]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/ARM/MCTargetDesc/ARMAsmBackend.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / ARM / MCTargetDesc / ARMAsmBackend.cpp
1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "MCTargetDesc/ARMAsmBackend.h"
10 #include "MCTargetDesc/ARMAddressingModes.h"
11 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
12 #include "MCTargetDesc/ARMAsmBackendELF.h"
13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
14 #include "MCTargetDesc/ARMFixupKinds.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSectionELF.h"
29 #include "llvm/MC/MCSectionMachO.h"
30 #include "llvm/MC/MCSubtargetInfo.h"
31 #include "llvm/MC/MCValue.h"
32 #include "llvm/MC/MCAsmLayout.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/EndianStream.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Format.h"
37 #include "llvm/Support/TargetParser.h"
38 #include "llvm/Support/raw_ostream.h"
39 using namespace llvm;
40
41 namespace {
42 class ARMELFObjectWriter : public MCELFObjectTargetWriter {
43 public:
44   ARMELFObjectWriter(uint8_t OSABI)
45       : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
46                                 /*HasRelocationAddend*/ false) {}
47 };
48 } // end anonymous namespace
49
50 Optional<MCFixupKind> ARMAsmBackend::getFixupKind(StringRef Name) const {
51   if (STI.getTargetTriple().isOSBinFormatELF() && Name == "R_ARM_NONE")
52     return FK_NONE;
53
54   return MCAsmBackend::getFixupKind(Name);
55 }
56
57 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
58   const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
59       // This table *must* be in the order that the fixup_* kinds are defined in
60       // ARMFixupKinds.h.
61       //
62       // Name                      Offset (bits) Size (bits)     Flags
63       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
64       {"fixup_t2_ldst_pcrel_12", 0, 32,
65        MCFixupKindInfo::FKF_IsPCRel |
66            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
67       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
68       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
69       {"fixup_t2_pcrel_10", 0, 32,
70        MCFixupKindInfo::FKF_IsPCRel |
71            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
72       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
73       {"fixup_t2_pcrel_9", 0, 32,
74        MCFixupKindInfo::FKF_IsPCRel |
75            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
76       {"fixup_thumb_adr_pcrel_10", 0, 8,
77        MCFixupKindInfo::FKF_IsPCRel |
78            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
79       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
80       {"fixup_t2_adr_pcrel_12", 0, 32,
81        MCFixupKindInfo::FKF_IsPCRel |
82            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
83       {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
84       {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
85       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
86       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
87       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
88       {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
89       {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
90       {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
91       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
92       {"fixup_arm_thumb_blx", 0, 32,
93        MCFixupKindInfo::FKF_IsPCRel |
94            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
95       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
96       {"fixup_arm_thumb_cp", 0, 8,
97        MCFixupKindInfo::FKF_IsPCRel |
98            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
99       {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
100       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
101       // - 19.
102       {"fixup_arm_movt_hi16", 0, 20, 0},
103       {"fixup_arm_movw_lo16", 0, 20, 0},
104       {"fixup_t2_movt_hi16", 0, 20, 0},
105       {"fixup_t2_movw_lo16", 0, 20, 0},
106       {"fixup_arm_mod_imm", 0, 12, 0},
107       {"fixup_t2_so_imm", 0, 26, 0},
108       {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
109       {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
110       {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
111       {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
112       {"fixup_bfcsel_else_target", 0, 32, 0},
113       {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
114       {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}
115   };
116   const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
117       // This table *must* be in the order that the fixup_* kinds are defined in
118       // ARMFixupKinds.h.
119       //
120       // Name                      Offset (bits) Size (bits)     Flags
121       {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
122       {"fixup_t2_ldst_pcrel_12", 0, 32,
123        MCFixupKindInfo::FKF_IsPCRel |
124            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
125       {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
126       {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
127       {"fixup_t2_pcrel_10", 0, 32,
128        MCFixupKindInfo::FKF_IsPCRel |
129            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
130       {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
131       {"fixup_t2_pcrel_9", 0, 32,
132        MCFixupKindInfo::FKF_IsPCRel |
133            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
134       {"fixup_thumb_adr_pcrel_10", 8, 8,
135        MCFixupKindInfo::FKF_IsPCRel |
136            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
137       {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
138       {"fixup_t2_adr_pcrel_12", 0, 32,
139        MCFixupKindInfo::FKF_IsPCRel |
140            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
141       {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
142       {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
143       {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
144       {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
145       {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
146       {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
147       {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
148       {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
149       {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
150       {"fixup_arm_thumb_blx", 0, 32,
151        MCFixupKindInfo::FKF_IsPCRel |
152            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
153       {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
154       {"fixup_arm_thumb_cp", 8, 8,
155        MCFixupKindInfo::FKF_IsPCRel |
156            MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
157       {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
158       // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
159       // - 19.
