]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/AVR/AVRISelLowering.cpp
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / AVR / AVRISelLowering.cpp
1 //===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that AVR uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "AVRISelLowering.h"
15
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/Support/ErrorHandling.h"
25
26 #include "AVR.h"
27 #include "AVRMachineFunctionInfo.h"
28 #include "AVRSubtarget.h"
29 #include "AVRTargetMachine.h"
30 #include "MCTargetDesc/AVRMCTargetDesc.h"
31
32 namespace llvm {
33
34 AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM,
35                                      const AVRSubtarget &STI)
36     : TargetLowering(TM), Subtarget(STI) {
37   // Set up the register classes.
38   addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
39   addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
40
41   // Compute derived properties from the register classes.
42   computeRegisterProperties(Subtarget.getRegisterInfo());
43
44   setBooleanContents(ZeroOrOneBooleanContent);
45   setBooleanVectorContents(ZeroOrOneBooleanContent);
46   setSchedulingPreference(Sched::RegPressure);
47   setStackPointerRegisterToSaveRestore(AVR::SP);
48   setSupportsUnalignedAtomics(true);
49
50   setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
51   setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
52
53   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
54   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
55   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
56   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
57
58   for (MVT VT : MVT::integer_valuetypes()) {
59     for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
60       setLoadExtAction(N, VT, MVT::i1, Promote);
61       setLoadExtAction(N, VT, MVT::i8, Expand);
62     }
63   }
64
65   setTruncStoreAction(MVT::i16, MVT::i8, Expand);
66
67   for (MVT VT : MVT::integer_valuetypes()) {
68     setOperationAction(ISD::ADDC, VT, Legal);
69     setOperationAction(ISD::SUBC, VT, Legal);
70     setOperationAction(ISD::ADDE, VT, Legal);
71     setOperationAction(ISD::SUBE, VT, Legal);
72   }
73
74   // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
75   // revert into a sub since we don't have an add with immediate instruction.
76   setOperationAction(ISD::ADD, MVT::i32, Custom);
77   setOperationAction(ISD::ADD, MVT::i64, Custom);
78
79   // our shift instructions are only able to shift 1 bit at a time, so handle
80   // this in a custom way.
81   setOperationAction(ISD::SRA, MVT::i8, Custom);
82   setOperationAction(ISD::SHL, MVT::i8, Custom);
83   setOperationAction(ISD::SRL, MVT::i8, Custom);
84   setOperationAction(ISD::SRA, MVT::i16, Custom);
85   setOperationAction(ISD::SHL, MVT::i16, Custom);
86   setOperationAction(ISD::SRL, MVT::i16, Custom);
87   setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
88   setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
89   setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
90
91   setOperationAction(ISD::ROTL, MVT::i8, Custom);
92   setOperationAction(ISD::ROTL, MVT::i16, Expand);
93   setOperationAction(ISD::ROTR, MVT::i8, Custom);
94   setOperationAction(ISD::ROTR, MVT::i16, Expand);
95
96   setOperationAction(ISD::BR_CC, MVT::i8, Custom);
97   setOperationAction(ISD::BR_CC, MVT::i16, Custom);
98   setOperationAction(ISD::BR_CC, MVT::i32, Custom);
99   setOperationAction(ISD::BR_CC, MVT::i64, Custom);
100   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
101
102   setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
103   setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
104   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
105   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
106   setOperationAction(ISD::SETCC, MVT::i8, Custom);
107   setOperationAction(ISD::SETCC, MVT::i16, Custom);
108   setOperationAction(ISD::SETCC, MVT::i32, Custom);
109   setOperationAction(ISD::SETCC, MVT::i64, Custom);
110   setOperationAction(ISD::SELECT, MVT::i8, Expand);
111   setOperationAction(ISD::SELECT, MVT::i16, Expand);
112
113   setOperationAction(ISD::BSWAP, MVT::i16, Expand);
114
115   // Add support for postincrement and predecrement load/stores.
116   setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
117   setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
118   setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
119   setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
120   setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
121   setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
122   setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
123   setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
124
125   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
126
127   setOperationAction(ISD::VASTART, MVT::Other, Custom);
128   setOperationAction(ISD::VAEND, MVT::Other, Expand);
129   setOperationAction(ISD::VAARG, MVT::Other, Expand);
130   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
131
132   // Atomic operations which must be lowered to rtlib calls
133   for (MVT VT : MVT::integer_valuetypes()) {
134     setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
135     setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
136     setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
137     setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
138     setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
139     setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
140     setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
141   }
142
143   // Division/remainder
144   setOperationAction(ISD::UDIV, MVT::i8, Expand);
145   setOperationAction(ISD::UDIV, MVT::i16, Expand);
146   setOperationAction(ISD::UREM, MVT::i8, Expand);
147   setOperationAction(ISD::UREM, MVT::i16, Expand);
148   setOperationAction(ISD::SDIV, MVT::i8, Expand);
149   setOperationAction(ISD::SDIV, MVT::i16, Expand);
150   setOperationAction(ISD::SREM, MVT::i8, Expand);
151   setOperationAction(ISD::SREM, MVT::i16, Expand);
152
153   // Make division and modulus custom
154   for (MVT VT : MVT::integer_valuetypes()) {
155     setOperationAction(ISD::UDIVREM, VT, Custom);
156     setOperationAction(ISD::SDIVREM, VT, Custom);
157   }
158
159   // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
160   setOperationAction(ISD::MUL, MVT::i8, Expand);
161   setOperationAction(ISD::MUL, MVT::i16, Expand);
162
163   // Expand 16 bit multiplications.
164   setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
165   setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
166
167   // Expand multiplications to libcalls when there is
168   // no hardware MUL.
169   if (!Subtarget.supportsMultiplication()) {
170     setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
171     setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
172   }
173
174   for (MVT VT : MVT::integer_valuetypes()) {
175     setOperationAction(ISD::MULHS, VT, Expand);
176     setOperationAction(ISD::MULHU, VT, Expand);
177   }
178
179   for (MVT VT : MVT::integer_valuetypes()) {
180     setOperationAction(ISD::CTPOP, VT, Expand);
181     setOperationAction(ISD::CTLZ, VT, Expand);
182     setOperationAction(ISD::CTTZ, VT, Expand);
183   }
184
185   for (MVT VT : MVT::integer_valuetypes()) {
186     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
187     // TODO: The generated code is pretty poor. Investigate using the
188     // same "shift and subtract with carry" trick that we do for
189     // extending 8-bit to 16-bit. This may require infrastructure
190     // improvements in how we treat 16-bit "registers" to be feasible.
