]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelLowering.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / PowerPC / PPCISelLowering.cpp
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/ValueTypes.h"
58 #include "llvm/IR/CallSite.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/Constant.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/GlobalValue.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/IntrinsicsPowerPC.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/IR/Use.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/MC/MCContext.h"
76 #include "llvm/MC/MCExpr.h"
77 #include "llvm/MC/MCRegisterInfo.h"
78 #include "llvm/MC/MCSymbolXCOFF.h"
79 #include "llvm/Support/AtomicOrdering.h"
80 #include "llvm/Support/BranchProbability.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/CodeGen.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/KnownBits.h"
89 #include "llvm/Support/MachineValueType.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <utility>
100 #include <vector>
101
102 using namespace llvm;
103
104 #define DEBUG_TYPE "ppc-lowering"
105
106 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108
109 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111
112 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114
115 static cl::opt<bool> DisableSCO("disable-ppc-sco",
116 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117
118 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120
121 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
122 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
123
124 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
125 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
126
127 STATISTIC(NumTailCalls, "Number of tail calls");
128 STATISTIC(NumSiblingCalls, "Number of sibling calls");
129
130 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
131
132 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
133
134 // FIXME: Remove this once the bug has been fixed!
135 extern cl::opt<bool> ANDIGlueBug;
136
137 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
138                                      const PPCSubtarget &STI)
139     : TargetLowering(TM), Subtarget(STI) {
140   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
141   // arguments are at least 4/8 bytes aligned.
142   bool isPPC64 = Subtarget.isPPC64();
143   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
144
145   // Set up the register classes.
146   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
147   if (!useSoftFloat()) {
148     if (hasSPE()) {
149       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
150       addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
151     } else {
152       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
153       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
154     }
155   }
156
157   // Match BITREVERSE to customized fast code sequence in the td file.
158   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
159   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
160
161   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
162   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
163
164   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
165   for (MVT VT : MVT::integer_valuetypes()) {
166     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
167     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
168   }
169
170   if (Subtarget.isISA3_0()) {
171     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
172     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
173     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
174     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
175   } else {
176     // No extending loads from f16 or HW conversions back and forth.
177     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
178     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
179     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
180     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
181     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
182     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
183     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
184     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
185   }
186
187   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
188
189   // PowerPC has pre-inc load and store's.
190   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
191   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
192   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
193   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
194   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
195   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
196   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
197   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
198   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
199   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
200   if (!Subtarget.hasSPE()) {
201     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
202     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
203     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
204     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
205   }
206
207   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
208   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
209   for (MVT VT : ScalarIntVTs) {
210     setOperationAction(ISD::ADDC, VT, Legal);
211     setOperationAction(ISD::ADDE, VT, Legal);
212     setOperationAction(ISD::SUBC, VT, Legal);
213     setOperationAction(ISD::SUBE, VT, Legal);
214   }
215
216   if (Subtarget.useCRBits()) {
217     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
218
219     if (isPPC64 || Subtarget.hasFPCVT()) {
220       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
221       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
222                          isPPC64 ? MVT::i64 : MVT::i32);
223       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
224       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
225                         isPPC64 ? MVT::i64 : MVT::i32);
226     } else {
227       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
228       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
229     }
230
231     // PowerPC does not support direct load/store of condition registers.
232     setOperationAction(ISD::LOAD, MVT::i1, Custom);
233     setOperationAction(ISD::STORE, MVT::i1, Custom);
234
235     // FIXME: Remove this once the ANDI glue bug is fixed:
236     if (ANDIGlueBug)
237       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
238
239     for (MVT VT : MVT::integer_valuetypes()) {
240       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
241       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
242       setTruncStoreAction(VT, MVT::i1, Expand);
243     }
244
245     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
246   }
247
248   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
249   // PPC (the libcall is not available).
250   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
251   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
252
253   // We do not currently implement these libm ops for PowerPC.
254   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
255   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
256   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
257   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
258   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
259   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
260
261   // PowerPC has no SREM/UREM instructions unless we are on P9
262   // On P9 we may use a hardware instruction to compute the remainder.
263   // The instructions are not legalized directly because in the cases where the
264   // result of both the remainder and the division is required it is more
265   // efficient to compute the remainder from the result of the division rather
266   // than use the remainder instruction.
267   if (Subtarget.isISA3_0()) {
268     setOperationAction(ISD::SREM, MVT::i32, Custom);
269     setOperationAction(ISD::UREM, MVT::i32, Custom);
270     setOperationAction(ISD::SREM, MVT::i64, Custom);
271     setOperationAction(ISD::UREM, MVT::i64, Custom);
272   } else {
273     setOperationAction(ISD::SREM, MVT::i32, Expand);
274     setOperationAction(ISD::UREM, MVT::i32, Expand);
275     setOperationAction(ISD::SREM, MVT::i64, Expand);
276     setOperationAction(ISD::UREM, MVT::i64, Expand);
277   }
278
279   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
280   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
281   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
282   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
283   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
284   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
285   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
286   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
287   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
288
289   // We don't support sin/cos/sqrt/fmod/pow
290   setOperationAction(ISD::FSIN , MVT::f64, Expand);
291   setOperationAction(ISD::FCOS , MVT::f64, Expand);
292   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
293   setOperationAction(ISD::FREM , MVT::f64, Expand);
294   setOperationAction(ISD::FPOW , MVT::f64, Expand);
295   setOperationAction(ISD::FSIN , MVT::f32, Expand);
296   setOperationAction(ISD::FCOS , MVT::f32, Expand);
297   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
298   setOperationAction(ISD::FREM , MVT::f32, Expand);
299   setOperationAction(ISD::FPOW , MVT::f32, Expand);
300   if (Subtarget.hasSPE()) {
301     setOperationAction(ISD::FMA  , MVT::f64, Expand);
302     setOperationAction(ISD::FMA  , MVT::f32, Expand);
303   } else {
304     setOperationAction(ISD::FMA  , MVT::f64, Legal);
305     setOperationAction(ISD::FMA  , MVT::f32, Legal);
306   }
307
308   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
309
310   // If we're enabling GP optimizations, use hardware square root
311   if (!Subtarget.hasFSQRT() &&
312       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
313         Subtarget.hasFRE()))
314     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
315
316   if (!Subtarget.hasFSQRT() &&
317       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
318         Subtarget.hasFRES()))
319     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
320
321   if (Subtarget.hasFCPSGN()) {
322     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
323     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
324   } else {
325     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
326     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
327   }
328
329   if (Subtarget.hasFPRND()) {
330     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
331     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
332     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
333     setOperationAction(ISD::FROUND, MVT::f64, Legal);
334
335     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
336     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
337     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
338     setOperationAction(ISD::FROUND, MVT::f32, Legal);
339   }
340
341   // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
342   // to speed up scalar BSWAP64.
343   // CTPOP or CTTZ were introduced in P8/P9 respectively
344   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
345   if (Subtarget.hasP9Vector())
346     setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
347   else
348     setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
349   if (Subtarget.isISA3_0()) {
350     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
351     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
352   } else {
353     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
354     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
355   }
356
357   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
358     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
359     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
360   } else {
361     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
362     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
363   }
364
365   // PowerPC does not have ROTR
366   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
367   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
368
369   if (!Subtarget.useCRBits()) {
370     // PowerPC does not have Select
371     setOperationAction(ISD::SELECT, MVT::i32, Expand);
372     setOperationAction(ISD::SELECT, MVT::i64, Expand);
373     setOperationAction(ISD::SELECT, MVT::f32, Expand);
374     setOperationAction(ISD::SELECT, MVT::f64, Expand);
375   }
376
377   // PowerPC wants to turn select_cc of FP into fsel when possible.
378   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
379   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
380
381   // PowerPC wants to optimize integer setcc a bit
382   if (!Subtarget.useCRBits())
383     setOperationAction(ISD::SETCC, MVT::i32, Custom);
384
385   // PowerPC does not have BRCOND which requires SetCC
386   if (!Subtarget.useCRBits())
387     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
388
389   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
390
391   if (Subtarget.hasSPE()) {
392     // SPE has built-in conversions
393     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
394     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
395     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
396   } else {
397     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
398     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
399
400     // PowerPC does not have [U|S]INT_TO_FP
401     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
402     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
403   }
404
405   if (Subtarget.hasDirectMove() && isPPC64) {
406     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
407     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
408     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
409     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
410     if (TM.Options.UnsafeFPMath) {
411       setOperationAction(ISD::LRINT, MVT::f64, Legal);
412       setOperationAction(ISD::LRINT, MVT::f32, Legal);
413       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
414       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
415       setOperationAction(ISD::LROUND, MVT::f64, Legal);
416       setOperationAction(ISD::LROUND, MVT::f32, Legal);
417       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
418       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
419     }
420   } else {
421     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
422     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
423     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
424     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
425   }
426
427   // We cannot sextinreg(i1).  Expand to shifts.
428   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
429
430   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
431   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
432   // support continuation, user-level threading, and etc.. As a result, no
433   // other SjLj exception interfaces are implemented and please don't build
434   // your own exception handling based on them.
435   // LLVM/Clang supports zero-cost DWARF exception handling.
436   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
437   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
438
439   // We want to legalize GlobalAddress and ConstantPool nodes into the
440   // appropriate instructions to materialize the address.
441   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
442   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
443   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
444   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
445   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
446   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
447   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
448   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
449   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
450   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
451
452   // TRAP is legal.
453   setOperationAction(ISD::TRAP, MVT::Other, Legal);
454
455   // TRAMPOLINE is custom lowered.
456   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
457   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
458
459   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
460   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
461
462   if (Subtarget.is64BitELFABI()) {
463     // VAARG always uses double-word chunks, so promote anything smaller.
464     setOperationAction(ISD::VAARG, MVT::i1, Promote);
465     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
466     setOperationAction(ISD::VAARG, MVT::i8, Promote);
467     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
468     setOperationAction(ISD::VAARG, MVT::i16, Promote);
469     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
470     setOperationAction(ISD::VAARG, MVT::i32, Promote);
471     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
472     setOperationAction(ISD::VAARG, MVT::Other, Expand);
473   } else if (Subtarget.is32BitELFABI()) {
474     // VAARG is custom lowered with the 32-bit SVR4 ABI.
475     setOperationAction(ISD::VAARG, MVT::Other, Custom);
476     setOperationAction(ISD::VAARG, MVT::i64, Custom);
477   } else
478     setOperationAction(ISD::VAARG, MVT::Other, Expand);
479
480   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
481   if (Subtarget.is32BitELFABI())
482     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
483   else
484     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
485
486   // Use the default implementation.
487   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
488   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
489   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
490   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
491   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
492   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
493   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
494   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
495   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
496
497   // We want to custom lower some of our intrinsics.
498   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
499
500   // To handle counter-based loop conditions.
501   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
502
503   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
504   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
505   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
506   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
507
508   // Comparisons that require checking two conditions.
509   if (Subtarget.hasSPE()) {
510     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
511     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
512     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
513     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
514   }
515   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
516   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
517   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
518   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
519   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
520   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
521   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
522   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
523   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
524   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
525   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
526   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
527
528   if (Subtarget.has64BitSupport()) {
529     // They also have instructions for converting between i64 and fp.
530     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
531     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
532     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
533     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
534     // This is just the low 32 bits of a (signed) fp->i64 conversion.
535     // We cannot do this with Promote because i64 is not a legal type.
536     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
537
538     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
539       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
540   } else {
541     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
542     if (Subtarget.hasSPE())
543       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
544     else
545       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
546   }
547
548   // With the instructions enabled under FPCVT, we can do everything.
549   if (Subtarget.hasFPCVT()) {
550     if (Subtarget.has64BitSupport()) {
551       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
552       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
553       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
554       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
555     }
556
557     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
558     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
559     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
560     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
561   }
562
563   if (Subtarget.use64BitRegs()) {
564     // 64-bit PowerPC implementations can support i64 types directly
565     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
566     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
567     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
568     // 64-bit PowerPC wants to expand i128 shifts itself.
569     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
570     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
571     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
572   } else {
573     // 32-bit PowerPC wants to expand i64 shifts itself.
574     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
575     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
576     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
577   }
578
579   if (Subtarget.hasVSX()) {
580     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
581     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
582     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
583     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
584   }
585
586   if (Subtarget.hasAltivec()) {
587     // First set operation action for all vector types to expand. Then we
588     // will selectively turn on ones that can be effectively codegen'd.
589     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
590       // add/sub are legal for all supported vector VT's.
591       setOperationAction(ISD::ADD, VT, Legal);
592       setOperationAction(ISD::SUB, VT, Legal);
593
594       // For v2i64, these are only valid with P8Vector. This is corrected after
595       // the loop.
596       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
597         setOperationAction(ISD::SMAX, VT, Legal);
598         setOperationAction(ISD::SMIN, VT, Legal);
599         setOperationAction(ISD::UMAX, VT, Legal);
600         setOperationAction(ISD::UMIN, VT, Legal);
601       }
602       else {
603         setOperationAction(ISD::SMAX, VT, Expand);
604         setOperationAction(ISD::SMIN, VT, Expand);
605         setOperationAction(ISD::UMAX, VT, Expand);
606         setOperationAction(ISD::UMIN, VT, Expand);
607       }
608
609       if (Subtarget.hasVSX()) {
610         setOperationAction(ISD::FMAXNUM, VT, Legal);
611         setOperationAction(ISD::FMINNUM, VT, Legal);
612       }
613
614       // Vector instructions introduced in P8
615       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
616         setOperationAction(ISD::CTPOP, VT, Legal);
617         setOperationAction(ISD::CTLZ, VT, Legal);
618       }
619       else {
620         setOperationAction(ISD::CTPOP, VT, Expand);
621         setOperationAction(ISD::CTLZ, VT, Expand);
622       }
623
624       // Vector instructions introduced in P9
625       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
626         setOperationAction(ISD::CTTZ, VT, Legal);
627       else
628         setOperationAction(ISD::CTTZ, VT, Expand);
629
630       // We promote all shuffles to v16i8.
631       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
632       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
633
634       // We promote all non-typed operations to v4i32.
635       setOperationAction(ISD::AND   , VT, Promote);
636       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
637       setOperationAction(ISD::OR    , VT, Promote);
638       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
639       setOperationAction(ISD::XOR   , VT, Promote);
640       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
641       setOperationAction(ISD::LOAD  , VT, Promote);
642       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
643       setOperationAction(ISD::SELECT, VT, Promote);
644       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
645       setOperationAction(ISD::VSELECT, VT, Legal);
646       setOperationAction(ISD::SELECT_CC, VT, Promote);
647       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
648       setOperationAction(ISD::STORE, VT, Promote);
649       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
650
651       // No other operations are legal.
652       setOperationAction(ISD::MUL , VT, Expand);
653       setOperationAction(ISD::SDIV, VT, Expand);
654       setOperationAction(ISD::SREM, VT, Expand);
655       setOperationAction(ISD::UDIV, VT, Expand);
656       setOperationAction(ISD::UREM, VT, Expand);
657       setOperationAction(ISD::FDIV, VT, Expand);
658       setOperationAction(ISD::FREM, VT, Expand);
659       setOperationAction(ISD::FNEG, VT, Expand);
660       setOperationAction(ISD::FSQRT, VT, Expand);
661       setOperationAction(ISD::FLOG, VT, Expand);
662       setOperationAction(ISD::FLOG10, VT, Expand);
663       setOperationAction(ISD::FLOG2, VT, Expand);
664       setOperationAction(ISD::FEXP, VT, Expand);
665       setOperationAction(ISD::FEXP2, VT, Expand);
666       setOperationAction(ISD::FSIN, VT, Expand);
667       setOperationAction(ISD::FCOS, VT, Expand);
668       setOperationAction(ISD::FABS, VT, Expand);
669       setOperationAction(ISD::FFLOOR, VT, Expand);
670       setOperationAction(ISD::FCEIL,  VT, Expand);
671       setOperationAction(ISD::FTRUNC, VT, Expand);
672       setOperationAction(ISD::FRINT,  VT, Expand);
673       setOperationAction(ISD::FNEARBYINT, VT, Expand);
674       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
675       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
676       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
677       setOperationAction(ISD::MULHU, VT, Expand);
678       setOperationAction(ISD::MULHS, VT, Expand);
679       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
680       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
681       setOperationAction(ISD::UDIVREM, VT, Expand);
682       setOperationAction(ISD::SDIVREM, VT, Expand);
683       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
684       setOperationAction(ISD::FPOW, VT, Expand);
685       setOperationAction(ISD::BSWAP, VT, Expand);
686       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
687       setOperationAction(ISD::ROTL, VT, Expand);
688       setOperationAction(ISD::ROTR, VT, Expand);
689
690       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
691         setTruncStoreAction(VT, InnerVT, Expand);
692         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
693         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
694         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
695       }
696     }
697     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
698     if (!Subtarget.hasP8Vector()) {
699       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
700       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
701       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
702       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
703     }
704
705     for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
706       setOperationAction(ISD::ABS, VT, Custom);
707
708     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
709     // with merges, splats, etc.
710     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
711
712     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
713     // are cheap, so handle them before they get expanded to scalar.
714     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
715     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
716     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
717     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
718     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
719
720     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
721     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
722     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
723     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
724     setOperationAction(ISD::SELECT, MVT::v4i32,
725                        Subtarget.useCRBits() ? Legal : Expand);
726     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
727     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
728     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
729     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
730     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
731     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
732     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
733     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
734     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
735
736     // Without hasP8Altivec set, v2i64 SMAX isn't available.
737     // But ABS custom lowering requires SMAX support.
738     if (!Subtarget.hasP8Altivec())
739       setOperationAction(ISD::ABS, MVT::v2i64, Expand);
740
741     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
742     if (Subtarget.hasAltivec())
743       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
744         setOperationAction(ISD::ROTL, VT, Legal);
745     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
746     if (Subtarget.hasP8Altivec())
747       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
748
749     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
750     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
751     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
752     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
753
754     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
755     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
756
757     if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
758       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
759       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
760     }
761
762     if (Subtarget.hasP8Altivec())
763       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
764     else
765       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
766
767     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
768     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
769
770     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
771     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
772
773     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
774     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
775     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
776     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
777
778     // Altivec does not contain unordered floating-point compare instructions
779     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
780     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
781     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
782     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
783
784     if (Subtarget.hasVSX()) {
785       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
786       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
787       if (Subtarget.hasP8Vector()) {
788         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
789         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
790       }
791       if (Subtarget.hasDirectMove() && isPPC64) {
792         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
793         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
794         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
795         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
796         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
797         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
798         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
799         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
800       }
801       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
802
803       // The nearbyint variants are not allowed to raise the inexact exception
804       // so we can only code-gen them with unsafe math.
805       if (TM.Options.UnsafeFPMath) {
806         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
807         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
808       }
809
810       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
811       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
812       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
813       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
814       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
815       setOperationAction(ISD::FROUND, MVT::f64, Legal);
816
817       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
818       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
819       setOperationAction(ISD::FROUND, MVT::f32, Legal);
820
821       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
822       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
823
824       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
825       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
826
827       // Share the Altivec comparison restrictions.
828       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
829       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
830       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
831       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
832
833       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
834       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
835
836       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
837
838       if (Subtarget.hasP8Vector())
839         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
840
841       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
842
843       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
844       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
845       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
846
847       if (Subtarget.hasP8Altivec()) {
848         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
849         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
850         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
851
852         // 128 bit shifts can be accomplished via 3 instructions for SHL and
853         // SRL, but not for SRA because of the instructions available:
854         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
855         // doing
856         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
857         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
858         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
859
860         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
861       }
862       else {
863         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
864         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
865         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
866
867         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
868
869         // VSX v2i64 only supports non-arithmetic operations.
870         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
871         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
872       }
873
874       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
875       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
876       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
877       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
878
879       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
880
881       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
882       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
883       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
884       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
885
886       // Custom handling for partial vectors of integers converted to
887       // floating point. We already have optimal handling for v2i32 through
888       // the DAG combine, so those aren't necessary.
889       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
890       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
891       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
892       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
893       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
894       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
895       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
896       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
897
898       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
899       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
900       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
901       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
902       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
903       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
904
905       if (Subtarget.hasDirectMove())
906         setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
907       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
908
909       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
910     }
911
912     if (Subtarget.hasP8Altivec()) {
913       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
914       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
915     }
916
917     if (Subtarget.hasP9Vector()) {
918       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
919       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
920
921       // 128 bit shifts can be accomplished via 3 instructions for SHL and
922       // SRL, but not for SRA because of the instructions available:
923       // VS{RL} and VS{RL}O.
924       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
925       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
926       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
927
928       if (EnableQuadPrecision) {
929         addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
930         setOperationAction(ISD::FADD, MVT::f128, Legal);
931         setOperationAction(ISD::FSUB, MVT::f128, Legal);
932         setOperationAction(ISD::FDIV, MVT::f128, Legal);
933         setOperationAction(ISD::FMUL, MVT::f128, Legal);
934         setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
935         // No extending loads to f128 on PPC.
936         for (MVT FPT : MVT::fp_valuetypes())
937           setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
938         setOperationAction(ISD::FMA, MVT::f128, Legal);
939         setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
940         setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
941         setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
942         setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
943         setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
944         setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
945
946         setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
947         setOperationAction(ISD::FRINT, MVT::f128, Legal);
948         setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
949         setOperationAction(ISD::FCEIL, MVT::f128, Legal);
950         setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
951         setOperationAction(ISD::FROUND, MVT::f128, Legal);
952
953         setOperationAction(ISD::SELECT, MVT::f128, Expand);
954         setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
955         setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
956         setTruncStoreAction(MVT::f128, MVT::f64, Expand);
957         setTruncStoreAction(MVT::f128, MVT::f32, Expand);
958         setOperationAction(ISD::BITCAST, MVT::i128, Custom);
959         // No implementation for these ops for PowerPC.
960         setOperationAction(ISD::FSIN , MVT::f128, Expand);
961         setOperationAction(ISD::FCOS , MVT::f128, Expand);
962         setOperationAction(ISD::FPOW, MVT::f128, Expand);
963         setOperationAction(ISD::FPOWI, MVT::f128, Expand);
964         setOperationAction(ISD::FREM, MVT::f128, Expand);
965       }
966       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
967       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
968       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
969       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
970       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
971     }
972
973     if (Subtarget.hasP9Altivec()) {
974       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
975       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
976
977       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
978       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
979       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
980       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
981       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
982       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
983       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
984     }
985   }
986
987   if (Subtarget.hasQPX()) {
988     setOperationAction(ISD::FADD, MVT::v4f64, Legal);
989     setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
990     setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
991     setOperationAction(ISD::FREM, MVT::v4f64, Expand);
992
993     setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
994     setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
995
996     setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
997     setOperationAction(ISD::STORE , MVT::v4f64, Custom);
998
999     setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
1000     setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
1001
1002     if (!Subtarget.useCRBits())
1003       setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
1004     setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1005
1006     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
1007     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
1008     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
1009     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
1010     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
1011     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
1012     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
1013
1014     setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
1015     setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
1016
1017     setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
1018     setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
1019
1020     setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
1021     setOperationAction(ISD::FABS , MVT::v4f64, Legal);
1022     setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
1023     setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
1024     setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
1025     setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
1026     setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
1027     setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
1028     setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
1029     setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
1030
1031     setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
1032     setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
1033
1034     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
1035     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
1036
1037     addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
1038
1039     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
1040     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
1041     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1042     setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1043
1044     setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1045     setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1046
1047     setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1048     setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1049
1050     if (!Subtarget.useCRBits())
1051       setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1052     setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1053
1054     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1055     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1056     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1057     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1058     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1059     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1060     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1061
1062     setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1063     setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1064
1065     setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1066     setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1067     setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1068     setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1069     setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1070     setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1071     setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1072     setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1073     setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1074     setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1075
1076     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1077     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1078
1079     setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1080     setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1081
1082     addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1083
1084     setOperationAction(ISD::AND , MVT::v4i1, Legal);
1085     setOperationAction(ISD::OR , MVT::v4i1, Legal);
1086     setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1087
1088     if (!Subtarget.useCRBits())
1089       setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1090     setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1091
1092     setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1093     setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1094
1095     setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1096     setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1097     setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1098     setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1099     setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1100     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1101     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1102
1103     setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1104     setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1105
1106     addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1107
1108     setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1109     setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1110     setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1111     setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1112
1113     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1114     setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1115     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1116     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1117
1118     setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1119     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1120
1121     // These need to set FE_INEXACT, and so cannot be vectorized here.
1122     setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1123     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1124
1125     if (TM.Options.UnsafeFPMath) {
1126       setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1127       setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1128
1129       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1130       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1131     } else {
1132       setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1133       setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1134
1135       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1136       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1137     }
1138   }
1139
1140   if (Subtarget.has64BitSupport())
1141     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1142
1143   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1144
1145   if (!isPPC64) {
1146     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1147     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1148   }
1149
1150   setBooleanContents(ZeroOrOneBooleanContent);
1151
1152   if (Subtarget.hasAltivec()) {
1153     // Altivec instructions set fields to all zeros or all ones.
1154     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1155   }
1156
1157   if (!isPPC64) {
1158     // These libcalls are not available in 32-bit.
1159     setLibcallName(RTLIB::SHL_I128, nullptr);
1160     setLibcallName(RTLIB::SRL_I128, nullptr);
1161     setLibcallName(RTLIB::SRA_I128, nullptr);
1162   }
1163
1164   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1165
1166   // We have target-specific dag combine patterns for the following nodes:
1167   setTargetDAGCombine(ISD::ADD);
1168   setTargetDAGCombine(ISD::SHL);
1169   setTargetDAGCombine(ISD::SRA);
1170   setTargetDAGCombine(ISD::SRL);
1171   setTargetDAGCombine(ISD::MUL);
1172   setTargetDAGCombine(ISD::SINT_TO_FP);
1173   setTargetDAGCombine(ISD::BUILD_VECTOR);
1174   if (Subtarget.hasFPCVT())
1175     setTargetDAGCombine(ISD::UINT_TO_FP);
1176   setTargetDAGCombine(ISD::LOAD);
1177   setTargetDAGCombine(ISD::STORE);
1178   setTargetDAGCombine(ISD::BR_CC);
1179   if (Subtarget.useCRBits())
1180     setTargetDAGCombine(ISD::BRCOND);
1181   setTargetDAGCombine(ISD::BSWAP);
1182   setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1183   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1184   setTargetDAGCombine(ISD::INTRINSIC_VOID);
1185
1186   setTargetDAGCombine(ISD::SIGN_EXTEND);
1187   setTargetDAGCombine(ISD::ZERO_EXTEND);
1188   setTargetDAGCombine(ISD::ANY_EXTEND);
1189
1190   setTargetDAGCombine(ISD::TRUNCATE);
1191   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1192
1193
1194   if (Subtarget.useCRBits()) {
1195     setTargetDAGCombine(ISD::TRUNCATE);
1196     setTargetDAGCombine(ISD::SETCC);
1197     setTargetDAGCombine(ISD::SELECT_CC);
1198   }
1199
1200   // Use reciprocal estimates.