160       {"fixup_arm_movt_hi16", 12, 20, 0},
161       {"fixup_arm_movw_lo16", 12, 20, 0},
162       {"fixup_t2_movt_hi16", 12, 20, 0},
163       {"fixup_t2_movw_lo16", 12, 20, 0},
164       {"fixup_arm_mod_imm", 20, 12, 0},
165       {"fixup_t2_so_imm", 26, 6, 0},
166       {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
167       {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
168       {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
169       {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
170       {"fixup_bfcsel_else_target", 0, 32, 0},
171       {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
172       {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel}
173   };
174
175   if (Kind < FirstTargetFixupKind)
176     return MCAsmBackend::getFixupKindInfo(Kind);
177
178   assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
179          "Invalid kind!");
180   return (Endian == support::little ? InfosLE
181                                     : InfosBE)[Kind - FirstTargetFixupKind];
182 }
183
184 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
185   switch (Flag) {
186   default:
187     break;
188   case MCAF_Code16:
189     setIsThumb(true);
190     break;
191   case MCAF_Code32:
192     setIsThumb(false);
193     break;
194   }
195 }
196
197 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op,
198                                          const MCSubtargetInfo &STI) const {
199   bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
200   bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];
201
202   switch (Op) {
203   default:
204     return Op;
205   case ARM::tBcc:
206     return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
207   case ARM::tLDRpci:
208     return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
209   case ARM::tADR:
210     return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
211   case ARM::tB:
212     return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
213   case ARM::tCBZ:
214     return ARM::tHINT;
215   case ARM::tCBNZ:
216     return ARM::tHINT;
217   }
218 }
219
220 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst,
221                                       const MCSubtargetInfo &STI) const {
222   if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode())
223     return true;
224   return false;
225 }
226
227 static const char *checkPCRelOffset(uint64_t Value, int64_t Min, int64_t Max) {
228   int64_t Offset = int64_t(Value) - 4;
229   if (Offset < Min || Offset > Max)
230     return "out of range pc-relative fixup value";
231   return nullptr;
232 }
233
234 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
235                                                     uint64_t Value) const {
236   switch ((unsigned)Fixup.getKind()) {
237   case ARM::fixup_arm_thumb_br: {
238     // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
239     // low bit being an implied zero. There's an implied +4 offset for the
240     // branch, so we adjust the other way here to determine what's
241     // encodable.
242     //
243     // Relax if the value is too big for a (signed) i8.
244     int64_t Offset = int64_t(Value) - 4;
245     if (Offset > 2046 || Offset < -2048)
246       return "out of range pc-relative fixup value";
247     break;
248   }
249   case ARM::fixup_arm_thumb_bcc: {
250     // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
251     // low bit being an implied zero. There's an implied +4 offset for the
252     // branch, so we adjust the other way here to determine what's
253     // encodable.
254     //
255     // Relax if the value is too big for a (signed) i8.
256     int64_t Offset = int64_t(Value) - 4;
257     if (Offset > 254 || Offset < -256)
258       return "out of range pc-relative fixup value";
259     break;
260   }
261   case ARM::fixup_thumb_adr_pcrel_10:
262   case ARM::fixup_arm_thumb_cp: {
263     // If the immediate is negative, greater than 1020, or not a multiple
264     // of four, the wide version of the instruction must be used.
265     int64_t Offset = int64_t(Value) - 4;
266     if (Offset & 3)
267       return "misaligned pc-relative fixup value";
268     else if (Offset > 1020 || Offset < 0)
269       return "out of range pc-relative fixup value";
270     break;
271   }
272   case ARM::fixup_arm_thumb_cb: {
273     // If we have a Thumb CBZ or CBNZ instruction and its target is the next
274     // instruction it is actually out of range for the instruction.
275     // It will be changed to a NOP.
276     int64_t Offset = (Value & ~1);
277     if (Offset == 2)
278       return "will be converted to nop";
279     break;
280   }
281   case ARM::fixup_bf_branch:
282     return checkPCRelOffset(Value, 0, 30);
283   case ARM::fixup_bf_target:
284     return checkPCRelOffset(Value, -0x10000, +0xfffe);
285   case ARM::fixup_bfl_target:
286     return checkPCRelOffset(Value, -0x40000, +0x3fffe);
287   case ARM::fixup_bfc_target:
288     return checkPCRelOffset(Value, -0x1000, +0xffe);
289   case ARM::fixup_wls:
290     return checkPCRelOffset(Value, 0, +0xffe);
291   case ARM::fixup_le:
292     // The offset field in the LE and LETP instructions is an 11-bit
293     // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is
294     // interpreted as a negative offset from the value read from pc,
295     // i.e. from instruction_address+4.
296     //
297     // So an LE instruction can in principle address the instruction
298     // immediately after itself, or (not very usefully) the address
299     // half way through the 4-byte LE.
300     return checkPCRelOffset(Value, -0xffe, 0);
301   case ARM::fixup_bfcsel_else_target: {
302     if (Value != 2 && Value != 4)
303       return "out of range label-relative fixup value";
304     break;
305   }
306
307   default:
308     llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
309   }
310   return nullptr;
311 }
312
313 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
314                                          const MCRelaxableFragment *DF,
315                                          const MCAsmLayout &Layout) const {
316   return reasonForFixupRelaxation(Fixup, Value);
317 }
318
319 void ARMAsmBackend::relaxInstruction(const MCInst &Inst,
320                                      const MCSubtargetInfo &STI,
321                                      MCInst &Res) const {
322   unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI);
323
324   // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
325   if (RelaxedOp == Inst.getOpcode()) {
326     SmallString<256> Tmp;
327     raw_svector_ostream OS(Tmp);
328     Inst.dump_pretty(OS);
329     OS << "\n";
330     report_fatal_error("unexpected instruction to relax: " + OS.str());
331   }
332
333   // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
334   // have to change the operands too.
335   if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
336       RelaxedOp == ARM::tHINT) {
337     Res.setOpcode(RelaxedOp);
338     Res.addOperand(MCOperand::createImm(0));
339     Res.addOperand(MCOperand::createImm(14));
340     Res.addOperand(MCOperand::createReg(0));
341     return;
342   }
343
344   // The rest of instructions we're relaxing have the same operands.
345   // We just need to update to the proper opcode.
346   Res = Inst;
347   Res.setOpcode(RelaxedOp);
348 }
349
350 bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
351   const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
352   const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
353   const uint32_t ARMv4_NopEncoding = 0xe1a00000;   // using MOV r0,r0
354   const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
355   if (isThumb()) {
356     const uint16_t nopEncoding =
357         hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
358     uint64_t NumNops = Count / 2;
359     for (uint64_t i = 0; i != NumNops; ++i)
360       support::endian::write(OS, nopEncoding, Endian);
361     if (Count & 1)
362       OS << '\0';
363     return true;
364   }
365   // ARM mode
366   const uint32_t nopEncoding =
367       hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
368   uint64_t NumNops = Count / 4;
369   for (uint64_t i = 0; i != NumNops; ++i)
370     support::endian::write(OS, nopEncoding, Endian);
371   // FIXME: should this function return false when unable to write exactly
372   // 'Count' bytes with NOP encodings?