191   }
192
193   // Division rtlib functions (not supported)
194   setLibcallName(RTLIB::SDIV_I8, nullptr);
195   setLibcallName(RTLIB::SDIV_I16, nullptr);
196   setLibcallName(RTLIB::SDIV_I32, nullptr);
197   setLibcallName(RTLIB::SDIV_I64, nullptr);
198   setLibcallName(RTLIB::SDIV_I128, nullptr);
199   setLibcallName(RTLIB::UDIV_I8, nullptr);
200   setLibcallName(RTLIB::UDIV_I16, nullptr);
201   setLibcallName(RTLIB::UDIV_I32, nullptr);
202   setLibcallName(RTLIB::UDIV_I64, nullptr);
203   setLibcallName(RTLIB::UDIV_I128, nullptr);
204
205   // Modulus rtlib functions (not supported)
206   setLibcallName(RTLIB::SREM_I8, nullptr);
207   setLibcallName(RTLIB::SREM_I16, nullptr);
208   setLibcallName(RTLIB::SREM_I32, nullptr);
209   setLibcallName(RTLIB::SREM_I64, nullptr);
210   setLibcallName(RTLIB::SREM_I128, nullptr);
211   setLibcallName(RTLIB::UREM_I8, nullptr);
212   setLibcallName(RTLIB::UREM_I16, nullptr);
213   setLibcallName(RTLIB::UREM_I32, nullptr);
214   setLibcallName(RTLIB::UREM_I64, nullptr);
215   setLibcallName(RTLIB::UREM_I128, nullptr);
216
217   // Division and modulus rtlib functions
218   setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
219   setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
220   setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
221   setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4");
222   setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4");
223   setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
224   setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
225   setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
226   setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4");
227   setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4");
228
229   // Several of the runtime library functions use a special calling conv
230   setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
231   setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
232   setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
233   setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
234
235   // Trigonometric rtlib functions
236   setLibcallName(RTLIB::SIN_F32, "sin");
237   setLibcallName(RTLIB::COS_F32, "cos");
238
239   setMinFunctionAlignment(1);
240   setMinimumJumpTableEntries(UINT_MAX);
241 }
242
243 const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
244 #define NODE(name)       \
245   case AVRISD::name:     \
246     return #name
247
248   switch (Opcode) {
249   default:
250     return nullptr;
251     NODE(RET_FLAG);
252     NODE(RETI_FLAG);
253     NODE(CALL);
254     NODE(WRAPPER);
255     NODE(LSL);
256     NODE(LSR);
257     NODE(ROL);
258     NODE(ROR);
259     NODE(ASR);
260     NODE(LSLLOOP);
261     NODE(LSRLOOP);
262     NODE(ASRLOOP);
263     NODE(BRCOND);
264     NODE(CMP);
265     NODE(CMPC);
266     NODE(TST);
267     NODE(SELECT_CC);
268 #undef NODE
269   }
270 }
271
272 EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
273                                           EVT VT) const {
274   assert(!VT.isVector() && "No AVR SetCC type for vectors!");
275   return MVT::i8;
276 }
277
278 SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
279   //:TODO: this function has to be completely rewritten to produce optimal
280   // code, for now it's producing very long but correct code.
281   unsigned Opc8;
282   const SDNode *N = Op.getNode();
283   EVT VT = Op.getValueType();
284   SDLoc dl(N);
285
286   // Expand non-constant shifts to loops.
287   if (!isa<ConstantSDNode>(N->getOperand(1))) {
288     switch (Op.getOpcode()) {
289     default:
290       llvm_unreachable("Invalid shift opcode!");
291     case ISD::SHL:
292       return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
293                          N->getOperand(1));
294     case ISD::SRL:
295       return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
296                          N->getOperand(1));
297     case ISD::ROTL:
298       return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0),
299                          N->getOperand(1));
300     case ISD::ROTR:
301       return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0),
302                          N->getOperand(1));
303     case ISD::SRA:
304       return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
305                          N->getOperand(1));
306     }
307   }
308
309   uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
310   SDValue Victim = N->getOperand(0);
311
312   switch (Op.getOpcode()) {
313   case ISD::SRA:
314     Opc8 = AVRISD::ASR;
315     break;
316   case ISD::ROTL:
317     Opc8 = AVRISD::ROL;
318     break;
319   case ISD::ROTR:
320     Opc8 = AVRISD::ROR;
321     break;
322   case ISD::SRL:
323     Opc8 = AVRISD::LSR;
324     break;
325   case ISD::SHL:
326     Opc8 = AVRISD::LSL;
327     break;
328   default:
329     llvm_unreachable("Invalid shift opcode");
330   }
331
332   while (ShiftAmount--) {
333     Victim = DAG.getNode(Opc8, dl, VT, Victim);
334   }
335
336   return Victim;
337 }
338
339 SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
340   unsigned Opcode = Op->getOpcode();
341   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
342          "Invalid opcode for Div/Rem lowering");
343   bool IsSigned = (Opcode == ISD::SDIVREM);
344   EVT VT = Op->getValueType(0);
345   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
346
347   RTLIB::Libcall LC;
348   switch (VT.getSimpleVT().SimpleTy) {
349   default:
350     llvm_unreachable("Unexpected request for libcall!");
351   case MVT::i8:
352     LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
353     break;
354   case MVT::i16:
355     LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
356     break;
357   case MVT::i32:
358     LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
359     break;
360   case MVT::i64:
361     LC = IsSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
362     break;
363   case MVT::i128:
364     LC = IsSigned ? RTLIB::SDIVREM_I128 : RTLIB::UDIVREM_I128;
365     break;
366   }
367
368   SDValue InChain = DAG.getEntryNode();
369
370   TargetLowering::ArgListTy Args;
371   TargetLowering::ArgListEntry Entry;
372   for (SDValue const &Value : Op->op_values()) {
373     Entry.Node = Value;
374     Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
375     Entry.IsSExt = IsSigned;
376     Entry.IsZExt = !IsSigned;
377     Args.push_back(Entry);
378   }
379
380   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
381                                          getPointerTy(DAG.getDataLayout()));
382
383   Type *RetTy = (Type *)StructType::get(Ty, Ty);
384
385   SDLoc dl(Op);
386   TargetLowering::CallLoweringInfo CLI(DAG);
387   CLI.setDebugLoc(dl)
388       .setChain(InChain)
389       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
390       .setInRegister()
391       .setSExtResult(IsSigned)
392       .setZExtResult(!IsSigned);
393
394   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
395   return CallInfo.first;
396 }
397
398 SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
399                                               SelectionDAG &DAG) const {
400   auto DL = DAG.getDataLayout();
401
402   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
403   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
404
405   // Create the TargetGlobalAddress node, folding in the constant offset.
406   SDValue Result =
407       DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
408   return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
409 }
410
411 SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
412                                              SelectionDAG &DAG) const {
413   auto DL = DAG.getDataLayout();
414   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
415
416   SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
417
418   return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
419 }
420
421 /// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
422 static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
423   switch (CC) {
424   default:
425     llvm_unreachable("Unknown condition code!");
426   case ISD::SETEQ:
427     return AVRCC::COND_EQ;
428   case ISD::SETNE:
429     return AVRCC::COND_NE;
430   case ISD::SETGE:
431     return AVRCC::COND_GE;
432   case ISD::SETLT:
433     return AVRCC::COND_LT;
434   case ISD::SETUGE:
435     return AVRCC::COND_SH;
436   case ISD::SETULT:
437     return AVRCC::COND_LO;
438   }
439 }
440
441 /// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
442 /// the given operands.
443 SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
444                                      SDValue &AVRcc, SelectionDAG &DAG,
445                                      SDLoc DL) const {
446   SDValue Cmp;
447   EVT VT = LHS.getValueType();
448   bool UseTest = false;
449
450   switch (CC) {
451   default:
452     break;
453   case ISD::SETLE: {
454     // Swap operands and reverse the branching condition.
455     std::swap(LHS, RHS);
456     CC = ISD::SETGE;
457     break;
458   }
459   case ISD::SETGT: {
460     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
461       switch (C->getSExtValue()) {
462       case -1: {
463         // When doing lhs > -1 use a tst instruction on the top part of lhs
464         // and use brpl instead of using a chain of cp/cpc.
465         UseTest = true;
466         AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
467         break;
468       }
469       case 0: {
470         // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
471         // __zero_reg__ in lhs.
472         RHS = LHS;
473         LHS = DAG.getConstant(0, DL, VT);
474         CC = ISD::SETLT;
475         break;
476       }
477       default: {
478         // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
479         // us to  fold the constant into the cmp instruction.
480         RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
481         CC = ISD::SETGE;
482         break;
483       }
484       }
485       break;
486     }
487     // Swap operands and reverse the branching condition.
488     std::swap(LHS, RHS);
489     CC = ISD::SETLT;
490     break;
491   }
492   case ISD::SETLT: {
493     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
494       switch (C->getSExtValue()) {
495       case 1: {
496         // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
497         // __zero_reg__ in lhs.
498         RHS = LHS;
499         LHS = DAG.getConstant(0, DL, VT);
500         CC = ISD::SETGE;
501         break;
502       }
503       case 0: {
504         // When doing lhs < 0 use a tst instruction on the top part of lhs
505         // and use brmi instead of using a chain of cp/cpc.
