]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.h
MFC r355940:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / Hexagon / MCTargetDesc / HexagonMCInstrInfo.h
1 //===- HexagonMCInstrInfo.cpp - Utility functions on Hexagon MCInsts ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Utility functions for Hexagon specific MCInst queries
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
14 #define LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H
15
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/MC/MCInst.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cstddef>
22 #include <cstdint>
23
24 namespace llvm {
25
26 class HexagonMCChecker;
27 class MCContext;
28 class MCExpr;
29 class MCInstrDesc;
30 class MCInstrInfo;
31 class MCSubtargetInfo;
32
33 class DuplexCandidate {
34 public:
35   unsigned packetIndexI, packetIndexJ, iClass;
36
37   DuplexCandidate(unsigned i, unsigned j, unsigned iClass)
38       : packetIndexI(i), packetIndexJ(j), iClass(iClass) {}
39 };
40
41 namespace Hexagon {
42
43 class PacketIterator {
44   MCInstrInfo const &MCII;
45   MCInst::const_iterator BundleCurrent;
46   MCInst::const_iterator BundleEnd;
47   MCInst::const_iterator DuplexCurrent;
48   MCInst::const_iterator DuplexEnd;
49
50 public:
51   PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst);
52   PacketIterator(MCInstrInfo const &MCII, MCInst const &Inst, std::nullptr_t);
53
54   PacketIterator &operator++();
55   MCInst const &operator*() const;
56   bool operator==(PacketIterator const &Other) const;
57   bool operator!=(PacketIterator const &Other) const {
58     return !(*this == Other);
59   }
60 };
61
62 } // end namespace Hexagon
63
64 namespace HexagonMCInstrInfo {
65
66 size_t const innerLoopOffset = 0;
67 int64_t const innerLoopMask = 1 << innerLoopOffset;
68
69 size_t const outerLoopOffset = 1;
70 int64_t const outerLoopMask = 1 << outerLoopOffset;
71
72 // do not reorder memory load/stores by default load/stores are re-ordered
73 // and by default loads can be re-ordered
74 size_t const memReorderDisabledOffset = 2;
75 int64_t const memReorderDisabledMask = 1 << memReorderDisabledOffset;
76
77 size_t const bundleInstructionsOffset = 1;
78
79 void addConstant(MCInst &MI, uint64_t Value, MCContext &Context);
80 void addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
81                       MCInst const &MCI);
82
83 // Returns a iterator range of instructions in this bundle
84 iterator_range<Hexagon::PacketIterator>
85 bundleInstructions(MCInstrInfo const &MCII, MCInst const &MCI);
86 iterator_range<MCInst::const_iterator> bundleInstructions(MCInst const &MCI);
87
88 // Returns the number of instructions in the bundle
89 size_t bundleSize(MCInst const &MCI);
90
91 // Put the packet in to canonical form, compound, duplex, pad, and shuffle
92 bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
93                         MCContext &Context, MCInst &MCB,
94                         HexagonMCChecker *Checker);
95
96 // Create a duplex instruction given the two subinsts
97 MCInst *deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0,
98                      MCInst const &inst1);
99 MCInst deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst,
100                       MCOperand const &MO);
101
102 // Convert this instruction in to a duplex subinst
103 MCInst deriveSubInst(MCInst const &Inst);
104
105 // Return the extender for instruction at Index or nullptr if none
106 MCInst const *extenderForIndex(MCInst const &MCB, size_t Index);
107 void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB,
108                     MCInst const &MCI);
109
110 // Return memory access size in bytes
111 unsigned getMemAccessSize(MCInstrInfo const &MCII, MCInst const &MCI);
112
113 // Return memory access size
114 unsigned getAddrMode(MCInstrInfo const &MCII, MCInst const &MCI);
115
116 MCInstrDesc const &getDesc(MCInstrInfo const &MCII, MCInst const &MCI);
117
118 // Return which duplex group this instruction belongs to
119 unsigned getDuplexCandidateGroup(MCInst const &MI);
120
121 // Return a list of all possible instruction duplex combinations
122 SmallVector<DuplexCandidate, 8>
123 getDuplexPossibilties(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
124                       MCInst const &MCB);
125 unsigned getDuplexRegisterNumbering(unsigned Reg);
126
127 MCExpr const &getExpr(MCExpr const &Expr);
128
129 // Return the index of the extendable operand
130 unsigned short getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI);
131
132 // Return a reference to the extendable operand
133 MCOperand const &getExtendableOperand(MCInstrInfo const &MCII,
134                                       MCInst const &MCI);
135
136 // Return the implicit alignment of the extendable operand
137 unsigned getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI);
138
139 // Return the number of logical bits of the extendable operand
140 unsigned getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI);
141
142 // Check if the extendable operand is signed.