373   switch (Count % 4) {
374   default:
375     break; // No leftover bytes to write
376   case 1:
377     OS << '\0';
378     break;
379   case 2:
380     OS.write("\0\0", 2);
381     break;
382   case 3:
383     OS.write("\0\0\xa0", 3);
384     break;
385   }
386
387   return true;
388 }
389
390 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
391   if (IsLittleEndian) {
392     // Note that the halfwords are stored high first and low second in thumb;
393     // so we need to swap the fixup value here to map properly.
394     uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
395     Swapped |= (Value & 0x0000FFFF) << 16;
396     return Swapped;
397   } else
398     return Value;
399 }
400
401 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
402                               bool IsLittleEndian) {
403   uint32_t Value;
404
405   if (IsLittleEndian) {
406     Value = (SecondHalf & 0xFFFF) << 16;
407     Value |= (FirstHalf & 0xFFFF);
408   } else {
409     Value = (SecondHalf & 0xFFFF);
410     Value |= (FirstHalf & 0xFFFF) << 16;
411   }
412
413   return Value;
414 }
415
416 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
417                                          const MCFixup &Fixup,
418                                          const MCValue &Target, uint64_t Value,
419                                          bool IsResolved, MCContext &Ctx,
420                                          const MCSubtargetInfo* STI) const {
421   unsigned Kind = Fixup.getKind();
422
423   // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
424   // and .word relocations they put the Thumb bit into the addend if possible.
425   // Other relocation types don't want this bit though (branches couldn't encode
426   // it if it *was* present, and no other relocations exist) and it can
427   // interfere with checking valid expressions.
428   if (const MCSymbolRefExpr *A = Target.getSymA()) {
429     if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
430         A->getSymbol().isExternal() &&
431         (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
432          Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
433          Kind == ARM::fixup_t2_movt_hi16))
434       Value |= 1;
435   }
436
437   switch (Kind) {
438   default:
439     Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
440     return 0;
441   case FK_NONE:
442   case FK_Data_1:
443   case FK_Data_2:
444   case FK_Data_4:
445     return Value;
446   case FK_SecRel_2:
447     return Value;
448   case FK_SecRel_4:
449     return Value;
450   case ARM::fixup_arm_movt_hi16:
451     assert(STI != nullptr);
452     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
453       Value >>= 16;
454     LLVM_FALLTHROUGH;
455   case ARM::fixup_arm_movw_lo16: {
456     unsigned Hi4 = (Value & 0xF000) >> 12;
457     unsigned Lo12 = Value & 0x0FFF;
458     // inst{19-16} = Hi4;
459     // inst{11-0} = Lo12;
460     Value = (Hi4 << 16) | (Lo12);
461     return Value;
462   }
463   case ARM::fixup_t2_movt_hi16:
464     assert(STI != nullptr);
465     if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
466       Value >>= 16;
467     LLVM_FALLTHROUGH;
468   case ARM::fixup_t2_movw_lo16: {
469     unsigned Hi4 = (Value & 0xF000) >> 12;
470     unsigned i = (Value & 0x800) >> 11;
471     unsigned Mid3 = (Value & 0x700) >> 8;
472     unsigned Lo8 = Value & 0x0FF;
473     // inst{19-16} = Hi4;
474     // inst{26} = i;
475     // inst{14-12} = Mid3;
476     // inst{7-0} = Lo8;
477     Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
478     return swapHalfWords(Value, Endian == support::little);
479   }
480   case ARM::fixup_arm_ldst_pcrel_12:
481     // ARM PC-relative values are offset by 8.
482     Value -= 4;
483     LLVM_FALLTHROUGH;
484   case ARM::fixup_t2_ldst_pcrel_12: {
485     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
486     Value -= 4;
487     bool isAdd = true;
488     if ((int64_t)Value < 0) {
489       Value = -Value;
490       isAdd = false;
491     }
492     if (Value >= 4096) {
493       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
494       return 0;
495     }
496     Value |= isAdd << 23;
497
498     // Same addressing mode as fixup_arm_pcrel_10,
499     // but with 16-bit halfwords swapped.
500     if (Kind == ARM::fixup_t2_ldst_pcrel_12)
501       return swapHalfWords(Value, Endian == support::little);
502
503     return Value;
504   }
505   case ARM::fixup_arm_adr_pcrel_12: {
506     // ARM PC-relative values are offset by 8.
507     Value -= 8;
508     unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
509     if ((int64_t)Value < 0) {
510       Value = -Value;
511       opc = 2; // 0b0010
512     }
513     if (ARM_AM::getSOImmVal(Value) == -1) {
514       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
515       return 0;
516     }
517     // Encode the immediate and shift the opcode into place.
518     return ARM_AM::getSOImmVal(Value) | (opc << 21);
519   }
520
521   case ARM::fixup_t2_adr_pcrel_12: {
522     Value -= 4;
523     unsigned opc = 0;
524     if ((int64_t)Value < 0) {
525       Value = -Value;
526       opc = 5;
527     }
528
529     uint32_t out = (opc << 21);
530     out |= (Value & 0x800) << 15;
531     out |= (Value & 0x700) << 4;
532     out |= (Value & 0x0FF);
533
534     return swapHalfWords(out, Endian == support::little);
535   }
536
537   case ARM::fixup_arm_condbranch:
538   case ARM::fixup_arm_uncondbranch:
539   case ARM::fixup_arm_uncondbl:
540   case ARM::fixup_arm_condbl:
541   case ARM::fixup_arm_blx:
542     // These values don't encode the low two bits since they're always zero.
543     // Offset by 8 just as above.