506         UseTest = true;
507         AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
508         break;
509       }
510       }
511     }
512     break;
513   }
514   case ISD::SETULE: {
515     // Swap operands and reverse the branching condition.
516     std::swap(LHS, RHS);
517     CC = ISD::SETUGE;
518     break;
519   }
520   case ISD::SETUGT: {
521     // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
522     // fold the constant into the cmp instruction.
523     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
524       RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
525       CC = ISD::SETUGE;
526       break;
527     }
528     // Swap operands and reverse the branching condition.
529     std::swap(LHS, RHS);
530     CC = ISD::SETULT;
531     break;
532   }
533   }
534
535   // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
536   // using the default and/or/xor expansion code which is much longer.
537   if (VT == MVT::i32) {
538     SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
539                                 DAG.getIntPtrConstant(0, DL));
540     SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
541                                 DAG.getIntPtrConstant(1, DL));
542     SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
543                                 DAG.getIntPtrConstant(0, DL));
544     SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
545                                 DAG.getIntPtrConstant(1, DL));
546
547     if (UseTest) {
548       // When using tst we only care about the highest part.
549       SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
550                                 DAG.getIntPtrConstant(1, DL));
551       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
552     } else {
553       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
554       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
555     }
556   } else if (VT == MVT::i64) {
557     SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
558                                 DAG.getIntPtrConstant(0, DL));
559     SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
560                                 DAG.getIntPtrConstant(1, DL));
561
562     SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
563                                DAG.getIntPtrConstant(0, DL));
564     SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
565                                DAG.getIntPtrConstant(1, DL));
566     SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
567                                DAG.getIntPtrConstant(0, DL));
568     SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
569                                DAG.getIntPtrConstant(1, DL));
570
571     SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
572                                 DAG.getIntPtrConstant(0, DL));
573     SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
574                                 DAG.getIntPtrConstant(1, DL));
575
576     SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
577                                DAG.getIntPtrConstant(0, DL));
578     SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
579                                DAG.getIntPtrConstant(1, DL));
580     SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
581                                DAG.getIntPtrConstant(0, DL));
582     SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
583                                DAG.getIntPtrConstant(1, DL));
584
585     if (UseTest) {
586       // When using tst we only care about the highest part.
587       SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
588                                 DAG.getIntPtrConstant(1, DL));
589       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
590     } else {
591       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
592       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
593       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
594       Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
595     }
596   } else if (VT == MVT::i8 || VT == MVT::i16) {
597     if (UseTest) {
598       // When using tst we only care about the highest part.
599       Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
600                         (VT == MVT::i8)
601                             ? LHS
602                             : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
603                                           LHS, DAG.getIntPtrConstant(1, DL)));
604     } else {
605       Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
606     }
607   } else {
608     llvm_unreachable("Invalid comparison size");
609   }
610
611   // When using a test instruction AVRcc is already set.
612   if (!UseTest) {
613     AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
614   }
615
616   return Cmp;
617 }
618
619 SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
620   SDValue Chain = Op.getOperand(0);
621   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
622   SDValue LHS = Op.getOperand(2);
623   SDValue RHS = Op.getOperand(3);
624   SDValue Dest = Op.getOperand(4);
625   SDLoc dl(Op);
626
627   SDValue TargetCC;
628   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
629
630   return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
631                      Cmp);
632 }
633
634 SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
635   SDValue LHS = Op.getOperand(0);
636   SDValue RHS = Op.getOperand(1);
637   SDValue TrueV = Op.getOperand(2);
638   SDValue FalseV = Op.getOperand(3);
639   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
640   SDLoc dl(Op);
641
642   SDValue TargetCC;
643   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
644
645   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
646   SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
647
648   return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
649 }
650
651 SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
652   SDValue LHS = Op.getOperand(0);
653   SDValue RHS = Op.getOperand(1);
654   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
655   SDLoc DL(Op);
656
657   SDValue TargetCC;
658   SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
659
660   SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
661   SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
662   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
663   SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
664
665   return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
666 }
667
668 SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
669   const MachineFunction &MF = DAG.getMachineFunction();
670   const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
671   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
672   auto DL = DAG.getDataLayout();
673   SDLoc dl(Op);
674
675   // Vastart just stores the address of the VarArgsFrameIndex slot into the
676   // memory location argument.
677   SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
678
679   return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
680                       MachinePointerInfo(SV), 0);
681 }
682
683 SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
684   switch (Op.getOpcode()) {
685   default:
686     llvm_unreachable("Don't know how to custom lower this!");
687   case ISD::SHL:
688   case ISD::SRA:
689   case ISD::SRL:
690   case ISD::ROTL:
691   case ISD::ROTR:
692     return LowerShifts(Op, DAG);
693   case ISD::GlobalAddress:
694     return LowerGlobalAddress(Op, DAG);
695   case ISD::BlockAddress:
696     return LowerBlockAddress(Op, DAG);
697   case ISD::BR_CC:
698     return LowerBR_CC(Op, DAG);
699   case ISD::SELECT_CC:
700     return LowerSELECT_CC(Op, DAG);
701   case ISD::SETCC:
702     return LowerSETCC(Op, DAG);
703   case ISD::VASTART:
704     return LowerVASTART(Op, DAG);
705   case ISD::SDIVREM:
706   case ISD::UDIVREM:
707     return LowerDivRem(Op, DAG);
708   }
709
710   return SDValue();
711 }
712
713 /// Replace a node with an illegal result type
714 /// with a new node built out of custom code.
715 void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
716                                            SmallVectorImpl<SDValue> &Results,
717                                            SelectionDAG &DAG) const {
718   SDLoc DL(N);
719
720   switch (N->getOpcode()) {
721   case ISD::ADD: {
722     // Convert add (x, imm) into sub (x, -imm).
723     if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
724       SDValue Sub = DAG.getNode(
725           ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
726           DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
727       Results.push_back(Sub);
728     }
729     break;
730   }
731   default: {
732     SDValue Res = LowerOperation(SDValue(N, 0), DAG);
733
734     for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
735       Results.push_back(Res.getValue(I));
736
737     break;
738   }
739   }
740 }
741
742 /// Return true if the addressing mode represented
743 /// by AM is legal for this target, for a load/store of the specified type.
744 bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
745                                               const AddrMode &AM, Type *Ty,
746                                               unsigned AS, Instruction *I) const {
747   int64_t Offs = AM.BaseOffs;
748
749   // Allow absolute addresses.
750   if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
751     return true;
752   }
753
754   // Flash memory instructions only allow zero offsets.
755   if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
756     return false;
757   }
758
759   // Allow reg+<6bit> offset.
760   if (Offs < 0)
761     Offs = -Offs;
762   if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
763     return true;
764   }
765
766   return false;
767 }
768
769 /// Returns true by value, base pointer and
770 /// offset pointer and addressing mode by reference if the node's address
771 /// can be legally represented as pre-indexed load / store address.
772 bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
773                                                   SDValue &Offset,
774                                                   ISD::MemIndexedMode &AM,
775                                                   SelectionDAG &DAG) const {
776   EVT VT;
777   const SDNode *Op;
778   SDLoc DL(N);
779
780   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
781     VT = LD->getMemoryVT();
782     Op = LD->getBasePtr().getNode();
783     if (LD->getExtensionType() != ISD::NON_EXTLOAD)
784       return false;
785     if (AVR::isProgramMemoryAccess(LD)) {
786       return false;
787     }
788   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
789     VT = ST->getMemoryVT();
790     Op = ST->getBasePtr().getNode();
791     if (AVR::isProgramMemoryAccess(ST)) {
792       return false;
793     }
794   } else {
795     return false;
796   }
797
798   if (VT != MVT::i8 && VT != MVT::i16) {
799     return false;
800   }
801
802   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
803     return false;
804   }
805
806   if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
807     int RHSC = RHS->getSExtValue();
808     if (Op->getOpcode() == ISD::SUB)
809       RHSC = -RHSC;
810
811     if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
812       return false;
813     }
814
815     Base = Op->getOperand(0);
816     Offset = DAG.getConstant(RHSC, DL, MVT::i8);
817     AM = ISD::PRE_DEC;
818
819     return true;
820   }
821
822   return false;
823 }
824
825 /// Returns true by value, base pointer and
826 /// offset pointer and addressing mode by reference if this node can be
827 /// combined with a load / store to form a post-indexed load / store.