1201   if (TM.Options.UnsafeFPMath) {
1202     setTargetDAGCombine(ISD::FDIV);
1203     setTargetDAGCombine(ISD::FSQRT);
1204   }
1205
1206   if (Subtarget.hasP9Altivec()) {
1207     setTargetDAGCombine(ISD::ABS);
1208     setTargetDAGCombine(ISD::VSELECT);
1209   }
1210
1211   // Darwin long double math library functions have $LDBL128 appended.
1212   if (Subtarget.isDarwin()) {
1213     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1214     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1215     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1216     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1217     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1218     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1219     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1220     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1221     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1222     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1223   }
1224
1225   if (EnableQuadPrecision) {
1226     setLibcallName(RTLIB::LOG_F128, "logf128");
1227     setLibcallName(RTLIB::LOG2_F128, "log2f128");
1228     setLibcallName(RTLIB::LOG10_F128, "log10f128");
1229     setLibcallName(RTLIB::EXP_F128, "expf128");
1230     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1231     setLibcallName(RTLIB::SIN_F128, "sinf128");
1232     setLibcallName(RTLIB::COS_F128, "cosf128");
1233     setLibcallName(RTLIB::POW_F128, "powf128");
1234     setLibcallName(RTLIB::FMIN_F128, "fminf128");
1235     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1236     setLibcallName(RTLIB::POWI_F128, "__powikf2");
1237     setLibcallName(RTLIB::REM_F128, "fmodf128");
1238   }
1239
1240   // With 32 condition bits, we don't need to sink (and duplicate) compares
1241   // aggressively in CodeGenPrep.
1242   if (Subtarget.useCRBits()) {
1243     setHasMultipleConditionRegisters();
1244     setJumpIsExpensive();
1245   }
1246
1247   setMinFunctionAlignment(Align(4));
1248   if (Subtarget.isDarwin())
1249     setPrefFunctionAlignment(Align(16));
1250
1251   switch (Subtarget.getCPUDirective()) {
1252   default: break;
1253   case PPC::DIR_970:
1254   case PPC::DIR_A2:
1255   case PPC::DIR_E500:
1256   case PPC::DIR_E500mc:
1257   case PPC::DIR_E5500:
1258   case PPC::DIR_PWR4:
1259   case PPC::DIR_PWR5:
1260   case PPC::DIR_PWR5X:
1261   case PPC::DIR_PWR6:
1262   case PPC::DIR_PWR6X:
1263   case PPC::DIR_PWR7:
1264   case PPC::DIR_PWR8:
1265   case PPC::DIR_PWR9:
1266   case PPC::DIR_PWR_FUTURE:
1267     setPrefLoopAlignment(Align(16));
1268     setPrefFunctionAlignment(Align(16));
1269     break;
1270   }
1271
1272   if (Subtarget.enableMachineScheduler())
1273     setSchedulingPreference(Sched::Source);
1274   else
1275     setSchedulingPreference(Sched::Hybrid);
1276
1277   computeRegisterProperties(STI.getRegisterInfo());
1278
1279   // The Freescale cores do better with aggressive inlining of memcpy and
1280   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1281   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1282       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1283     MaxStoresPerMemset = 32;
1284     MaxStoresPerMemsetOptSize = 16;
1285     MaxStoresPerMemcpy = 32;
1286     MaxStoresPerMemcpyOptSize = 8;
1287     MaxStoresPerMemmove = 32;
1288     MaxStoresPerMemmoveOptSize = 8;
1289   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1290     // The A2 also benefits from (very) aggressive inlining of memcpy and
1291     // friends. The overhead of a the function call, even when warm, can be
1292     // over one hundred cycles.
1293     MaxStoresPerMemset = 128;
1294     MaxStoresPerMemcpy = 128;
1295     MaxStoresPerMemmove = 128;
1296     MaxLoadsPerMemcmp = 128;
1297   } else {
1298     MaxLoadsPerMemcmp = 8;
1299     MaxLoadsPerMemcmpOptSize = 4;
1300   }
1301 }
1302
1303 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1304 /// the desired ByVal argument alignment.
1305 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1306                              unsigned MaxMaxAlign) {
1307   if (MaxAlign == MaxMaxAlign)
1308     return;
1309   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1310     if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1311       MaxAlign = 32;
1312     else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1313       MaxAlign = 16;
1314   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1315     unsigned EltAlign = 0;
1316     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1317     if (EltAlign > MaxAlign)
1318       MaxAlign = EltAlign;
1319   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1320     for (auto *EltTy : STy->elements()) {
1321       unsigned EltAlign = 0;
1322       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1323       if (EltAlign > MaxAlign)
1324         MaxAlign = EltAlign;
1325       if (MaxAlign == MaxMaxAlign)
1326         break;
1327     }
1328   }
1329 }
1330
1331 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1332 /// function arguments in the caller parameter area.
1333 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1334                                                   const DataLayout &DL) const {
1335   // Darwin passes everything on 4 byte boundary.
1336   if (Subtarget.isDarwin())
1337     return 4;
1338
1339   // 16byte and wider vectors are passed on 16byte boundary.
1340   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1341   unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1342   if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1343     getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1344   return Align;
1345 }
1346
1347 bool PPCTargetLowering::useSoftFloat() const {
1348   return Subtarget.useSoftFloat();
1349 }
1350
1351 bool PPCTargetLowering::hasSPE() const {
1352   return Subtarget.hasSPE();
1353 }
1354
1355 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1356   return VT.isScalarInteger();
1357 }
1358
1359 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1360   switch ((PPCISD::NodeType)Opcode) {
1361   case PPCISD::FIRST_NUMBER:    break;
1362   case PPCISD::FSEL:            return "PPCISD::FSEL";
1363   case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1364   case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1365   case PPCISD::FCFID:           return "PPCISD::FCFID";
1366   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1367   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1368   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1369   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1370   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1371   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1372   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1373   case PPCISD::FP_TO_UINT_IN_VSR:
1374                                 return "PPCISD::FP_TO_UINT_IN_VSR,";
1375   case PPCISD::FP_TO_SINT_IN_VSR:
1376                                 return "PPCISD::FP_TO_SINT_IN_VSR";
1377   case PPCISD::FRE:             return "PPCISD::FRE";
1378   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1379   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1380   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1381   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1382   case PPCISD::VPERM:           return "PPCISD::VPERM";
1383   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1384   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1385   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1386   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1387   case PPCISD::CMPB:            return "PPCISD::CMPB";
1388   case PPCISD::Hi:              return "PPCISD::Hi";
1389   case PPCISD::Lo:              return "PPCISD::Lo";
1390   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1391   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1392   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1393   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1394   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1395   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1396   case PPCISD::SRL:             return "PPCISD::SRL";
1397   case PPCISD::SRA:             return "PPCISD::SRA";
1398   case PPCISD::SHL:             return "PPCISD::SHL";
1399   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1400   case PPCISD::CALL:            return "PPCISD::CALL";
1401   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1402   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1403   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1404   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1405   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1406   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1407   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1408   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1409   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1410   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1411   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1412   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1413   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1414   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1415   case PPCISD::ANDI_rec_1_EQ_BIT:
1416     return "PPCISD::ANDI_rec_1_EQ_BIT";
1417   case PPCISD::ANDI_rec_1_GT_BIT:
1418     return "PPCISD::ANDI_rec_1_GT_BIT";
1419   case PPCISD::VCMP:            return "PPCISD::VCMP";
1420   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1421   case PPCISD::LBRX:            return "PPCISD::LBRX";
1422   case PPCISD::STBRX:           return "PPCISD::STBRX";
1423   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1424   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1425   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1426   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1427   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1428   case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1429   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1430   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1431   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1432   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1433   case PPCISD::ST_VSR_SCAL_INT:
1434                                 return "PPCISD::ST_VSR_SCAL_INT";
1435   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1436   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1437   case PPCISD::BDZ:             return "PPCISD::BDZ";
1438   case PPCISD::MFFS:            return "PPCISD::MFFS";
1439   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1440   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1441   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1442   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1443   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1444   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1445   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1446   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1447   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1448   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1449   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1450   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1451   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1452   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1453   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1454   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1455   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1456   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1457   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1458   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1459   case PPCISD::SC:              return "PPCISD::SC";
1460   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1461   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1462   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1463   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1464   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1465   case PPCISD::VABSD:           return "PPCISD::VABSD";
1466   case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1467   case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1468   case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1469   case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1470   case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1471   case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1472   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1473   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1474   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1475   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1476   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1477   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1478   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1479   }
1480   return nullptr;
1481 }
1482
1483 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1484                                           EVT VT) const {
1485   if (!VT.isVector())
1486     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1487
1488   if (Subtarget.hasQPX())
1489     return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1490
1491   return VT.changeVectorElementTypeToInteger();
1492 }
1493
1494 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1495   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1496   return true;
1497 }
1498
1499 //===----------------------------------------------------------------------===//
1500 // Node matching predicates, for use by the tblgen matching code.
1501 //===----------------------------------------------------------------------===//
1502
1503 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1504 static bool isFloatingPointZero(SDValue Op) {
1505   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1506     return CFP->getValueAPF().isZero();
1507   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1508     // Maybe this has already been legalized into the constant pool?
1509     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1510       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1511         return CFP->getValueAPF().isZero();
1512   }
1513   return false;
1514 }
1515
1516 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1517 /// true if Op is undef or if it matches the specified value.
1518 static bool isConstantOrUndef(int Op, int Val) {
1519   return Op < 0 || Op == Val;
1520 }
1521
1522 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1523 /// VPKUHUM instruction.
1524 /// The ShuffleKind distinguishes between big-endian operations with
1525 /// two different inputs (0), either-endian operations with two identical
1526 /// inputs (1), and little-endian operations with two different inputs (2).
1527 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1528 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1529                                SelectionDAG &DAG) {
1530   bool IsLE = DAG.getDataLayout().isLittleEndian();
1531   if (ShuffleKind == 0) {
1532     if (IsLE)
1533       return false;
1534     for (unsigned i = 0; i != 16; ++i)
1535       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1536         return false;
1537   } else if (ShuffleKind == 2) {
1538     if (!IsLE)
1539       return false;
1540     for (unsigned i = 0; i != 16; ++i)
1541       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1542         return false;
1543   } else if (ShuffleKind == 1) {
1544     unsigned j = IsLE ? 0 : 1;
1545     for (unsigned i = 0; i != 8; ++i)
1546       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1547           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1548         return false;
1549   }
1550   return true;
1551 }
1552
1553 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1554 /// VPKUWUM instruction.
1555 /// The ShuffleKind distinguishes between big-endian operations with
1556 /// two different inputs (0), either-endian operations with two identical
1557 /// inputs (1), and little-endian operations with two different inputs (2).
1558 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1559 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1560                                SelectionDAG &DAG) {
1561   bool IsLE = DAG.getDataLayout().isLittleEndian();
1562   if (ShuffleKind == 0) {
1563     if (IsLE)
1564       return false;
1565     for (unsigned i = 0; i != 16; i += 2)
1566       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1567           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1568         return false;
1569   } else if (ShuffleKind == 2) {
1570     if (!IsLE)
1571       return false;
1572     for (unsigned i = 0; i != 16; i += 2)
1573       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1574           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1575         return false;
1576   } else if (ShuffleKind == 1) {
1577     unsigned j = IsLE ? 0 : 2;
1578     for (unsigned i = 0; i != 8; i += 2)
1579       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1580           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1581           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1582           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1583         return false;
1584   }
1585   return true;
1586 }
1587
1588 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1589 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1590 /// current subtarget.
1591 ///
1592 /// The ShuffleKind distinguishes between big-endian operations with
1593 /// two different inputs (0), either-endian operations with two identical
1594 /// inputs (1), and little-endian operations with two different inputs (2).
1595 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1596 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1597                                SelectionDAG &DAG) {
1598   const PPCSubtarget& Subtarget =
1599       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1600   if (!Subtarget.hasP8Vector())
1601     return false;
1602
1603   bool IsLE = DAG.getDataLayout().isLittleEndian();
1604   if (ShuffleKind == 0) {
1605     if (IsLE)
1606       return false;
1607     for (unsigned i = 0; i != 16; i += 4)
1608       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1609           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1610           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1611           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1612         return false;
1613   } else if (ShuffleKind == 2) {
1614     if (!IsLE)
1615       return false;
1616     for (unsigned i = 0; i != 16; i += 4)
1617       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1618           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1619           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1620           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1621         return false;
1622   } else if (ShuffleKind == 1) {
1623     unsigned j = IsLE ? 0 : 4;
1624     for (unsigned i = 0; i != 8; i += 4)
1625       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1626           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1627           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1628           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1629           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1630           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1631           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1632           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1633         return false;
1634   }
1635   return true;
1636 }
1637
1638 /// isVMerge - Common function, used to match vmrg* shuffles.
1639 ///
1640 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1641                      unsigned LHSStart, unsigned RHSStart) {
1642   if (N->getValueType(0) != MVT::v16i8)
1643     return false;
1644   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1645          "Unsupported merge size!");
1646
1647   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1648     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1649       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1650                              LHSStart+j+i*UnitSize) ||
1651           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1652                              RHSStart+j+i*UnitSize))
1653         return false;
1654     }
1655   return true;
1656 }
1657
1658 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1659 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1660 /// The ShuffleKind distinguishes between big-endian merges with two
1661 /// different inputs (0), either-endian merges with two identical inputs (1),
1662 /// and little-endian merges with two different inputs (2).  For the latter,
1663 /// the input operands are swapped (see PPCInstrAltivec.td).
1664 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1665                              unsigned ShuffleKind, SelectionDAG &DAG) {
1666   if (DAG.getDataLayout().isLittleEndian()) {
1667     if (ShuffleKind == 1) // unary
1668       return isVMerge(N, UnitSize, 0, 0);
1669     else if (ShuffleKind == 2) // swapped
1670       return isVMerge(N, UnitSize, 0, 16);
1671     else
1672       return false;
1673   } else {
1674     if (ShuffleKind == 1) // unary
1675       return isVMerge(N, UnitSize, 8, 8);
1676     else if (ShuffleKind == 0) // normal
1677       return isVMerge(N, UnitSize, 8, 24);
1678     else
1679       return false;
1680   }
1681 }
1682
1683 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1684 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1685 /// The ShuffleKind distinguishes between big-endian merges with two
1686 /// different inputs (0), either-endian merges with two identical inputs (1),
1687 /// and little-endian merges with two different inputs (2).  For the latter,
1688 /// the input operands are swapped (see PPCInstrAltivec.td).
1689 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1690                              unsigned ShuffleKind, SelectionDAG &DAG) {
1691   if (DAG.getDataLayout().isLittleEndian()) {
1692     if (ShuffleKind == 1) // unary
1693       return isVMerge(N, UnitSize, 8, 8);
1694     else if (ShuffleKind == 2) // swapped
1695       return isVMerge(N, UnitSize, 8, 24);
1696     else
1697       return false;
1698   } else {
1699     if (ShuffleKind == 1) // unary
1700       return isVMerge(N, UnitSize, 0, 0);
1701     else if (ShuffleKind == 0) // normal
1702       return isVMerge(N, UnitSize, 0, 16);
1703     else
1704       return false;
1705   }
1706 }
1707
1708 /**
1709  * Common function used to match vmrgew and vmrgow shuffles
1710  *
1711  * The indexOffset determines whether to look for even or odd words in
1712  * the shuffle mask. This is based on the of the endianness of the target
1713  * machine.
1714  *   - Little Endian:
1715  *     - Use offset of 0 to check for odd elements
1716  *     - Use offset of 4 to check for even elements
1717  *   - Big Endian:
1718  *     - Use offset of 0 to check for even elements
1719  *     - Use offset of 4 to check for odd elements
1720  * A detailed description of the vector element ordering for little endian and
1721  * big endian can be found at
1722  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1723  * Targeting your applications - what little endian and big endian IBM XL C/C++
1724  * compiler differences mean to you
1725  *
1726  * The mask to the shuffle vector instruction specifies the indices of the
1727  * elements from the two input vectors to place in the result. The elements are
1728  * numbered in array-access order, starting with the first vector. These vectors
1729  * are always of type v16i8, thus each vector will contain 16 elements of size
1730  * 8. More info on the shuffle vector can be found in the
1731  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1732  * Language Reference.
1733  *
1734  * The RHSStartValue indicates whether the same input vectors are used (unary)
1735  * or two different input vectors are used, based on the following:
1736  *   - If the instruction uses the same vector for both inputs, the range of the
1737  *     indices will be 0 to 15. In this case, the RHSStart value passed should
1738  *     be 0.
1739  *   - If the instruction has two different vectors then the range of the
1740  *     indices will be 0 to 31. In this case, the RHSStart value passed should
1741  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1742  *     to 31 specify elements in the second vector).
1743  *
1744  * \param[in] N The shuffle vector SD Node to analyze
1745  * \param[in] IndexOffset Specifies whether to look for even or odd elements
1746  * \param[in] RHSStartValue Specifies the starting index for the righthand input
1747  * vector to the shuffle_vector instruction
1748  * \return true iff this shuffle vector represents an even or odd word merge
1749  */
1750 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1751                      unsigned RHSStartValue) {
1752   if (N->getValueType(0) != MVT::v16i8)
1753     return false;
1754
1755   for (unsigned i = 0; i < 2; ++i)
1756     for (unsigned j = 0; j < 4; ++j)
1757       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1758                              i*RHSStartValue+j+IndexOffset) ||
1759           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1760                              i*RHSStartValue+j+IndexOffset+8))
1761         return false;
1762   return true;
1763 }
1764
1765 /**
1766  * Determine if the specified shuffle mask is suitable for the vmrgew or
1767  * vmrgow instructions.
1768  *
1769  * \param[in] N The shuffle vector SD Node to analyze
1770  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1771  * \param[in] ShuffleKind Identify the type of merge:
1772  *   - 0 = big-endian merge with two different inputs;
1773  *   - 1 = either-endian merge with two identical inputs;
1774  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1775  *     little-endian merges).
1776  * \param[in] DAG The current SelectionDAG
1777  * \return true iff this shuffle mask
1778  */
1779 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1780                               unsigned ShuffleKind, SelectionDAG &DAG) {
1781   if (DAG.getDataLayout().isLittleEndian()) {
1782     unsigned indexOffset = CheckEven ? 4 : 0;
1783     if (ShuffleKind == 1) // Unary
1784       return isVMerge(N, indexOffset, 0);
1785     else if (ShuffleKind == 2) // swapped
1786       return isVMerge(N, indexOffset, 16);
1787     else
1788       return false;
1789   }
1790   else {
1791     unsigned indexOffset = CheckEven ? 0 : 4;
1792     if (ShuffleKind == 1) // Unary
1793       return isVMerge(N, indexOffset, 0);
1794     else if (ShuffleKind == 0) // Normal
1795       return isVMerge(N, indexOffset, 16);
1796     else
1797       return false;
1798   }
1799   return false;
1800 }
1801
1802 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1803 /// amount, otherwise return -1.
1804 /// The ShuffleKind distinguishes between big-endian operations with two
1805 /// different inputs (0), either-endian operations with two identical inputs
1806 /// (1), and little-endian operations with two different inputs (2).  For the
1807 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
1808 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1809                              SelectionDAG &DAG) {
1810   if (N->getValueType(0) != MVT::v16i8)
1811     return -1;
1812
1813   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1814
1815   // Find the first non-undef value in the shuffle mask.
1816   unsigned i;
1817   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1818     /*search*/;
1819
1820   if (i == 16) return -1;  // all undef.
1821
1822   // Otherwise, check to see if the rest of the elements are consecutively
1823   // numbered from this value.
1824   unsigned ShiftAmt = SVOp->getMaskElt(i);
1825   if (ShiftAmt < i) return -1;
1826
1827   ShiftAmt -= i;
1828   bool isLE = DAG.getDataLayout().isLittleEndian();
1829
1830   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1831     // Check the rest of the elements to see if they are consecutive.
1832     for (++i; i != 16; ++i)
1833       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1834         return -1;
1835   } else if (ShuffleKind == 1) {
1836     // Check the rest of the elements to see if they are consecutive.
1837     for (++i; i != 16; ++i)
1838       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1839         return -1;
1840   } else
1841     return -1;
1842
1843   if (isLE)
1844     ShiftAmt = 16 - ShiftAmt;
1845
1846   return ShiftAmt;
1847 }
1848
1849 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1850 /// specifies a splat of a single element that is suitable for input to
1851 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1852 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1853   assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1854          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1855
1856   // The consecutive indices need to specify an element, not part of two
1857   // different elements.  So abandon ship early if this isn't the case.
1858   if (N->getMaskElt(0) % EltSize != 0)
1859     return false;
1860
1861   // This is a splat operation if each element of the permute is the same, and
1862   // if the value doesn't reference the second vector.
1863   unsigned ElementBase = N->getMaskElt(0);
1864
1865   // FIXME: Handle UNDEF elements too!
1866   if (ElementBase >= 16)
1867     return false;
1868
1869   // Check that the indices are consecutive, in the case of a multi-byte element
1870   // splatted with a v16i8 mask.
1871   for (unsigned i = 1; i != EltSize; ++i)
1872     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1873       return false;
1874
1875   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1876     if (N->getMaskElt(i) < 0) continue;
1877     for (unsigned j = 0; j != EltSize; ++j)
1878       if (N->getMaskElt(i+j) != N->getMaskElt(j))
1879         return false;
1880   }
1881   return true;
1882 }
1883
1884 /// Check that the mask is shuffling N byte elements. Within each N byte
1885 /// element of the mask, the indices could be either in increasing or
1886 /// decreasing order as long as they are consecutive.
1887 /// \param[in] N the shuffle vector SD Node to analyze
1888 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1889 /// Word/DoubleWord/QuadWord).
1890 /// \param[in] StepLen the delta indices number among the N byte element, if
1891 /// the mask is in increasing/decreasing order then it is 1/-1.
1892 /// \return true iff the mask is shuffling N byte elements.
1893 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1894                                    int StepLen) {
1895   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1896          "Unexpected element width.");
1897   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1898
1899   unsigned NumOfElem = 16 / Width;
1900   unsigned MaskVal[16]; //  Width is never greater than 16
1901   for (unsigned i = 0; i < NumOfElem; ++i) {
1902     MaskVal[0] = N->getMaskElt(i * Width);
1903     if ((StepLen == 1) && (MaskVal[0] % Width)) {
1904       return false;
1905     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1906       return false;
1907     }
1908
1909     for (unsigned int j = 1; j < Width; ++j) {
1910       MaskVal[j] = N->getMaskElt(i * Width + j);
1911       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1912         return false;
1913       }
1914     }
1915   }
1916
1917   return true;
1918 }
1919
1920 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1921                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1922   if (!isNByteElemShuffleMask(N, 4, 1))
1923     return false;
1924
1925   // Now we look at mask elements 0,4,8,12
1926   unsigned M0 = N->getMaskElt(0) / 4;
1927   unsigned M1 = N->getMaskElt(4) / 4;
1928   unsigned M2 = N->getMaskElt(8) / 4;
1929   unsigned M3 = N->getMaskElt(12) / 4;
1930   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1931   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1932
1933   // Below, let H and L be arbitrary elements of the shuffle mask
1934   // where H is in the range [4,7] and L is in the range [0,3].
1935   // H, 1, 2, 3 or L, 5, 6, 7
1936   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1937       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1938     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1939     InsertAtByte = IsLE ? 12 : 0;
1940     Swap = M0 < 4;
1941     return true;
1942   }
1943   // 0, H, 2, 3 or 4, L, 6, 7
1944   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1945       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1946     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1947     InsertAtByte = IsLE ? 8 : 4;
1948     Swap = M1 < 4;
1949     return true;
1950   }
1951   // 0, 1, H, 3 or 4, 5, L, 7
1952   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1953       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1954     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1955     InsertAtByte = IsLE ? 4 : 8;
1956     Swap = M2 < 4;
1957     return true;
1958   }
1959   // 0, 1, 2, H or 4, 5, 6, L
1960   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1961       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1962     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1963     InsertAtByte = IsLE ? 0 : 12;
1964     Swap = M3 < 4;
1965     return true;
1966   }
1967
1968   // If both vector operands for the shuffle are the same vector, the mask will
1969   // contain only elements from the first one and the second one will be undef.
1970   if (N->getOperand(1).isUndef()) {
1971     ShiftElts = 0;
1972     Swap = true;
1973     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1974     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1975       InsertAtByte = IsLE ? 12 : 0;
1976       return true;
1977     }
1978     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1979       InsertAtByte = IsLE ? 8 : 4;
1980       return true;
1981     }
1982     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1983       InsertAtByte = IsLE ? 4 : 8;
1984       return true;
1985     }
1986     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1987       InsertAtByte = IsLE ? 0 : 12;
1988       return true;
1989     }
1990   }
1991
1992   return false;
1993 }
1994
1995 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1996                                bool &Swap, bool IsLE) {
1997   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1998   // Ensure each byte index of the word is consecutive.
1999   if (!isNByteElemShuffleMask(N, 4, 1))
2000     return false;
2001
2002   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2003   unsigned M0 = N->getMaskElt(0) / 4;
2004   unsigned M1 = N->getMaskElt(4) / 4;
2005   unsigned M2 = N->getMaskElt(8) / 4;
2006   unsigned M3 = N->getMaskElt(12) / 4;
2007
2008   // If both vector operands for the shuffle are the same vector, the mask will
2009   // contain only elements from the first one and the second one will be undef.