544     if (const MCSymbolRefExpr *SRE =
545             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
546       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
547         return 0;
548     return 0xffffff & ((Value - 8) >> 2);
549   case ARM::fixup_t2_uncondbranch: {
550     Value = Value - 4;
551     if (!isInt<25>(Value)) {
552       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
553       return 0;
554     }
555
556     Value >>= 1; // Low bit is not encoded.
557
558     uint32_t out = 0;
559     bool I = Value & 0x800000;
560     bool J1 = Value & 0x400000;
561     bool J2 = Value & 0x200000;
562     J1 ^= I;
563     J2 ^= I;
564
565     out |= I << 26;                 // S bit
566     out |= !J1 << 13;               // J1 bit
567     out |= !J2 << 11;               // J2 bit
568     out |= (Value & 0x1FF800) << 5; // imm6 field
569     out |= (Value & 0x0007FF);      // imm11 field
570
571     return swapHalfWords(out, Endian == support::little);
572   }
573   case ARM::fixup_t2_condbranch: {
574     Value = Value - 4;
575     if (!isInt<21>(Value)) {
576       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
577       return 0;
578     }
579
580     Value >>= 1; // Low bit is not encoded.
581
582     uint64_t out = 0;
583     out |= (Value & 0x80000) << 7; // S bit
584     out |= (Value & 0x40000) >> 7; // J2 bit
585     out |= (Value & 0x20000) >> 4; // J1 bit
586     out |= (Value & 0x1F800) << 5; // imm6 field
587     out |= (Value & 0x007FF);      // imm11 field
588
589     return swapHalfWords(out, Endian == support::little);
590   }
591   case ARM::fixup_arm_thumb_bl: {
592     if (!isInt<25>(Value - 4) ||
593         (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
594          !STI->getFeatureBits()[ARM::HasV8MBaselineOps] &&
595          !STI->getFeatureBits()[ARM::HasV6MOps] &&
596          !isInt<23>(Value - 4))) {
597       Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
598       return 0;
599     }
600
601     // The value doesn't encode the low bit (always zero) and is offset by
602     // four. The 32-bit immediate value is encoded as
603     //   imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
604     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
605     // The value is encoded into disjoint bit positions in the destination
606     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
607     // J = either J1 or J2 bit
608     //
609     //   BL:  xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
610     //
611     // Note that the halfwords are stored high first, low second; so we need
612     // to transpose the fixup value here to map properly.
613     uint32_t offset = (Value - 4) >> 1;
614     uint32_t signBit = (offset & 0x800000) >> 23;
615     uint32_t I1Bit = (offset & 0x400000) >> 22;
616     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
617     uint32_t I2Bit = (offset & 0x200000) >> 21;
618     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
619     uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
620     uint32_t imm11Bits = (offset & 0x000007FF);
621
622     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
623     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
624                            (uint16_t)imm11Bits);
625     return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
626   }
627   case ARM::fixup_arm_thumb_blx: {
628     // The value doesn't encode the low two bits (always zero) and is offset by
629     // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
630     //   imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
631     // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
632     // The value is encoded into disjoint bit positions in the destination
633     // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
634     // J = either J1 or J2 bit, 0 = zero.
635     //
636     //   BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
637     //
638     // Note that the halfwords are stored high first, low second; so we need
639     // to transpose the fixup value here to map properly.
640     if (Value % 4 != 0) {
641       Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
642       return 0;
643     }
644
645     uint32_t offset = (Value - 4) >> 2;
646     if (const MCSymbolRefExpr *SRE =
647             dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
648       if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
649         offset = 0;
650     uint32_t signBit = (offset & 0x400000) >> 22;
651     uint32_t I1Bit = (offset & 0x200000) >> 21;
652     uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
653     uint32_t I2Bit = (offset & 0x100000) >> 20;
654     uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
655     uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
656     uint32_t imm10LBits = (offset & 0x3FF);
657
658     uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
659     uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
660                            ((uint16_t)imm10LBits) << 1);
661     return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
662   }
663   case ARM::fixup_thumb_adr_pcrel_10:
664   case ARM::fixup_arm_thumb_cp:
665     // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
666     // could have an error on our hands.
667     assert(STI != nullptr);
668     if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
669       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
670       if (FixupDiagnostic) {
671         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
672         return 0;
673       }
674     }
675     // Offset by 4, and don't encode the low two bits.
676     return ((Value - 4) >> 2) & 0xff;
677   case ARM::fixup_arm_thumb_cb: {
678     // CB instructions can only branch to offsets in [4, 126] in multiples of 2
679     // so ensure that the raw value LSB is zero and it lies in [2, 130].
680     // An offset of 2 will be relaxed to a NOP.
681     if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
682       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
683       return 0;
684     }
685     // Offset by 4 and don't encode the lower bit, which is always 0.
686     // FIXME: diagnose if no Thumb2
687     uint32_t Binary = (Value - 4) >> 1;
688     return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
689   }
690   case ARM::fixup_arm_thumb_br:
691     // Offset by 4 and don't encode the lower bit, which is always 0.
692     assert(STI != nullptr);
693     if (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
694         !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
695       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
696       if (FixupDiagnostic) {
697         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
698         return 0;
699       }
700     }
701     return ((Value - 4) >> 1) & 0x7ff;
702   case ARM::fixup_arm_thumb_bcc:
703     // Offset by 4 and don't encode the lower bit, which is always 0.
704     assert(STI != nullptr);
705     if (!STI->getFeatureBits()[ARM::FeatureThumb2]) {
706       const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
707       if (FixupDiagnostic) {
708         Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
709         return 0;
710       }
711     }
712     return ((Value - 4) >> 1) & 0xff;
713   case ARM::fixup_arm_pcrel_10_unscaled: {
714     Value = Value - 8; // ARM fixups offset by an additional word and don't
715                        // need to adjust for the half-word ordering.
