     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1810     // FIXME: Remove this special case when they do.
1811     if (!Subtarget->isTargetMachO()) {
1812       uint32_t Val = 0xe7ffdefeUL;
1813       OutStreamer->AddComment("trap");
1814       ATS.emitInst(Val);
1815       return;
1816     }
1817     break;
1818   }
1819   case ARM::TRAPNaCl: {
1820     uint32_t Val = 0xe7fedef0UL;
1821     OutStreamer->AddComment("trap");
1822     ATS.emitInst(Val);
1823     return;
1824   }
1825   case ARM::tTRAP: {
1826     // Non-Darwin binutils don't yet support the "trap" mnemonic.
1827     // FIXME: Remove this special case when they do.
1828     if (!Subtarget->isTargetMachO()) {
1829       uint16_t Val = 0xdefe;
1830       OutStreamer->AddComment("trap");
1831       ATS.emitInst(Val, 'n');
1832       return;
1833     }
1834     break;
1835   }
1836   case ARM::t2Int_eh_sjlj_setjmp:
1837   case ARM::t2Int_eh_sjlj_setjmp_nofp:
1838   case ARM::tInt_eh_sjlj_setjmp: {
1839     // Two incoming args: GPR:$src, GPR:$val
1840     // mov $val, pc
1841     // adds $val, #7
1842     // str $val, [$src, #4]
1843     // movs r0, #0
1844     // b LSJLJEH
1845     // movs r0, #1
1846     // LSJLJEH:
1847     unsigned SrcReg = MI->getOperand(0).getReg();
1848     unsigned ValReg = MI->getOperand(1).getReg();
1849     MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
1850     OutStreamer->AddComment("eh_setjmp begin");
1851     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
1852       .addReg(ValReg)
1853       .addReg(ARM::PC)
1854       // Predicate.
1855       .addImm(ARMCC::AL)
1856       .addReg(0));
1857
1858     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
1859       .addReg(ValReg)
1860       // 's' bit operand
1861       .addReg(ARM::CPSR)
1862       .addReg(ValReg)
1863       .addImm(7)
1864       // Predicate.
1865       .addImm(ARMCC::AL)
1866       .addReg(0));
1867
1868     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
1869       .addReg(ValReg)
1870       .addReg(SrcReg)
1871       // The offset immediate is #4. The operand value is scaled by 4 for the
1872       // tSTR instruction.
1873       .addImm(1)
1874       // Predicate.
1875       .addImm(ARMCC::AL)
1876       .addReg(0));
1877
1878     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1879       .addReg(ARM::R0)
1880       .addReg(ARM::CPSR)
1881       .addImm(0)
1882       // Predicate.
1883       .addImm(ARMCC::AL)
1884       .addReg(0));
1885
1886     const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
1887     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
1888       .addExpr(SymbolExpr)
1889       .addImm(ARMCC::AL)
1890       .addReg(0));
1891
1892     OutStreamer->AddComment("eh_setjmp end");
1893     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
1894       .addReg(ARM::R0)
1895       .addReg(ARM::CPSR)
1896       .addImm(1)
1897       // Predicate.
1898       .addImm(ARMCC::AL)
1899       .addReg(0));
1900
1901     OutStreamer->EmitLabel(Label);
1902     return;
1903   }
1904
1905   case ARM::Int_eh_sjlj_setjmp_nofp:
1906   case ARM::Int_eh_sjlj_setjmp: {
1907     // Two incoming args: GPR:$src, GPR:$val
1908     // add $val, pc, #8
1909     // str $val, [$src, #+4]
1910     // mov r0, #0
1911     // add pc, pc, #0
1912     // mov r0, #1
1913     unsigned SrcReg = MI->getOperand(0).getReg();
1914     unsigned ValReg = MI->getOperand(1).getReg();
1915
1916     OutStreamer->AddComment("eh_setjmp begin");
1917     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1918       .addReg(ValReg)
1919       .addReg(ARM::PC)
1920       .addImm(8)
1921       // Predicate.
1922       .addImm(ARMCC::AL)
1923       .addReg(0)
1924       // 's' bit operand (always reg0 for this).
1925       .addReg(0));
1926
1927     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
1928       .addReg(ValReg)
1929       .addReg(SrcReg)
1930       .addImm(4)
1931       // Predicate.
1932       .addImm(ARMCC::AL)
1933       .addReg(0));
1934
1935     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1936       .addReg(ARM::R0)
1937       .addImm(0)
1938       // Predicate.
1939       .addImm(ARMCC::AL)
1940       .addReg(0)
1941       // 's' bit operand (always reg0 for this).
1942       .addReg(0));
1943
1944     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
1945       .addReg(ARM::PC)
1946       .addReg(ARM::PC)
1947       .addImm(0)
1948       // Predicate.
1949       .addImm(ARMCC::AL)
1950       .addReg(0)
1951       // 's' bit operand (always reg0 for this).
1952       .addReg(0));
1953
1954     OutStreamer->AddComment("eh_setjmp end");
1955     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
1956       .addReg(ARM::R0)
1957       .addImm(1)
1958       // Predicate.
1959       .addImm(ARMCC::AL)
1960       .addReg(0)
1961       // 's' bit operand (always reg0 for this).
1962       .addReg(0));
1963     return;
1964   }
1965   case ARM::Int_eh_sjlj_longjmp: {
1966     // ldr sp, [$src, #8]
1967     // ldr $scratch, [$src, #4]
1968     // ldr r7, [$src]
1969     // bx $scratch
1970     unsigned SrcReg = MI->getOperand(0).getReg();
1971     unsigned ScratchReg = MI->getOperand(1).getReg();
1972     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1973       .addReg(ARM::SP)
1974       .addReg(SrcReg)
1975       .addImm(8)
1976       // Predicate.