2010   if (N->getOperand(1).isUndef()) {
2011     assert(M0 < 4 && "Indexing into an undef vector?");
2012     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2013       return false;
2014
2015     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2016     Swap = false;
2017     return true;
2018   }
2019
2020   // Ensure each word index of the ShuffleVector Mask is consecutive.
2021   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2022     return false;
2023
2024   if (IsLE) {
2025     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2026       // Input vectors don't need to be swapped if the leading element
2027       // of the result is one of the 3 left elements of the second vector
2028       // (or if there is no shift to be done at all).
2029       Swap = false;
2030       ShiftElts = (8 - M0) % 8;
2031     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2032       // Input vectors need to be swapped if the leading element
2033       // of the result is one of the 3 left elements of the first vector
2034       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2035       Swap = true;
2036       ShiftElts = (4 - M0) % 4;
2037     }
2038
2039     return true;
2040   } else {                                          // BE
2041     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2042       // Input vectors don't need to be swapped if the leading element
2043       // of the result is one of the 4 elements of the first vector.
2044       Swap = false;
2045       ShiftElts = M0;
2046     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2047       // Input vectors need to be swapped if the leading element
2048       // of the result is one of the 4 elements of the right vector.
2049       Swap = true;
2050       ShiftElts = M0 - 4;
2051     }
2052
2053     return true;
2054   }
2055 }
2056
2057 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2058   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2059
2060   if (!isNByteElemShuffleMask(N, Width, -1))
2061     return false;
2062
2063   for (int i = 0; i < 16; i += Width)
2064     if (N->getMaskElt(i) != i + Width - 1)
2065       return false;
2066
2067   return true;
2068 }
2069
2070 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2071   return isXXBRShuffleMaskHelper(N, 2);
2072 }
2073
2074 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2075   return isXXBRShuffleMaskHelper(N, 4);
2076 }
2077
2078 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2079   return isXXBRShuffleMaskHelper(N, 8);
2080 }
2081
2082 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2083   return isXXBRShuffleMaskHelper(N, 16);
2084 }
2085
2086 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2087 /// if the inputs to the instruction should be swapped and set \p DM to the
2088 /// value for the immediate.
2089 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2090 /// AND element 0 of the result comes from the first input (LE) or second input
2091 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2092 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2093 /// mask.
2094 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2095                                bool &Swap, bool IsLE) {
2096   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2097
2098   // Ensure each byte index of the double word is consecutive.
2099   if (!isNByteElemShuffleMask(N, 8, 1))
2100     return false;
2101
2102   unsigned M0 = N->getMaskElt(0) / 8;
2103   unsigned M1 = N->getMaskElt(8) / 8;
2104   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2105
2106   // If both vector operands for the shuffle are the same vector, the mask will
2107   // contain only elements from the first one and the second one will be undef.
2108   if (N->getOperand(1).isUndef()) {
2109     if ((M0 | M1) < 2) {
2110       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2111       Swap = false;
2112       return true;
2113     } else
2114       return false;
2115   }
2116
2117   if (IsLE) {
2118     if (M0 > 1 && M1 < 2) {
2119       Swap = false;
2120     } else if (M0 < 2 && M1 > 1) {
2121       M0 = (M0 + 2) % 4;
2122       M1 = (M1 + 2) % 4;
2123       Swap = true;
2124     } else
2125       return false;
2126
2127     // Note: if control flow comes here that means Swap is already set above
2128     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2129     return true;
2130   } else { // BE
2131     if (M0 < 2 && M1 > 1) {
2132       Swap = false;
2133     } else if (M0 > 1 && M1 < 2) {
2134       M0 = (M0 + 2) % 4;
2135       M1 = (M1 + 2) % 4;
2136       Swap = true;
2137     } else
2138       return false;
2139
2140     // Note: if control flow comes here that means Swap is already set above
2141     DM = (M0 << 1) + (M1 & 1);
2142     return true;
2143   }
2144 }
2145
2146
2147 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2148 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2149 /// elements are counted from the left of the vector register).
2150 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2151                                          SelectionDAG &DAG) {
2152   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2153   assert(isSplatShuffleMask(SVOp, EltSize));
2154   if (DAG.getDataLayout().isLittleEndian())
2155     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2156   else
2157     return SVOp->getMaskElt(0) / EltSize;
2158 }
2159
2160 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2161 /// by using a vspltis[bhw] instruction of the specified element size, return
2162 /// the constant being splatted.  The ByteSize field indicates the number of
2163 /// bytes of each element [124] -> [bhw].
2164 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2165   SDValue OpVal(nullptr, 0);
2166
2167   // If ByteSize of the splat is bigger than the element size of the
2168   // build_vector, then we have a case where we are checking for a splat where
2169   // multiple elements of the buildvector are folded together into a single
2170   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2171   unsigned EltSize = 16/N->getNumOperands();
2172   if (EltSize < ByteSize) {
2173     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2174     SDValue UniquedVals[4];
2175     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2176
2177     // See if all of the elements in the buildvector agree across.
2178     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2179       if (N->getOperand(i).isUndef()) continue;
2180       // If the element isn't a constant, bail fully out.
2181       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2182
2183       if (!UniquedVals[i&(Multiple-1)].getNode())
2184         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2185       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2186         return SDValue();  // no match.
2187     }
2188
2189     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2190     // either constant or undef values that are identical for each chunk.  See
2191     // if these chunks can form into a larger vspltis*.
2192
2193     // Check to see if all of the leading entries are either 0 or -1.  If
2194     // neither, then this won't fit into the immediate field.
2195     bool LeadingZero = true;
2196     bool LeadingOnes = true;
2197     for (unsigned i = 0; i != Multiple-1; ++i) {
2198       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2199
2200       LeadingZero &= isNullConstant(UniquedVals[i]);
2201       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2202     }
2203     // Finally, check the least significant entry.
2204     if (LeadingZero) {
2205       if (!UniquedVals[Multiple-1].getNode())
2206         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2207       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2208       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2209         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2210     }
2211     if (LeadingOnes) {
2212       if (!UniquedVals[Multiple-1].getNode())
2213         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2214       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2215       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2216         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2217     }
2218
2219     return SDValue();
2220   }
2221
2222   // Check to see if this buildvec has a single non-undef value in its elements.
2223   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2224     if (N->getOperand(i).isUndef()) continue;
2225     if (!OpVal.getNode())
2226       OpVal = N->getOperand(i);
2227     else if (OpVal != N->getOperand(i))
2228       return SDValue();
2229   }
2230
2231   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2232
2233   unsigned ValSizeInBytes = EltSize;
2234   uint64_t Value = 0;
2235   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2236     Value = CN->getZExtValue();
2237   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2238     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2239     Value = FloatToBits(CN->getValueAPF().convertToFloat());
2240   }
2241
2242   // If the splat value is larger than the element value, then we can never do
2243   // this splat.  The only case that we could fit the replicated bits into our
2244   // immediate field for would be zero, and we prefer to use vxor for it.
2245   if (ValSizeInBytes < ByteSize) return SDValue();
2246
2247   // If the element value is larger than the splat value, check if it consists
2248   // of a repeated bit pattern of size ByteSize.
2249   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2250     return SDValue();
2251
2252   // Properly sign extend the value.
2253   int MaskVal = SignExtend32(Value, ByteSize * 8);
2254
2255   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2256   if (MaskVal == 0) return SDValue();
2257
2258   // Finally, if this value fits in a 5 bit sext field, return it
2259   if (SignExtend32<5>(MaskVal) == MaskVal)
2260     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2261   return SDValue();
2262 }
2263
2264 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2265 /// amount, otherwise return -1.
2266 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2267   EVT VT = N->getValueType(0);
2268   if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2269     return -1;
2270
2271   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2272
2273   // Find the first non-undef value in the shuffle mask.
2274   unsigned i;
2275   for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2276     /*search*/;
2277
2278   if (i == 4) return -1;  // all undef.
2279
2280   // Otherwise, check to see if the rest of the elements are consecutively
2281   // numbered from this value.
2282   unsigned ShiftAmt = SVOp->getMaskElt(i);
2283   if (ShiftAmt < i) return -1;
2284   ShiftAmt -= i;
2285
2286   // Check the rest of the elements to see if they are consecutive.
2287   for (++i; i != 4; ++i)
2288     if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2289       return -1;
2290
2291   return ShiftAmt;
2292 }
2293
2294 //===----------------------------------------------------------------------===//
2295 //  Addressing Mode Selection
2296 //===----------------------------------------------------------------------===//
2297
2298 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2299 /// or 64-bit immediate, and if the value can be accurately represented as a
2300 /// sign extension from a 16-bit value.  If so, this returns true and the
2301 /// immediate.
2302 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2303   if (!isa<ConstantSDNode>(N))
2304     return false;
2305
2306   Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2307   if (N->getValueType(0) == MVT::i32)
2308     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2309   else
2310     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2311 }
2312 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2313   return isIntS16Immediate(Op.getNode(), Imm);
2314 }
2315
2316
2317 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2318 /// be represented as an indexed [r+r] operation.
2319 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2320                                                SDValue &Index,
2321                                                SelectionDAG &DAG) const {
2322   for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2323       UI != E; ++UI) {
2324     if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2325       if (Memop->getMemoryVT() == MVT::f64) {
2326           Base = N.getOperand(0);
2327           Index = N.getOperand(1);
2328           return true;
2329       }
2330     }
2331   }
2332   return false;
2333 }
2334
2335 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2336 /// can be represented as an indexed [r+r] operation.  Returns false if it
2337 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2338 /// non-zero and N can be represented by a base register plus a signed 16-bit
2339 /// displacement, make a more precise judgement by checking (displacement % \p
2340 /// EncodingAlignment).
2341 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2342                                             SDValue &Index, SelectionDAG &DAG,
2343                                             unsigned EncodingAlignment) const {
2344   int16_t imm = 0;
2345   if (N.getOpcode() == ISD::ADD) {
2346     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2347     // SPE load/store can only handle 8-bit offsets.
2348     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2349         return true;
2350     if (isIntS16Immediate(N.getOperand(1), imm) &&
2351         (!EncodingAlignment || !(imm % EncodingAlignment)))
2352       return false; // r+i
2353     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2354       return false;    // r+i
2355
2356     Base = N.getOperand(0);
2357     Index = N.getOperand(1);
2358     return true;
2359   } else if (N.getOpcode() == ISD::OR) {
2360     if (isIntS16Immediate(N.getOperand(1), imm) &&
2361         (!EncodingAlignment || !(imm % EncodingAlignment)))
2362       return false; // r+i can fold it if we can.
2363
2364     // If this is an or of disjoint bitfields, we can codegen this as an add
2365     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2366     // disjoint.
2367     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2368
2369     if (LHSKnown.Zero.getBoolValue()) {
2370       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2371       // If all of the bits are known zero on the LHS or RHS, the add won't
2372       // carry.
2373       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2374         Base = N.getOperand(0);
2375         Index = N.getOperand(1);
2376         return true;
2377       }
2378     }
2379   }
2380
2381   return false;
2382 }
2383
2384 // If we happen to be doing an i64 load or store into a stack slot that has
2385 // less than a 4-byte alignment, then the frame-index elimination may need to
2386 // use an indexed load or store instruction (because the offset may not be a
2387 // multiple of 4). The extra register needed to hold the offset comes from the
2388 // register scavenger, and it is possible that the scavenger will need to use
2389 // an emergency spill slot. As a result, we need to make sure that a spill slot
2390 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2391 // stack slot.
2392 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2393   // FIXME: This does not handle the LWA case.
2394   if (VT != MVT::i64)
2395     return;
2396
2397   // NOTE: We'll exclude negative FIs here, which come from argument
2398   // lowering, because there are no known test cases triggering this problem
2399   // using packed structures (or similar). We can remove this exclusion if
2400   // we find such a test case. The reason why this is so test-case driven is
2401   // because this entire 'fixup' is only to prevent crashes (from the
2402   // register scavenger) on not-really-valid inputs. For example, if we have:
2403   //   %a = alloca i1
2404   //   %b = bitcast i1* %a to i64*
2405   //   store i64* a, i64 b
2406   // then the store should really be marked as 'align 1', but is not. If it
2407   // were marked as 'align 1' then the indexed form would have been
2408   // instruction-selected initially, and the problem this 'fixup' is preventing
2409   // won't happen regardless.
2410   if (FrameIdx < 0)
2411     return;
2412
2413   MachineFunction &MF = DAG.getMachineFunction();
2414   MachineFrameInfo &MFI = MF.getFrameInfo();
2415
2416   unsigned Align = MFI.getObjectAlignment(FrameIdx);
2417   if (Align >= 4)
2418     return;
2419
2420   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2421   FuncInfo->setHasNonRISpills();
2422 }
2423
2424 /// Returns true if the address N can be represented by a base register plus
2425 /// a signed 16-bit displacement [r+imm], and if it is not better
2426 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2427 /// displacements that are multiples of that value.
2428 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2429                                             SDValue &Base,
2430                                             SelectionDAG &DAG,
2431                                             unsigned EncodingAlignment) const {
2432   // FIXME dl should come from parent load or store, not from address
2433   SDLoc dl(N);
2434   // If this can be more profitably realized as r+r, fail.
2435   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2436     return false;
2437
2438   if (N.getOpcode() == ISD::ADD) {
2439     int16_t imm = 0;
2440     if (isIntS16Immediate(N.getOperand(1), imm) &&
2441         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2442       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2443       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2444         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2445         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2446       } else {
2447         Base = N.getOperand(0);
2448       }
2449       return true; // [r+i]
2450     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2451       // Match LOAD (ADD (X, Lo(G))).
2452       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2453              && "Cannot handle constant offsets yet!");
2454       Disp = N.getOperand(1).getOperand(0);  // The global address.
2455       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2456              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2457              Disp.getOpcode() == ISD::TargetConstantPool ||
2458              Disp.getOpcode() == ISD::TargetJumpTable);
2459       Base = N.getOperand(0);
2460       return true;  // [&g+r]
2461     }
2462   } else if (N.getOpcode() == ISD::OR) {
2463     int16_t imm = 0;
2464     if (isIntS16Immediate(N.getOperand(1), imm) &&
2465         (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2466       // If this is an or of disjoint bitfields, we can codegen this as an add
2467       // (for better address arithmetic) if the LHS and RHS of the OR are
2468       // provably disjoint.
2469       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2470
2471       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2472         // If all of the bits are known zero on the LHS or RHS, the add won't
2473         // carry.
2474         if (FrameIndexSDNode *FI =
2475               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2476           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2477           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2478         } else {
2479           Base = N.getOperand(0);
2480         }
2481         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2482         return true;
2483       }
2484     }
2485   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2486     // Loading from a constant address.
2487
2488     // If this address fits entirely in a 16-bit sext immediate field, codegen
2489     // this as "d, 0"
2490     int16_t Imm;
2491     if (isIntS16Immediate(CN, Imm) &&
2492         (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2493       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2494       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2495                              CN->getValueType(0));
2496       return true;
2497     }
2498
2499     // Handle 32-bit sext immediates with LIS + addr mode.
2500     if ((CN->getValueType(0) == MVT::i32 ||
2501          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2502         (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2503       int Addr = (int)CN->getZExtValue();
2504
2505       // Otherwise, break this down into an LIS + disp.
2506       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2507
2508       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2509                                    MVT::i32);
2510       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2511       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2512       return true;
2513     }
2514   }
2515
2516   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2517   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2518     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2519     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2520   } else
2521     Base = N;
2522   return true;      // [r+0]
2523 }
2524
2525 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2526 /// represented as an indexed [r+r] operation.
2527 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2528                                                 SDValue &Index,
2529                                                 SelectionDAG &DAG) const {
2530   // Check to see if we can easily represent this as an [r+r] address.  This
2531   // will fail if it thinks that the address is more profitably represented as
2532   // reg+imm, e.g. where imm = 0.
2533   if (SelectAddressRegReg(N, Base, Index, DAG))
2534     return true;
2535
2536   // If the address is the result of an add, we will utilize the fact that the
2537   // address calculation includes an implicit add.  However, we can reduce
2538   // register pressure if we do not materialize a constant just for use as the
2539   // index register.  We only get rid of the add if it is not an add of a
2540   // value and a 16-bit signed constant and both have a single use.
2541   int16_t imm = 0;
2542   if (N.getOpcode() == ISD::ADD &&
2543       (!isIntS16Immediate(N.getOperand(1), imm) ||
2544        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2545     Base = N.getOperand(0);
2546     Index = N.getOperand(1);
2547     return true;
2548   }
2549
2550   // Otherwise, do it the hard way, using R0 as the base register.
2551   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2552                          N.getValueType());
2553   Index = N;
2554   return true;
2555 }
2556
2557 /// Returns true if we should use a direct load into vector instruction
2558 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2559 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2560
2561   // If there are any other uses other than scalar to vector, then we should
2562   // keep it as a scalar load -> direct move pattern to prevent multiple
2563   // loads.
2564   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2565   if (!LD)
2566     return false;
2567
2568   EVT MemVT = LD->getMemoryVT();
2569   if (!MemVT.isSimple())
2570     return false;
2571   switch(MemVT.getSimpleVT().SimpleTy) {
2572   case MVT::i64:
2573     break;
2574   case MVT::i32:
2575     if (!ST.hasP8Vector())
2576       return false;
2577     break;
2578   case MVT::i16:
2579   case MVT::i8:
2580     if (!ST.hasP9Vector())
2581       return false;
2582     break;
2583   default:
2584     return false;
2585   }
2586
2587   SDValue LoadedVal(N, 0);
2588   if (!LoadedVal.hasOneUse())
2589     return false;
2590
2591   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2592        UI != UE; ++UI)
2593     if (UI.getUse().get().getResNo() == 0 &&
2594         UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2595       return false;
2596
2597   return true;
2598 }
2599
2600 /// getPreIndexedAddressParts - returns true by value, base pointer and
2601 /// offset pointer and addressing mode by reference if the node's address
2602 /// can be legally represented as pre-indexed load / store address.
2603 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2604                                                   SDValue &Offset,
2605                                                   ISD::MemIndexedMode &AM,
2606                                                   SelectionDAG &DAG) const {
2607   if (DisablePPCPreinc) return false;
2608
2609   bool isLoad = true;
2610   SDValue Ptr;
2611   EVT VT;
2612   unsigned Alignment;
2613   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2614     Ptr = LD->getBasePtr();
2615     VT = LD->getMemoryVT();
2616     Alignment = LD->getAlignment();
2617   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2618     Ptr = ST->getBasePtr();
2619     VT  = ST->getMemoryVT();
2620     Alignment = ST->getAlignment();
2621     isLoad = false;
2622   } else
2623     return false;
2624
2625   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2626   // instructions because we can fold these into a more efficient instruction
2627   // instead, (such as LXSD).
2628   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2629     return false;
2630   }
2631
2632   // PowerPC doesn't have preinc load/store instructions for vectors (except
2633   // for QPX, which does have preinc r+r forms).
2634   if (VT.isVector()) {
2635     if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2636       return false;
2637     } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2638       AM = ISD::PRE_INC;
2639       return true;
2640     }
2641   }
2642
2643   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2644     // Common code will reject creating a pre-inc form if the base pointer
2645     // is a frame index, or if N is a store and the base pointer is either
2646     // the same as or a predecessor of the value being stored.  Check for
2647     // those situations here, and try with swapped Base/Offset instead.
2648     bool Swap = false;
2649
2650     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2651       Swap = true;
2652     else if (!isLoad) {
2653       SDValue Val = cast<StoreSDNode>(N)->getValue();
2654       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2655         Swap = true;
2656     }
2657
2658     if (Swap)
2659       std::swap(Base, Offset);
2660
2661     AM = ISD::PRE_INC;
2662     return true;
2663   }
2664
2665   // LDU/STU can only handle immediates that are a multiple of 4.
2666   if (VT != MVT::i64) {
2667     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2668       return false;
2669   } else {
2670     // LDU/STU need an address with at least 4-byte alignment.
2671     if (Alignment < 4)
2672       return false;
2673
2674     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2675       return false;
2676   }
2677
2678   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2679     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2680     // sext i32 to i64 when addr mode is r+i.
2681     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2682         LD->getExtensionType() == ISD::SEXTLOAD &&
2683         isa<ConstantSDNode>(Offset))
2684       return false;
2685   }
2686
2687   AM = ISD::PRE_INC;
2688   return true;
2689 }
2690
2691 //===----------------------------------------------------------------------===//
2692 //  LowerOperation implementation
2693 //===----------------------------------------------------------------------===//
2694
2695 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2696 /// and LoOpFlags to the target MO flags.
2697 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2698                                unsigned &HiOpFlags, unsigned &LoOpFlags,
2699                                const GlobalValue *GV = nullptr) {
2700   HiOpFlags = PPCII::MO_HA;
2701   LoOpFlags = PPCII::MO_LO;
2702
2703   // Don't use the pic base if not in PIC relocation model.
2704   if (IsPIC) {
2705     HiOpFlags |= PPCII::MO_PIC_FLAG;
2706     LoOpFlags |= PPCII::MO_PIC_FLAG;
2707   }
2708
2709   // If this is a reference to a global value that requires a non-lazy-ptr, make
2710   // sure that instruction lowering adds it.
2711   if (GV && Subtarget.hasLazyResolverStub(GV)) {
2712     HiOpFlags |= PPCII::MO_NLP_FLAG;
2713     LoOpFlags |= PPCII::MO_NLP_FLAG;
2714
2715     if (GV->hasHiddenVisibility()) {
2716       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2717       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2718     }
2719   }
2720 }
2721
2722 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2723                              SelectionDAG &DAG) {
2724   SDLoc DL(HiPart);
2725   EVT PtrVT = HiPart.getValueType();
2726   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2727
2728   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2729   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2730
2731   // With PIC, the first instruction is actually "GR+hi(&G)".
2732   if (isPIC)
2733     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2734                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2735
2736   // Generate non-pic code that has direct accesses to the constant pool.
2737   // The address of the global is just (hi(&g)+lo(&g)).
2738   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2739 }
2740
2741 static void setUsesTOCBasePtr(MachineFunction &MF) {
2742   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2743   FuncInfo->setUsesTOCBasePtr();
2744 }
2745
2746 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2747   setUsesTOCBasePtr(DAG.getMachineFunction());
2748 }
2749
2750 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2751                                        SDValue GA) const {
2752   const bool Is64Bit = Subtarget.isPPC64();
2753   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2754   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2755                         : Subtarget.isAIXABI()
2756                               ? DAG.getRegister(PPC::R2, VT)
2757                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2758   SDValue Ops[] = { GA, Reg };
2759   return DAG.getMemIntrinsicNode(
2760       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2761       MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2762       MachineMemOperand::MOLoad);
2763 }
2764
2765 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2766                                              SelectionDAG &DAG) const {
2767   EVT PtrVT = Op.getValueType();
2768   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2769   const Constant *C = CP->getConstVal();
2770
2771   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2772   // The actual address of the GlobalValue is stored in the TOC.
2773   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2774     setUsesTOCBasePtr(DAG);
2775     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2776     return getTOCEntry(DAG, SDLoc(CP), GA);
2777   }
2778
2779   unsigned MOHiFlag, MOLoFlag;
2780   bool IsPIC = isPositionIndependent();
2781   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2782
2783   if (IsPIC && Subtarget.isSVR4ABI()) {
2784     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2785                                            PPCII::MO_PIC_FLAG);
2786     return getTOCEntry(DAG, SDLoc(CP), GA);
2787   }
2788
2789   SDValue CPIHi =
2790     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2791   SDValue CPILo =
2792     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2793   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2794 }
2795
2796 // For 64-bit PowerPC, prefer the more compact relative encodings.
2797 // This trades 32 bits per jump table entry for one or two instructions
2798 // on the jump site.
2799 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2800   if (isJumpTableRelative())
2801     return MachineJumpTableInfo::EK_LabelDifference32;
2802
2803   return TargetLowering::getJumpTableEncoding();
2804 }
2805
2806 bool PPCTargetLowering::isJumpTableRelative() const {
2807   if (UseAbsoluteJumpTables)
2808     return false;
2809   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2810     return true;
2811   return TargetLowering::isJumpTableRelative();
2812 }
2813
2814 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2815                                                     SelectionDAG &DAG) const {
2816   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2817     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2818
2819   switch (getTargetMachine().getCodeModel()) {
2820   case CodeModel::Small:
2821   case CodeModel::Medium:
2822     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2823   default:
2824     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2825                        getPointerTy(DAG.getDataLayout()));
2826   }
2827 }
2828
2829 const MCExpr *
2830 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2831                                                 unsigned JTI,
2832                                                 MCContext &Ctx) const {
2833   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2834     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2835
2836   switch (getTargetMachine().getCodeModel()) {
2837   case CodeModel::Small:
2838   case CodeModel::Medium:
2839     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2840   default:
2841     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2842   }
2843 }
2844
2845 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2846   EVT PtrVT = Op.getValueType();
2847   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2848
2849   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2850   // The actual address of the GlobalValue is stored in the TOC.
2851   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2852     setUsesTOCBasePtr(DAG);
2853     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2854     return getTOCEntry(DAG, SDLoc(JT), GA);
2855   }
2856
2857   unsigned MOHiFlag, MOLoFlag;
2858   bool IsPIC = isPositionIndependent();
2859   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2860
2861   if (IsPIC && Subtarget.isSVR4ABI()) {
2862     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2863                                         PPCII::MO_PIC_FLAG);
2864     return getTOCEntry(DAG, SDLoc(GA), GA);
2865   }
2866
2867   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2868   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2869   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2870 }
2871
2872 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2873                                              SelectionDAG &DAG) const {
2874   EVT PtrVT = Op.getValueType();
2875   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2876   const BlockAddress *BA = BASDN->getBlockAddress();
2877
2878   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2879   // The actual BlockAddress is stored in the TOC.
2880   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2881     setUsesTOCBasePtr(DAG);
2882     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2883     return getTOCEntry(DAG, SDLoc(BASDN), GA);
2884   }
2885
2886   // 32-bit position-independent ELF stores the BlockAddress in the .got.