828 bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
829                                                    SDValue &Base,
830                                                    SDValue &Offset,
831                                                    ISD::MemIndexedMode &AM,
832                                                    SelectionDAG &DAG) const {
833   EVT VT;
834   SDLoc DL(N);
835
836   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
837     VT = LD->getMemoryVT();
838     if (LD->getExtensionType() != ISD::NON_EXTLOAD)
839       return false;
840   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
841     VT = ST->getMemoryVT();
842     if (AVR::isProgramMemoryAccess(ST)) {
843       return false;
844     }
845   } else {
846     return false;
847   }
848
849   if (VT != MVT::i8 && VT != MVT::i16) {
850     return false;
851   }
852
853   if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
854     return false;
855   }
856
857   if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
858     int RHSC = RHS->getSExtValue();
859     if (Op->getOpcode() == ISD::SUB)
860       RHSC = -RHSC;
861     if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
862       return false;
863     }
864
865     Base = Op->getOperand(0);
866     Offset = DAG.getConstant(RHSC, DL, MVT::i8);
867     AM = ISD::POST_INC;
868
869     return true;
870   }
871
872   return false;
873 }
874
875 bool AVRTargetLowering::isOffsetFoldingLegal(
876     const GlobalAddressSDNode *GA) const {
877   return true;
878 }
879
880 //===----------------------------------------------------------------------===//
881 //             Formal Arguments Calling Convention Implementation
882 //===----------------------------------------------------------------------===//
883
884 #include "AVRGenCallingConv.inc"
885
886 /// For each argument in a function store the number of pieces it is composed
887 /// of.
888 static void parseFunctionArgs(const SmallVectorImpl<ISD::InputArg> &Ins,
889                               SmallVectorImpl<unsigned> &Out) {
890   for (const ISD::InputArg &Arg : Ins) {
891     if(Arg.PartOffset > 0) continue;
892     unsigned Bytes = ((Arg.ArgVT.getSizeInBits()) + 7) / 8;
893
894     Out.push_back((Bytes + 1) / 2);
895   }
896 }
897
898 /// For external symbols there is no function prototype information so we
899 /// have to rely directly on argument sizes.
900 static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In,
901                                     SmallVectorImpl<unsigned> &Out) {
902   for (unsigned i = 0, e = In.size(); i != e;) {
903     unsigned Size = 0;
904     unsigned Offset = 0;
905     while ((i != e) && (In[i].PartOffset == Offset)) {
906       Offset += In[i].VT.getStoreSize();
907       ++i;
908       ++Size;
909     }
910     Out.push_back(Size);
911   }
912 }
913
914 static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) {
915   SDValue Callee = CLI.Callee;
916
917   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) {
918     return G->getSymbol();
919   }
920
921   if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
922     return G->getGlobal()->getName();
923   }
924
925   llvm_unreachable("don't know how to get the name for this callee");
926 }
927
928 /// Analyze incoming and outgoing function arguments. We need custom C++ code
929 /// to handle special constraints in the ABI like reversing the order of the
930 /// pieces of splitted arguments. In addition, all pieces of a certain argument
931 /// have to be passed either using registers or the stack but never mixing both.
932 static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI,
933                                      const Function *F, const DataLayout *TD,
934                                      const SmallVectorImpl<ISD::OutputArg> *Outs,
935                                      const SmallVectorImpl<ISD::InputArg> *Ins,
936                                      CallingConv::ID CallConv,
937                                      SmallVectorImpl<CCValAssign> &ArgLocs,
938                                      CCState &CCInfo, bool IsCall, bool IsVarArg) {
939   static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20,
940                                        AVR::R18, AVR::R16, AVR::R14,
941                                        AVR::R12, AVR::R10, AVR::R8};
942   static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20,
943                                         AVR::R19R18, AVR::R17R16, AVR::R15R14,
944                                         AVR::R13R12, AVR::R11R10, AVR::R9R8};
945   if (IsVarArg) {
946     // Variadic functions do not need all the analysis below.
947     if (IsCall) {
948       CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg);
949     } else {
950       CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg);
951     }
952     return;
953   }
954
955   // Fill in the Args array which will contain original argument sizes.
956   SmallVector<unsigned, 8> Args;
957   if (IsCall) {
958     parseExternFuncCallArgs(*Outs, Args);
959   } else {
960     assert(F != nullptr && "function should not be null");
961     parseFunctionArgs(*Ins, Args);
962   }
963
964   unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0;
965   // Variadic functions always use the stack.
966   bool UsesStack = false;
967   for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) {
968     unsigned Size = Args[i];
969
970     // If we have a zero-sized argument, don't attempt to lower it.
971     // AVR-GCC does not support zero-sized arguments and so we need not
972     // worry about ABI compatibility.
973     if (Size == 0) continue;
974
975     MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT;
976
977     // If we have plenty of regs to pass the whole argument do it.
978     if (!UsesStack && (Size <= RegsLeft)) {
979       const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8;
980
981       for (unsigned j = 0; j != Size; ++j) {
982         unsigned Reg = CCInfo.AllocateReg(
983             ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8)));
984         CCInfo.addLoc(
985             CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full));
986         --RegsLeft;
987       }
988
989       // Reverse the order of the pieces to agree with the "big endian" format
990       // required in the calling convention ABI.
991       std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size);
992     } else {
993       // Pass the rest of arguments using the stack.
994       UsesStack = true;
995       for (unsigned j = 0; j != Size; ++j) {
996         unsigned Offset = CCInfo.AllocateStack(
997             TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())),
998             TD->getABITypeAlignment(
999                 EVT(LocVT).getTypeForEVT(CCInfo.getContext())));
1000         CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT,
1001                                           CCValAssign::Full));
1002       }
1003     }
1004     pos += Size;
1005   }
1006 }
1007
1008 static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI,
1009                                     const Function *F, const DataLayout *TD,
1010                                     const SmallVectorImpl<ISD::OutputArg> *Outs,
1011                                     const SmallVectorImpl<ISD::InputArg> *Ins,
1012                                     CallingConv::ID CallConv,
1013                                     SmallVectorImpl<CCValAssign> &ArgLocs,
1014                                     CCState &CCInfo, bool IsCall, bool IsVarArg) {
1015   StringRef FuncName = getFunctionName(CLI);
1016
1017   if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) {
1018     CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV);
1019   } else {
1020     analyzeStandardArguments(&CLI, F, TD, Outs, Ins,
1021                              CallConv, ArgLocs, CCInfo,
1022                              IsCall, IsVarArg);
1023   }
1024 }
1025
1026 static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI,
1027                              const Function *F, const DataLayout *TD,
1028                              const SmallVectorImpl<ISD::OutputArg> *Outs,
1029                              const SmallVectorImpl<ISD::InputArg> *Ins,
1030                              CallingConv::ID CallConv,
1031                              SmallVectorImpl<CCValAssign> &ArgLocs,
1032                              CCState &CCInfo, bool IsCall, bool IsVarArg) {
1033   switch (CallConv) {
1034     case CallingConv::AVR_BUILTIN: {
1035       analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins,
1036                               CallConv, ArgLocs, CCInfo,
1037                               IsCall, IsVarArg);
1038       return;
1039     }
1040     default: {
1041       analyzeStandardArguments(CLI, F, TD, Outs, Ins,
1042                                CallConv, ArgLocs, CCInfo,
1043                                IsCall, IsVarArg);
1044       return;
1045     }
1046   }
1047 }
1048
1049 SDValue AVRTargetLowering::LowerFormalArguments(
1050     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1051     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1052     SmallVectorImpl<SDValue> &InVals) const {
1053   MachineFunction &MF = DAG.getMachineFunction();
1054   MachineFrameInfo &MFI = MF.getFrameInfo();
1055   auto DL = DAG.getDataLayout();
1056
1057   // Assign locations to all of the incoming arguments.
