]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/ARM/ARMSubtarget.cpp
Merge r358406 from the clang1000-import branch:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / ARM / ARMSubtarget.cpp
1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARM specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "ARM.h"
14
15 #include "ARMCallLowering.h"
16 #include "ARMLegalizerInfo.h"
17 #include "ARMRegisterBankInfo.h"
18 #include "ARMSubtarget.h"
19 #include "ARMFrameLowering.h"
20 #include "ARMInstrInfo.h"
21 #include "ARMSubtarget.h"
22 #include "ARMTargetMachine.h"
23 #include "MCTargetDesc/ARMMCTargetDesc.h"
24 #include "Thumb1FrameLowering.h"
25 #include "Thumb1InstrInfo.h"
26 #include "Thumb2InstrInfo.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCTargetOptions.h"
36 #include "llvm/Support/CodeGen.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/TargetParser.h"
39 #include "llvm/Target/TargetOptions.h"
40
41 using namespace llvm;
42
43 #define DEBUG_TYPE "arm-subtarget"
44
45 #define GET_SUBTARGETINFO_TARGET_DESC
46 #define GET_SUBTARGETINFO_CTOR
47 #include "ARMGenSubtargetInfo.inc"
48
49 static cl::opt<bool>
50 UseFusedMulOps("arm-use-mulops",
51                cl::init(true), cl::Hidden);
52
53 enum ITMode {
54   DefaultIT,
55   RestrictedIT,
56   NoRestrictedIT
57 };
58
59 static cl::opt<ITMode>
60 IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
61    cl::ZeroOrMore,
62    cl::values(clEnumValN(DefaultIT, "arm-default-it",
63                          "Generate IT block based on arch"),
64               clEnumValN(RestrictedIT, "arm-restrict-it",
65                          "Disallow deprecated IT based on ARMv8"),
66               clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
67                          "Allow IT blocks based on ARMv7")));
68
69 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not
70 /// currently supported (for testing only).
71 static cl::opt<bool>
72 ForceFastISel("arm-force-fast-isel",
73                cl::init(false), cl::Hidden);
74
75 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
76 /// so that we can use initializer lists for subtarget initialization.
77 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
78                                                             StringRef FS) {
79   initializeEnvironment();
80   initSubtargetFeatures(CPU, FS);
81   return *this;
82 }
83
84 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
85                                                         StringRef FS) {
86   ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
87   if (STI.isThumb1Only())
88     return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
89
90   return new ARMFrameLowering(STI);
91 }
92
93 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
94                            const std::string &FS,
95                            const ARMBaseTargetMachine &TM, bool IsLittle,
96                            bool MinSize)
97     : ARMGenSubtargetInfo(TT, CPU, FS), UseMulOps(UseFusedMulOps),
98       CPUString(CPU), OptMinSize(MinSize), IsLittle(IsLittle),
99       TargetTriple(TT), Options(TM.Options), TM(TM),
100       FrameLowering(initializeFrameLowering(CPU, FS)),
101       // At this point initializeSubtargetDependencies has been called so
102       // we can query directly.
103       InstrInfo(isThumb1Only()
104                     ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
105                     : !isThumb()
106                           ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
107                           : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
108       TLInfo(TM, *this) {
109
110   CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
111   Legalizer.reset(new ARMLegalizerInfo(*this));
112
113   auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
114
115   // FIXME: At this point, we can't rely on Subtarget having RBI.
116   // It's awkward to mix passing RBI and the Subtarget; should we pass
117   // TII/TRI as well?
118   InstSelector.reset(createARMInstructionSelector(
119       *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
120
121   RegBankInfo.reset(RBI);
122 }
123
124 const CallLowering *ARMSubtarget::getCallLowering() const {
125   return CallLoweringInfo.get();
126 }
127
128 const InstructionSelector *ARMSubtarget::getInstructionSelector() const {
129   return InstSelector.get();
130 }
131
132 const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
133   return Legalizer.get();
134 }
135
136 const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
137   return RegBankInfo.get();
138 }
139
140 bool ARMSubtarget::isXRaySupported() const {
141   // We don't currently suppport Thumb, but Windows requires Thumb.
142   return hasV6Ops() && hasARMOps() && !isTargetWindows();
143 }
144
145 void ARMSubtarget::initializeEnvironment() {
146   // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
147   // directly from it, but we can try to make sure they're consistent when both
148   // available.
149   UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
150                Options.ExceptionModel == ExceptionHandling::None) ||
151               Options.ExceptionModel == ExceptionHandling::SjLj;
152   assert((!TM.getMCAsmInfo() ||
153           (TM.getMCAsmInfo()->getExceptionHandlingType() ==
154            ExceptionHandling::SjLj) == UseSjLjEH) &&
155          "inconsistent sjlj choice between CodeGen and MC");
156 }
157
158 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
159   if (CPUString.empty()) {
160     CPUString = "generic";
161
162     if (isTargetDarwin()) {
163       StringRef ArchName = TargetTriple.getArchName();
164       ARM::ArchKind AK = ARM::parseArch(ArchName);
165       if (AK == ARM::ArchKind::ARMV7S)
166         // Default to the Swift CPU when targeting armv7s/thumbv7s.