716     bool isAdd = true;
717     if ((int64_t)Value < 0) {
718       Value = -Value;
719       isAdd = false;
720     }
721     // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
722     if (Value >= 256) {
723       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
724       return 0;
725     }
726     Value = (Value & 0xf) | ((Value & 0xf0) << 4);
727     return Value | (isAdd << 23);
728   }
729   case ARM::fixup_arm_pcrel_10:
730     Value = Value - 4; // ARM fixups offset by an additional word and don't
731                        // need to adjust for the half-word ordering.
732     LLVM_FALLTHROUGH;
733   case ARM::fixup_t2_pcrel_10: {
734     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
735     Value = Value - 4;
736     bool isAdd = true;
737     if ((int64_t)Value < 0) {
738       Value = -Value;
739       isAdd = false;
740     }
741     // These values don't encode the low two bits since they're always zero.
742     Value >>= 2;
743     if (Value >= 256) {
744       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
745       return 0;
746     }
747     Value |= isAdd << 23;
748
749     // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
750     // swapped.
751     if (Kind == ARM::fixup_t2_pcrel_10)
752       return swapHalfWords(Value, Endian == support::little);
753
754     return Value;
755   }
756   case ARM::fixup_arm_pcrel_9:
757     Value = Value - 4; // ARM fixups offset by an additional word and don't
758                        // need to adjust for the half-word ordering.
759     LLVM_FALLTHROUGH;
760   case ARM::fixup_t2_pcrel_9: {
761     // Offset by 4, adjusted by two due to the half-word ordering of thumb.
762     Value = Value - 4;
763     bool isAdd = true;
764     if ((int64_t)Value < 0) {
765       Value = -Value;
766       isAdd = false;
767     }
768     // These values don't encode the low bit since it's always zero.
769     if (Value & 1) {
770       Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
771       return 0;
772     }
773     Value >>= 1;
774     if (Value >= 256) {
775       Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
776       return 0;
777     }
778     Value |= isAdd << 23;
779
780     // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
781     // swapped.
782     if (Kind == ARM::fixup_t2_pcrel_9)
783       return swapHalfWords(Value, Endian == support::little);
784
785     return Value;
786   }
787   case ARM::fixup_arm_mod_imm:
788     Value = ARM_AM::getSOImmVal(Value);
789     if (Value >> 12) {
790       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
791       return 0;
792     }
793     return Value;
794   case ARM::fixup_t2_so_imm: {
795     Value = ARM_AM::getT2SOImmVal(Value);
796     if ((int64_t)Value < 0) {
797       Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
798       return 0;
799     }
800     // Value will contain a 12-bit value broken up into a 4-bit shift in bits
801     // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
802     // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
803     // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
804     // half-word.
805     uint64_t EncValue = 0;
806     EncValue |= (Value & 0x800) << 15;
807     EncValue |= (Value & 0x700) << 4;
808     EncValue |= (Value & 0xff);
809     return swapHalfWords(EncValue, Endian == support::little);
810   }
811   case ARM::fixup_bf_branch: {
812     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
813     if (FixupDiagnostic) {
814       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
815       return 0;
816     }
817     uint32_t out = (((Value - 4) >> 1) & 0xf) << 23;
818     return swapHalfWords(out, Endian == support::little);
819   }
820   case ARM::fixup_bf_target:
821   case ARM::fixup_bfl_target:
822   case ARM::fixup_bfc_target: {
823     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
824     if (FixupDiagnostic) {
825       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
826       return 0;
827     }
828     uint32_t out = 0;
829     uint32_t HighBitMask = (Kind == ARM::fixup_bf_target ? 0xf800 :
830                             Kind == ARM::fixup_bfl_target ? 0x3f800 : 0x800);
831     out |= (((Value - 4) >> 1) & 0x1) << 11;
832     out |= (((Value - 4) >> 1) & 0x7fe);
833     out |= (((Value - 4) >> 1) & HighBitMask) << 5;
834     return swapHalfWords(out, Endian == support::little);
835   }
836   case ARM::fixup_bfcsel_else_target: {
837     // If this is a fixup of a branch future's else target then it should be a
838     // constant MCExpr representing the distance between the branch targetted
839     // and the instruction after that same branch.
840     Value = Target.getConstant();
841
842     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
843     if (FixupDiagnostic) {
844       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
845       return 0;
846     }
847     uint32_t out = ((Value >> 2) & 1) << 17;
848     return swapHalfWords(out, Endian == support::little);
849   }
850   case ARM::fixup_wls:
851   case ARM::fixup_le: {
852     const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
853     if (FixupDiagnostic) {
854       Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
855       return 0;
856     }
857     uint64_t real_value = Value - 4;
858     uint32_t out = 0;
859     if (Kind == ARM::fixup_le)
860       real_value = -real_value;
861     out |= ((real_value >> 1) & 0x1) << 11;
862     out |= ((real_value >> 1) & 0x7fe);
863     return swapHalfWords(out, Endian == support::little);
864   }
865   }
866 }
867
868 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
869                                           const MCFixup &Fixup,
870                                           const MCValue &Target) {
871   const MCSymbolRefExpr *A = Target.getSymA();
872   const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
873   const unsigned FixupKind = Fixup.getKind() ;
874   if (FixupKind == FK_NONE)
875     return true;
876   if (FixupKind == ARM::fixup_arm_thumb_bl) {
877     assert(Sym && "How did we resolve this?");
878
879     // If the symbol is external the linker will handle it.
880     // FIXME: Should we handle it as an optimization?
881
882     // If the symbol is out of range, produce a relocation and hope the
883     // linker can handle it. GNU AS produces an error in this case.
884     if (Sym->isExternal())
885       return true;
886   }
887   // Create relocations for unconditional branches to function symbols with
888   // different execution mode in ELF binaries.
889   if (Sym && Sym->isELF()) {
890     unsigned Type = cast<MCSymbolELF>(Sym)->getType();
891     if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
892       if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
893         return true;
894       if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
895                                     FixupKind == ARM::fixup_arm_thumb_bl ||
896                                     FixupKind == ARM::fixup_t2_condbranch ||
897                                     FixupKind == ARM::fixup_t2_uncondbranch))
898         return true;
899     }
900   }
901   // We must always generate a relocation for BL/BLX instructions if we have
902   // a symbol to reference, as the linker relies on knowing the destination
903   // symbol's thumb-ness to get interworking right.