143 bool isExtentSigned(MCInstrInfo const &MCII, MCInst const &MCI);
144
145 // Return the max value that a constant extendable operand can have
146 // without being extended.
147 int getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI);
148
149 // Return the min value that a constant extendable operand can have
150 // without being extended.
151 int getMinValue(MCInstrInfo const &MCII, MCInst const &MCI);
152
153 // Return instruction name
154 StringRef getName(MCInstrInfo const &MCII, MCInst const &MCI);
155
156 // Return the operand index for the new value.
157 unsigned short getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI);
158
159 // Return the operand that consumes or produces a new value.
160 MCOperand const &getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI);
161 unsigned short getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI);
162 MCOperand const &getNewValueOperand2(MCInstrInfo const &MCII,
163                                      MCInst const &MCI);
164
165 // Return the Hexagon ISA class for the insn.
166 unsigned getType(MCInstrInfo const &MCII, MCInst const &MCI);
167
168 /// Return the slots used by the insn.
169 unsigned getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
170                   MCInst const &MCI);
171 unsigned getOtherReservedSlots(MCInstrInfo const &MCII,
172                                MCSubtargetInfo const &STI, MCInst const &MCI);
173 bool hasDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
174
175 // Does the packet have an extender for the instruction at Index
176 bool hasExtenderForIndex(MCInst const &MCB, size_t Index);
177
178 bool hasImmExt(MCInst const &MCI);
179
180 // Return whether the instruction is a legal new-value producer.
181 bool hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
182 bool hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI);
183 bool hasTmpDst(MCInstrInfo const &MCII, MCInst const &MCI);
184 unsigned iClassOfDuplexPair(unsigned Ga, unsigned Gb);
185
186 int64_t minConstant(MCInst const &MCI, size_t Index);
187 template <unsigned N, unsigned S>
188 bool inRange(MCInst const &MCI, size_t Index) {
189   return isShiftedUInt<N, S>(minConstant(MCI, Index));
190 }
191 template <unsigned N, unsigned S>
192 bool inSRange(MCInst const &MCI, size_t Index) {
193   return isShiftedInt<N, S>(minConstant(MCI, Index));
194 }
195 template <unsigned N> bool inRange(MCInst const &MCI, size_t Index) {
196   return isUInt<N>(minConstant(MCI, Index));
197 }
198
199 // Return the instruction at Index
200 MCInst const &instruction(MCInst const &MCB, size_t Index);
201 bool isAccumulator(MCInstrInfo const &MCII, MCInst const &MCI);
202
203 // Returns whether this MCInst is a wellformed bundle
204 bool isBundle(MCInst const &MCI);
205
206 // Return whether the insn is an actual insn.
207 bool isCanon(MCInstrInfo const &MCII, MCInst const &MCI);
208 bool isCofMax1(MCInstrInfo const &MCII, MCInst const &MCI);
209 bool isCofRelax1(MCInstrInfo const &MCII, MCInst const &MCI);
210 bool isCofRelax2(MCInstrInfo const &MCII, MCInst const &MCI);
211 bool isCompound(MCInstrInfo const &MCII, MCInst const &MCI);
212
213 // Return whether the instruction needs to be constant extended.
214 bool isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI);
215 bool isCVINew(MCInstrInfo const &MCII, MCInst const &MCI);
216
217 // Is this double register suitable for use in a duplex subinst
218 bool isDblRegForSubInst(unsigned Reg);
219
220 // Is this a duplex instruction
221 bool isDuplex(MCInstrInfo const &MCII, MCInst const &MCI);
222
223 // Can these instructions be duplexed
224 bool isDuplexPair(MCInst const &MIa, MCInst const &MIb);
225
226 // Can these duplex classes be combine in to a duplex instruction
227 bool isDuplexPairMatch(unsigned Ga, unsigned Gb);
228
229 // Return true if the insn may be extended based on the operand value.
230 bool isExtendable(MCInstrInfo const &MCII, MCInst const &MCI);
231
232 // Return whether the instruction must be always extended.
233 bool isExtended(MCInstrInfo const &MCII, MCInst const &MCI);
234
235 /// Return whether it is a floating-point insn.