2887   if (Subtarget.is32BitELFABI() && isPositionIndependent())
2888     return getTOCEntry(
2889         DAG, SDLoc(BASDN),
2890         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2891
2892   unsigned MOHiFlag, MOLoFlag;
2893   bool IsPIC = isPositionIndependent();
2894   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2895   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2896   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2897   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2898 }
2899
2900 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2901                                               SelectionDAG &DAG) const {
2902   // FIXME: TLS addresses currently use medium model code sequences,
2903   // which is the most useful form.  Eventually support for small and
2904   // large models could be added if users need it, at the cost of
2905   // additional complexity.
2906   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2907   if (DAG.getTarget().useEmulatedTLS())
2908     return LowerToTLSEmulatedModel(GA, DAG);
2909
2910   SDLoc dl(GA);
2911   const GlobalValue *GV = GA->getGlobal();
2912   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2913   bool is64bit = Subtarget.isPPC64();
2914   const Module *M = DAG.getMachineFunction().getFunction().getParent();
2915   PICLevel::Level picLevel = M->getPICLevel();
2916
2917   const TargetMachine &TM = getTargetMachine();
2918   TLSModel::Model Model = TM.getTLSModel(GV);
2919
2920   if (Model == TLSModel::LocalExec) {
2921     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2922                                                PPCII::MO_TPREL_HA);
2923     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2924                                                PPCII::MO_TPREL_LO);
2925     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2926                              : DAG.getRegister(PPC::R2, MVT::i32);
2927
2928     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2929     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2930   }
2931
2932   if (Model == TLSModel::InitialExec) {
2933     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2934     SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2935                                                 PPCII::MO_TLS);
2936     SDValue GOTPtr;
2937     if (is64bit) {
2938       setUsesTOCBasePtr(DAG);
2939       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2940       GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2941                            PtrVT, GOTReg, TGA);
2942     } else {
2943       if (!TM.isPositionIndependent())
2944         GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2945       else if (picLevel == PICLevel::SmallPIC)
2946         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2947       else
2948         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2949     }
2950     SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2951                                    PtrVT, TGA, GOTPtr);
2952     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2953   }
2954
2955   if (Model == TLSModel::GeneralDynamic) {
2956     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2957     SDValue GOTPtr;
2958     if (is64bit) {
2959       setUsesTOCBasePtr(DAG);
2960       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2961       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2962                                    GOTReg, TGA);
2963     } else {
2964       if (picLevel == PICLevel::SmallPIC)
2965         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2966       else
2967         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2968     }
2969     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2970                        GOTPtr, TGA, TGA);
2971   }
2972
2973   if (Model == TLSModel::LocalDynamic) {
2974     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2975     SDValue GOTPtr;
2976     if (is64bit) {
2977       setUsesTOCBasePtr(DAG);
2978       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2979       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2980                            GOTReg, TGA);
2981     } else {
2982       if (picLevel == PICLevel::SmallPIC)
2983         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2984       else
2985         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2986     }
2987     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2988                                   PtrVT, GOTPtr, TGA, TGA);
2989     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2990                                       PtrVT, TLSAddr, TGA);
2991     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2992   }
2993
2994   llvm_unreachable("Unknown TLS model!");
2995 }
2996
2997 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2998                                               SelectionDAG &DAG) const {
2999   EVT PtrVT = Op.getValueType();
3000   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3001   SDLoc DL(GSDN);
3002   const GlobalValue *GV = GSDN->getGlobal();
3003
3004   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3005   // The actual address of the GlobalValue is stored in the TOC.
3006   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3007     setUsesTOCBasePtr(DAG);
3008     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3009     return getTOCEntry(DAG, DL, GA);
3010   }
3011
3012   unsigned MOHiFlag, MOLoFlag;
3013   bool IsPIC = isPositionIndependent();
3014   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3015
3016   if (IsPIC && Subtarget.isSVR4ABI()) {
3017     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3018                                             GSDN->getOffset(),
3019                                             PPCII::MO_PIC_FLAG);
3020     return getTOCEntry(DAG, DL, GA);
3021   }
3022
3023   SDValue GAHi =
3024     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3025   SDValue GALo =
3026     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3027
3028   SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3029
3030   // If the global reference is actually to a non-lazy-pointer, we have to do an
3031   // extra load to get the address of the global.
3032   if (MOHiFlag & PPCII::MO_NLP_FLAG)
3033     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3034   return Ptr;
3035 }
3036
3037 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3038   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3039   SDLoc dl(Op);
3040
3041   if (Op.getValueType() == MVT::v2i64) {
3042     // When the operands themselves are v2i64 values, we need to do something
3043     // special because VSX has no underlying comparison operations for these.
3044     if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3045       // Equality can be handled by casting to the legal type for Altivec
3046       // comparisons, everything else needs to be expanded.
3047       if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3048         return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3049                  DAG.getSetCC(dl, MVT::v4i32,
3050                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3051                    DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3052                    CC));
3053       }
3054
3055       return SDValue();
3056     }
3057
3058     // We handle most of these in the usual way.
3059     return Op;
3060   }
3061
3062   // If we're comparing for equality to zero, expose the fact that this is
3063   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3064   // fold the new nodes.
3065   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3066     return V;
3067
3068   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3069     // Leave comparisons against 0 and -1 alone for now, since they're usually
3070     // optimized.  FIXME: revisit this when we can custom lower all setcc
3071     // optimizations.
3072     if (C->isAllOnesValue() || C->isNullValue())
3073       return SDValue();
3074   }
3075
3076   // If we have an integer seteq/setne, turn it into a compare against zero
3077   // by xor'ing the rhs with the lhs, which is faster than setting a
3078   // condition register, reading it back out, and masking the correct bit.  The
3079   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3080   // the result to other bit-twiddling opportunities.
3081   EVT LHSVT = Op.getOperand(0).getValueType();
3082   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3083     EVT VT = Op.getValueType();
3084     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3085                                 Op.getOperand(1));
3086     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3087   }
3088   return SDValue();
3089 }
3090
3091 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3092   SDNode *Node = Op.getNode();
3093   EVT VT = Node->getValueType(0);
3094   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3095   SDValue InChain = Node->getOperand(0);
3096   SDValue VAListPtr = Node->getOperand(1);
3097   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3098   SDLoc dl(Node);
3099
3100   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3101
3102   // gpr_index
3103   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3104                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3105   InChain = GprIndex.getValue(1);
3106
3107   if (VT == MVT::i64) {
3108     // Check if GprIndex is even
3109     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3110                                  DAG.getConstant(1, dl, MVT::i32));
3111     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3112                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3113     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3114                                           DAG.getConstant(1, dl, MVT::i32));
3115     // Align GprIndex to be even if it isn't
3116     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3117                            GprIndex);
3118   }
3119
3120   // fpr index is 1 byte after gpr
3121   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3122                                DAG.getConstant(1, dl, MVT::i32));
3123
3124   // fpr
3125   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3126                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3127   InChain = FprIndex.getValue(1);
3128
3129   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3130                                        DAG.getConstant(8, dl, MVT::i32));
3131
3132   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3133                                         DAG.getConstant(4, dl, MVT::i32));
3134
3135   // areas
3136   SDValue OverflowArea =
3137       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3138   InChain = OverflowArea.getValue(1);
3139
3140   SDValue RegSaveArea =
3141       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3142   InChain = RegSaveArea.getValue(1);
3143
3144   // select overflow_area if index > 8
3145   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3146                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3147
3148   // adjustment constant gpr_index * 4/8
3149   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3150                                     VT.isInteger() ? GprIndex : FprIndex,
3151                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3152                                                     MVT::i32));
3153
3154   // OurReg = RegSaveArea + RegConstant
3155   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3156                                RegConstant);
3157
3158   // Floating types are 32 bytes into RegSaveArea
3159   if (VT.isFloatingPoint())
3160     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3161                          DAG.getConstant(32, dl, MVT::i32));
3162
3163   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3164   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3165                                    VT.isInteger() ? GprIndex : FprIndex,
3166                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3167                                                    MVT::i32));
3168
3169   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3170                               VT.isInteger() ? VAListPtr : FprPtr,
3171                               MachinePointerInfo(SV), MVT::i8);
3172
3173   // determine if we should load from reg_save_area or overflow_area
3174   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3175
3176   // increase overflow_area by 4/8 if gpr/fpr > 8
3177   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3178                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3179                                           dl, MVT::i32));
3180
3181   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3182                              OverflowAreaPlusN);
3183
3184   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3185                               MachinePointerInfo(), MVT::i32);
3186
3187   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3188 }
3189
3190 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3191   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3192
3193   // We have to copy the entire va_list struct:
3194   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3195   return DAG.getMemcpy(Op.getOperand(0), Op,
3196                        Op.getOperand(1), Op.getOperand(2),
3197                        DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3198                        false, MachinePointerInfo(), MachinePointerInfo());
3199 }
3200
3201 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3202                                                   SelectionDAG &DAG) const {
3203   if (Subtarget.isAIXABI())
3204     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3205
3206   return Op.getOperand(0);
3207 }
3208
3209 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3210                                                 SelectionDAG &DAG) const {
3211   if (Subtarget.isAIXABI())
3212     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3213
3214   SDValue Chain = Op.getOperand(0);
3215   SDValue Trmp = Op.getOperand(1); // trampoline
3216   SDValue FPtr = Op.getOperand(2); // nested function
3217   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3218   SDLoc dl(Op);
3219
3220   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3221   bool isPPC64 = (PtrVT == MVT::i64);
3222   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3223
3224   TargetLowering::ArgListTy Args;
3225   TargetLowering::ArgListEntry Entry;
3226
3227   Entry.Ty = IntPtrTy;
3228   Entry.Node = Trmp; Args.push_back(Entry);
3229
3230   // TrampSize == (isPPC64 ? 48 : 40);
3231   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3232                                isPPC64 ? MVT::i64 : MVT::i32);
3233   Args.push_back(Entry);
3234
3235   Entry.Node = FPtr; Args.push_back(Entry);
3236   Entry.Node = Nest; Args.push_back(Entry);
3237
3238   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3239   TargetLowering::CallLoweringInfo CLI(DAG);
3240   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3241       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3242       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3243
3244   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3245   return CallResult.second;
3246 }
3247
3248 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3249   MachineFunction &MF = DAG.getMachineFunction();
3250   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3251   EVT PtrVT = getPointerTy(MF.getDataLayout());
3252
3253   SDLoc dl(Op);
3254
3255   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3256     // vastart just stores the address of the VarArgsFrameIndex slot into the
3257     // memory location argument.
3258     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3259     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3260     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3261                         MachinePointerInfo(SV));
3262   }
3263
3264   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3265   // We suppose the given va_list is already allocated.
3266   //
3267   // typedef struct {
3268   //  char gpr;     /* index into the array of 8 GPRs
3269   //                 * stored in the register save area
3270   //                 * gpr=0 corresponds to r3,
3271   //                 * gpr=1 to r4, etc.
3272   //                 */
3273   //  char fpr;     /* index into the array of 8 FPRs
3274   //                 * stored in the register save area
3275   //                 * fpr=0 corresponds to f1,
3276   //                 * fpr=1 to f2, etc.
3277   //                 */
3278   //  char *overflow_arg_area;
3279   //                /* location on stack that holds
3280   //                 * the next overflow argument
3281   //                 */
3282   //  char *reg_save_area;
3283   //               /* where r3:r10 and f1:f8 (if saved)
3284   //                * are stored
3285   //                */
3286   // } va_list[1];
3287
3288   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3289   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3290   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3291                                             PtrVT);
3292   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3293                                  PtrVT);
3294
3295   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3296   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3297
3298   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3299   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3300
3301   uint64_t FPROffset = 1;
3302   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3303
3304   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3305
3306   // Store first byte : number of int regs
3307   SDValue firstStore =
3308       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3309                         MachinePointerInfo(SV), MVT::i8);
3310   uint64_t nextOffset = FPROffset;
3311   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3312                                   ConstFPROffset);
3313
3314   // Store second byte : number of float regs
3315   SDValue secondStore =
3316       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3317                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3318   nextOffset += StackOffset;
3319   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3320
3321   // Store second word : arguments given on stack
3322   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3323                                     MachinePointerInfo(SV, nextOffset));
3324   nextOffset += FrameOffset;
3325   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3326
3327   // Store third word : arguments given in registers
3328   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3329                       MachinePointerInfo(SV, nextOffset));
3330 }
3331
3332 /// FPR - The set of FP registers that should be allocated for arguments
3333 /// on Darwin and AIX.
3334 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3335                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3336                                 PPC::F11, PPC::F12, PPC::F13};
3337
3338 /// QFPR - The set of QPX registers that should be allocated for arguments.
3339 static const MCPhysReg QFPR[] = {
3340     PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3341     PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3342
3343 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3344 /// the stack.
3345 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3346                                        unsigned PtrByteSize) {
3347   unsigned ArgSize = ArgVT.getStoreSize();
3348   if (Flags.isByVal())
3349     ArgSize = Flags.getByValSize();
3350
3351   // Round up to multiples of the pointer size, except for array members,
3352   // which are always packed.
3353   if (!Flags.isInConsecutiveRegs())
3354     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3355
3356   return ArgSize;
3357 }
3358
3359 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3360 /// on the stack.
3361 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3362                                             ISD::ArgFlagsTy Flags,
3363                                             unsigned PtrByteSize) {
3364   unsigned Align = PtrByteSize;
3365
3366   // Altivec parameters are padded to a 16 byte boundary.
3367   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3368       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3369       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3370       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3371     Align = 16;
3372   // QPX vector types stored in double-precision are padded to a 32 byte
3373   // boundary.
3374   else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3375     Align = 32;
3376
3377   // ByVal parameters are aligned as requested.
3378   if (Flags.isByVal()) {
3379     unsigned BVAlign = Flags.getByValAlign();
3380     if (BVAlign > PtrByteSize) {
3381       if (BVAlign % PtrByteSize != 0)
3382           llvm_unreachable(
3383             "ByVal alignment is not a multiple of the pointer size");
3384
3385       Align = BVAlign;
3386     }
3387   }
3388
3389   // Array members are always packed to their original alignment.
3390   if (Flags.isInConsecutiveRegs()) {
3391     // If the array member was split into multiple registers, the first
3392     // needs to be aligned to the size of the full type.  (Except for
3393     // ppcf128, which is only aligned as its f64 components.)
3394     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3395       Align = OrigVT.getStoreSize();
3396     else
3397       Align = ArgVT.getStoreSize();
3398   }
3399
3400   return Align;
3401 }
3402
3403 /// CalculateStackSlotUsed - Return whether this argument will use its
3404 /// stack slot (instead of being passed in registers).  ArgOffset,
3405 /// AvailableFPRs, and AvailableVRs must hold the current argument
3406 /// position, and will be updated to account for this argument.
3407 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3408                                    ISD::ArgFlagsTy Flags,
3409                                    unsigned PtrByteSize,
3410                                    unsigned LinkageSize,
3411                                    unsigned ParamAreaSize,
3412                                    unsigned &ArgOffset,
3413                                    unsigned &AvailableFPRs,
3414                                    unsigned &AvailableVRs, bool HasQPX) {
3415   bool UseMemory = false;
3416
3417   // Respect alignment of argument on the stack.
3418   unsigned Align =
3419     CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3420   ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3421   // If there's no space left in the argument save area, we must
3422   // use memory (this check also catches zero-sized arguments).
3423   if (ArgOffset >= LinkageSize + ParamAreaSize)
3424     UseMemory = true;
3425
3426   // Allocate argument on the stack.
3427   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3428   if (Flags.isInConsecutiveRegsLast())
3429     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3430   // If we overran the argument save area, we must use memory
3431   // (this check catches arguments passed partially in memory)
3432   if (ArgOffset > LinkageSize + ParamAreaSize)
3433     UseMemory = true;
3434
3435   // However, if the argument is actually passed in an FPR or a VR,
3436   // we don't use memory after all.
3437   if (!Flags.isByVal()) {
3438     if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3439         // QPX registers overlap with the scalar FP registers.
3440         (HasQPX && (ArgVT == MVT::v4f32 ||
3441                     ArgVT == MVT::v4f64 ||
3442                     ArgVT == MVT::v4i1)))
3443       if (AvailableFPRs > 0) {
3444         --AvailableFPRs;
3445         return false;
3446       }
3447     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3448         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3449         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3450         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3451       if (AvailableVRs > 0) {
3452         --AvailableVRs;
3453         return false;
3454       }
3455   }
3456
3457   return UseMemory;
3458 }
3459
3460 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3461 /// ensure minimum alignment required for target.
3462 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3463                                      unsigned NumBytes) {
3464   unsigned TargetAlign = Lowering->getStackAlignment();
3465   unsigned AlignMask = TargetAlign - 1;
3466   NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3467   return NumBytes;
3468 }
3469
3470 SDValue PPCTargetLowering::LowerFormalArguments(
3471     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3472     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3473     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3474   if (Subtarget.isAIXABI())
3475     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3476                                     InVals);
3477   if (Subtarget.is64BitELFABI())
3478     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3479                                        InVals);
3480   if (Subtarget.is32BitELFABI())
3481     return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3482                                        InVals);
3483
3484   return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3485                                      InVals);
3486 }
3487
3488 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3489     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3490     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3491     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3492
3493   // 32-bit SVR4 ABI Stack Frame Layout:
3494   //              +-----------------------------------+
3495   //        +-->  |            Back chain             |
3496   //        |     +-----------------------------------+
3497   //        |     | Floating-point register save area |
3498   //        |     +-----------------------------------+
3499   //        |     |    General register save area     |
3500   //        |     +-----------------------------------+
3501   //        |     |          CR save word             |
3502   //        |     +-----------------------------------+
3503   //        |     |         VRSAVE save word          |
3504   //        |     +-----------------------------------+
3505   //        |     |         Alignment padding         |
3506   //        |     +-----------------------------------+
3507   //        |     |     Vector register save area     |
3508   //        |     +-----------------------------------+
3509   //        |     |       Local variable space        |
3510   //        |     +-----------------------------------+
3511   //        |     |        Parameter list area        |
3512   //        |     +-----------------------------------+
3513   //        |     |           LR save word            |
3514   //        |     +-----------------------------------+
3515   // SP-->  +---  |            Back chain             |
3516   //              +-----------------------------------+
3517   //
3518   // Specifications:
3519   //   System V Application Binary Interface PowerPC Processor Supplement
3520   //   AltiVec Technology Programming Interface Manual
3521
3522   MachineFunction &MF = DAG.getMachineFunction();
3523   MachineFrameInfo &MFI = MF.getFrameInfo();
3524   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3525
3526   EVT PtrVT = getPointerTy(MF.getDataLayout());
3527   // Potential tail calls could cause overwriting of argument stack slots.
3528   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3529                        (CallConv == CallingConv::Fast));
3530   unsigned PtrByteSize = 4;
3531
3532   // Assign locations to all of the incoming arguments.
3533   SmallVector<CCValAssign, 16> ArgLocs;
3534   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3535                  *DAG.getContext());
3536
3537   // Reserve space for the linkage area on the stack.
3538   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3539   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3540   if (useSoftFloat())
3541     CCInfo.PreAnalyzeFormalArguments(Ins);
3542
3543   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3544   CCInfo.clearWasPPCF128();
3545
3546   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3547     CCValAssign &VA = ArgLocs[i];
3548
3549     // Arguments stored in registers.
3550     if (VA.isRegLoc()) {
3551       const TargetRegisterClass *RC;
3552       EVT ValVT = VA.getValVT();
3553
3554       switch (ValVT.getSimpleVT().SimpleTy) {
3555         default:
3556           llvm_unreachable("ValVT not supported by formal arguments Lowering");
3557         case MVT::i1:
3558         case MVT::i32:
3559           RC = &PPC::GPRCRegClass;
3560           break;
3561         case MVT::f32:
3562           if (Subtarget.hasP8Vector())
3563             RC = &PPC::VSSRCRegClass;
3564           else if (Subtarget.hasSPE())
3565             RC = &PPC::GPRCRegClass;
3566           else
3567             RC = &PPC::F4RCRegClass;
3568           break;
3569         case MVT::f64:
3570           if (Subtarget.hasVSX())
3571             RC = &PPC::VSFRCRegClass;
3572           else if (Subtarget.hasSPE())
3573             // SPE passes doubles in GPR pairs.
3574             RC = &PPC::GPRCRegClass;
3575           else
3576             RC = &PPC::F8RCRegClass;
3577           break;
3578         case MVT::v16i8:
3579         case MVT::v8i16:
3580         case MVT::v4i32:
3581           RC = &PPC::VRRCRegClass;
3582           break;
3583         case MVT::v4f32:
3584           RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3585           break;
3586         case MVT::v2f64:
3587         case MVT::v2i64:
3588           RC = &PPC::VRRCRegClass;
3589           break;
3590         case MVT::v4f64:
3591           RC = &PPC::QFRCRegClass;
3592           break;
3593         case MVT::v4i1:
3594           RC = &PPC::QBRCRegClass;
3595           break;
3596       }
3597
3598       SDValue ArgValue;
3599       // Transform the arguments stored in physical registers into
3600       // virtual ones.
3601       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3602         assert(i + 1 < e && "No second half of double precision argument");
3603         unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3604         unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3605         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3606         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3607         if (!Subtarget.isLittleEndian())
3608           std::swap (ArgValueLo, ArgValueHi);
3609         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3610                                ArgValueHi);
3611       } else {
3612         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3613         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3614                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
3615         if (ValVT == MVT::i1)
3616           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3617       }
3618
3619       InVals.push_back(ArgValue);
3620     } else {
3621       // Argument stored in memory.
3622       assert(VA.isMemLoc());
3623
3624       // Get the extended size of the argument type in stack
3625       unsigned ArgSize = VA.getLocVT().getStoreSize();
3626       // Get the actual size of the argument type
3627       unsigned ObjSize = VA.getValVT().getStoreSize();
3628       unsigned ArgOffset = VA.getLocMemOffset();
3629       // Stack objects in PPC32 are right justified.
3630       ArgOffset += ArgSize - ObjSize;
3631       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3632
3633       // Create load nodes to retrieve arguments from the stack.
3634       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3635       InVals.push_back(
3636           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3637     }
3638   }
3639
3640   // Assign locations to all of the incoming aggregate by value arguments.
3641   // Aggregates passed by value are stored in the local variable space of the
3642   // caller's stack frame, right above the parameter list area.
3643   SmallVector<CCValAssign, 16> ByValArgLocs;
3644   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3645                       ByValArgLocs, *DAG.getContext());
3646
3647   // Reserve stack space for the allocations in CCInfo.
3648   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3649
3650   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3651
3652   // Area that is at least reserved in the caller of this function.
3653   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3654   MinReservedArea = std::max(MinReservedArea, LinkageSize);
3655
3656   // Set the size that is at least reserved in caller of this function.  Tail
3657   // call optimized function's reserved stack space needs to be aligned so that
3658   // taking the difference between two stack areas will result in an aligned
3659   // stack.
3660   MinReservedArea =
3661       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3662   FuncInfo->setMinReservedArea(MinReservedArea);
3663
3664   SmallVector<SDValue, 8> MemOps;
3665
3666   // If the function takes variable number of arguments, make a frame index for
3667   // the start of the first vararg value... for expansion of llvm.va_start.
3668   if (isVarArg) {
3669     static const MCPhysReg GPArgRegs[] = {
3670       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3671       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3672     };
3673     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3674
3675     static const MCPhysReg FPArgRegs[] = {
3676       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3677       PPC::F8
3678     };
3679     unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3680
3681     if (useSoftFloat() || hasSPE())
3682        NumFPArgRegs = 0;
3683
3684     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3685     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3686
3687     // Make room for NumGPArgRegs and NumFPArgRegs.
3688     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3689                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3690
3691     FuncInfo->setVarArgsStackOffset(
3692       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3693                             CCInfo.getNextStackOffset(), true));
3694
3695     FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3696     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3697
3698     // The fixed integer arguments of a variadic function are stored to the
3699     // VarArgsFrameIndex on the stack so that they may be loaded by
3700     // dereferencing the result of va_next.
3701     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3702       // Get an existing live-in vreg, or add a new one.
3703       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3704       if (!VReg)
3705         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3706
3707       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3708       SDValue Store =
3709           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3710       MemOps.push_back(Store);
3711       // Increment the address by four for the next argument to store
3712       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3713       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3714     }
3715
3716     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3717     // is set.
3718     // The double arguments are stored to the VarArgsFrameIndex
3719     // on the stack.
3720     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3721       // Get an existing live-in vreg, or add a new one.
3722       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3723       if (!VReg)
3724         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3725
3726       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3727       SDValue Store =
3728           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3729       MemOps.push_back(Store);
3730       // Increment the address by eight for the next argument to store
3731       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3732                                          PtrVT);
3733       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3734     }
3735   }
3736
3737   if (!MemOps.empty())
3738     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3739
3740   return Chain;
3741 }
3742
3743 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3744 // value to MVT::i64 and then truncate to the correct register size.
3745 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3746                                              EVT ObjectVT, SelectionDAG &DAG,
3747                                              SDValue ArgVal,
3748                                              const SDLoc &dl) const {
3749   if (Flags.isSExt())
3750     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3751                          DAG.getValueType(ObjectVT));
3752   else if (Flags.isZExt())
3753     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3754                          DAG.getValueType(ObjectVT));
3755
3756   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3757 }
3758
3759 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3760     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3761     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3762     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3763   // TODO: add description of PPC stack frame format, or at least some docs.
3764   //
3765   bool isELFv2ABI = Subtarget.isELFv2ABI();
3766   bool isLittleEndian = Subtarget.isLittleEndian();
3767   MachineFunction &MF = DAG.getMachineFunction();
3768   MachineFrameInfo &MFI = MF.getFrameInfo();
3769   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3770
3771   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3772          "fastcc not supported on varargs functions");
3773
3774   EVT PtrVT = getPointerTy(MF.getDataLayout());
3775   // Potential tail calls could cause overwriting of argument stack slots.