167         CPUString = "swift";
168       else if (AK == ARM::ArchKind::ARMV7K)
169         // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
170         // ARMv7k does not use SjLj exception handling.
171         CPUString = "cortex-a7";
172     }
173   }
174
175   // Insert the architecture feature derived from the target triple into the
176   // feature string. This is important for setting features that are implied
177   // based on the architecture version.
178   std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
179   if (!FS.empty()) {
180     if (!ArchFS.empty())
181       ArchFS = (Twine(ArchFS) + "," + FS).str();
182     else
183       ArchFS = FS;
184   }
185   ParseSubtargetFeatures(CPUString, ArchFS);
186
187   // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
188   // Assert this for now to make the change obvious.
189   assert(hasV6T2Ops() || !hasThumb2());
190
191   // Execute only support requires movt support
192   if (genExecuteOnly()) {
193     NoMovt = false;
194     assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target");
195   }
196
197   // Keep a pointer to static instruction cost data for the specified CPU.
198   SchedModel = getSchedModelForCPU(CPUString);
199
200   // Initialize scheduling itinerary for the specified CPU.
201   InstrItins = getInstrItineraryForCPU(CPUString);
202
203   // FIXME: this is invalid for WindowsCE
204   if (isTargetWindows())
205     NoARM = true;
206
207   if (isAAPCS_ABI())
208     stackAlignment = 8;
209   if (isTargetNaCl() || isAAPCS16_ABI())
210     stackAlignment = 16;
211
212   // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
213   // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
214   // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
215   // support in the assembler and linker to be used. This would need to be
216   // fixed to fully support tail calls in Thumb1.
217   //
218   // For ARMv8-M, we /do/ implement tail calls.  Doing this is tricky for v8-M
219   // baseline, since the LDM/POP instruction on Thumb doesn't take LR.  This
220   // means if we need to reload LR, it takes extra instructions, which outweighs
221   // the value of the tail call; but here we don't know yet whether LR is going
222   // to be used. We take the optimistic approach of generating the tail call and
223   // perhaps taking a hit if we need to restore the LR.
224
225   // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
226   // but we need to make sure there are enough registers; the only valid
227   // registers are the 4 used for parameters.  We don't currently do this
228   // case.
229
230   SupportsTailCall = !isThumb() || hasV8MBaselineOps();
231
232   if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
233     SupportsTailCall = false;
234
235   switch (IT) {
236   case DefaultIT:
237     RestrictIT = hasV8Ops();
238     break;
239   case RestrictedIT:
240     RestrictIT = true;
241     break;
242   case NoRestrictedIT:
243     RestrictIT = false;
244     break;
245   }
246
247   // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
248   const FeatureBitset &Bits = getFeatureBits();
249   if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
250       (Options.UnsafeFPMath || isTargetDarwin()))
251     UseNEONForSinglePrecisionFP = true;
252
253   if (isRWPI())
254     ReserveR9 = true;
255
256   // FIXME: Teach TableGen to deal with these instead of doing it manually here.
257   switch (ARMProcFamily) {
258   case Others:
259   case CortexA5:
260     break;
261   case CortexA7:
262     LdStMultipleTiming = DoubleIssue;
263     break;
264   case CortexA8:
265     LdStMultipleTiming = DoubleIssue;
266     break;
267   case CortexA9:
268     LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
269     PreISelOperandLatencyAdjustment = 1;
270     break;
271   case CortexA12:
272     break;
273   case CortexA15:
274     MaxInterleaveFactor = 2;
275     PreISelOperandLatencyAdjustment = 1;
276     PartialUpdateClearance = 12;
277     break;
278   case CortexA17:
279   case CortexA32:
280   case CortexA35:
281   case CortexA53:
282   case CortexA55:
283   case CortexA57:
284   case CortexA72:
285   case CortexA73:
286   case CortexA75:
287   case CortexA76:
288   case CortexR4:
289   case CortexR4F:
290   case CortexR5:
291   case CortexR7:
292   case CortexM3:
293   case CortexR52:
294     break;
295   case Exynos:
296     LdStMultipleTiming = SingleIssuePlusExtras;
297     MaxInterleaveFactor = 4;
298     if (!isThumb())
299       PrefLoopAlignment = 3;
300     break;
301   case Kryo:
302     break;
303   case Krait:
304     PreISelOperandLatencyAdjustment = 1;
305     break;
306   case Swift:
307     MaxInterleaveFactor = 2;
308     LdStMultipleTiming = SingleIssuePlusExtras;
309     PreISelOperandLatencyAdjustment = 1;
310     PartialUpdateClearance = 12;
311     break;
312   }
313 }
314
315 bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
316
317 bool ARMSubtarget::isAPCS_ABI() const {
318   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
319   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
320 }
321 bool ARMSubtarget::isAAPCS_ABI() const {
322   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
323   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
324          TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
325 }
326 bool ARMSubtarget::isAAPCS16_ABI() const {
327   assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
328   return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
329 }
330
331 bool ARMSubtarget::isROPI() const {
332   return TM.getRelocationModel() == Reloc::ROPI ||
333          TM.getRelocationModel() == Reloc::ROPI_RWPI;
334 }
335 bool ARMSubtarget::isRWPI() const {
336   return TM.getRelocationModel() == Reloc::RWPI ||
337          TM.getRelocationModel() == Reloc::ROPI_RWPI;
338 }
339
340 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
341   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
342     return true;
343
344   // 32 bit macho has no relocation for a-b if a is undefined, even if b is in
345   // the section that is being relocated. This means we have to use o load even
346   // for GVs that are known to be local to the dso.