904   if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
905             FixupKind == ARM::fixup_arm_blx ||
906             FixupKind == ARM::fixup_arm_uncondbl ||
907             FixupKind == ARM::fixup_arm_condbl))
908     return true;
909   return false;
910 }
911
912 /// getFixupKindNumBytes - The number of bytes the fixup may change.
913 static unsigned getFixupKindNumBytes(unsigned Kind) {
914   switch (Kind) {
915   default:
916     llvm_unreachable("Unknown fixup kind!");
917
918   case FK_NONE:
919     return 0;
920
921   case FK_Data_1:
922   case ARM::fixup_arm_thumb_bcc:
923   case ARM::fixup_arm_thumb_cp:
924   case ARM::fixup_thumb_adr_pcrel_10:
925     return 1;
926
927   case FK_Data_2:
928   case ARM::fixup_arm_thumb_br:
929   case ARM::fixup_arm_thumb_cb:
930   case ARM::fixup_arm_mod_imm:
931     return 2;
932
933   case ARM::fixup_arm_pcrel_10_unscaled:
934   case ARM::fixup_arm_ldst_pcrel_12:
935   case ARM::fixup_arm_pcrel_10:
936   case ARM::fixup_arm_pcrel_9:
937   case ARM::fixup_arm_adr_pcrel_12:
938   case ARM::fixup_arm_uncondbl:
939   case ARM::fixup_arm_condbl:
940   case ARM::fixup_arm_blx:
941   case ARM::fixup_arm_condbranch:
942   case ARM::fixup_arm_uncondbranch:
943     return 3;
944
945   case FK_Data_4:
946   case ARM::fixup_t2_ldst_pcrel_12:
947   case ARM::fixup_t2_condbranch:
948   case ARM::fixup_t2_uncondbranch:
949   case ARM::fixup_t2_pcrel_10:
950   case ARM::fixup_t2_pcrel_9:
951   case ARM::fixup_t2_adr_pcrel_12:
952   case ARM::fixup_arm_thumb_bl:
953   case ARM::fixup_arm_thumb_blx:
954   case ARM::fixup_arm_movt_hi16:
955   case ARM::fixup_arm_movw_lo16:
956   case ARM::fixup_t2_movt_hi16:
957   case ARM::fixup_t2_movw_lo16:
958   case ARM::fixup_t2_so_imm:
959   case ARM::fixup_bf_branch:
960   case ARM::fixup_bf_target:
961   case ARM::fixup_bfl_target:
962   case ARM::fixup_bfc_target:
963   case ARM::fixup_bfcsel_else_target:
964   case ARM::fixup_wls:
965   case ARM::fixup_le:
966     return 4;
967
968   case FK_SecRel_2:
969     return 2;
970   case FK_SecRel_4:
971     return 4;
972   }
973 }
974
975 /// getFixupKindContainerSizeBytes - The number of bytes of the
976 /// container involved in big endian.
977 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
978   switch (Kind) {
979   default:
980     llvm_unreachable("Unknown fixup kind!");
981
982   case FK_NONE:
983     return 0;
984
985   case FK_Data_1:
986     return 1;
987   case FK_Data_2:
988     return 2;
989   case FK_Data_4:
990     return 4;
991
992   case ARM::fixup_arm_thumb_bcc:
993   case ARM::fixup_arm_thumb_cp:
994   case ARM::fixup_thumb_adr_pcrel_10:
995   case ARM::fixup_arm_thumb_br:
996   case ARM::fixup_arm_thumb_cb:
997     // Instruction size is 2 bytes.
998     return 2;
999
1000   case ARM::fixup_arm_pcrel_10_unscaled:
1001   case ARM::fixup_arm_ldst_pcrel_12:
1002   case ARM::fixup_arm_pcrel_10:
1003   case ARM::fixup_arm_pcrel_9:
1004   case ARM::fixup_arm_adr_pcrel_12:
1005   case ARM::fixup_arm_uncondbl:
1006   case ARM::fixup_arm_condbl:
1007   case ARM::fixup_arm_blx:
1008   case ARM::fixup_arm_condbranch:
1009   case ARM::fixup_arm_uncondbranch:
1010   case ARM::fixup_t2_ldst_pcrel_12:
1011   case ARM::fixup_t2_condbranch:
1012   case ARM::fixup_t2_uncondbranch:
1013   case ARM::fixup_t2_pcrel_10:
1014   case ARM::fixup_t2_adr_pcrel_12:
1015   case ARM::fixup_arm_thumb_bl:
1016   case ARM::fixup_arm_thumb_blx:
1017   case ARM::fixup_arm_movt_hi16:
1018   case ARM::fixup_arm_movw_lo16:
1019   case ARM::fixup_t2_movt_hi16:
1020   case ARM::fixup_t2_movw_lo16:
1021   case ARM::fixup_arm_mod_imm:
1022   case ARM::fixup_t2_so_imm:
1023   case ARM::fixup_bf_branch:
1024   case ARM::fixup_bf_target:
1025   case ARM::fixup_bfl_target:
1026   case ARM::fixup_bfc_target:
1027   case ARM::fixup_bfcsel_else_target:
1028   case ARM::fixup_wls:
1029   case ARM::fixup_le:
1030     // Instruction size is 4 bytes.
1031     return 4;
1032   }
1033 }
1034
1035 void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
1036                                const MCValue &Target,
1037                                MutableArrayRef<char> Data, uint64_t Value,
1038                                bool IsResolved,
1039                                const MCSubtargetInfo* STI) const {
1040   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
1041   MCContext &Ctx = Asm.getContext();
1042   Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI);
1043   if (!Value)
1044     return; // Doesn't change encoding.