3776   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3777                        (CallConv == CallingConv::Fast));
3778   unsigned PtrByteSize = 8;
3779   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3780
3781   static const MCPhysReg GPR[] = {
3782     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3783     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3784   };
3785   static const MCPhysReg VR[] = {
3786     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3787     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3788   };
3789
3790   const unsigned Num_GPR_Regs = array_lengthof(GPR);
3791   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3792   const unsigned Num_VR_Regs  = array_lengthof(VR);
3793   const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3794
3795   // Do a first pass over the arguments to determine whether the ABI
3796   // guarantees that our caller has allocated the parameter save area
3797   // on its stack frame.  In the ELFv1 ABI, this is always the case;
3798   // in the ELFv2 ABI, it is true if this is a vararg function or if
3799   // any parameter is located in a stack slot.
3800
3801   bool HasParameterArea = !isELFv2ABI || isVarArg;
3802   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3803   unsigned NumBytes = LinkageSize;
3804   unsigned AvailableFPRs = Num_FPR_Regs;
3805   unsigned AvailableVRs = Num_VR_Regs;
3806   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3807     if (Ins[i].Flags.isNest())
3808       continue;
3809
3810     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3811                                PtrByteSize, LinkageSize, ParamAreaSize,
3812                                NumBytes, AvailableFPRs, AvailableVRs,
3813                                Subtarget.hasQPX()))
3814       HasParameterArea = true;
3815   }
3816
3817   // Add DAG nodes to load the arguments or copy them out of registers.  On
3818   // entry to a function on PPC, the arguments start after the linkage area,
3819   // although the first ones are often in registers.
3820
3821   unsigned ArgOffset = LinkageSize;
3822   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3823   unsigned &QFPR_idx = FPR_idx;
3824   SmallVector<SDValue, 8> MemOps;
3825   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3826   unsigned CurArgIdx = 0;
3827   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3828     SDValue ArgVal;
3829     bool needsLoad = false;
3830     EVT ObjectVT = Ins[ArgNo].VT;
3831     EVT OrigVT = Ins[ArgNo].ArgVT;
3832     unsigned ObjSize = ObjectVT.getStoreSize();
3833     unsigned ArgSize = ObjSize;
3834     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3835     if (Ins[ArgNo].isOrigArg()) {
3836       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3837       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3838     }
3839     // We re-align the argument offset for each argument, except when using the
3840     // fast calling convention, when we need to make sure we do that only when
3841     // we'll actually use a stack slot.
3842     unsigned CurArgOffset, Align;
3843     auto ComputeArgOffset = [&]() {
3844       /* Respect alignment of argument on the stack.  */
3845       Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3846       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3847       CurArgOffset = ArgOffset;
3848     };
3849
3850     if (CallConv != CallingConv::Fast) {
3851       ComputeArgOffset();
3852
3853       /* Compute GPR index associated with argument offset.  */
3854       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3855       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3856     }
3857
3858     // FIXME the codegen can be much improved in some cases.
3859     // We do not have to keep everything in memory.
3860     if (Flags.isByVal()) {
3861       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3862
3863       if (CallConv == CallingConv::Fast)
3864         ComputeArgOffset();
3865
3866       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3867       ObjSize = Flags.getByValSize();
3868       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3869       // Empty aggregate parameters do not take up registers.  Examples:
3870       //   struct { } a;
3871       //   union  { } b;
3872       //   int c[0];
3873       // etc.  However, we have to provide a place-holder in InVals, so
3874       // pretend we have an 8-byte item at the current address for that
3875       // purpose.
3876       if (!ObjSize) {
3877         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3878         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3879         InVals.push_back(FIN);
3880         continue;
3881       }
3882
3883       // Create a stack object covering all stack doublewords occupied
3884       // by the argument.  If the argument is (fully or partially) on
3885       // the stack, or if the argument is fully in registers but the
3886       // caller has allocated the parameter save anyway, we can refer
3887       // directly to the caller's stack frame.  Otherwise, create a
3888       // local copy in our own frame.
3889       int FI;
3890       if (HasParameterArea ||
3891           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3892         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3893       else
3894         FI = MFI.CreateStackObject(ArgSize, Align, false);
3895       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3896
3897       // Handle aggregates smaller than 8 bytes.
3898       if (ObjSize < PtrByteSize) {
3899         // The value of the object is its address, which differs from the
3900         // address of the enclosing doubleword on big-endian systems.
3901         SDValue Arg = FIN;
3902         if (!isLittleEndian) {
3903           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3904           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3905         }
3906         InVals.push_back(Arg);
3907
3908         if (GPR_idx != Num_GPR_Regs) {
3909           unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3910           FuncInfo->addLiveInAttr(VReg, Flags);
3911           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3912           SDValue Store;
3913
3914           if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3915             EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3916                            (ObjSize == 2 ? MVT::i16 : MVT::i32));
3917             Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3918                                       MachinePointerInfo(&*FuncArg), ObjType);
3919           } else {
3920             // For sizes that don't fit a truncating store (3, 5, 6, 7),
3921             // store the whole register as-is to the parameter save area
3922             // slot.
3923             Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3924                                  MachinePointerInfo(&*FuncArg));
3925           }
3926
3927           MemOps.push_back(Store);
3928         }
3929         // Whether we copied from a register or not, advance the offset
3930         // into the parameter save area by a full doubleword.
3931         ArgOffset += PtrByteSize;
3932         continue;
3933       }
3934
3935       // The value of the object is its address, which is the address of
3936       // its first stack doubleword.
3937       InVals.push_back(FIN);
3938
3939       // Store whatever pieces of the object are in registers to memory.
3940       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3941         if (GPR_idx == Num_GPR_Regs)
3942           break;
3943
3944         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3945         FuncInfo->addLiveInAttr(VReg, Flags);
3946         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3947         SDValue Addr = FIN;
3948         if (j) {
3949           SDValue Off = DAG.getConstant(j, dl, PtrVT);
3950           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3951         }
3952         SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3953                                      MachinePointerInfo(&*FuncArg, j));
3954         MemOps.push_back(Store);
3955         ++GPR_idx;
3956       }
3957       ArgOffset += ArgSize;
3958       continue;
3959     }
3960
3961     switch (ObjectVT.getSimpleVT().SimpleTy) {
3962     default: llvm_unreachable("Unhandled argument type!");
3963     case MVT::i1:
3964     case MVT::i32:
3965     case MVT::i64:
3966       if (Flags.isNest()) {
3967         // The 'nest' parameter, if any, is passed in R11.
3968         unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3969         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3970
3971         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3972           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3973
3974         break;
3975       }
3976
3977       // These can be scalar arguments or elements of an integer array type
3978       // passed directly.  Clang may use those instead of "byval" aggregate
3979       // types to avoid forcing arguments to memory unnecessarily.
3980       if (GPR_idx != Num_GPR_Regs) {
3981         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3982         FuncInfo->addLiveInAttr(VReg, Flags);
3983         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3984
3985         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3986           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3987           // value to MVT::i64 and then truncate to the correct register size.
3988           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3989       } else {
3990         if (CallConv == CallingConv::Fast)
3991           ComputeArgOffset();
3992
3993         needsLoad = true;
3994         ArgSize = PtrByteSize;
3995       }
3996       if (CallConv != CallingConv::Fast || needsLoad)
3997         ArgOffset += 8;
3998       break;
3999
4000     case MVT::f32:
4001     case MVT::f64:
4002       // These can be scalar arguments or elements of a float array type
4003       // passed directly.  The latter are used to implement ELFv2 homogenous
4004       // float aggregates.
4005       if (FPR_idx != Num_FPR_Regs) {
4006         unsigned VReg;
4007
4008         if (ObjectVT == MVT::f32)
4009           VReg = MF.addLiveIn(FPR[FPR_idx],
4010                               Subtarget.hasP8Vector()
4011                                   ? &PPC::VSSRCRegClass
4012                                   : &PPC::F4RCRegClass);
4013         else
4014           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4015                                                 ? &PPC::VSFRCRegClass
4016                                                 : &PPC::F8RCRegClass);
4017
4018         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4019         ++FPR_idx;
4020       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4021         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4022         // once we support fp <-> gpr moves.
4023
4024         // This can only ever happen in the presence of f32 array types,
4025         // since otherwise we never run out of FPRs before running out
4026         // of GPRs.
4027         unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4028         FuncInfo->addLiveInAttr(VReg, Flags);
4029         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4030
4031         if (ObjectVT == MVT::f32) {
4032           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4033             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4034                                  DAG.getConstant(32, dl, MVT::i32));
4035           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4036         }
4037
4038         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4039       } else {
4040         if (CallConv == CallingConv::Fast)
4041           ComputeArgOffset();
4042
4043         needsLoad = true;
4044       }
4045
4046       // When passing an array of floats, the array occupies consecutive
4047       // space in the argument area; only round up to the next doubleword
4048       // at the end of the array.  Otherwise, each float takes 8 bytes.
4049       if (CallConv != CallingConv::Fast || needsLoad) {
4050         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4051         ArgOffset += ArgSize;
4052         if (Flags.isInConsecutiveRegsLast())
4053           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4054       }
4055       break;
4056     case MVT::v4f32:
4057     case MVT::v4i32:
4058     case MVT::v8i16:
4059     case MVT::v16i8:
4060     case MVT::v2f64:
4061     case MVT::v2i64:
4062     case MVT::v1i128:
4063     case MVT::f128:
4064       if (!Subtarget.hasQPX()) {
4065         // These can be scalar arguments or elements of a vector array type
4066         // passed directly.  The latter are used to implement ELFv2 homogenous
4067         // vector aggregates.
4068         if (VR_idx != Num_VR_Regs) {
4069           unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4070           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4071           ++VR_idx;
4072         } else {
4073           if (CallConv == CallingConv::Fast)
4074             ComputeArgOffset();
4075           needsLoad = true;
4076         }
4077         if (CallConv != CallingConv::Fast || needsLoad)
4078           ArgOffset += 16;
4079         break;
4080       } // not QPX
4081
4082       assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4083              "Invalid QPX parameter type");
4084       LLVM_FALLTHROUGH;
4085
4086     case MVT::v4f64:
4087     case MVT::v4i1:
4088       // QPX vectors are treated like their scalar floating-point subregisters
4089       // (except that they're larger).
4090       unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4091       if (QFPR_idx != Num_QFPR_Regs) {
4092         const TargetRegisterClass *RC;
4093         switch (ObjectVT.getSimpleVT().SimpleTy) {
4094         case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4095         case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4096         default:         RC = &PPC::QBRCRegClass; break;
4097         }
4098
4099         unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4100         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4101         ++QFPR_idx;
4102       } else {
4103         if (CallConv == CallingConv::Fast)
4104           ComputeArgOffset();
4105         needsLoad = true;
4106       }
4107       if (CallConv != CallingConv::Fast || needsLoad)
4108         ArgOffset += Sz;
4109       break;
4110     }
4111
4112     // We need to load the argument to a virtual register if we determined
4113     // above that we ran out of physical registers of the appropriate type.
4114     if (needsLoad) {
4115       if (ObjSize < ArgSize && !isLittleEndian)
4116         CurArgOffset += ArgSize - ObjSize;
4117       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4118       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4119       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4120     }
4121
4122     InVals.push_back(ArgVal);
4123   }
4124
4125   // Area that is at least reserved in the caller of this function.
4126   unsigned MinReservedArea;
4127   if (HasParameterArea)
4128     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4129   else
4130     MinReservedArea = LinkageSize;
4131
4132   // Set the size that is at least reserved in caller of this function.  Tail
4133   // call optimized functions' reserved stack space needs to be aligned so that
4134   // taking the difference between two stack areas will result in an aligned
4135   // stack.
4136   MinReservedArea =
4137       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4138   FuncInfo->setMinReservedArea(MinReservedArea);
4139
4140   // If the function takes variable number of arguments, make a frame index for
4141   // the start of the first vararg value... for expansion of llvm.va_start.
4142   if (isVarArg) {
4143     int Depth = ArgOffset;
4144
4145     FuncInfo->setVarArgsFrameIndex(
4146       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4147     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4148
4149     // If this function is vararg, store any remaining integer argument regs
4150     // to their spots on the stack so that they may be loaded by dereferencing
4151     // the result of va_next.
4152     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4153          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4154       unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4155       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4156       SDValue Store =
4157           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4158       MemOps.push_back(Store);
4159       // Increment the address by four for the next argument to store
4160       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4161       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4162     }
4163   }
4164
4165   if (!MemOps.empty())
4166     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4167
4168   return Chain;
4169 }
4170
4171 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4172     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4173     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4174     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4175   // TODO: add description of PPC stack frame format, or at least some docs.
4176   //
4177   MachineFunction &MF = DAG.getMachineFunction();
4178   MachineFrameInfo &MFI = MF.getFrameInfo();
4179   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4180
4181   EVT PtrVT = getPointerTy(MF.getDataLayout());
4182   bool isPPC64 = PtrVT == MVT::i64;
4183   // Potential tail calls could cause overwriting of argument stack slots.
4184   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4185                        (CallConv == CallingConv::Fast));
4186   unsigned PtrByteSize = isPPC64 ? 8 : 4;
4187   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4188   unsigned ArgOffset = LinkageSize;
4189   // Area that is at least reserved in caller of this function.
4190   unsigned MinReservedArea = ArgOffset;
4191
4192   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4193     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4194     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4195   };
4196   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4197     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4198     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4199   };
4200   static const MCPhysReg VR[] = {
4201     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4202     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4203   };
4204
4205   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4206   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4207   const unsigned Num_VR_Regs  = array_lengthof( VR);
4208
4209   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4210
4211   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4212
4213   // In 32-bit non-varargs functions, the stack space for vectors is after the
4214   // stack space for non-vectors.  We do not use this space unless we have
4215   // too many vectors to fit in registers, something that only occurs in
4216   // constructed examples:), but we have to walk the arglist to figure
4217   // that out...for the pathological case, compute VecArgOffset as the
4218   // start of the vector parameter area.  Computing VecArgOffset is the
4219   // entire point of the following loop.
4220   unsigned VecArgOffset = ArgOffset;
4221   if (!isVarArg && !isPPC64) {
4222     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4223          ++ArgNo) {
4224       EVT ObjectVT = Ins[ArgNo].VT;
4225       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4226
4227       if (Flags.isByVal()) {
4228         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4229         unsigned ObjSize = Flags.getByValSize();
4230         unsigned ArgSize =
4231                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4232         VecArgOffset += ArgSize;
4233         continue;
4234       }
4235
4236       switch(ObjectVT.getSimpleVT().SimpleTy) {
4237       default: llvm_unreachable("Unhandled argument type!");
4238       case MVT::i1:
4239       case MVT::i32:
4240       case MVT::f32:
4241         VecArgOffset += 4;
4242         break;
4243       case MVT::i64:  // PPC64
4244       case MVT::f64:
4245         // FIXME: We are guaranteed to be !isPPC64 at this point.
4246         // Does MVT::i64 apply?
4247         VecArgOffset += 8;
4248         break;
4249       case MVT::v4f32:
4250       case MVT::v4i32:
4251       case MVT::v8i16:
4252       case MVT::v16i8:
4253         // Nothing to do, we're only looking at Nonvector args here.
4254         break;
4255       }
4256     }
4257   }
4258   // We've found where the vector parameter area in memory is.  Skip the
4259   // first 12 parameters; these don't use that memory.
4260   VecArgOffset = ((VecArgOffset+15)/16)*16;
4261   VecArgOffset += 12*16;
4262
4263   // Add DAG nodes to load the arguments or copy them out of registers.  On
4264   // entry to a function on PPC, the arguments start after the linkage area,
4265   // although the first ones are often in registers.
4266
4267   SmallVector<SDValue, 8> MemOps;
4268   unsigned nAltivecParamsAtEnd = 0;
4269   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4270   unsigned CurArgIdx = 0;
4271   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4272     SDValue ArgVal;
4273     bool needsLoad = false;
4274     EVT ObjectVT = Ins[ArgNo].VT;
4275     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4276     unsigned ArgSize = ObjSize;
4277     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4278     if (Ins[ArgNo].isOrigArg()) {
4279       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4280       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4281     }
4282     unsigned CurArgOffset = ArgOffset;
4283
4284     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4285     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4286         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4287       if (isVarArg || isPPC64) {
4288         MinReservedArea = ((MinReservedArea+15)/16)*16;
4289         MinReservedArea += CalculateStackSlotSize(ObjectVT,
4290                                                   Flags,
4291                                                   PtrByteSize);
4292       } else  nAltivecParamsAtEnd++;
4293     } else
4294       // Calculate min reserved area.
4295       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4296                                                 Flags,
4297                                                 PtrByteSize);
4298
4299     // FIXME the codegen can be much improved in some cases.
4300     // We do not have to keep everything in memory.
4301     if (Flags.isByVal()) {
4302       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4303
4304       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4305       ObjSize = Flags.getByValSize();
4306       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4307       // Objects of size 1 and 2 are right justified, everything else is
4308       // left justified.  This means the memory address is adjusted forwards.
4309       if (ObjSize==1 || ObjSize==2) {
4310         CurArgOffset = CurArgOffset + (4 - ObjSize);
4311       }
4312       // The value of the object is its address.
4313       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4314       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4315       InVals.push_back(FIN);
4316       if (ObjSize==1 || ObjSize==2) {
4317         if (GPR_idx != Num_GPR_Regs) {
4318           unsigned VReg;
4319           if (isPPC64)
4320             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4321           else
4322             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4323           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4324           EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4325           SDValue Store =
4326               DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4327                                 MachinePointerInfo(&*FuncArg), ObjType);
4328           MemOps.push_back(Store);
4329           ++GPR_idx;
4330         }
4331
4332         ArgOffset += PtrByteSize;
4333
4334         continue;
4335       }
4336       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4337         // Store whatever pieces of the object are in registers
4338         // to memory.  ArgOffset will be the address of the beginning
4339         // of the object.
4340         if (GPR_idx != Num_GPR_Regs) {
4341           unsigned VReg;
4342           if (isPPC64)
4343             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4344           else
4345             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4346           int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4347           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4348           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4349           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4350                                        MachinePointerInfo(&*FuncArg, j));
4351           MemOps.push_back(Store);
4352           ++GPR_idx;
4353           ArgOffset += PtrByteSize;
4354         } else {
4355           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4356           break;
4357         }
4358       }
4359       continue;
4360     }
4361
4362     switch (ObjectVT.getSimpleVT().SimpleTy) {
4363     default: llvm_unreachable("Unhandled argument type!");
4364     case MVT::i1:
4365     case MVT::i32:
4366       if (!isPPC64) {
4367         if (GPR_idx != Num_GPR_Regs) {
4368           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4369           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4370
4371           if (ObjectVT == MVT::i1)
4372             ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4373
4374           ++GPR_idx;
4375         } else {
4376           needsLoad = true;
4377           ArgSize = PtrByteSize;
4378         }
4379         // All int arguments reserve stack space in the Darwin ABI.
4380         ArgOffset += PtrByteSize;
4381         break;
4382       }
4383       LLVM_FALLTHROUGH;
4384     case MVT::i64:  // PPC64
4385       if (GPR_idx != Num_GPR_Regs) {
4386         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4387         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4388
4389         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4390           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4391           // value to MVT::i64 and then truncate to the correct register size.
4392           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4393
4394         ++GPR_idx;
4395       } else {
4396         needsLoad = true;
4397         ArgSize = PtrByteSize;
4398       }
4399       // All int arguments reserve stack space in the Darwin ABI.
4400       ArgOffset += 8;
4401       break;
4402
4403     case MVT::f32:
4404     case MVT::f64:
4405       // Every 4 bytes of argument space consumes one of the GPRs available for
4406       // argument passing.
4407       if (GPR_idx != Num_GPR_Regs) {
4408         ++GPR_idx;
4409         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4410           ++GPR_idx;
4411       }
4412       if (FPR_idx != Num_FPR_Regs) {
4413         unsigned VReg;
4414
4415         if (ObjectVT == MVT::f32)
4416           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4417         else
4418           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4419
4420         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4421         ++FPR_idx;
4422       } else {
4423         needsLoad = true;
4424       }
4425
4426       // All FP arguments reserve stack space in the Darwin ABI.
4427       ArgOffset += isPPC64 ? 8 : ObjSize;
4428       break;
4429     case MVT::v4f32:
4430     case MVT::v4i32:
4431     case MVT::v8i16:
4432     case MVT::v16i8:
4433       // Note that vector arguments in registers don't reserve stack space,
4434       // except in varargs functions.
4435       if (VR_idx != Num_VR_Regs) {
4436         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4437         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4438         if (isVarArg) {
4439           while ((ArgOffset % 16) != 0) {
4440             ArgOffset += PtrByteSize;
4441             if (GPR_idx != Num_GPR_Regs)
4442               GPR_idx++;
4443           }
4444           ArgOffset += 16;
4445           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4446         }
4447         ++VR_idx;
4448       } else {
4449         if (!isVarArg && !isPPC64) {
4450           // Vectors go after all the nonvectors.
4451           CurArgOffset = VecArgOffset;
4452           VecArgOffset += 16;
4453         } else {
4454           // Vectors are aligned.
4455           ArgOffset = ((ArgOffset+15)/16)*16;
4456           CurArgOffset = ArgOffset;
4457           ArgOffset += 16;
4458         }
4459         needsLoad = true;
4460       }
4461       break;
4462     }
4463
4464     // We need to load the argument to a virtual register if we determined above
4465     // that we ran out of physical registers of the appropriate type.
4466     if (needsLoad) {
4467       int FI = MFI.CreateFixedObject(ObjSize,
4468                                      CurArgOffset + (ArgSize - ObjSize),
4469                                      isImmutable);
4470       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4471       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4472     }
4473
4474     InVals.push_back(ArgVal);
4475   }
4476
4477   // Allow for Altivec parameters at the end, if needed.
4478   if (nAltivecParamsAtEnd) {
4479     MinReservedArea = ((MinReservedArea+15)/16)*16;
4480     MinReservedArea += 16*nAltivecParamsAtEnd;
4481   }
4482
4483   // Area that is at least reserved in the caller of this function.
4484   MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4485
4486   // Set the size that is at least reserved in caller of this function.  Tail
4487   // call optimized functions' reserved stack space needs to be aligned so that
4488   // taking the difference between two stack areas will result in an aligned
4489   // stack.
4490   MinReservedArea =
4491       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4492   FuncInfo->setMinReservedArea(MinReservedArea);
4493
4494   // If the function takes variable number of arguments, make a frame index for
4495   // the start of the first vararg value... for expansion of llvm.va_start.
4496   if (isVarArg) {
4497     int Depth = ArgOffset;
4498
4499     FuncInfo->setVarArgsFrameIndex(
4500       MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4501                             Depth, true));
4502     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4503
4504     // If this function is vararg, store any remaining integer argument regs
4505     // to their spots on the stack so that they may be loaded by dereferencing
4506     // the result of va_next.
4507     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4508       unsigned VReg;
4509
4510       if (isPPC64)
4511         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4512       else
4513         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4514
4515       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4516       SDValue Store =
4517           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4518       MemOps.push_back(Store);
4519       // Increment the address by four for the next argument to store
4520       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4521       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4522     }
4523   }
4524
4525   if (!MemOps.empty())
4526     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4527
4528   return Chain;
4529 }
4530
4531 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4532 /// adjusted to accommodate the arguments for the tailcall.
4533 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4534                                    unsigned ParamSize) {
4535
4536   if (!isTailCall) return 0;
4537
4538   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4539   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4540   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4541   // Remember only if the new adjustment is bigger.
4542   if (SPDiff < FI->getTailCallSPDelta())
4543     FI->setTailCallSPDelta(SPDiff);
4544
4545   return SPDiff;
4546 }
4547
4548 static bool isFunctionGlobalAddress(SDValue Callee);
4549
4550 static bool
4551 callsShareTOCBase(const Function *Caller, SDValue Callee,
4552                     const TargetMachine &TM) {
4553    // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4554    // don't have enough information to determine if the caller and calle share
4555    // the same  TOC base, so we have to pessimistically assume they don't for
4556    // correctness.
4557    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4558    if (!G)
4559      return false;
4560
4561    const GlobalValue *GV = G->getGlobal();
4562   // The medium and large code models are expected to provide a sufficiently
4563   // large TOC to provide all data addressing needs of a module with a
4564   // single TOC. Since each module will be addressed with a single TOC then we
4565   // only need to check that caller and callee don't cross dso boundaries.
4566   if (CodeModel::Medium == TM.getCodeModel() ||
4567       CodeModel::Large == TM.getCodeModel())
4568     return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4569
4570   // Otherwise we need to ensure callee and caller are in the same section,
4571   // since the linker may allocate multiple TOCs, and we don't know which
4572   // sections will belong to the same TOC base.
4573
4574   if (!GV->isStrongDefinitionForLinker())
4575     return false;
4576
4577   // Any explicitly-specified sections and section prefixes must also match.
4578   // Also, if we're using -ffunction-sections, then each function is always in
4579   // a different section (the same is true for COMDAT functions).
4580   if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4581       GV->getSection() != Caller->getSection())
4582     return false;
4583   if (const auto *F = dyn_cast<Function>(GV)) {
4584     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4585       return false;
4586   }
4587
4588   // If the callee might be interposed, then we can't assume the ultimate call
4589   // target will be in the same section. Even in cases where we can assume that
4590   // interposition won't happen, in any case where the linker might insert a
4591   // stub to allow for interposition, we must generate code as though
4592   // interposition might occur. To understand why this matters, consider a
4593   // situation where: a -> b -> c where the arrows indicate calls. b and c are
4594   // in the same section, but a is in a different module (i.e. has a different
4595   // TOC base pointer). If the linker allows for interposition between b and c,
4596   // then it will generate a stub for the call edge between b and c which will
4597   // save the TOC pointer into the designated stack slot allocated by b. If we
4598   // return true here, and therefore allow a tail call between b and c, that
4599   // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4600   // pointer into the stack slot allocated by a (where the a -> b stub saved
4601   // a's TOC base pointer). If we're not considering a tail call, but rather,
4602   // whether a nop is needed after the call instruction in b, because the linker
4603   // will insert a stub, it might complain about a missing nop if we omit it
4604   // (although many don't complain in this case).