347   if (isTargetMachO() && TM.isPositionIndependent() &&
348       (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
349     return true;
350
351   return false;
352 }
353
354 bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
355   return isTargetELF() && TM.isPositionIndependent() &&
356          !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
357 }
358
359 unsigned ARMSubtarget::getMispredictionPenalty() const {
360   return SchedModel.MispredictPenalty;
361 }
362
363 bool ARMSubtarget::enableMachineScheduler() const {
364   // The MachineScheduler can increase register usage, so we use more high
365   // registers and end up with more T2 instructions that cannot be converted to
366   // T1 instructions. At least until we do better at converting to thumb1
367   // instructions, on cortex-m at Oz where we are size-paranoid, don't use the
368   // Machine scheduler, relying on the DAG register pressure scheduler instead.
369   if (isMClass() && hasMinSize())
370     return false;
371   // Enable the MachineScheduler before register allocation for subtargets
372   // with the use-misched feature.
373   return useMachineScheduler();
374 }
375
376 // This overrides the PostRAScheduler bit in the SchedModel for any CPU.
377 bool ARMSubtarget::enablePostRAScheduler() const {
378   if (disablePostRAScheduler())
379     return false;
380   // Don't reschedule potential IT blocks.
381   return !isThumb1Only();
382 }
383
384 bool ARMSubtarget::enableAtomicExpand() const { return hasAnyDataBarrier(); }
385
386 bool ARMSubtarget::useStride4VFPs() const {
387   // For general targets, the prologue can grow when VFPs are allocated with
388   // stride 4 (more vpush instructions). But WatchOS uses a compact unwind
389   // format which it's more important to get right.
390   return isTargetWatchABI() ||
391          (useWideStrideVFP() && !OptMinSize);
392 }
393
394 bool ARMSubtarget::useMovt() const {
395   // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
396   // immediates as it is inherently position independent, and may be out of
397   // range otherwise.
398   return !NoMovt && hasV8MBaselineOps() &&
399          (isTargetWindows() || !OptMinSize || genExecuteOnly());
400 }
401
402 bool ARMSubtarget::useFastISel() const {
403   // Enable fast-isel for any target, for testing only.
404   if (ForceFastISel)
405     return true;
406
407   // Limit fast-isel to the targets that are or have been tested.
408   if (!hasV6Ops())
409     return false;
410
411   // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
412   return TM.Options.EnableFastISel &&
413          ((isTargetMachO() && !isThumb1Only()) ||
414           (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
415 }
416
417 unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
418   // The GPR register class has multiple possible allocation orders, with
419   // tradeoffs preferred by different sub-architectures and optimisation goals.
420   // The allocation orders are:
421   // 0: (the default tablegen order, not used)
422   // 1: r14, r0-r13
423   // 2: r0-r7
424   // 3: r0-r7, r12, lr, r8-r11
425   // Note that the register allocator will change this order so that
426   // callee-saved registers are used later, as they require extra work in the
427   // prologue/epilogue (though we sometimes override that).
428
429   // For thumb1-only targets, only the low registers are allocatable.
430   if (isThumb1Only())
431     return 2;
432
433   // Allocate low registers first, so we can select more 16-bit instructions.
434   // We also (in ignoreCSRForAllocationOrder) override  the default behaviour
435   // with regards to callee-saved registers, because pushing extra registers is
436   // much cheaper (in terms of code size) than using high registers. After
437   // that, we allocate r12 (doesn't need to be saved), lr (saving it means we
438   // can return with the pop, don't need an extra "bx lr") and then the rest of
439   // the high registers.
440   if (isThumb2() && MF.getFunction().hasMinSize())
441     return 3;
442
443   // Otherwise, allocate in the default order, using LR first because saving it
444   // allows a shorter epilogue sequence.
445   return 1;
446 }
447
448 bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
449                                                unsigned PhysReg) const {
450   // To minimize code size in Thumb2, we prefer the usage of low regs (lower
451   // cost per use) so we can  use narrow encoding. By default, caller-saved
452   // registers (e.g. lr, r12) are always  allocated first, regardless of
453   // their cost per use. When optForMinSize, we prefer the low regs even if
454   // they are CSR because usually push/pop can be folded into existing ones.
455   return isThumb2() && MF.getFunction().hasMinSize() &&
456          ARM::GPRRegClass.contains(PhysReg);
457 }