1045
1046   unsigned Offset = Fixup.getOffset();
1047   assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
1048
1049   // Used to point to big endian bytes.
1050   unsigned FullSizeBytes;
1051   if (Endian == support::big) {
1052     FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
1053     assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
1054     assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
1055   }
1056
1057   // For each byte of the fragment that the fixup touches, mask in the bits from
1058   // the fixup value. The Value has been "split up" into the appropriate
1059   // bitfields above.
1060   for (unsigned i = 0; i != NumBytes; ++i) {
1061     unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
1062     Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
1063   }
1064 }
1065
1066 namespace CU {
1067
1068 /// Compact unwind encoding values.
1069 enum CompactUnwindEncodings {
1070   UNWIND_ARM_MODE_MASK                         = 0x0F000000,
1071   UNWIND_ARM_MODE_FRAME                        = 0x01000000,
1072   UNWIND_ARM_MODE_FRAME_D                      = 0x02000000,
1073   UNWIND_ARM_MODE_DWARF                        = 0x04000000,
1074
1075   UNWIND_ARM_FRAME_STACK_ADJUST_MASK           = 0x00C00000,
1076
1077   UNWIND_ARM_FRAME_FIRST_PUSH_R4               = 0x00000001,
1078   UNWIND_ARM_FRAME_FIRST_PUSH_R5               = 0x00000002,
1079   UNWIND_ARM_FRAME_FIRST_PUSH_R6               = 0x00000004,
1080
1081   UNWIND_ARM_FRAME_SECOND_PUSH_R8              = 0x00000008,
1082   UNWIND_ARM_FRAME_SECOND_PUSH_R9              = 0x00000010,
1083   UNWIND_ARM_FRAME_SECOND_PUSH_R10             = 0x00000020,
1084   UNWIND_ARM_FRAME_SECOND_PUSH_R11             = 0x00000040,
1085   UNWIND_ARM_FRAME_SECOND_PUSH_R12             = 0x00000080,
1086
1087   UNWIND_ARM_FRAME_D_REG_COUNT_MASK            = 0x00000F00,
1088
1089   UNWIND_ARM_DWARF_SECTION_OFFSET              = 0x00FFFFFF
1090 };
1091
1092 } // end CU namespace
1093
1094 /// Generate compact unwind encoding for the function based on the CFI
1095 /// instructions. If the CFI instructions describe a frame that cannot be
1096 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
1097 /// tells the runtime to fallback and unwind using dwarf.
1098 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
1099     ArrayRef<MCCFIInstruction> Instrs) const {
1100   DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
1101   // Only armv7k uses CFI based unwinding.
1102   if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
1103     return 0;
1104   // No .cfi directives means no frame.
1105   if (Instrs.empty())
1106     return 0;
1107   // Start off assuming CFA is at SP+0.
1108   int CFARegister = ARM::SP;
1109   int CFARegisterOffset = 0;
1110   // Mark savable registers as initially unsaved
1111   DenseMap<unsigned, int> RegOffsets;
1112   int FloatRegCount = 0;
1113   // Process each .cfi directive and build up compact unwind info.
1114   for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
1115     int Reg;
1116     const MCCFIInstruction &Inst = Instrs[i];
1117     switch (Inst.getOperation()) {
1118     case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
1119       CFARegisterOffset = -Inst.getOffset();
1120       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
1121       break;
1122     case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
1123       CFARegisterOffset = -Inst.getOffset();
1124       break;
1125     case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
1126       CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
1127       break;
1128     case MCCFIInstruction::OpOffset: // DW_CFA_offset
1129       Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
1130       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
1131         RegOffsets[Reg] = Inst.getOffset();
1132       else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
1133         RegOffsets[Reg] = Inst.getOffset();
1134         ++FloatRegCount;
1135       } else {
1136         DEBUG_WITH_TYPE("compact-unwind",
1137                         llvm::dbgs() << ".cfi_offset on unknown register="
1138                                      << Inst.getRegister() << "\n");
1139         return CU::UNWIND_ARM_MODE_DWARF;
1140       }
1141       break;
1142     case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
1143       // Ignore
1144       break;
1145     default:
1146       // Directive not convertable to compact unwind, bail out.
1147       DEBUG_WITH_TYPE("compact-unwind",
1148                       llvm::dbgs()
1149                           << "CFI directive not compatiable with comact "
1150                              "unwind encoding, opcode=" << Inst.getOperation()
1151                           << "\n");
1152       return CU::UNWIND_ARM_MODE_DWARF;
1153       break;
1154     }
1155   }
1156
1157   // If no frame set up, return no unwind info.
1158   if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
1159     return 0;
1160
1161   // Verify standard frame (lr/r7) was used.
1162   if (CFARegister != ARM::R7) {
1163     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1164                                                    << CFARegister
1165                                                    << " instead of r7\n");
1166     return CU::UNWIND_ARM_MODE_DWARF;
1167   }
1168   int StackAdjust = CFARegisterOffset - 8;
1169   if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
1170     DEBUG_WITH_TYPE("compact-unwind",
1171                     llvm::dbgs()
1172                         << "LR not saved as standard frame, StackAdjust="
1173                         << StackAdjust
1174                         << ", CFARegisterOffset=" << CFARegisterOffset
1175                         << ", lr save at offset=" << RegOffsets[14] << "\n");
1176     return CU::UNWIND_ARM_MODE_DWARF;
1177   }
1178   if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
1179     DEBUG_WITH_TYPE("compact-unwind",
1180                     llvm::dbgs() << "r7 not saved as standard frame\n");
1181     return CU::UNWIND_ARM_MODE_DWARF;
1182   }
1183   uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
1184
1185   // If var-args are used, there may be a stack adjust required.