4605   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4606     return false;
4607
4608   return true;
4609 }
4610
4611 static bool
4612 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4613                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4614   assert(Subtarget.is64BitELFABI());
4615
4616   const unsigned PtrByteSize = 8;
4617   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4618
4619   static const MCPhysReg GPR[] = {
4620     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4621     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4622   };
4623   static const MCPhysReg VR[] = {
4624     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4625     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4626   };
4627
4628   const unsigned NumGPRs = array_lengthof(GPR);
4629   const unsigned NumFPRs = 13;
4630   const unsigned NumVRs = array_lengthof(VR);
4631   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4632
4633   unsigned NumBytes = LinkageSize;
4634   unsigned AvailableFPRs = NumFPRs;
4635   unsigned AvailableVRs = NumVRs;
4636
4637   for (const ISD::OutputArg& Param : Outs) {
4638     if (Param.Flags.isNest()) continue;
4639
4640     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4641                                PtrByteSize, LinkageSize, ParamAreaSize,
4642                                NumBytes, AvailableFPRs, AvailableVRs,
4643                                Subtarget.hasQPX()))
4644       return true;
4645   }
4646   return false;
4647 }
4648
4649 static bool
4650 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4651   if (CS.arg_size() != CallerFn->arg_size())
4652     return false;
4653
4654   ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4655   ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4656   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4657
4658   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4659     const Value* CalleeArg = *CalleeArgIter;
4660     const Value* CallerArg = &(*CallerArgIter);
4661     if (CalleeArg == CallerArg)
4662       continue;
4663
4664     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4665     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4666     //      }
4667     // 1st argument of callee is undef and has the same type as caller.
4668     if (CalleeArg->getType() == CallerArg->getType() &&
4669         isa<UndefValue>(CalleeArg))
4670       continue;
4671
4672     return false;
4673   }
4674
4675   return true;
4676 }
4677
4678 // Returns true if TCO is possible between the callers and callees
4679 // calling conventions.
4680 static bool
4681 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4682                                     CallingConv::ID CalleeCC) {
4683   // Tail calls are possible with fastcc and ccc.
4684   auto isTailCallableCC  = [] (CallingConv::ID CC){
4685       return  CC == CallingConv::C || CC == CallingConv::Fast;
4686   };
4687   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4688     return false;
4689
4690   // We can safely tail call both fastcc and ccc callees from a c calling
4691   // convention caller. If the caller is fastcc, we may have less stack space
4692   // than a non-fastcc caller with the same signature so disable tail-calls in
4693   // that case.
4694   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4695 }
4696
4697 bool
4698 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4699                                     SDValue Callee,
4700                                     CallingConv::ID CalleeCC,
4701                                     ImmutableCallSite CS,
4702                                     bool isVarArg,
4703                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
4704                                     const SmallVectorImpl<ISD::InputArg> &Ins,
4705                                     SelectionDAG& DAG) const {
4706   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4707
4708   if (DisableSCO && !TailCallOpt) return false;
4709
4710   // Variadic argument functions are not supported.
4711   if (isVarArg) return false;
4712
4713   auto &Caller = DAG.getMachineFunction().getFunction();
4714   // Check that the calling conventions are compatible for tco.
4715   if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4716     return false;
4717
4718   // Caller contains any byval parameter is not supported.
4719   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4720     return false;
4721
4722   // Callee contains any byval parameter is not supported, too.
4723   // Note: This is a quick work around, because in some cases, e.g.
4724   // caller's stack size > callee's stack size, we are still able to apply
4725   // sibling call optimization. For example, gcc is able to do SCO for caller1
4726   // in the following example, but not for caller2.
4727   //   struct test {
4728   //     long int a;
4729   //     char ary[56];
4730   //   } gTest;
4731   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4732   //     b->a = v.a;
4733   //     return 0;
4734   //   }
4735   //   void caller1(struct test a, struct test c, struct test *b) {
4736   //     callee(gTest, b); }
4737   //   void caller2(struct test *b) { callee(gTest, b); }
4738   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4739     return false;
4740
4741   // If callee and caller use different calling conventions, we cannot pass
4742   // parameters on stack since offsets for the parameter area may be different.
4743   if (Caller.getCallingConv() != CalleeCC &&
4744       needStackSlotPassParameters(Subtarget, Outs))
4745     return false;
4746
4747   // No TCO/SCO on indirect call because Caller have to restore its TOC
4748   if (!isFunctionGlobalAddress(Callee) &&
4749       !isa<ExternalSymbolSDNode>(Callee))
4750     return false;
4751
4752   // If the caller and callee potentially have different TOC bases then we
4753   // cannot tail call since we need to restore the TOC pointer after the call.
4754   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4755   if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4756     return false;
4757
4758   // TCO allows altering callee ABI, so we don't have to check further.
4759   if (CalleeCC == CallingConv::Fast && TailCallOpt)
4760     return true;
4761
4762   if (DisableSCO) return false;
4763
4764   // If callee use the same argument list that caller is using, then we can
4765   // apply SCO on this case. If it is not, then we need to check if callee needs
4766   // stack for passing arguments.
4767   if (!hasSameArgumentList(&Caller, CS) &&
4768       needStackSlotPassParameters(Subtarget, Outs)) {
4769     return false;
4770   }
4771
4772   return true;
4773 }
4774
4775 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4776 /// for tail call optimization. Targets which want to do tail call
4777 /// optimization should implement this function.
4778 bool
4779 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4780                                                      CallingConv::ID CalleeCC,
4781                                                      bool isVarArg,
4782                                       const SmallVectorImpl<ISD::InputArg> &Ins,
4783                                                      SelectionDAG& DAG) const {
4784   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4785     return false;
4786
4787   // Variable argument functions are not supported.
4788   if (isVarArg)
4789     return false;
4790
4791   MachineFunction &MF = DAG.getMachineFunction();
4792   CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4793   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4794     // Functions containing by val parameters are not supported.
4795     for (unsigned i = 0; i != Ins.size(); i++) {
4796        ISD::ArgFlagsTy Flags = Ins[i].Flags;
4797        if (Flags.isByVal()) return false;
4798     }
4799
4800     // Non-PIC/GOT tail calls are supported.
4801     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4802       return true;
4803
4804     // At the moment we can only do local tail calls (in same module, hidden
4805     // or protected) if we are generating PIC.
4806     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4807       return G->getGlobal()->hasHiddenVisibility()
4808           || G->getGlobal()->hasProtectedVisibility();
4809   }
4810
4811   return false;
4812 }
4813
4814 /// isCallCompatibleAddress - Return the immediate to use if the specified
4815 /// 32-bit value is representable in the immediate field of a BxA instruction.
4816 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4817   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4818   if (!C) return nullptr;
4819
4820   int Addr = C->getZExtValue();
4821   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4822       SignExtend32<26>(Addr) != Addr)
4823     return nullptr;  // Top 6 bits have to be sext of immediate.
4824
4825   return DAG
4826       .getConstant(
4827           (int)C->getZExtValue() >> 2, SDLoc(Op),
4828           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4829       .getNode();
4830 }
4831
4832 namespace {
4833
4834 struct TailCallArgumentInfo {
4835   SDValue Arg;
4836   SDValue FrameIdxOp;
4837   int FrameIdx = 0;
4838
4839   TailCallArgumentInfo() = default;
4840 };
4841
4842 } // end anonymous namespace
4843
4844 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4845 static void StoreTailCallArgumentsToStackSlot(
4846     SelectionDAG &DAG, SDValue Chain,
4847     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4848     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4849   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4850     SDValue Arg = TailCallArgs[i].Arg;
4851     SDValue FIN = TailCallArgs[i].FrameIdxOp;
4852     int FI = TailCallArgs[i].FrameIdx;
4853     // Store relative to framepointer.
4854     MemOpChains.push_back(DAG.getStore(
4855         Chain, dl, Arg, FIN,
4856         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4857   }
4858 }
4859
4860 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4861 /// the appropriate stack slot for the tail call optimized function call.
4862 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4863                                              SDValue OldRetAddr, SDValue OldFP,
4864                                              int SPDiff, const SDLoc &dl) {
4865   if (SPDiff) {
4866     // Calculate the new stack slot for the return address.
4867     MachineFunction &MF = DAG.getMachineFunction();
4868     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4869     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4870     bool isPPC64 = Subtarget.isPPC64();
4871     int SlotSize = isPPC64 ? 8 : 4;
4872     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4873     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4874                                                          NewRetAddrLoc, true);
4875     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4876     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4877     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4878                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4879
4880     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4881     // slot as the FP is never overwritten.
4882     if (Subtarget.isDarwinABI()) {
4883       int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4884       int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4885                                                          true);
4886       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4887       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4888                            MachinePointerInfo::getFixedStack(
4889                                DAG.getMachineFunction(), NewFPIdx));
4890     }
4891   }
4892   return Chain;
4893 }
4894
4895 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4896 /// the position of the argument.
4897 static void
4898 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4899                          SDValue Arg, int SPDiff, unsigned ArgOffset,
4900                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4901   int Offset = ArgOffset + SPDiff;
4902   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4903   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4904   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4905   SDValue FIN = DAG.getFrameIndex(FI, VT);
4906   TailCallArgumentInfo Info;
4907   Info.Arg = Arg;
4908   Info.FrameIdxOp = FIN;
4909   Info.FrameIdx = FI;
4910   TailCallArguments.push_back(Info);
4911 }
4912
4913 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4914 /// stack slot. Returns the chain as result and the loaded frame pointers in
4915 /// LROpOut/FPOpout. Used when tail calling.
4916 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4917     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4918     SDValue &FPOpOut, const SDLoc &dl) const {
4919   if (SPDiff) {
4920     // Load the LR and FP stack slot for later adjusting.
4921     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4922     LROpOut = getReturnAddrFrameIndex(DAG);
4923     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4924     Chain = SDValue(LROpOut.getNode(), 1);
4925
4926     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4927     // slot as the FP is never overwritten.
4928     if (Subtarget.isDarwinABI()) {
4929       FPOpOut = getFramePointerFrameIndex(DAG);
4930       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4931       Chain = SDValue(FPOpOut.getNode(), 1);
4932     }
4933   }
4934   return Chain;
4935 }
4936
4937 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4938 /// by "Src" to address "Dst" of size "Size".  Alignment information is
4939 /// specified by the specific parameter attribute. The copy will be passed as
4940 /// a byval function parameter.
4941 /// Sometimes what we are copying is the end of a larger object, the part that
4942 /// does not fit in registers.
4943 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4944                                          SDValue Chain, ISD::ArgFlagsTy Flags,
4945                                          SelectionDAG &DAG, const SDLoc &dl) {
4946   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4947   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4948                        false, false, false, MachinePointerInfo(),
4949                        MachinePointerInfo());
4950 }
4951
4952 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4953 /// tail calls.
4954 static void LowerMemOpCallTo(
4955     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4956     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4957     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4958     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4959   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4960   if (!isTailCall) {
4961     if (isVector) {
4962       SDValue StackPtr;
4963       if (isPPC64)
4964         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4965       else
4966         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4967       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4968                            DAG.getConstant(ArgOffset, dl, PtrVT));
4969     }
4970     MemOpChains.push_back(
4971         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4972     // Calculate and remember argument location.
4973   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4974                                   TailCallArguments);
4975 }
4976
4977 static void
4978 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4979                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4980                 SDValue FPOp,
4981                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4982   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4983   // might overwrite each other in case of tail call optimization.
4984   SmallVector<SDValue, 8> MemOpChains2;
4985   // Do not flag preceding copytoreg stuff together with the following stuff.
4986   InFlag = SDValue();
4987   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4988                                     MemOpChains2, dl);
4989   if (!MemOpChains2.empty())
4990     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4991
4992   // Store the return address to the appropriate stack slot.
4993   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4994
4995   // Emit callseq_end just before tailcall node.
4996   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4997                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4998   InFlag = Chain.getValue(1);
4999 }
5000
5001 // Is this global address that of a function that can be called by name? (as
5002 // opposed to something that must hold a descriptor for an indirect call).
5003 static bool isFunctionGlobalAddress(SDValue Callee) {
5004   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
5005     if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
5006         Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
5007       return false;
5008
5009     return G->getGlobal()->getValueType()->isFunctionTy();
5010   }
5011
5012   return false;
5013 }
5014
5015 SDValue PPCTargetLowering::LowerCallResult(
5016     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5017     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5018     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5019   SmallVector<CCValAssign, 16> RVLocs;
5020   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5021                     *DAG.getContext());
5022
5023   CCRetInfo.AnalyzeCallResult(
5024       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5025                ? RetCC_PPC_Cold
5026                : RetCC_PPC);
5027
5028   // Copy all of the result registers out of their specified physreg.
5029   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5030     CCValAssign &VA = RVLocs[i];
5031     assert(VA.isRegLoc() && "Can only return in registers!");
5032
5033     SDValue Val;
5034
5035     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5036       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5037                                       InFlag);
5038       Chain = Lo.getValue(1);
5039       InFlag = Lo.getValue(2);
5040       VA = RVLocs[++i]; // skip ahead to next loc
5041       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5042                                       InFlag);
5043       Chain = Hi.getValue(1);
5044       InFlag = Hi.getValue(2);
5045       if (!Subtarget.isLittleEndian())
5046         std::swap (Lo, Hi);
5047       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5048     } else {
5049       Val = DAG.getCopyFromReg(Chain, dl,
5050                                VA.getLocReg(), VA.getLocVT(), InFlag);
5051       Chain = Val.getValue(1);
5052       InFlag = Val.getValue(2);
5053     }
5054
5055     switch (VA.getLocInfo()) {
5056     default: llvm_unreachable("Unknown loc info!");
5057     case CCValAssign::Full: break;
5058     case CCValAssign::AExt:
5059       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5060       break;
5061     case CCValAssign::ZExt:
5062       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5063                         DAG.getValueType(VA.getValVT()));
5064       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5065       break;
5066     case CCValAssign::SExt:
5067       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5068                         DAG.getValueType(VA.getValVT()));
5069       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5070       break;
5071     }
5072
5073     InVals.push_back(Val);
5074   }
5075
5076   return Chain;
5077 }
5078
5079 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5080                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5081   // PatchPoint calls are not indirect.
5082   if (isPatchPoint)
5083     return false;
5084
5085   if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5086     return false;
5087
5088   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5089   // becuase the immediate function pointer points to a descriptor instead of
5090   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5091   // pointer immediate points to the global entry point, while the BLA would
5092   // need to jump to the local entry point (see rL211174).
5093   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5094       isBLACompatibleAddress(Callee, DAG))
5095     return false;
5096
5097   return true;
5098 }
5099
5100 static unsigned getCallOpcode(bool isIndirectCall, bool isPatchPoint,
5101                               bool isTailCall, const Function &Caller,
5102                               const SDValue &Callee,
5103                               const PPCSubtarget &Subtarget,
5104                               const TargetMachine &TM) {
5105   if (isTailCall)
5106     return PPCISD::TC_RETURN;
5107
5108   // This is a call through a function pointer.
5109   if (isIndirectCall) {
5110     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5111     // indirect calls. The save of the caller's TOC pointer to the stack will be
5112     // inserted into the DAG as part of call lowering. The restore of the TOC
5113     // pointer is modeled by using a pseudo instruction for the call opcode that
5114     // represents the 2 instruction sequence of an indirect branch and link,
5115     // immediately followed by a load of the TOC pointer from the the stack save
5116     // slot into gpr2.
5117     if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5118       return PPCISD::BCTRL_LOAD_TOC;
5119
5120     // An indirect call that does not need a TOC restore.
5121     return PPCISD::BCTRL;
5122   }
5123
5124   // The ABIs that maintain a TOC pointer accross calls need to have a nop
5125   // immediately following the call instruction if the caller and callee may
5126   // have different TOC bases. At link time if the linker determines the calls
5127   // may not share a TOC base, the call is redirected to a trampoline inserted
5128   // by the linker. The trampoline will (among other things) save the callers
5129   // TOC pointer at an ABI designated offset in the linkage area and the linker
5130   // will rewrite the nop to be a load of the TOC pointer from the linkage area
5131   // into gpr2.
5132   if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5133     return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5134                                                   : PPCISD::CALL_NOP;
5135
5136   return PPCISD::CALL;
5137 }
5138
5139 static bool isValidAIXExternalSymSDNode(StringRef SymName) {
5140   return StringSwitch<bool>(SymName)
5141       .Cases("__divdi3", "__fixunsdfdi", "__floatundidf", "__floatundisf",
5142              "__moddi3", "__udivdi3", "__umoddi3", true)
5143       .Cases("ceil", "floor", "memcpy", "memmove", "memset", "round", true)
5144       .Default(false);
5145 }
5146
5147 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5148                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5149   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5150     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5151       return SDValue(Dest, 0);
5152
5153   // Returns true if the callee is local, and false otherwise.
5154   auto isLocalCallee = [&]() {
5155     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5156     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5157     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5158
5159     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5160            !dyn_cast_or_null<GlobalIFunc>(GV);
5161   };
5162
5163   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5164   // a static relocation model causes some versions of GNU LD (2.17.50, at
5165   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5166   // built with secure-PLT.
5167   bool UsePlt =
5168       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5169       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5170
5171   // On AIX, direct function calls reference the symbol for the function's
5172   // entry point, which is named by prepending a "." before the function's
5173   // C-linkage name.
5174   const auto getAIXFuncEntryPointSymbolSDNode =
5175       [&](StringRef FuncName, bool IsDeclaration,
5176           const XCOFF::StorageClass &SC) {
5177         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5178
5179         MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5180             Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
5181
5182         if (IsDeclaration && !S->hasContainingCsect()) {
5183           // On AIX, an undefined symbol needs to be associated with a
5184           // MCSectionXCOFF to get the correct storage mapping class.
5185           // In this case, XCOFF::XMC_PR.
5186           MCSectionXCOFF *Sec = Context.getXCOFFSection(
5187               S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5188               SectionKind::getMetadata());
5189           S->setContainingCsect(Sec);
5190         }
5191
5192         MVT PtrVT =
5193             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5194         return DAG.getMCSymbol(S, PtrVT);
5195       };
5196
5197   if (isFunctionGlobalAddress(Callee)) {
5198     const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5199     const GlobalValue *GV = G->getGlobal();
5200
5201     if (!Subtarget.isAIXABI())
5202       return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5203                                         UsePlt ? PPCII::MO_PLT : 0);
5204
5205     assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5206     const GlobalObject *GO = cast<GlobalObject>(GV);
5207     const XCOFF::StorageClass SC =
5208         TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5209     return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
5210                                             SC);
5211   }
5212
5213   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5214     const char *SymName = S->getSymbol();
5215     if (!Subtarget.isAIXABI())
5216       return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5217                                          UsePlt ? PPCII::MO_PLT : 0);
5218
5219     // If there exists a user-declared function whose name is the same as the
5220     // ExternalSymbol's, then we pick up the user-declared version.
5221     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5222     if (const Function *F =
5223             dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
5224       const XCOFF::StorageClass SC =
5225           TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
5226       return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
5227                                               SC);
5228     }
5229
5230     // TODO: Remove this when the support for ExternalSymbolSDNode is complete.
5231     if (isValidAIXExternalSymSDNode(SymName)) {
5232       return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
5233     }
5234
5235     report_fatal_error("Unexpected ExternalSymbolSDNode: " + Twine(SymName));
5236   }
5237
5238   // No transformation needed.
5239   assert(Callee.getNode() && "What no callee?");
5240   return Callee;
5241 }
5242
5243 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5244   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5245          "Expected a CALLSEQ_STARTSDNode.");
5246
5247   // The last operand is the chain, except when the node has glue. If the node
5248   // has glue, then the last operand is the glue, and the chain is the second
5249   // last operand.
5250   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5251   if (LastValue.getValueType() != MVT::Glue)
5252     return LastValue;
5253
5254   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5255 }
5256
5257 // Creates the node that moves a functions address into the count register
5258 // to prepare for an indirect call instruction.
5259 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5260                                 SDValue &Glue, SDValue &Chain,
5261                                 const SDLoc &dl) {
5262   SDValue MTCTROps[] = {Chain, Callee, Glue};
5263   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5264   Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5265                       makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5266   // The glue is the second value produced.
5267   Glue = Chain.getValue(1);
5268 }
5269
5270 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5271                                           SDValue &Glue, SDValue &Chain,
5272                                           SDValue CallSeqStart,
5273                                           ImmutableCallSite CS, const SDLoc &dl,
5274                                           bool hasNest,
5275                                           const PPCSubtarget &Subtarget) {
5276   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5277   // entry point, but to the function descriptor (the function entry point
5278   // address is part of the function descriptor though).
5279   // The function descriptor is a three doubleword structure with the
5280   // following fields: function entry point, TOC base address and
5281   // environment pointer.
5282   // Thus for a call through a function pointer, the following actions need
5283   // to be performed:
5284   //   1. Save the TOC of the caller in the TOC save area of its stack
5285   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5286   //   2. Load the address of the function entry point from the function
5287   //      descriptor.
5288   //   3. Load the TOC of the callee from the function descriptor into r2.
5289   //   4. Load the environment pointer from the function descriptor into
5290   //      r11.
5291   //   5. Branch to the function entry point address.
5292   //   6. On return of the callee, the TOC of the caller needs to be
5293   //      restored (this is done in FinishCall()).
5294   //
5295   // The loads are scheduled at the beginning of the call sequence, and the
5296   // register copies are flagged together to ensure that no other
5297   // operations can be scheduled in between. E.g. without flagging the
5298   // copies together, a TOC access in the caller could be scheduled between
5299   // the assignment of the callee TOC and the branch to the callee, which leads
5300   // to incorrect code.
5301
5302   // Start by loading the function address from the descriptor.
5303   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5304   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5305                       ? (MachineMemOperand::MODereferenceable |
5306                          MachineMemOperand::MOInvariant)
5307                       : MachineMemOperand::MONone;
5308
5309   MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5310
5311   // Registers used in building the DAG.
5312   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5313   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5314
5315   // Offsets of descriptor members.
5316   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5317   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5318
5319   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5320   const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5321
5322   // One load for the functions entry point address.
5323   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5324                                     Alignment, MMOFlags);
5325
5326   // One for loading the TOC anchor for the module that contains the called
5327   // function.
5328   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5329   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5330   SDValue TOCPtr =
5331       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5332                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5333
5334   // One for loading the environment pointer.
5335   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5336   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5337   SDValue LoadEnvPtr =
5338       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5339                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5340
5341
5342   // Then copy the newly loaded TOC anchor to the TOC pointer.
5343   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5344   Chain = TOCVal.getValue(0);
5345   Glue = TOCVal.getValue(1);
5346
5347   // If the function call has an explicit 'nest' parameter, it takes the
5348   // place of the environment pointer.
5349   assert((!hasNest || !Subtarget.isAIXABI()) &&
5350          "Nest parameter is not supported on AIX.");
5351   if (!hasNest) {
5352     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5353     Chain = EnvVal.getValue(0);
5354     Glue = EnvVal.getValue(1);
5355   }
5356
5357   // The rest of the indirect call sequence is the same as the non-descriptor
5358   // DAG.
5359   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5360 }
5361
5362 static void
5363 buildCallOperands(SmallVectorImpl<SDValue> &Ops, CallingConv::ID CallConv,
5364                   const SDLoc &dl, bool isTailCall, bool isVarArg,
5365                   bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5366                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5367                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5368                   const PPCSubtarget &Subtarget, bool isIndirect) {
5369   const bool IsPPC64 = Subtarget.isPPC64();
5370   // MVT for a general purpose register.
5371   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5372
5373   // First operand is always the chain.
5374   Ops.push_back(Chain);
5375
5376   // If it's a direct call pass the callee as the second operand.
5377   if (!isIndirect)
5378     Ops.push_back(Callee);
5379   else {
5380     assert(!isPatchPoint && "Patch point call are not indirect.");
5381
5382     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5383     // on the stack (this would have been done in `LowerCall_64SVR4` or
5384     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5385     // represents both the indirect branch and a load that restores the TOC
5386     // pointer from the linkage area. The operand for the TOC restore is an add
5387     // of the TOC save offset to the stack pointer. This must be the second
5388     // operand: after the chain input but before any other variadic arguments.
5389     if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
5390       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5391
5392       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5393       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5394       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5395       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5396       Ops.push_back(AddTOC);
5397     }
5398
5399     // Add the register used for the environment pointer.
5400     if (Subtarget.usesFunctionDescriptors() && !hasNest)
5401       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5402                                     RegVT));
5403
5404
5405     // Add CTR register as callee so a bctr can be emitted later.
5406     if (isTailCall)
5407       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5408   }
5409
5410   // If this is a tail call add stack pointer delta.
5411   if (isTailCall)
5412     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5413
5414   // Add argument registers to the end of the list so that they are known live
5415   // into the call.
5416   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5417     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5418                                   RegsToPass[i].second.getValueType()));
5419
5420   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5421   // no way to mark dependencies as implicit here.
5422   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5423   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && !isPatchPoint)
5424     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5425
5426   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5427   if (isVarArg && Subtarget.is32BitELFABI())
5428     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5429
5430   // Add a register mask operand representing the call-preserved registers.
5431   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5432   const uint32_t *Mask =
5433       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5434   assert(Mask && "Missing call preserved mask for calling convention");
5435   Ops.push_back(DAG.getRegisterMask(Mask));
5436
5437   // If the glue is valid, it is the last operand.
5438   if (Glue.getNode())
5439     Ops.push_back(Glue);
5440 }
5441
5442 SDValue PPCTargetLowering::FinishCall(
5443     CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5444     bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5445     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5446     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5447     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5448     SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5449
5450   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI())
5451     setUsesTOCBasePtr(DAG);
5452
5453   const bool isIndirect = isIndirectCall(Callee, DAG, Subtarget, isPatchPoint);
5454   unsigned CallOpc = getCallOpcode(isIndirect, isPatchPoint, isTailCall,
5455                                    DAG.getMachineFunction().getFunction(),
5456                                    Callee, Subtarget, DAG.getTarget());
5457
5458   if (!isIndirect)
5459     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5460   else if (Subtarget.usesFunctionDescriptors())
5461     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS,
5462                                   dl, hasNest, Subtarget);
5463   else
5464     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5465
5466   // Build the operand list for the call instruction.