1058   SmallVector<CCValAssign, 16> ArgLocs;
1059   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1060                  *DAG.getContext());
1061
1062   analyzeArguments(nullptr, &MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo,
1063                    false, isVarArg);
1064
1065   SDValue ArgValue;
1066   for (CCValAssign &VA : ArgLocs) {
1067
1068     // Arguments stored on registers.
1069     if (VA.isRegLoc()) {
1070       EVT RegVT = VA.getLocVT();
1071       const TargetRegisterClass *RC;
1072       if (RegVT == MVT::i8) {
1073         RC = &AVR::GPR8RegClass;
1074       } else if (RegVT == MVT::i16) {
1075         RC = &AVR::DREGSRegClass;
1076       } else {
1077         llvm_unreachable("Unknown argument type!");
1078       }
1079
1080       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1081       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1082
1083       // :NOTE: Clang should not promote any i8 into i16 but for safety the
1084       // following code will handle zexts or sexts generated by other
1085       // front ends. Otherwise:
1086       // If this is an 8 bit value, it is really passed promoted
1087       // to 16 bits. Insert an assert[sz]ext to capture this, then
1088       // truncate to the right size.
1089       switch (VA.getLocInfo()) {
1090       default:
1091         llvm_unreachable("Unknown loc info!");
1092       case CCValAssign::Full:
1093         break;
1094       case CCValAssign::BCvt:
1095         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1096         break;
1097       case CCValAssign::SExt:
1098         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1099                                DAG.getValueType(VA.getValVT()));
1100         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1101         break;
1102       case CCValAssign::ZExt:
1103         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1104                                DAG.getValueType(VA.getValVT()));
1105         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1106         break;
1107       }
1108
1109       InVals.push_back(ArgValue);
1110     } else {
1111       // Sanity check.
1112       assert(VA.isMemLoc());
1113
1114       EVT LocVT = VA.getLocVT();
1115
1116       // Create the frame index object for this incoming parameter.
1117       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1118                                      VA.getLocMemOffset(), true);
1119
1120       // Create the SelectionDAG nodes corresponding to a load
1121       // from this parameter.
1122       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1123       InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1124                                    MachinePointerInfo::getFixedStack(MF, FI),
1125                                    0));
1126     }
1127   }
1128
1129   // If the function takes variable number of arguments, make a frame index for
1130   // the start of the first vararg value... for expansion of llvm.va_start.
1131   if (isVarArg) {
1132     unsigned StackSize = CCInfo.getNextStackOffset();
1133     AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1134
1135     AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1136   }
1137
1138   return Chain;
1139 }
1140
1141 //===----------------------------------------------------------------------===//
1142 //                  Call Calling Convention Implementation
1143 //===----------------------------------------------------------------------===//
1144
1145 SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1146                                      SmallVectorImpl<SDValue> &InVals) const {
1147   SelectionDAG &DAG = CLI.DAG;
1148   SDLoc &DL = CLI.DL;
1149   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1150   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1151   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1152   SDValue Chain = CLI.Chain;
1153   SDValue Callee = CLI.Callee;
1154   bool &isTailCall = CLI.IsTailCall;
1155   CallingConv::ID CallConv = CLI.CallConv;
1156   bool isVarArg = CLI.IsVarArg;
1157
1158   MachineFunction &MF = DAG.getMachineFunction();
1159
1160   // AVR does not yet support tail call optimization.
1161   isTailCall = false;
1162
1163   // Analyze operands of the call, assigning locations to each operand.
1164   SmallVector<CCValAssign, 16> ArgLocs;
1165   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1166                  *DAG.getContext());
1167
1168   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1169   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1170   // node so that legalize doesn't hack it.
1171   const Function *F = nullptr;
1172   if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1173     const GlobalValue *GV = G->getGlobal();
1174
1175     F = cast<Function>(GV);
1176     Callee =
1177         DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1178   } else if (const ExternalSymbolSDNode *ES =
1179                  dyn_cast<ExternalSymbolSDNode>(Callee)) {
1180     Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1181                                          getPointerTy(DAG.getDataLayout()));
1182   }
1183
1184   analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo,
1185                    true, isVarArg);
1186
1187   // Get a count of how many bytes are to be pushed on the stack.
1188   unsigned NumBytes = CCInfo.getNextStackOffset();
1189
1190   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1191
1192   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1193
1194   // First, walk the register assignments, inserting copies.
1195   unsigned AI, AE;
1196   bool HasStackArgs = false;
1197   for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1198     CCValAssign &VA = ArgLocs[AI];
1199     EVT RegVT = VA.getLocVT();
1200     SDValue Arg = OutVals[AI];
1201
1202     // Promote the value if needed. With Clang this should not happen.
1203     switch (VA.getLocInfo()) {
1204     default:
1205       llvm_unreachable("Unknown loc info!");
1206     case CCValAssign::Full:
1207       break;
1208     case CCValAssign::SExt:
1209       Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1210       break;
1211     case CCValAssign::ZExt:
1212       Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1213       break;
1214     case CCValAssign::AExt:
1215       Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1216       break;
1217     case CCValAssign::BCvt:
1218       Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1219       break;
1220     }
1221
1222     // Stop when we encounter a stack argument, we need to process them
1223     // in reverse order in the loop below.
1224     if (VA.isMemLoc()) {
1225       HasStackArgs = true;
1226       break;
1227     }
1228
1229     // Arguments that can be passed on registers must be kept in the RegsToPass
1230     // vector.
1231     RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1232   }
1233
1234   // Second, stack arguments have to walked in reverse order by inserting
1235   // chained stores, this ensures their order is not changed by the scheduler
1236   // and that the push instruction sequence generated is correct, otherwise they
1237   // can be freely intermixed.
1238   if (HasStackArgs) {
1239     for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
1240       unsigned Loc = AI - 1;
1241       CCValAssign &VA = ArgLocs[Loc];
1242       SDValue Arg = OutVals[Loc];
1243
1244       assert(VA.isMemLoc());
1245
1246       // SP points to one stack slot further so add one to adjust it.
1247       SDValue PtrOff = DAG.getNode(
1248           ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1249           DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1250           DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1251
1252       Chain =
1253           DAG.getStore(Chain, DL, Arg, PtrOff,
1254                        MachinePointerInfo::getStack(MF, VA.getLocMemOffset()),
1255                        0);
1256     }
1257   }
1258
1259   // Build a sequence of copy-to-reg nodes chained together with token chain and
1260   // flag operands which copy the outgoing args into registers.  The InFlag in
1261   // necessary since all emited instructions must be stuck together.
1262   SDValue InFlag;
1263   for (auto Reg : RegsToPass) {
1264     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
1265     InFlag = Chain.getValue(1);
1266   }
1267
1268   // Returns a chain & a flag for retval copy to use.
1269   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1270   SmallVector<SDValue, 8> Ops;
1271   Ops.push_back(Chain);
1272   Ops.push_back(Callee);
1273
1274   // Add argument registers to the end of the list so that they are known live
1275   // into the call.
1276   for (auto Reg : RegsToPass) {
1277     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1278   }
1279
1280   // Add a register mask operand representing the call-preserved registers.
1281   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1282   const uint32_t *Mask =
1283       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1284   assert(Mask && "Missing call preserved mask for calling convention");
1285   Ops.push_back(DAG.getRegisterMask(Mask));
1286
1287   if (InFlag.getNode()) {
1288     Ops.push_back(InFlag);
1289   }
1290
1291   Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1292   InFlag = Chain.getValue(1);
1293
1294   // Create the CALLSEQ_END node.
1295   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1296                              DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
1297
1298   if (!Ins.empty()) {
1299     InFlag = Chain.getValue(1);
1300   }
1301
1302   // Handle result values, copying them out of physregs into vregs that we
1303   // return.