1186   switch (StackAdjust) {
1187   case 0:
1188     break;
1189   case 4:
1190     CompactUnwindEncoding |= 0x00400000;
1191     break;
1192   case 8:
1193     CompactUnwindEncoding |= 0x00800000;
1194     break;
1195   case 12:
1196     CompactUnwindEncoding |= 0x00C00000;
1197     break;
1198   default:
1199     DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1200                                           << ".cfi_def_cfa stack adjust ("
1201                                           << StackAdjust << ") out of range\n");
1202     return CU::UNWIND_ARM_MODE_DWARF;
1203   }
1204
1205   // If r6 is saved, it must be right below r7.
1206   static struct {
1207     unsigned Reg;
1208     unsigned Encoding;
1209   } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1210                    {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1211                    {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1212                    {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1213                    {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1214                    {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1215                    {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1216                    {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1217
1218   int CurOffset = -8 - StackAdjust;
1219   for (auto CSReg : GPRCSRegs) {
1220     auto Offset = RegOffsets.find(CSReg.Reg);
1221     if (Offset == RegOffsets.end())
1222       continue;
1223
1224     int RegOffset = Offset->second;
1225     if (RegOffset != CurOffset - 4) {
1226       DEBUG_WITH_TYPE("compact-unwind",
1227                       llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1228                                    << RegOffset << " but only supported at "
1229                                    << CurOffset << "\n");
1230       return CU::UNWIND_ARM_MODE_DWARF;
1231     }
1232     CompactUnwindEncoding |= CSReg.Encoding;
1233     CurOffset -= 4;
1234   }
1235
1236   // If no floats saved, we are done.
1237   if (FloatRegCount == 0)
1238     return CompactUnwindEncoding;
1239
1240   // Switch mode to include D register saving.
1241   CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1242   CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1243
1244   // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1245   // but needs coordination with the linker and libunwind.
1246   if (FloatRegCount > 4) {
1247     DEBUG_WITH_TYPE("compact-unwind",
1248                     llvm::dbgs() << "unsupported number of D registers saved ("
1249                                  << FloatRegCount << ")\n");
1250       return CU::UNWIND_ARM_MODE_DWARF;
1251   }
1252
1253   // Floating point registers must either be saved sequentially, or we defer to
1254   // DWARF. No gaps allowed here so check that each saved d-register is
1255   // precisely where it should be.
1256   static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1257   for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1258     auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1259     if (Offset == RegOffsets.end()) {
1260       DEBUG_WITH_TYPE("compact-unwind",
1261                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1262                                    << MRI.getName(FPRCSRegs[Idx])
1263                                    << " not saved\n");
1264       return CU::UNWIND_ARM_MODE_DWARF;
1265     } else if (Offset->second != CurOffset - 8) {
1266       DEBUG_WITH_TYPE("compact-unwind",
1267                       llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1268                                    << MRI.getName(FPRCSRegs[Idx])
1269                                    << " saved at " << Offset->second
1270                                    << ", expected at " << CurOffset - 8
1271                                    << "\n");
1272       return CU::UNWIND_ARM_MODE_DWARF;
1273     }
1274     CurOffset -= 8;
1275   }
1276
1277   return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1278 }
1279
1280 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
1281   ARM::ArchKind AK = ARM::parseArch(Arch);
1282   switch (AK) {
1283   default:
1284     return MachO::CPU_SUBTYPE_ARM_V7;
1285   case ARM::ArchKind::ARMV4T:
1286     return MachO::CPU_SUBTYPE_ARM_V4T;
1287   case ARM::ArchKind::ARMV5T:
1288   case ARM::ArchKind::ARMV5TE:
1289   case ARM::ArchKind::ARMV5TEJ:
1290     return MachO::CPU_SUBTYPE_ARM_V5;
1291   case ARM::ArchKind::ARMV6:
1292   case ARM::ArchKind::ARMV6K:
1293     return MachO::CPU_SUBTYPE_ARM_V6;
1294   case ARM::ArchKind::ARMV7A:
1295     return MachO::CPU_SUBTYPE_ARM_V7;
1296   case ARM::ArchKind::ARMV7S:
1297     return MachO::CPU_SUBTYPE_ARM_V7S;
1298   case ARM::ArchKind::ARMV7K:
1299     return MachO::CPU_SUBTYPE_ARM_V7K;
1300   case ARM::ArchKind::ARMV6M:
1301     return MachO::CPU_SUBTYPE_ARM_V6M;
1302   case ARM::ArchKind::ARMV7M:
1303     return MachO::CPU_SUBTYPE_ARM_V7M;
1304   case ARM::ArchKind::ARMV7EM:
1305     return MachO::CPU_SUBTYPE_ARM_V7EM;
1306   }
1307 }
1308
1309 static MCAsmBackend *createARMAsmBackend(const Target &T,
1310                                          const MCSubtargetInfo &STI,
1311                                          const MCRegisterInfo &MRI,
1312                                          const MCTargetOptions &Options,
1313                                          support::endianness Endian) {
1314   const Triple &TheTriple = STI.getTargetTriple();
1315   switch (TheTriple.getObjectFormat()) {
1316   default:
1317     llvm_unreachable("unsupported object format");
1318   case Triple::MachO: {
1319     MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
1320     return new ARMAsmBackendDarwin(T, STI, MRI, CS);
1321   }
1322   case Triple::COFF:
1323     assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1324     return new ARMAsmBackendWinCOFF(T, STI);
1325   case Triple::ELF:
1326     assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1327     uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1328     return new ARMAsmBackendELF(T, STI, OSABI, Endian);
1329   }
1330 }
1331
1332 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1333                                           const MCSubtargetInfo &STI,
1334                                           const MCRegisterInfo &MRI,
1335                                           const MCTargetOptions &Options) {
1336   return createARMAsmBackend(T, STI, MRI, Options, support::little);
1337 }
1338
1339 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1340                                           const MCSubtargetInfo &STI,
1341                                           const MCRegisterInfo &MRI,
1342                                           const MCTargetOptions &Options) {
1343   return createARMAsmBackend(T, STI, MRI, Options, support::big);
1344 }