236 bool isFloat(MCInstrInfo const &MCII, MCInst const &MCI);
237
238 bool isHVX(MCInstrInfo const &MCII, MCInst const &MCI);
239
240 // Returns whether this instruction is an immediate extender
241 bool isImmext(MCInst const &MCI);
242
243 // Returns whether this bundle is an endloop0
244 bool isInnerLoop(MCInst const &MCI);
245
246 // Is this an integer register
247 bool isIntReg(unsigned Reg);
248
249 // Is this register suitable for use in a duplex subinst
250 bool isIntRegForSubInst(unsigned Reg);
251 bool isMemReorderDisabled(MCInst const &MCI);
252
253 // Return whether the insn is a new-value consumer.
254 bool isNewValue(MCInstrInfo const &MCII, MCInst const &MCI);
255 bool isOpExtendable(MCInstrInfo const &MCII, MCInst const &MCI, unsigned short);
256
257 // Can these two instructions be duplexed
258 bool isOrderedDuplexPair(MCInstrInfo const &MCII, MCInst const &MIa,
259                          bool ExtendedA, MCInst const &MIb, bool ExtendedB,
260                          bool bisReversable, MCSubtargetInfo const &STI);
261
262 // Returns whether this bundle is an endloop1
263 bool isOuterLoop(MCInst const &MCI);
264
265 // Return whether this instruction is predicated
266 bool isPredicated(MCInstrInfo const &MCII, MCInst const &MCI);
267 bool isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI);
268 bool isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI);
269
270 // Return whether the predicate sense is true
271 bool isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI);
272
273 // Is this a predicate register
274 bool isPredReg(unsigned Reg);
275
276 // Return whether the insn is a prefix.
277 bool isPrefix(MCInstrInfo const &MCII, MCInst const &MCI);
278
279 // Return whether the insn is solo, i.e., cannot be in a packet.
280 bool isSolo(MCInstrInfo const &MCII, MCInst const &MCI);
281
282 /// Return whether the insn can be packaged only with A and X-type insns.
283 bool isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI);
284
285 /// Return whether the insn can be packaged only with an A-type insn in slot #1.
286 bool isRestrictSlot1AOK(MCInstrInfo const &MCII, MCInst const &MCI);
287 bool isRestrictNoSlot1Store(MCInstrInfo const &MCII, MCInst const &MCI);
288 bool isSubInstruction(MCInst const &MCI);
289 bool isVector(MCInstrInfo const &MCII, MCInst const &MCI);
290 bool mustExtend(MCExpr const &Expr);
291 bool mustNotExtend(MCExpr const &Expr);
292
293 // Pad the bundle with nops to satisfy endloop requirements
294 void padEndloop(MCInst &MCI, MCContext &Context);
295 class PredicateInfo {
296 public:
297   PredicateInfo() : Register(0), Operand(0), PredicatedTrue(false) {}
298   PredicateInfo(unsigned Register, unsigned Operand, bool PredicatedTrue)
299       : Register(Register), Operand(Operand), PredicatedTrue(PredicatedTrue) {}
300   bool isPredicated() const;
301   unsigned Register;
302   unsigned Operand;
303   bool PredicatedTrue;
304 };
305 PredicateInfo predicateInfo(MCInstrInfo const &MCII, MCInst const &MCI);
306 bool prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI);
307
308 // Replace the instructions inside MCB, represented by Candidate
309 void replaceDuplex(MCContext &Context, MCInst &MCI, DuplexCandidate Candidate);
310
311 bool s27_2_reloc(MCExpr const &Expr);
312 // Marks a bundle as endloop0
313 void setInnerLoop(MCInst &MCI);
314 void setMemReorderDisabled(MCInst &MCI);
315 void setMustExtend(MCExpr const &Expr, bool Val = true);
316 void setMustNotExtend(MCExpr const &Expr, bool Val = true);
317 void setS27_2_reloc(MCExpr const &Expr, bool Val = true);
318
319 // Marks a bundle as endloop1
320 void setOuterLoop(MCInst &MCI);
321
322 // Would duplexing this instruction create a requirement to extend
323 bool subInstWouldBeExtended(MCInst const &potentialDuplex);
324 unsigned SubregisterBit(unsigned Consumer, unsigned Producer,
325                         unsigned Producer2);
326
327 // Attempt to find and replace compound pairs
328 void tryCompound(MCInstrInfo const &MCII, MCSubtargetInfo const &STI,
329                  MCContext &Context, MCInst &MCI);
330
331 } // end namespace HexagonMCInstrInfo
332
333 } // end namespace llvm
334
335 #endif // LLVM_LIB_TARGET_HEXAGON_MCTARGETDESC_HEXAGONMCINSTRINFO_H