1304   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
1305                          InVals);
1306 }
1307
1308 /// Lower the result values of a call into the
1309 /// appropriate copies out of appropriate physical registers.
1310 ///
1311 SDValue AVRTargetLowering::LowerCallResult(
1312     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1313     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1314     SmallVectorImpl<SDValue> &InVals) const {
1315
1316   // Assign locations to each value returned by this call.
1317   SmallVector<CCValAssign, 16> RVLocs;
1318   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1319                  *DAG.getContext());
1320
1321   // Handle runtime calling convs.
1322   auto CCFunction = CCAssignFnForReturn(CallConv);
1323   CCInfo.AnalyzeCallResult(Ins, CCFunction);
1324
1325   if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) {
1326     // Reverse splitted return values to get the "big endian" format required
1327     // to agree with the calling convention ABI.
1328     std::reverse(RVLocs.begin(), RVLocs.end());
1329   }
1330
1331   // Copy all of the result registers out of their specified physreg.
1332   for (CCValAssign const &RVLoc : RVLocs) {
1333     Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1334                                InFlag)
1335                 .getValue(1);
1336     InFlag = Chain.getValue(2);
1337     InVals.push_back(Chain.getValue(0));
1338   }
1339
1340   return Chain;
1341 }
1342
1343 //===----------------------------------------------------------------------===//
1344 //               Return Value Calling Convention Implementation
1345 //===----------------------------------------------------------------------===//
1346
1347 CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
1348   switch (CC) {
1349   case CallingConv::AVR_BUILTIN:
1350     return RetCC_AVR_BUILTIN;
1351   default:
1352     return RetCC_AVR;
1353   }
1354 }
1355
1356 bool
1357 AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1358                                   MachineFunction &MF, bool isVarArg,
1359                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
1360                                   LLVMContext &Context) const
1361 {
1362   SmallVector<CCValAssign, 16> RVLocs;
1363   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1364
1365   auto CCFunction = CCAssignFnForReturn(CallConv);
1366   return CCInfo.CheckReturn(Outs, CCFunction);
1367 }
1368
1369 SDValue
1370 AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1371                                bool isVarArg,
1372                                const SmallVectorImpl<ISD::OutputArg> &Outs,
1373                                const SmallVectorImpl<SDValue> &OutVals,
1374                                const SDLoc &dl, SelectionDAG &DAG) const {
1375   // CCValAssign - represent the assignment of the return value to locations.
1376   SmallVector<CCValAssign, 16> RVLocs;
1377
1378   // CCState - Info about the registers and stack slot.
1379   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1380                  *DAG.getContext());
1381
1382   // Analyze return values.
1383   auto CCFunction = CCAssignFnForReturn(CallConv);
1384   CCInfo.AnalyzeReturn(Outs, CCFunction);
1385
1386   // If this is the first return lowered for this function, add the regs to
1387   // the liveout set for the function.
1388   MachineFunction &MF = DAG.getMachineFunction();
1389   unsigned e = RVLocs.size();
1390
1391   // Reverse splitted return values to get the "big endian" format required
1392   // to agree with the calling convention ABI.
1393   if (e > 1) {
1394     std::reverse(RVLocs.begin(), RVLocs.end());
1395   }
1396
1397   SDValue Flag;
1398   SmallVector<SDValue, 4> RetOps(1, Chain);
1399   // Copy the result values into the output registers.
1400   for (unsigned i = 0; i != e; ++i) {
1401     CCValAssign &VA = RVLocs[i];
1402     assert(VA.isRegLoc() && "Can only return in registers!");
1403
1404     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1405
1406     // Guarantee that all emitted copies are stuck together with flags.
1407     Flag = Chain.getValue(1);
1408     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1409   }
1410
1411   // Don't emit the ret/reti instruction when the naked attribute is present in
1412   // the function being compiled.
1413   if (MF.getFunction().getAttributes().hasAttribute(
1414           AttributeList::FunctionIndex, Attribute::Naked)) {
1415     return Chain;
1416   }
1417
1418   unsigned RetOpc =
1419       (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL)
1420           ? AVRISD::RETI_FLAG
1421           : AVRISD::RET_FLAG;
1422
1423   RetOps[0] = Chain; // Update chain.
1424
1425   if (Flag.getNode()) {
1426     RetOps.push_back(Flag);
1427   }
1428
1429   return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1430 }
1431
1432 //===----------------------------------------------------------------------===//
1433 //  Custom Inserters
1434 //===----------------------------------------------------------------------===//
1435
1436 MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1437                                                   MachineBasicBlock *BB) const {
1438   unsigned Opc;
1439   const TargetRegisterClass *RC;
1440   bool HasRepeatedOperand = false;
1441   MachineFunction *F = BB->getParent();
1442   MachineRegisterInfo &RI = F->getRegInfo();
1443   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1444   DebugLoc dl = MI.getDebugLoc();
1445
1446   switch (MI.getOpcode()) {
1447   default:
1448     llvm_unreachable("Invalid shift opcode!");
1449   case AVR::Lsl8:
1450     Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd
1451     RC = &AVR::GPR8RegClass;
1452     HasRepeatedOperand = true;
1453     break;
1454   case AVR::Lsl16:
1455     Opc = AVR::LSLWRd;
1456     RC = &AVR::DREGSRegClass;
1457     break;
1458   case AVR::Asr8:
1459     Opc = AVR::ASRRd;
1460     RC = &AVR::GPR8RegClass;
1461     break;
1462   case AVR::Asr16:
1463     Opc = AVR::ASRWRd;
1464     RC = &AVR::DREGSRegClass;
1465     break;
1466   case AVR::Lsr8:
1467     Opc = AVR::LSRRd;
1468     RC = &AVR::GPR8RegClass;
1469     break;
1470   case AVR::Lsr16:
1471     Opc = AVR::LSRWRd;
1472     RC = &AVR::DREGSRegClass;
1473     break;
1474   case AVR::Rol8:
1475     Opc = AVR::ADCRdRr; // ROL is an alias of ADC Rd, Rd
1476     RC = &AVR::GPR8RegClass;
1477     HasRepeatedOperand = true;
1478     break;
1479   case AVR::Rol16:
1480     Opc = AVR::ROLWRd;
1481     RC = &AVR::DREGSRegClass;
1482     break;
1483   case AVR::Ror8:
1484     Opc = AVR::RORRd;
1485     RC = &AVR::GPR8RegClass;
1486     break;
1487   case AVR::Ror16:
1488     Opc = AVR::RORWRd;
1489     RC = &AVR::DREGSRegClass;
1490     break;
1491   }
1492
1493   const BasicBlock *LLVM_BB = BB->getBasicBlock();
1494
1495   MachineFunction::iterator I;
1496   for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I);
1497   if (I != F->end()) ++I;
1498
1499   // Create loop block.
1500   MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1501   MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1502
1503   F->insert(I, LoopBB);
1504   F->insert(I, RemBB);
1505
1506   // Update machine-CFG edges by transferring all successors of the current
1507   // block to the block containing instructions after shift.
1508   RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1509                 BB->end());
1510   RemBB->transferSuccessorsAndUpdatePHIs(BB);
1511
1512   // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB.