1977       .addImm(ARMCC::AL)
1978       .addReg(0));
1979
1980     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1981       .addReg(ScratchReg)
1982       .addReg(SrcReg)
1983       .addImm(4)
1984       // Predicate.
1985       .addImm(ARMCC::AL)
1986       .addReg(0));
1987
1988     if (STI.isTargetDarwin() || STI.isTargetWindows()) {
1989       // These platforms always use the same frame register
1990       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
1991         .addReg(FramePtr)
1992         .addReg(SrcReg)
1993         .addImm(0)
1994         // Predicate.
1995         .addImm(ARMCC::AL)
1996         .addReg(0));
1997     } else {
1998       // If the calling code might use either R7 or R11 as
1999       // frame pointer register, restore it into both.
2000       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2001         .addReg(ARM::R7)
2002         .addReg(SrcReg)
2003         .addImm(0)
2004         // Predicate.
2005         .addImm(ARMCC::AL)
2006         .addReg(0));
2007       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
2008         .addReg(ARM::R11)
2009         .addReg(SrcReg)
2010         .addImm(0)
2011         // Predicate.
2012         .addImm(ARMCC::AL)
2013         .addReg(0));
2014     }
2015
2016     assert(Subtarget->hasV4TOps());
2017     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
2018       .addReg(ScratchReg)
2019       // Predicate.
2020       .addImm(ARMCC::AL)
2021       .addReg(0));
2022     return;
2023   }
2024   case ARM::tInt_eh_sjlj_longjmp: {
2025     // ldr $scratch, [$src, #8]
2026     // mov sp, $scratch
2027     // ldr $scratch, [$src, #4]
2028     // ldr r7, [$src]
2029     // bx $scratch
2030     unsigned SrcReg = MI->getOperand(0).getReg();
2031     unsigned ScratchReg = MI->getOperand(1).getReg();
2032
2033     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2034       .addReg(ScratchReg)
2035       .addReg(SrcReg)
2036       // The offset immediate is #8. The operand value is scaled by 4 for the
2037       // tLDR instruction.
2038       .addImm(2)
2039       // Predicate.
2040       .addImm(ARMCC::AL)
2041       .addReg(0));
2042
2043     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
2044       .addReg(ARM::SP)
2045       .addReg(ScratchReg)
2046       // Predicate.
2047       .addImm(ARMCC::AL)
2048       .addReg(0));
2049
2050     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2051       .addReg(ScratchReg)
2052       .addReg(SrcReg)
2053       .addImm(1)
2054       // Predicate.
2055       .addImm(ARMCC::AL)
2056       .addReg(0));
2057
2058     if (STI.isTargetDarwin() || STI.isTargetWindows()) {
2059       // These platforms always use the same frame register
2060       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2061         .addReg(FramePtr)
2062         .addReg(SrcReg)
2063         .addImm(0)
2064         // Predicate.
2065         .addImm(ARMCC::AL)
2066         .addReg(0));
2067     } else {
2068       // If the calling code might use either R7 or R11 as
2069       // frame pointer register, restore it into both.
2070       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2071         .addReg(ARM::R7)
2072         .addReg(SrcReg)
2073         .addImm(0)
2074         // Predicate.
2075         .addImm(ARMCC::AL)
2076         .addReg(0));
2077       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
2078         .addReg(ARM::R11)
2079         .addReg(SrcReg)
2080         .addImm(0)
2081         // Predicate.
2082         .addImm(ARMCC::AL)
2083         .addReg(0));
2084     }
2085
2086     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
2087       .addReg(ScratchReg)
2088       // Predicate.
2089       .addImm(ARMCC::AL)
2090       .addReg(0));
2091     return;
2092   }
2093   case ARM::tInt_WIN_eh_sjlj_longjmp: {
2094     // ldr.w r11, [$src, #0]
2095     // ldr.w  sp, [$src, #8]
2096     // ldr.w  pc, [$src, #4]
2097
2098     unsigned SrcReg = MI->getOperand(0).getReg();
2099
2100     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2101                                      .addReg(ARM::R11)
2102                                      .addReg(SrcReg)
2103                                      .addImm(0)
2104                                      // Predicate
2105                                      .addImm(ARMCC::AL)
2106                                      .addReg(0));
2107     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2108                                      .addReg(ARM::SP)
2109                                      .addReg(SrcReg)
2110                                      .addImm(8)
2111                                      // Predicate
2112                                      .addImm(ARMCC::AL)
2113                                      .addReg(0));
2114     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12)
2115                                      .addReg(ARM::PC)
2116                                      .addReg(SrcReg)
2117                                      .addImm(4)
2118                                      // Predicate
2119                                      .addImm(ARMCC::AL)
2120                                      .addReg(0));
2121     return;
2122   }
2123   case ARM::PATCHABLE_FUNCTION_ENTER:
2124     LowerPATCHABLE_FUNCTION_ENTER(*MI);
2125     return;
2126   case ARM::PATCHABLE_FUNCTION_EXIT:
2127     LowerPATCHABLE_FUNCTION_EXIT(*MI);
2128     return;
2129   case ARM::PATCHABLE_TAIL_CALL:
2130     LowerPATCHABLE_TAIL_CALL(*MI);
2131     return;
2132   }
2133
2134   MCInst TmpInst;
2135   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
2136
2137   EmitToStreamer(*OutStreamer, TmpInst);
2138 }
2139
2140 //===----------------------------------------------------------------------===//
2141 // Target Registry Stuff
2142 //===----------------------------------------------------------------------===//
2143
2144 // Force static initialization.
2145 extern "C" void LLVMInitializeARMAsmPrinter() {
2146   RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget());
2147   RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget());
2148   RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget());
2149   RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget());
2150 }