5467   SmallVector<SDValue, 8> Ops;
5468   buildCallOperands(Ops, CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5469                     hasNest, DAG, RegsToPass, Glue, Chain, Callee, SPDiff,
5470                     Subtarget, isIndirect);
5471
5472   // Emit tail call.
5473   if (isTailCall) {
5474     assert(((Callee.getOpcode() == ISD::Register &&
5475              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5476             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5477             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5478             isa<ConstantSDNode>(Callee)) &&
5479            "Expecting a global address, external symbol, absolute value or "
5480            "register");
5481     assert(CallOpc == PPCISD::TC_RETURN &&
5482            "Unexpected call opcode for a tail call.");
5483     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5484     return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5485   }
5486
5487   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5488   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5489   Glue = Chain.getValue(1);
5490
5491   // When performing tail call optimization the callee pops its arguments off
5492   // the stack. Account for this here so these bytes can be pushed back on in
5493   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5494   int BytesCalleePops = (CallConv == CallingConv::Fast &&
5495                          getTargetMachine().Options.GuaranteedTailCallOpt)
5496                             ? NumBytes
5497                             : 0;
5498
5499   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5500                              DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5501                              Glue, dl);
5502   Glue = Chain.getValue(1);
5503
5504   return LowerCallResult(Chain, Glue, CallConv, isVarArg, Ins, dl, DAG, InVals);
5505 }
5506
5507 SDValue
5508 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5509                              SmallVectorImpl<SDValue> &InVals) const {
5510   SelectionDAG &DAG                     = CLI.DAG;
5511   SDLoc &dl                             = CLI.DL;
5512   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5513   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5514   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5515   SDValue Chain                         = CLI.Chain;
5516   SDValue Callee                        = CLI.Callee;
5517   bool &isTailCall                      = CLI.IsTailCall;
5518   CallingConv::ID CallConv              = CLI.CallConv;
5519   bool isVarArg                         = CLI.IsVarArg;
5520   bool isPatchPoint                     = CLI.IsPatchPoint;
5521   ImmutableCallSite CS                  = CLI.CS;
5522
5523   if (isTailCall) {
5524     if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5525       isTailCall = false;
5526     else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5527       isTailCall =
5528         IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5529                                                  isVarArg, Outs, Ins, DAG);
5530     else
5531       isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5532                                                      Ins, DAG);
5533     if (isTailCall) {
5534       ++NumTailCalls;
5535       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5536         ++NumSiblingCalls;
5537
5538       assert(isa<GlobalAddressSDNode>(Callee) &&
5539              "Callee should be an llvm::Function object.");
5540       LLVM_DEBUG(
5541           const GlobalValue *GV =
5542               cast<GlobalAddressSDNode>(Callee)->getGlobal();
5543           const unsigned Width =
5544               80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5545           dbgs() << "TCO caller: "
5546                  << left_justify(DAG.getMachineFunction().getName(), Width)
5547                  << ", callee linkage: " << GV->getVisibility() << ", "
5548                  << GV->getLinkage() << "\n");
5549     }
5550   }
5551
5552   if (!isTailCall && CS && CS.isMustTailCall())
5553     report_fatal_error("failed to perform tail call elimination on a call "
5554                        "site marked musttail");
5555
5556   // When long calls (i.e. indirect calls) are always used, calls are always
5557   // made via function pointer. If we have a function name, first translate it
5558   // into a pointer.
5559   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5560       !isTailCall)
5561     Callee = LowerGlobalAddress(Callee, DAG);
5562
5563   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5564     return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5565                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5566                             dl, DAG, InVals, CS);
5567
5568   if (Subtarget.isSVR4ABI())
5569     return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5570                             isTailCall, isPatchPoint, Outs, OutVals, Ins,
5571                             dl, DAG, InVals, CS);
5572
5573   if (Subtarget.isAIXABI())
5574     return LowerCall_AIX(Chain, Callee, CallConv, isVarArg,
5575                          isTailCall, isPatchPoint, Outs, OutVals, Ins,
5576                          dl, DAG, InVals, CS);
5577
5578   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5579                           isTailCall, isPatchPoint, Outs, OutVals, Ins,
5580                           dl, DAG, InVals, CS);
5581 }
5582
5583 SDValue PPCTargetLowering::LowerCall_32SVR4(
5584     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5585     bool isTailCall, bool isPatchPoint,
5586     const SmallVectorImpl<ISD::OutputArg> &Outs,
5587     const SmallVectorImpl<SDValue> &OutVals,
5588     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5589     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5590     ImmutableCallSite CS) const {
5591   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5592   // of the 32-bit SVR4 ABI stack frame layout.
5593
5594   assert((CallConv == CallingConv::C ||
5595           CallConv == CallingConv::Cold ||
5596           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5597
5598   unsigned PtrByteSize = 4;
5599
5600   MachineFunction &MF = DAG.getMachineFunction();
5601
5602   // Mark this function as potentially containing a function that contains a
5603   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5604   // and restoring the callers stack pointer in this functions epilog. This is
5605   // done because by tail calling the called function might overwrite the value
5606   // in this function's (MF) stack pointer stack slot 0(SP).
5607   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5608       CallConv == CallingConv::Fast)
5609     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5610
5611   // Count how many bytes are to be pushed on the stack, including the linkage
5612   // area, parameter list area and the part of the local variable space which
5613   // contains copies of aggregates which are passed by value.
5614
5615   // Assign locations to all of the outgoing arguments.
5616   SmallVector<CCValAssign, 16> ArgLocs;
5617   PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5618
5619   // Reserve space for the linkage area on the stack.
5620   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5621                        PtrByteSize);
5622   if (useSoftFloat())
5623     CCInfo.PreAnalyzeCallOperands(Outs);
5624
5625   if (isVarArg) {
5626     // Handle fixed and variable vector arguments differently.
5627     // Fixed vector arguments go into registers as long as registers are
5628     // available. Variable vector arguments always go into memory.
5629     unsigned NumArgs = Outs.size();
5630
5631     for (unsigned i = 0; i != NumArgs; ++i) {
5632       MVT ArgVT = Outs[i].VT;
5633       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5634       bool Result;
5635
5636       if (Outs[i].IsFixed) {
5637         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5638                                CCInfo);
5639       } else {
5640         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5641                                       ArgFlags, CCInfo);
5642       }
5643
5644       if (Result) {
5645 #ifndef NDEBUG
5646         errs() << "Call operand #" << i << " has unhandled type "
5647              << EVT(ArgVT).getEVTString() << "\n";
5648 #endif
5649         llvm_unreachable(nullptr);
5650       }
5651     }
5652   } else {
5653     // All arguments are treated the same.
5654     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5655   }
5656   CCInfo.clearWasPPCF128();
5657
5658   // Assign locations to all of the outgoing aggregate by value arguments.
5659   SmallVector<CCValAssign, 16> ByValArgLocs;
5660   CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5661
5662   // Reserve stack space for the allocations in CCInfo.
5663   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5664
5665   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5666
5667   // Size of the linkage area, parameter list area and the part of the local
5668   // space variable where copies of aggregates which are passed by value are
5669   // stored.
5670   unsigned NumBytes = CCByValInfo.getNextStackOffset();
5671
5672   // Calculate by how many bytes the stack has to be adjusted in case of tail
5673   // call optimization.
5674   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5675
5676   // Adjust the stack pointer for the new arguments...
5677   // These operations are automatically eliminated by the prolog/epilog pass
5678   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5679   SDValue CallSeqStart = Chain;
5680
5681   // Load the return address and frame pointer so it can be moved somewhere else
5682   // later.
5683   SDValue LROp, FPOp;
5684   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5685
5686   // Set up a copy of the stack pointer for use loading and storing any
5687   // arguments that may not fit in the registers available for argument
5688   // passing.
5689   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5690
5691   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5692   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5693   SmallVector<SDValue, 8> MemOpChains;
5694
5695   bool seenFloatArg = false;
5696   // Walk the register/memloc assignments, inserting copies/loads.
5697   // i - Tracks the index into the list of registers allocated for the call
5698   // RealArgIdx - Tracks the index into the list of actual function arguments
5699   // j - Tracks the index into the list of byval arguments
5700   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5701        i != e;
5702        ++i, ++RealArgIdx) {
5703     CCValAssign &VA = ArgLocs[i];
5704     SDValue Arg = OutVals[RealArgIdx];
5705     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5706
5707     if (Flags.isByVal()) {
5708       // Argument is an aggregate which is passed by value, thus we need to
5709       // create a copy of it in the local variable space of the current stack
5710       // frame (which is the stack frame of the caller) and pass the address of
5711       // this copy to the callee.
5712       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5713       CCValAssign &ByValVA = ByValArgLocs[j++];
5714       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5715
5716       // Memory reserved in the local variable space of the callers stack frame.
5717       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5718
5719       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5720       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5721                            StackPtr, PtrOff);
5722
5723       // Create a copy of the argument in the local area of the current
5724       // stack frame.
5725       SDValue MemcpyCall =
5726         CreateCopyOfByValArgument(Arg, PtrOff,
5727                                   CallSeqStart.getNode()->getOperand(0),
5728                                   Flags, DAG, dl);
5729
5730       // This must go outside the CALLSEQ_START..END.
5731       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5732                                                      SDLoc(MemcpyCall));
5733       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5734                              NewCallSeqStart.getNode());
5735       Chain = CallSeqStart = NewCallSeqStart;
5736
5737       // Pass the address of the aggregate copy on the stack either in a
5738       // physical register or in the parameter list area of the current stack
5739       // frame to the callee.
5740       Arg = PtrOff;
5741     }
5742
5743     // When useCRBits() is true, there can be i1 arguments.
5744     // It is because getRegisterType(MVT::i1) => MVT::i1,
5745     // and for other integer types getRegisterType() => MVT::i32.
5746     // Extend i1 and ensure callee will get i32.
5747     if (Arg.getValueType() == MVT::i1)
5748       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5749                         dl, MVT::i32, Arg);
5750
5751     if (VA.isRegLoc()) {
5752       seenFloatArg |= VA.getLocVT().isFloatingPoint();
5753       // Put argument in a physical register.
5754       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5755         bool IsLE = Subtarget.isLittleEndian();
5756         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5757                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5758         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5759         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5760                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5761         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5762                              SVal.getValue(0)));
5763       } else
5764         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5765     } else {
5766       // Put argument in the parameter list area of the current stack frame.
5767       assert(VA.isMemLoc());
5768       unsigned LocMemOffset = VA.getLocMemOffset();
5769
5770       if (!isTailCall) {
5771         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5772         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5773                              StackPtr, PtrOff);
5774
5775         MemOpChains.push_back(
5776             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5777       } else {
5778         // Calculate and remember argument location.
5779         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5780                                  TailCallArguments);
5781       }
5782     }
5783   }
5784
5785   if (!MemOpChains.empty())
5786     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5787
5788   // Build a sequence of copy-to-reg nodes chained together with token chain
5789   // and flag operands which copy the outgoing args into the appropriate regs.
5790   SDValue InFlag;
5791   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5792     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5793                              RegsToPass[i].second, InFlag);
5794     InFlag = Chain.getValue(1);
5795   }
5796
5797   // Set CR bit 6 to true if this is a vararg call with floating args passed in
5798   // registers.
5799   if (isVarArg) {
5800     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5801     SDValue Ops[] = { Chain, InFlag };
5802
5803     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5804                         dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5805
5806     InFlag = Chain.getValue(1);
5807   }
5808
5809   if (isTailCall)
5810     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5811                     TailCallArguments);
5812
5813   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5814                     /* unused except on PPC64 ELFv1 */ false, DAG,
5815                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5816                     NumBytes, Ins, InVals, CS);
5817 }
5818
5819 // Copy an argument into memory, being careful to do this outside the
5820 // call sequence for the call to which the argument belongs.
5821 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5822     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5823     SelectionDAG &DAG, const SDLoc &dl) const {
5824   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5825                         CallSeqStart.getNode()->getOperand(0),
5826                         Flags, DAG, dl);
5827   // The MEMCPY must go outside the CALLSEQ_START..END.
5828   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5829   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5830                                                  SDLoc(MemcpyCall));
5831   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5832                          NewCallSeqStart.getNode());
5833   return NewCallSeqStart;
5834 }
5835
5836 SDValue PPCTargetLowering::LowerCall_64SVR4(
5837     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5838     bool isTailCall, bool isPatchPoint,
5839     const SmallVectorImpl<ISD::OutputArg> &Outs,
5840     const SmallVectorImpl<SDValue> &OutVals,
5841     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5842     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5843     ImmutableCallSite CS) const {
5844   bool isELFv2ABI = Subtarget.isELFv2ABI();
5845   bool isLittleEndian = Subtarget.isLittleEndian();
5846   unsigned NumOps = Outs.size();
5847   bool hasNest = false;
5848   bool IsSibCall = false;
5849
5850   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5851   unsigned PtrByteSize = 8;
5852
5853   MachineFunction &MF = DAG.getMachineFunction();
5854
5855   if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5856     IsSibCall = true;
5857
5858   // Mark this function as potentially containing a function that contains a
5859   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5860   // and restoring the callers stack pointer in this functions epilog. This is
5861   // done because by tail calling the called function might overwrite the value
5862   // in this function's (MF) stack pointer stack slot 0(SP).
5863   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5864       CallConv == CallingConv::Fast)
5865     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5866
5867   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5868          "fastcc not supported on varargs functions");
5869
5870   // Count how many bytes are to be pushed on the stack, including the linkage
5871   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5872   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5873   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5874   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5875   unsigned NumBytes = LinkageSize;
5876   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5877   unsigned &QFPR_idx = FPR_idx;
5878
5879   static const MCPhysReg GPR[] = {
5880     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5881     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5882   };
5883   static const MCPhysReg VR[] = {
5884     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5885     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5886   };
5887
5888   const unsigned NumGPRs = array_lengthof(GPR);
5889   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5890   const unsigned NumVRs  = array_lengthof(VR);
5891   const unsigned NumQFPRs = NumFPRs;
5892
5893   // On ELFv2, we can avoid allocating the parameter area if all the arguments
5894   // can be passed to the callee in registers.
5895   // For the fast calling convention, there is another check below.
5896   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5897   bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5898   if (!HasParameterArea) {
5899     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5900     unsigned AvailableFPRs = NumFPRs;
5901     unsigned AvailableVRs = NumVRs;
5902     unsigned NumBytesTmp = NumBytes;
5903     for (unsigned i = 0; i != NumOps; ++i) {
5904       if (Outs[i].Flags.isNest()) continue;
5905       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5906                                 PtrByteSize, LinkageSize, ParamAreaSize,
5907                                 NumBytesTmp, AvailableFPRs, AvailableVRs,
5908                                 Subtarget.hasQPX()))
5909         HasParameterArea = true;
5910     }
5911   }
5912
5913   // When using the fast calling convention, we don't provide backing for
5914   // arguments that will be in registers.
5915   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5916
5917   // Avoid allocating parameter area for fastcc functions if all the arguments
5918   // can be passed in the registers.
5919   if (CallConv == CallingConv::Fast)
5920     HasParameterArea = false;
5921
5922   // Add up all the space actually used.
5923   for (unsigned i = 0; i != NumOps; ++i) {
5924     ISD::ArgFlagsTy Flags = Outs[i].Flags;
5925     EVT ArgVT = Outs[i].VT;
5926     EVT OrigVT = Outs[i].ArgVT;
5927
5928     if (Flags.isNest())
5929       continue;
5930
5931     if (CallConv == CallingConv::Fast) {
5932       if (Flags.isByVal()) {
5933         NumGPRsUsed += (Flags.getByValSize()+7)/8;
5934         if (NumGPRsUsed > NumGPRs)
5935           HasParameterArea = true;
5936       } else {
5937         switch (ArgVT.getSimpleVT().SimpleTy) {
5938         default: llvm_unreachable("Unexpected ValueType for argument!");
5939         case MVT::i1:
5940         case MVT::i32:
5941         case MVT::i64:
5942           if (++NumGPRsUsed <= NumGPRs)
5943             continue;
5944           break;
5945         case MVT::v4i32:
5946         case MVT::v8i16:
5947         case MVT::v16i8:
5948         case MVT::v2f64:
5949         case MVT::v2i64:
5950         case MVT::v1i128:
5951         case MVT::f128:
5952           if (++NumVRsUsed <= NumVRs)
5953             continue;
5954           break;
5955         case MVT::v4f32:
5956           // When using QPX, this is handled like a FP register, otherwise, it
5957           // is an Altivec register.
5958           if (Subtarget.hasQPX()) {
5959             if (++NumFPRsUsed <= NumFPRs)
5960               continue;
5961           } else {
5962             if (++NumVRsUsed <= NumVRs)
5963               continue;
5964           }
5965           break;
5966         case MVT::f32:
5967         case MVT::f64:
5968         case MVT::v4f64: // QPX
5969         case MVT::v4i1:  // QPX
5970           if (++NumFPRsUsed <= NumFPRs)
5971             continue;
5972           break;
5973         }
5974         HasParameterArea = true;
5975       }
5976     }
5977
5978     /* Respect alignment of argument on the stack.  */
5979     unsigned Align =
5980       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5981     NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5982
5983     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5984     if (Flags.isInConsecutiveRegsLast())
5985       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5986   }
5987
5988   unsigned NumBytesActuallyUsed = NumBytes;
5989
5990   // In the old ELFv1 ABI,
5991   // the prolog code of the callee may store up to 8 GPR argument registers to
5992   // the stack, allowing va_start to index over them in memory if its varargs.
5993   // Because we cannot tell if this is needed on the caller side, we have to
5994   // conservatively assume that it is needed.  As such, make sure we have at
5995   // least enough stack space for the caller to store the 8 GPRs.
5996   // In the ELFv2 ABI, we allocate the parameter area iff a callee
5997   // really requires memory operands, e.g. a vararg function.
5998   if (HasParameterArea)
5999     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6000   else
6001     NumBytes = LinkageSize;
6002
6003   // Tail call needs the stack to be aligned.
6004   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6005       CallConv == CallingConv::Fast)
6006     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6007
6008   int SPDiff = 0;
6009
6010   // Calculate by how many bytes the stack has to be adjusted in case of tail
6011   // call optimization.
6012   if (!IsSibCall)
6013     SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6014
6015   // To protect arguments on the stack from being clobbered in a tail call,
6016   // force all the loads to happen before doing any other lowering.
6017   if (isTailCall)
6018     Chain = DAG.getStackArgumentTokenFactor(Chain);
6019
6020   // Adjust the stack pointer for the new arguments...
6021   // These operations are automatically eliminated by the prolog/epilog pass
6022   if (!IsSibCall)
6023     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6024   SDValue CallSeqStart = Chain;
6025
6026   // Load the return address and frame pointer so it can be move somewhere else
6027   // later.
6028   SDValue LROp, FPOp;
6029   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6030
6031   // Set up a copy of the stack pointer for use loading and storing any
6032   // arguments that may not fit in the registers available for argument
6033   // passing.
6034   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6035
6036   // Figure out which arguments are going to go in registers, and which in
6037   // memory.  Also, if this is a vararg function, floating point operations
6038   // must be stored to our stack, and loaded into integer regs as well, if
6039   // any integer regs are available for argument passing.
6040   unsigned ArgOffset = LinkageSize;
6041
6042   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6043   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6044
6045   SmallVector<SDValue, 8> MemOpChains;
6046   for (unsigned i = 0; i != NumOps; ++i) {
6047     SDValue Arg = OutVals[i];
6048     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6049     EVT ArgVT = Outs[i].VT;
6050     EVT OrigVT = Outs[i].ArgVT;
6051
6052     // PtrOff will be used to store the current argument to the stack if a
6053     // register cannot be found for it.
6054     SDValue PtrOff;
6055
6056     // We re-align the argument offset for each argument, except when using the
6057     // fast calling convention, when we need to make sure we do that only when
6058     // we'll actually use a stack slot.
6059     auto ComputePtrOff = [&]() {
6060       /* Respect alignment of argument on the stack.  */
6061       unsigned Align =
6062         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6063       ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
6064
6065       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6066
6067       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6068     };
6069
6070     if (CallConv != CallingConv::Fast) {
6071       ComputePtrOff();
6072
6073       /* Compute GPR index associated with argument offset.  */
6074       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6075       GPR_idx = std::min(GPR_idx, NumGPRs);
6076     }
6077
6078     // Promote integers to 64-bit values.
6079     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6080       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6081       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6082       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6083     }
6084
6085     // FIXME memcpy is used way more than necessary.  Correctness first.
6086     // Note: "by value" is code for passing a structure by value, not
6087     // basic types.
6088     if (Flags.isByVal()) {
6089       // Note: Size includes alignment padding, so
6090       //   struct x { short a; char b; }
6091       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6092       // These are the proper values we need for right-justifying the
6093       // aggregate in a parameter register.
6094       unsigned Size = Flags.getByValSize();
6095
6096       // An empty aggregate parameter takes up no storage and no
6097       // registers.
6098       if (Size == 0)
6099         continue;
6100
6101       if (CallConv == CallingConv::Fast)
6102         ComputePtrOff();
6103
6104       // All aggregates smaller than 8 bytes must be passed right-justified.
6105       if (Size==1 || Size==2 || Size==4) {
6106         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6107         if (GPR_idx != NumGPRs) {
6108           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6109                                         MachinePointerInfo(), VT);
6110           MemOpChains.push_back(Load.getValue(1));
6111           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6112
6113           ArgOffset += PtrByteSize;
6114           continue;
6115         }
6116       }
6117
6118       if (GPR_idx == NumGPRs && Size < 8) {
6119         SDValue AddPtr = PtrOff;
6120         if (!isLittleEndian) {
6121           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6122                                           PtrOff.getValueType());
6123           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6124         }
6125         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6126                                                           CallSeqStart,
6127                                                           Flags, DAG, dl);
6128         ArgOffset += PtrByteSize;
6129         continue;
6130       }
6131       // Copy entire object into memory.  There are cases where gcc-generated
6132       // code assumes it is there, even if it could be put entirely into
6133       // registers.  (This is not what the doc says.)
6134
6135       // FIXME: The above statement is likely due to a misunderstanding of the
6136       // documents.  All arguments must be copied into the parameter area BY
6137       // THE CALLEE in the event that the callee takes the address of any
6138       // formal argument.  That has not yet been implemented.  However, it is
6139       // reasonable to use the stack area as a staging area for the register
6140       // load.
6141
6142       // Skip this for small aggregates, as we will use the same slot for a
6143       // right-justified copy, below.
6144       if (Size >= 8)
6145         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6146                                                           CallSeqStart,
6147                                                           Flags, DAG, dl);
6148
6149       // When a register is available, pass a small aggregate right-justified.
6150       if (Size < 8 && GPR_idx != NumGPRs) {
6151         // The easiest way to get this right-justified in a register
6152         // is to copy the structure into the rightmost portion of a
6153         // local variable slot, then load the whole slot into the
6154         // register.
6155         // FIXME: The memcpy seems to produce pretty awful code for
6156         // small aggregates, particularly for packed ones.
6157         // FIXME: It would be preferable to use the slot in the
6158         // parameter save area instead of a new local variable.
6159         SDValue AddPtr = PtrOff;
6160         if (!isLittleEndian) {
6161           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6162           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6163         }
6164         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6165                                                           CallSeqStart,
6166                                                           Flags, DAG, dl);
6167
6168         // Load the slot into the register.
6169         SDValue Load =
6170             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6171         MemOpChains.push_back(Load.getValue(1));
6172         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6173
6174         // Done with this argument.
6175         ArgOffset += PtrByteSize;
6176         continue;
6177       }
6178
6179       // For aggregates larger than PtrByteSize, copy the pieces of the
6180       // object that fit into registers from the parameter save area.
6181       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6182         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6183         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6184         if (GPR_idx != NumGPRs) {
6185           SDValue Load =
6186               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6187           MemOpChains.push_back(Load.getValue(1));
6188           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6189           ArgOffset += PtrByteSize;
6190         } else {
6191           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6192           break;
6193         }
6194       }
6195       continue;
6196     }
6197
6198     switch (Arg.getSimpleValueType().SimpleTy) {
6199     default: llvm_unreachable("Unexpected ValueType for argument!");
6200     case MVT::i1:
6201     case MVT::i32:
6202     case MVT::i64:
6203       if (Flags.isNest()) {
6204         // The 'nest' parameter, if any, is passed in R11.
6205         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6206         hasNest = true;
6207         break;
6208       }
6209
6210       // These can be scalar arguments or elements of an integer array type
6211       // passed directly.  Clang may use those instead of "byval" aggregate
6212       // types to avoid forcing arguments to memory unnecessarily.
6213       if (GPR_idx != NumGPRs) {
6214         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6215       } else {
6216         if (CallConv == CallingConv::Fast)
6217           ComputePtrOff();
6218
6219         assert(HasParameterArea &&
6220                "Parameter area must exist to pass an argument in memory.");
6221         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6222                          true, isTailCall, false, MemOpChains,
6223                          TailCallArguments, dl);
6224         if (CallConv == CallingConv::Fast)
6225           ArgOffset += PtrByteSize;
6226       }
6227       if (CallConv != CallingConv::Fast)
6228         ArgOffset += PtrByteSize;
6229       break;
6230     case MVT::f32:
6231     case MVT::f64: {
6232       // These can be scalar arguments or elements of a float array type
6233       // passed directly.  The latter are used to implement ELFv2 homogenous
6234       // float aggregates.
6235
6236       // Named arguments go into FPRs first, and once they overflow, the
6237       // remaining arguments go into GPRs and then the parameter save area.
6238       // Unnamed arguments for vararg functions always go to GPRs and
6239       // then the parameter save area.  For now, put all arguments to vararg
6240       // routines always in both locations (FPR *and* GPR or stack slot).
6241       bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
6242       bool NeededLoad = false;
6243
6244       // First load the argument into the next available FPR.
6245       if (FPR_idx != NumFPRs)
6246         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6247
6248       // Next, load the argument into GPR or stack slot if needed.
6249       if (!NeedGPROrStack)
6250         ;
6251       else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
6252         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6253         // once we support fp <-> gpr moves.