1513   BB->addSuccessor(LoopBB);
1514   BB->addSuccessor(RemBB);
1515   LoopBB->addSuccessor(RemBB);
1516   LoopBB->addSuccessor(LoopBB);
1517
1518   unsigned ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass);
1519   unsigned ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass);
1520   unsigned ShiftReg = RI.createVirtualRegister(RC);
1521   unsigned ShiftReg2 = RI.createVirtualRegister(RC);
1522   unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg();
1523   unsigned SrcReg = MI.getOperand(1).getReg();
1524   unsigned DstReg = MI.getOperand(0).getReg();
1525
1526   // BB:
1527   // cpi N, 0
1528   // breq RemBB
1529   BuildMI(BB, dl, TII.get(AVR::CPIRdK)).addReg(ShiftAmtSrcReg).addImm(0);
1530   BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB);
1531
1532   // LoopBB:
1533   // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1534   // ShiftAmt = phi [%N, BB],      [%ShiftAmt2, LoopBB]
1535   // ShiftReg2 = shift ShiftReg
1536   // ShiftAmt2 = ShiftAmt - 1;
1537   BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg)
1538       .addReg(SrcReg)
1539       .addMBB(BB)
1540       .addReg(ShiftReg2)
1541       .addMBB(LoopBB);
1542   BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1543       .addReg(ShiftAmtSrcReg)
1544       .addMBB(BB)
1545       .addReg(ShiftAmtReg2)
1546       .addMBB(LoopBB);
1547
1548   auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1549   if (HasRepeatedOperand)
1550     ShiftMI.addReg(ShiftReg);
1551
1552   BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2)
1553       .addReg(ShiftAmtReg)
1554       .addImm(1);
1555   BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB);
1556
1557   // RemBB:
1558   // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1559   BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg)
1560       .addReg(SrcReg)
1561       .addMBB(BB)
1562       .addReg(ShiftReg2)
1563       .addMBB(LoopBB);
1564
1565   MI.eraseFromParent(); // The pseudo instruction is gone now.
1566   return RemBB;
1567 }
1568
1569 static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
1570   if (I->getOpcode() == AVR::COPY) {
1571     unsigned SrcReg = I->getOperand(1).getReg();
1572     return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
1573   }
1574
1575   return false;
1576 }
1577
1578 // The mul instructions wreak havock on our zero_reg R1. We need to clear it
1579 // after the result has been evacuated. This is probably not the best way to do
1580 // it, but it works for now.
1581 MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
1582                                                 MachineBasicBlock *BB) const {
1583   const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1584   MachineBasicBlock::iterator I(MI);
1585   ++I; // in any case insert *after* the mul instruction
1586   if (isCopyMulResult(I))
1587     ++I;
1588   if (isCopyMulResult(I))
1589     ++I;
1590   BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
1591       .addReg(AVR::R1)
1592       .addReg(AVR::R1);
1593   return BB;
1594 }
1595
1596 MachineBasicBlock *
1597 AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1598                                                MachineBasicBlock *MBB) const {
1599   int Opc = MI.getOpcode();
1600
1601   // Pseudo shift instructions with a non constant shift amount are expanded
1602   // into a loop.
1603   switch (Opc) {
1604   case AVR::Lsl8:
1605   case AVR::Lsl16:
1606   case AVR::Lsr8:
1607   case AVR::Lsr16:
1608   case AVR::Rol8:
1609   case AVR::Rol16:
1610   case AVR::Ror8:
1611   case AVR::Ror16:
1612   case AVR::Asr8:
1613   case AVR::Asr16:
1614     return insertShift(MI, MBB);
1615   case AVR::MULRdRr:
1616   case AVR::MULSRdRr:
1617     return insertMul(MI, MBB);
1618   }
1619
1620   assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
1621          "Unexpected instr type to insert");
1622
1623   const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
1624                                 ->getParent()
1625                                 ->getSubtarget()
1626                                 .getInstrInfo();
1627   DebugLoc dl = MI.getDebugLoc();
1628
1629   // To "insert" a SELECT instruction, we insert the diamond
1630   // control-flow pattern. The incoming instruction knows the
1631   // destination vreg to set, the condition code register to branch
1632   // on, the true/false values to select between, and a branch opcode
1633   // to use.
1634
1635   MachineFunction *MF = MBB->getParent();
1636   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1637   MachineBasicBlock *FallThrough = MBB->getFallThrough();
1638
1639   // If the current basic block falls through to another basic block,
1640   // we must insert an unconditional branch to the fallthrough destination
1641   // if we are to insert basic blocks at the prior fallthrough point.
1642   if (FallThrough != nullptr) {
1643     BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(FallThrough);
1644   }
1645
1646   MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1647   MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1648
1649   MachineFunction::iterator I;
1650   for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I);
1651   if (I != MF->end()) ++I;
1652   MF->insert(I, trueMBB);
1653   MF->insert(I, falseMBB);
1654
1655   // Transfer remaining instructions and all successors of the current
1656   // block to the block which will contain the Phi node for the
1657   // select.
1658   trueMBB->splice(trueMBB->begin(), MBB,
1659                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1660   trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
1661
1662   AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
1663   BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
1664   BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
1665   MBB->addSuccessor(falseMBB);
1666   MBB->addSuccessor(trueMBB);
1667
1668   // Unconditionally flow back to the true block
1669   BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
1670   falseMBB->addSuccessor(trueMBB);
1671
1672   // Set up the Phi node to determine where we came from
1673   BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
1674     .addReg(MI.getOperand(1).getReg())
1675     .addMBB(MBB)
1676     .addReg(MI.getOperand(2).getReg())
1677     .addMBB(falseMBB) ;
1678
1679   MI.eraseFromParent(); // The pseudo instruction is gone now.
1680   return trueMBB;
1681 }
1682
1683 //===----------------------------------------------------------------------===//
1684 //  Inline Asm Support
1685 //===----------------------------------------------------------------------===//
1686
1687 AVRTargetLowering::ConstraintType
1688 AVRTargetLowering::getConstraintType(StringRef Constraint) const {
1689   if (Constraint.size() == 1) {
1690     // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
1691     switch (Constraint[0]) {
1692     default:
1693       break;
1694     case 'a': // Simple upper registers
1695     case 'b': // Base pointer registers pairs
1696     case 'd': // Upper register
1697     case 'l': // Lower registers
1698     case 'e': // Pointer register pairs
1699     case 'q': // Stack pointer register
1700     case 'r': // Any register
1701     case 'w': // Special upper register pairs
1702       return C_RegisterClass;
1703     case 't': // Temporary register
1704     case 'x': case 'X': // Pointer register pair X
1705     case 'y': case 'Y': // Pointer register pair Y
1706     case 'z': case 'Z': // Pointer register pair Z
1707       return C_Register;
1708     case 'Q': // A memory address based on Y or Z pointer with displacement.
1709       return C_Memory;
1710     case 'G': // Floating point constant
1711     case 'I': // 6-bit positive integer constant
1712     case 'J': // 6-bit negative integer constant
1713     case 'K': // Integer constant (Range: 2)
1714     case 'L': // Integer constant (Range: 0)
1715     case 'M': // 8-bit integer constant
1716     case 'N': // Integer constant (Range: -1)
1717     case 'O': // Integer constant (Range: 8, 16, 24)
1718     case 'P': // Integer constant (Range: 1)
1719     case 'R': // Integer constant (Range: -6 to 5)x
1720       return C_Immediate;
1721     }
1722   }
1723
1724   return TargetLowering::getConstraintType(Constraint);
1725 }
1726
1727 unsigned
1728 AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
1729   // Not sure if this is actually the right thing to do, but we got to do
1730   // *something* [agnat]
1731   switch (ConstraintCode[0]) {
1732   case 'Q':
1733     return InlineAsm::Constraint_Q;
1734   }
1735   return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1736 }
1737
1738 AVRTargetLowering::ConstraintWeight
1739 AVRTargetLowering::getSingleConstraintMatchWeight(
1740     AsmOperandInfo &info, const char *constraint) const {
1741   ConstraintWeight weight = CW_Invalid;
1742   Value *CallOperandVal = info.CallOperandVal;
1743
1744   // If we don't have a value, we can't do a match,
1745   // but allow it at the lowest weight.
1746   // (this behaviour has been copied from the ARM backend)
1747   if (!CallOperandVal) {
1748     return CW_Default;
1749   }
1750
1751   // Look at the constraint type.
1752   switch (*constraint) {
1753   default:
1754     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1755     break;
1756   case 'd':
1757   case 'r':
1758   case 'l':
1759     weight = CW_Register;
1760     break;
1761   case 'a':
1762   case 'b':
1763   case 'e':
1764   case 'q':
1765   case 't':
1766   case 'w':
1767   case 'x': case 'X':
1768   case 'y': case 'Y':
1769   case 'z': case 'Z':
1770     weight = CW_SpecificReg;
1771     break;
1772   case 'G':
1773     if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
1774       if (C->isZero()) {
1775         weight = CW_Constant;
1776       }
1777     }
1778     break;
1779   case 'I':
1780     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1781       if (isUInt<6>(C->getZExtValue())) {
1782         weight = CW_Constant;
1783       }
1784     }
1785     break;
1786   case 'J':
1787     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1788       if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
1789         weight = CW_Constant;
1790       }
1791     }
1792     break;
1793   case 'K':
1794     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1795       if (C->getZExtValue() == 2) {
1796         weight = CW_Constant;
1797       }
1798     }
1799     break;
1800   case 'L':
1801     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1802       if (C->getZExtValue() == 0) {
1803         weight = CW_Constant;
1804       }
1805     }
1806     break;
1807   case 'M':
1808     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1809       if (isUInt<8>(C->getZExtValue())) {
1810         weight = CW_Constant;
1811       }
1812     }
1813     break;
1814   case 'N':
1815     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1816       if (C->getSExtValue() == -1) {
1817         weight = CW_Constant;
1818       }
1819     }
1820     break;
1821   case 'O':
1822     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1823       if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
1824           (C->getZExtValue() == 24)) {
1825         weight = CW_Constant;
1826       }
1827     }
1828     break;
1829   case 'P':
1830     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1831       if (C->getZExtValue() == 1) {
1832         weight = CW_Constant;
1833       }
1834     }
1835     break;
1836   case 'R':
1837     if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1838       if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
1839         weight = CW_Constant;
1840       }
1841     }
1842     break;
1843   case 'Q':
1844     weight = CW_Memory;
1845     break;
1846   }
1847
1848   return weight;
1849 }
1850
1851 std::pair<unsigned, const TargetRegisterClass *>
1852 AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1853                                                 StringRef Constraint,
1854                                                 MVT VT) const {
1855   // We only support i8 and i16.
1856   //
1857   //:FIXME: remove this assert for now since it gets sometimes executed
1858   // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
1859
1860   if (Constraint.size() == 1) {
1861     switch (Constraint[0]) {
1862     case 'a': // Simple upper registers r16..r23.
1863       return std::make_pair(0U, &AVR::LD8loRegClass);
1864     case 'b': // Base pointer registers: y, z.
1865       return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
1866     case 'd': // Upper registers r16..r31.
1867       return std::make_pair(0U, &AVR::LD8RegClass);
1868     case 'l': // Lower registers r0..r15.
1869       return std::make_pair(0U, &AVR::GPR8loRegClass);
1870     case 'e': // Pointer register pairs: x, y, z.
1871       return std::make_pair(0U, &AVR::PTRREGSRegClass);
1872     case 'q': // Stack pointer register: SPH:SPL.
1873       return std::make_pair(0U, &AVR::GPRSPRegClass);
1874     case 'r': // Any register: r0..r31.
1875       if (VT == MVT::i8)
1876         return std::make_pair(0U, &AVR::GPR8RegClass);
1877
1878       assert(VT == MVT::i16 && "inline asm constraint too large");
1879       return std::make_pair(0U, &AVR::DREGSRegClass);
1880     case 't': // Temporary register: r0.
1881       return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
1882     case 'w': // Special upper register pairs: r24, r26, r28, r30.
1883       return std::make_pair(0U, &AVR::IWREGSRegClass);
1884     case 'x': // Pointer register pair X: r27:r26.
1885     case 'X':
1886       return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
1887     case 'y': // Pointer register pair Y: r29:r28.
1888     case 'Y':
1889       return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
1890     case 'z': // Pointer register pair Z: r31:r30.
1891     case 'Z':
1892       return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
1893     default:
1894       break;
1895     }
1896   }
1897
1898   return TargetLowering::getRegForInlineAsmConstraint(
1899       Subtarget.getRegisterInfo(), Constraint, VT);
1900 }
1901
1902 void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1903                                                      std::string &Constraint,
1904                                                      std::vector<SDValue> &Ops,
1905                                                      SelectionDAG &DAG) const {
1906   SDValue Result(0, 0);
1907   SDLoc DL(Op);
1908   EVT Ty = Op.getValueType();
1909
1910   // Currently only support length 1 constraints.
1911   if (Constraint.length() != 1) {
1912     return;
1913   }
1914
1915   char ConstraintLetter = Constraint[0];
1916   switch (ConstraintLetter) {
1917   default:
1918     break;
1919   // Deal with integers first:
1920   case 'I':
1921   case 'J':
1922   case 'K':
1923   case 'L':
1924   case 'M':
1925   case 'N':
1926   case 'O':
1927   case 'P':
1928   case 'R': {
1929     const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1930     if (!C) {
1931       return;
1932     }
1933
1934     int64_t CVal64 = C->getSExtValue();
1935     uint64_t CUVal64 = C->getZExtValue();
1936     switch (ConstraintLetter) {
1937     case 'I': // 0..63
1938       if (!isUInt<6>(CUVal64))
1939         return;
1940       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1941       break;
1942     case 'J': // -63..0
1943       if (CVal64 < -63 || CVal64 > 0)
1944         return;
1945       Result = DAG.getTargetConstant(CVal64, DL, Ty);
1946       break;
1947     case 'K': // 2
1948       if (CUVal64 != 2)
1949         return;
1950       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1951       break;
1952     case 'L': // 0
1953       if (CUVal64 != 0)
1954         return;
1955       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1956       break;
1957     case 'M': // 0..255
1958       if (!isUInt<8>(CUVal64))
1959         return;
1960       // i8 type may be printed as a negative number,
1961       // e.g. 254 would be printed as -2,
1962       // so we force it to i16 at least.
1963       if (Ty.getSimpleVT() == MVT::i8) {
1964         Ty = MVT::i16;
1965       }
1966       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1967       break;
1968     case 'N': // -1
1969       if (CVal64 != -1)
1970         return;
1971       Result = DAG.getTargetConstant(CVal64, DL, Ty);
1972       break;
1973     case 'O': // 8, 16, 24
1974       if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
1975         return;
1976       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1977       break;
1978     case 'P': // 1
1979       if (CUVal64 != 1)
1980         return;
1981       Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1982       break;
1983     case 'R': // -6..5
1984       if (CVal64 < -6 || CVal64 > 5)
1985         return;
1986       Result = DAG.getTargetConstant(CVal64, DL, Ty);
1987       break;
1988     }
1989
1990     break;
1991   }
1992   case 'G':
1993     const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
1994     if (!FC || !FC->isZero())
1995       return;
1996     // Soften float to i8 0
1997     Result = DAG.getTargetConstant(0, DL, MVT::i8);
1998     break;
1999   }
2000
2001   if (Result.getNode()) {
2002     Ops.push_back(Result);
2003     return;
2004   }
2005
2006   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2007 }
2008
2009 unsigned AVRTargetLowering::getRegisterByName(const char *RegName,
2010                                               EVT VT,
2011                                               SelectionDAG &DAG) const {
2012   unsigned Reg;
2013
2014   if (VT == MVT::i8) {
2015     Reg = StringSwitch<unsigned>(RegName)
2016       .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
2017       .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
2018       .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
2019       .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
2020       .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
2021       .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
2022       .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
2023       .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
2024       .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
2025       .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
2026       .Case("r30", AVR::R30).Case("r31", AVR::R31)
2027       .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2028       .Default(0);
2029   } else {
2030     Reg = StringSwitch<unsigned>(RegName)
2031       .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
2032       .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
2033       .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
2034       .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
2035       .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
2036       .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
2037       .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
2038       .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
2039       .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2040       .Default(0);
2041   }
2042
2043   if (Reg)
2044     return Reg;
2045
2046   report_fatal_error("Invalid register name global variable");
2047 }
2048
2049 } // end of namespace llvm