6254
6255         // In the non-vararg case, this can only ever happen in the
6256         // presence of f32 array types, since otherwise we never run
6257         // out of FPRs before running out of GPRs.
6258         SDValue ArgVal;
6259
6260         // Double values are always passed in a single GPR.
6261         if (Arg.getValueType() != MVT::f32) {
6262           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6263
6264         // Non-array float values are extended and passed in a GPR.
6265         } else if (!Flags.isInConsecutiveRegs()) {
6266           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6267           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6268
6269         // If we have an array of floats, we collect every odd element
6270         // together with its predecessor into one GPR.
6271         } else if (ArgOffset % PtrByteSize != 0) {
6272           SDValue Lo, Hi;
6273           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6274           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6275           if (!isLittleEndian)
6276             std::swap(Lo, Hi);
6277           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6278
6279         // The final element, if even, goes into the first half of a GPR.
6280         } else if (Flags.isInConsecutiveRegsLast()) {
6281           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6282           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6283           if (!isLittleEndian)
6284             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6285                                  DAG.getConstant(32, dl, MVT::i32));
6286
6287         // Non-final even elements are skipped; they will be handled
6288         // together the with subsequent argument on the next go-around.
6289         } else
6290           ArgVal = SDValue();
6291
6292         if (ArgVal.getNode())
6293           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6294       } else {
6295         if (CallConv == CallingConv::Fast)
6296           ComputePtrOff();
6297
6298         // Single-precision floating-point values are mapped to the
6299         // second (rightmost) word of the stack doubleword.
6300         if (Arg.getValueType() == MVT::f32 &&
6301             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6302           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6303           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6304         }
6305
6306         assert(HasParameterArea &&
6307                "Parameter area must exist to pass an argument in memory.");
6308         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6309                          true, isTailCall, false, MemOpChains,
6310                          TailCallArguments, dl);
6311
6312         NeededLoad = true;
6313       }
6314       // When passing an array of floats, the array occupies consecutive
6315       // space in the argument area; only round up to the next doubleword
6316       // at the end of the array.  Otherwise, each float takes 8 bytes.
6317       if (CallConv != CallingConv::Fast || NeededLoad) {
6318         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6319                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6320         if (Flags.isInConsecutiveRegsLast())
6321           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6322       }
6323       break;
6324     }
6325     case MVT::v4f32:
6326     case MVT::v4i32:
6327     case MVT::v8i16:
6328     case MVT::v16i8:
6329     case MVT::v2f64:
6330     case MVT::v2i64:
6331     case MVT::v1i128:
6332     case MVT::f128:
6333       if (!Subtarget.hasQPX()) {
6334       // These can be scalar arguments or elements of a vector array type
6335       // passed directly.  The latter are used to implement ELFv2 homogenous
6336       // vector aggregates.
6337
6338       // For a varargs call, named arguments go into VRs or on the stack as
6339       // usual; unnamed arguments always go to the stack or the corresponding
6340       // GPRs when within range.  For now, we always put the value in both
6341       // locations (or even all three).
6342       if (isVarArg) {
6343         assert(HasParameterArea &&
6344                "Parameter area must exist if we have a varargs call.");
6345         // We could elide this store in the case where the object fits
6346         // entirely in R registers.  Maybe later.
6347         SDValue Store =
6348             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6349         MemOpChains.push_back(Store);
6350         if (VR_idx != NumVRs) {
6351           SDValue Load =
6352               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6353           MemOpChains.push_back(Load.getValue(1));
6354           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6355         }
6356         ArgOffset += 16;
6357         for (unsigned i=0; i<16; i+=PtrByteSize) {
6358           if (GPR_idx == NumGPRs)
6359             break;
6360           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6361                                    DAG.getConstant(i, dl, PtrVT));
6362           SDValue Load =
6363               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6364           MemOpChains.push_back(Load.getValue(1));
6365           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6366         }
6367         break;
6368       }
6369
6370       // Non-varargs Altivec params go into VRs or on the stack.
6371       if (VR_idx != NumVRs) {
6372         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6373       } else {
6374         if (CallConv == CallingConv::Fast)
6375           ComputePtrOff();
6376
6377         assert(HasParameterArea &&
6378                "Parameter area must exist to pass an argument in memory.");
6379         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6380                          true, isTailCall, true, MemOpChains,
6381                          TailCallArguments, dl);
6382         if (CallConv == CallingConv::Fast)
6383           ArgOffset += 16;
6384       }
6385
6386       if (CallConv != CallingConv::Fast)
6387         ArgOffset += 16;
6388       break;
6389       } // not QPX
6390
6391       assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6392              "Invalid QPX parameter type");
6393
6394       LLVM_FALLTHROUGH;
6395     case MVT::v4f64:
6396     case MVT::v4i1: {
6397       bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6398       if (isVarArg) {
6399         assert(HasParameterArea &&
6400                "Parameter area must exist if we have a varargs call.");
6401         // We could elide this store in the case where the object fits
6402         // entirely in R registers.  Maybe later.
6403         SDValue Store =
6404             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6405         MemOpChains.push_back(Store);
6406         if (QFPR_idx != NumQFPRs) {
6407           SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6408                                      PtrOff, MachinePointerInfo());
6409           MemOpChains.push_back(Load.getValue(1));
6410           RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6411         }
6412         ArgOffset += (IsF32 ? 16 : 32);
6413         for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6414           if (GPR_idx == NumGPRs)
6415             break;
6416           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6417                                    DAG.getConstant(i, dl, PtrVT));
6418           SDValue Load =
6419               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6420           MemOpChains.push_back(Load.getValue(1));
6421           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6422         }
6423         break;
6424       }
6425
6426       // Non-varargs QPX params go into registers or on the stack.
6427       if (QFPR_idx != NumQFPRs) {
6428         RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6429       } else {
6430         if (CallConv == CallingConv::Fast)
6431           ComputePtrOff();
6432
6433         assert(HasParameterArea &&
6434                "Parameter area must exist to pass an argument in memory.");
6435         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6436                          true, isTailCall, true, MemOpChains,
6437                          TailCallArguments, dl);
6438         if (CallConv == CallingConv::Fast)
6439           ArgOffset += (IsF32 ? 16 : 32);
6440       }
6441
6442       if (CallConv != CallingConv::Fast)
6443         ArgOffset += (IsF32 ? 16 : 32);
6444       break;
6445       }
6446     }
6447   }
6448
6449   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6450          "mismatch in size of parameter area");
6451   (void)NumBytesActuallyUsed;
6452
6453   if (!MemOpChains.empty())
6454     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6455
6456   // Check if this is an indirect call (MTCTR/BCTRL).
6457   // See prepareDescriptorIndirectCall and buildCallOperands for more
6458   // information about calls through function pointers in the 64-bit SVR4 ABI.
6459   if (!isTailCall && !isPatchPoint &&
6460       !isFunctionGlobalAddress(Callee) &&
6461       !isa<ExternalSymbolSDNode>(Callee)) {
6462     // Load r2 into a virtual register and store it to the TOC save area.
6463     setUsesTOCBasePtr(DAG);
6464     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6465     // TOC save area offset.
6466     unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6467     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6468     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6469     Chain = DAG.getStore(
6470         Val.getValue(1), dl, Val, AddPtr,
6471         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6472     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6473     // This does not mean the MTCTR instruction must use R12; it's easier
6474     // to model this as an extra parameter, so do that.
6475     if (isELFv2ABI && !isPatchPoint)
6476       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6477   }
6478
6479   // Build a sequence of copy-to-reg nodes chained together with token chain
6480   // and flag operands which copy the outgoing args into the appropriate regs.
6481   SDValue InFlag;
6482   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6483     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6484                              RegsToPass[i].second, InFlag);
6485     InFlag = Chain.getValue(1);
6486   }
6487
6488   if (isTailCall && !IsSibCall)
6489     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6490                     TailCallArguments);
6491
6492   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6493                     DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6494                     SPDiff, NumBytes, Ins, InVals, CS);
6495 }
6496
6497 SDValue PPCTargetLowering::LowerCall_Darwin(
6498     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6499     bool isTailCall, bool isPatchPoint,
6500     const SmallVectorImpl<ISD::OutputArg> &Outs,
6501     const SmallVectorImpl<SDValue> &OutVals,
6502     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6503     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6504     ImmutableCallSite CS) const {
6505   unsigned NumOps = Outs.size();
6506
6507   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6508   bool isPPC64 = PtrVT == MVT::i64;
6509   unsigned PtrByteSize = isPPC64 ? 8 : 4;
6510
6511   MachineFunction &MF = DAG.getMachineFunction();
6512
6513   // Mark this function as potentially containing a function that contains a
6514   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6515   // and restoring the callers stack pointer in this functions epilog. This is
6516   // done because by tail calling the called function might overwrite the value
6517   // in this function's (MF) stack pointer stack slot 0(SP).
6518   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6519       CallConv == CallingConv::Fast)
6520     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6521
6522   // Count how many bytes are to be pushed on the stack, including the linkage
6523   // area, and parameter passing area.  We start with 24/48 bytes, which is
6524   // prereserved space for [SP][CR][LR][3 x unused].
6525   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6526   unsigned NumBytes = LinkageSize;
6527
6528   // Add up all the space actually used.
6529   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6530   // they all go in registers, but we must reserve stack space for them for
6531   // possible use by the caller.  In varargs or 64-bit calls, parameters are
6532   // assigned stack space in order, with padding so Altivec parameters are
6533   // 16-byte aligned.
6534   unsigned nAltivecParamsAtEnd = 0;
6535   for (unsigned i = 0; i != NumOps; ++i) {
6536     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6537     EVT ArgVT = Outs[i].VT;
6538     // Varargs Altivec parameters are padded to a 16 byte boundary.
6539     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6540         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6541         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6542       if (!isVarArg && !isPPC64) {
6543         // Non-varargs Altivec parameters go after all the non-Altivec
6544         // parameters; handle those later so we know how much padding we need.
6545         nAltivecParamsAtEnd++;
6546         continue;
6547       }
6548       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6549       NumBytes = ((NumBytes+15)/16)*16;
6550     }
6551     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6552   }
6553
6554   // Allow for Altivec parameters at the end, if needed.
6555   if (nAltivecParamsAtEnd) {
6556     NumBytes = ((NumBytes+15)/16)*16;
6557     NumBytes += 16*nAltivecParamsAtEnd;
6558   }
6559
6560   // The prolog code of the callee may store up to 8 GPR argument registers to
6561   // the stack, allowing va_start to index over them in memory if its varargs.
6562   // Because we cannot tell if this is needed on the caller side, we have to
6563   // conservatively assume that it is needed.  As such, make sure we have at
6564   // least enough stack space for the caller to store the 8 GPRs.
6565   NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6566
6567   // Tail call needs the stack to be aligned.
6568   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6569       CallConv == CallingConv::Fast)
6570     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6571
6572   // Calculate by how many bytes the stack has to be adjusted in case of tail
6573   // call optimization.
6574   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6575
6576   // To protect arguments on the stack from being clobbered in a tail call,
6577   // force all the loads to happen before doing any other lowering.
6578   if (isTailCall)
6579     Chain = DAG.getStackArgumentTokenFactor(Chain);
6580
6581   // Adjust the stack pointer for the new arguments...
6582   // These operations are automatically eliminated by the prolog/epilog pass
6583   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6584   SDValue CallSeqStart = Chain;
6585
6586   // Load the return address and frame pointer so it can be move somewhere else
6587   // later.
6588   SDValue LROp, FPOp;
6589   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6590
6591   // Set up a copy of the stack pointer for use loading and storing any
6592   // arguments that may not fit in the registers available for argument
6593   // passing.
6594   SDValue StackPtr;
6595   if (isPPC64)
6596     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6597   else
6598     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6599
6600   // Figure out which arguments are going to go in registers, and which in
6601   // memory.  Also, if this is a vararg function, floating point operations
6602   // must be stored to our stack, and loaded into integer regs as well, if
6603   // any integer regs are available for argument passing.
6604   unsigned ArgOffset = LinkageSize;
6605   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6606
6607   static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6608     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6609     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6610   };
6611   static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6612     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6613     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6614   };
6615   static const MCPhysReg VR[] = {
6616     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6617     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6618   };
6619   const unsigned NumGPRs = array_lengthof(GPR_32);
6620   const unsigned NumFPRs = 13;
6621   const unsigned NumVRs  = array_lengthof(VR);
6622
6623   const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6624
6625   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6626   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6627
6628   SmallVector<SDValue, 8> MemOpChains;
6629   for (unsigned i = 0; i != NumOps; ++i) {
6630     SDValue Arg = OutVals[i];
6631     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6632
6633     // PtrOff will be used to store the current argument to the stack if a
6634     // register cannot be found for it.
6635     SDValue PtrOff;
6636
6637     PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6638
6639     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6640
6641     // On PPC64, promote integers to 64-bit values.
6642     if (isPPC64 && Arg.getValueType() == MVT::i32) {
6643       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6644       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6645       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6646     }
6647
6648     // FIXME memcpy is used way more than necessary.  Correctness first.
6649     // Note: "by value" is code for passing a structure by value, not
6650     // basic types.
6651     if (Flags.isByVal()) {
6652       unsigned Size = Flags.getByValSize();
6653       // Very small objects are passed right-justified.  Everything else is
6654       // passed left-justified.
6655       if (Size==1 || Size==2) {
6656         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6657         if (GPR_idx != NumGPRs) {
6658           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6659                                         MachinePointerInfo(), VT);
6660           MemOpChains.push_back(Load.getValue(1));
6661           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6662
6663           ArgOffset += PtrByteSize;
6664         } else {
6665           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6666                                           PtrOff.getValueType());
6667           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6668           Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6669                                                             CallSeqStart,
6670                                                             Flags, DAG, dl);
6671           ArgOffset += PtrByteSize;
6672         }
6673         continue;
6674       }
6675       // Copy entire object into memory.  There are cases where gcc-generated
6676       // code assumes it is there, even if it could be put entirely into
6677       // registers.  (This is not what the doc says.)
6678       Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6679                                                         CallSeqStart,
6680                                                         Flags, DAG, dl);
6681
6682       // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6683       // copy the pieces of the object that fit into registers from the
6684       // parameter save area.
6685       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6686         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6687         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6688         if (GPR_idx != NumGPRs) {
6689           SDValue Load =
6690               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6691           MemOpChains.push_back(Load.getValue(1));
6692           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6693           ArgOffset += PtrByteSize;
6694         } else {
6695           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6696           break;
6697         }
6698       }
6699       continue;
6700     }
6701
6702     switch (Arg.getSimpleValueType().SimpleTy) {
6703     default: llvm_unreachable("Unexpected ValueType for argument!");
6704     case MVT::i1:
6705     case MVT::i32:
6706     case MVT::i64:
6707       if (GPR_idx != NumGPRs) {
6708         if (Arg.getValueType() == MVT::i1)
6709           Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6710
6711         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6712       } else {
6713         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6714                          isPPC64, isTailCall, false, MemOpChains,
6715                          TailCallArguments, dl);
6716       }
6717       ArgOffset += PtrByteSize;
6718       break;
6719     case MVT::f32:
6720     case MVT::f64:
6721       if (FPR_idx != NumFPRs) {
6722         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6723
6724         if (isVarArg) {
6725           SDValue Store =
6726               DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6727           MemOpChains.push_back(Store);
6728
6729           // Float varargs are always shadowed in available integer registers
6730           if (GPR_idx != NumGPRs) {
6731             SDValue Load =
6732                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6733             MemOpChains.push_back(Load.getValue(1));
6734             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6735           }
6736           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6737             SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6738             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6739             SDValue Load =
6740                 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6741             MemOpChains.push_back(Load.getValue(1));
6742             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6743           }
6744         } else {
6745           // If we have any FPRs remaining, we may also have GPRs remaining.
6746           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6747           // GPRs.
6748           if (GPR_idx != NumGPRs)
6749             ++GPR_idx;
6750           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6751               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6752             ++GPR_idx;
6753         }
6754       } else
6755         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6756                          isPPC64, isTailCall, false, MemOpChains,
6757                          TailCallArguments, dl);
6758       if (isPPC64)
6759         ArgOffset += 8;
6760       else
6761         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6762       break;
6763     case MVT::v4f32:
6764     case MVT::v4i32:
6765     case MVT::v8i16:
6766     case MVT::v16i8:
6767       if (isVarArg) {
6768         // These go aligned on the stack, or in the corresponding R registers
6769         // when within range.  The Darwin PPC ABI doc claims they also go in
6770         // V registers; in fact gcc does this only for arguments that are
6771         // prototyped, not for those that match the ...  We do it for all
6772         // arguments, seems to work.
6773         while (ArgOffset % 16 !=0) {
6774           ArgOffset += PtrByteSize;
6775           if (GPR_idx != NumGPRs)
6776             GPR_idx++;
6777         }
6778         // We could elide this store in the case where the object fits
6779         // entirely in R registers.  Maybe later.
6780         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6781                              DAG.getConstant(ArgOffset, dl, PtrVT));
6782         SDValue Store =
6783             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6784         MemOpChains.push_back(Store);
6785         if (VR_idx != NumVRs) {
6786           SDValue Load =
6787               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6788           MemOpChains.push_back(Load.getValue(1));
6789           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6790         }
6791         ArgOffset += 16;
6792         for (unsigned i=0; i<16; i+=PtrByteSize) {
6793           if (GPR_idx == NumGPRs)
6794             break;
6795           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6796                                    DAG.getConstant(i, dl, PtrVT));
6797           SDValue Load =
6798               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6799           MemOpChains.push_back(Load.getValue(1));
6800           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6801         }
6802         break;
6803       }
6804
6805       // Non-varargs Altivec params generally go in registers, but have
6806       // stack space allocated at the end.
6807       if (VR_idx != NumVRs) {
6808         // Doesn't have GPR space allocated.
6809         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6810       } else if (nAltivecParamsAtEnd==0) {
6811         // We are emitting Altivec params in order.
6812         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6813                          isPPC64, isTailCall, true, MemOpChains,
6814                          TailCallArguments, dl);
6815         ArgOffset += 16;
6816       }
6817       break;
6818     }
6819   }
6820   // If all Altivec parameters fit in registers, as they usually do,
6821   // they get stack space following the non-Altivec parameters.  We
6822   // don't track this here because nobody below needs it.
6823   // If there are more Altivec parameters than fit in registers emit
6824   // the stores here.
6825   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6826     unsigned j = 0;
6827     // Offset is aligned; skip 1st 12 params which go in V registers.
6828     ArgOffset = ((ArgOffset+15)/16)*16;
6829     ArgOffset += 12*16;
6830     for (unsigned i = 0; i != NumOps; ++i) {
6831       SDValue Arg = OutVals[i];
6832       EVT ArgType = Outs[i].VT;
6833       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6834           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6835         if (++j > NumVRs) {
6836           SDValue PtrOff;
6837           // We are emitting Altivec params in order.
6838           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6839                            isPPC64, isTailCall, true, MemOpChains,
6840                            TailCallArguments, dl);
6841           ArgOffset += 16;
6842         }
6843       }
6844     }
6845   }
6846
6847   if (!MemOpChains.empty())
6848     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6849
6850   // On Darwin, R12 must contain the address of an indirect callee.  This does
6851   // not mean the MTCTR instruction must use R12; it's easier to model this as
6852   // an extra parameter, so do that.
6853   if (!isTailCall &&
6854       !isFunctionGlobalAddress(Callee) &&
6855       !isa<ExternalSymbolSDNode>(Callee) &&
6856       !isBLACompatibleAddress(Callee, DAG))
6857     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6858                                                    PPC::R12), Callee));
6859
6860   // Build a sequence of copy-to-reg nodes chained together with token chain
6861   // and flag operands which copy the outgoing args into the appropriate regs.
6862   SDValue InFlag;
6863   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6864     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6865                              RegsToPass[i].second, InFlag);
6866     InFlag = Chain.getValue(1);
6867   }
6868
6869   if (isTailCall)
6870     PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6871                     TailCallArguments);
6872
6873   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6874                     /* unused except on PPC64 ELFv1 */ false, DAG,
6875                     RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6876                     NumBytes, Ins, InVals, CS);
6877 }
6878
6879 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6880                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6881                    CCState &State) {
6882
6883   if (ValVT == MVT::f128)
6884     report_fatal_error("f128 is unimplemented on AIX.");
6885
6886   if (ArgFlags.isByVal())
6887     report_fatal_error("Passing structure by value is unimplemented.");
6888
6889   if (ArgFlags.isNest())
6890     report_fatal_error("Nest arguments are unimplemented.");
6891
6892   if (ValVT.isVector() || LocVT.isVector())
6893     report_fatal_error("Vector arguments are unimplemented on AIX.");
6894
6895   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6896       State.getMachineFunction().getSubtarget());
6897   const bool IsPPC64 = Subtarget.isPPC64();
6898   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6899
6900   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6901                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6902                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6903   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6904                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6905                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6906
6907   // Arguments always reserve parameter save area.
6908   switch (ValVT.SimpleTy) {
6909   default:
6910     report_fatal_error("Unhandled value type for argument.");
6911   case MVT::i64:
6912     // i64 arguments should have been split to i32 for PPC32.
6913     assert(IsPPC64 && "PPC32 should have split i64 values.");
6914     LLVM_FALLTHROUGH;
6915   case MVT::i1:
6916   case MVT::i32:
6917     State.AllocateStack(PtrByteSize, PtrByteSize);
6918     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6919       MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6920       // Promote integers if needed.
6921       if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6922         LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6923                                     : CCValAssign::LocInfo::ZExt;
6924       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6925     }
6926     else
6927       report_fatal_error("Handling of placing parameters on the stack is "
6928                          "unimplemented!");
6929     return false;
6930
6931   case MVT::f32:
6932   case MVT::f64: {
6933     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6934     const unsigned StoreSize = LocVT.getStoreSize();
6935     // Floats are always 4-byte aligned in the PSA on AIX.
6936     // This includes f64 in 64-bit mode for ABI compatibility.
6937     State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4);
6938     if (unsigned Reg = State.AllocateReg(FPR))
6939       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6940     else
6941       report_fatal_error("Handling of placing parameters on the stack is "
6942                          "unimplemented!");
6943
6944     // AIX requires that GPRs are reserved for float arguments.
6945     // Successfully reserved GPRs are only initialized for vararg calls.
6946     MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6947     for (unsigned I = 0; I < StoreSize; I += PtrByteSize) {
6948       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6949         if (State.isVarArg()) {
6950           // Custom handling is required for:
6951           //   f64 in PPC32 needs to be split into 2 GPRs.
6952           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6953           State.addLoc(
6954               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6955         }
6956       } else if (State.isVarArg()) {
6957         report_fatal_error("Handling of placing parameters on the stack is "
6958                            "unimplemented!");
6959       }
6960     }
6961
6962     return false;
6963   }
6964   }
6965   return true;
6966 }
6967
6968 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6969                                                     bool IsPPC64) {
6970   assert((IsPPC64 || SVT != MVT::i64) &&
6971          "i64 should have been split for 32-bit codegen.");
6972
6973   switch (SVT) {
6974   default:
6975     report_fatal_error("Unexpected value type for formal argument");
6976   case MVT::i1:
6977   case MVT::i32:
6978   case MVT::i64:
6979     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6980   case MVT::f32:
6981     return &PPC::F4RCRegClass;
6982   case MVT::f64:
6983     return &PPC::F8RCRegClass;
6984   }
6985 }
6986
6987 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6988                                         SelectionDAG &DAG, SDValue ArgValue,
6989                                         MVT LocVT, const SDLoc &dl) {
6990   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6991   assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
6992
6993   if (Flags.isSExt())
6994     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6995                            DAG.getValueType(ValVT));
6996   else if (Flags.isZExt())
6997     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6998                            DAG.getValueType(ValVT));
6999
7000   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
7001 }
7002
7003 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7004     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7005     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7006     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7007
7008   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7009           CallConv == CallingConv::Fast) &&
7010          "Unexpected calling convention!");
7011
7012   if (isVarArg)
7013     report_fatal_error("This call type is unimplemented on AIX.");
7014
7015   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7016     report_fatal_error("Tail call support is unimplemented on AIX.");
7017
7018   if (useSoftFloat())
7019     report_fatal_error("Soft float support is unimplemented on AIX.");
7020
7021   const PPCSubtarget &Subtarget =
7022       static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7023   if (Subtarget.hasQPX())
7024     report_fatal_error("QPX support is not supported on AIX.");
7025
7026   const bool IsPPC64 = Subtarget.isPPC64();
7027   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7028
7029   // Assign locations to all of the incoming arguments.
7030   SmallVector<CCValAssign, 16> ArgLocs;
7031   MachineFunction &MF = DAG.getMachineFunction();
7032   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7033
7034   // Reserve space for the linkage area on the stack.
7035   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7036   // On AIX a minimum of 8 words is saved to the parameter save area.
7037   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7038   CCInfo.AllocateStack(LinkageSize + MinParameterSaveArea, PtrByteSize);
7039   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7040
7041   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
7042     CCValAssign &VA = ArgLocs[i];
7043     SDValue ArgValue;
7044     ISD::ArgFlagsTy Flags = Ins[i].Flags;
7045     if (VA.isRegLoc()) {
7046       EVT ValVT = VA.getValVT();
7047       MVT LocVT = VA.getLocVT();
7048       MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7049       unsigned VReg =
7050           MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7051       ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7052       if (ValVT.isScalarInteger() &&
7053           (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7054         ArgValue =
7055             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7056       }
7057       InVals.push_back(ArgValue);
7058     } else {
7059       report_fatal_error("Handling of formal arguments on the stack is "
7060                          "unimplemented!");
7061     }
7062   }
7063
7064   // Area that is at least reserved in the caller of this function.
7065   unsigned MinReservedArea = CCInfo.getNextStackOffset();
7066
7067   // Set the size that is at least reserved in caller of this function. Tail
7068   // call optimized function's reserved stack space needs to be aligned so
7069   // that taking the difference between two stack areas will result in an
7070   // aligned stack.
7071   MinReservedArea =
7072       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
7073   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7074   FuncInfo->setMinReservedArea(MinReservedArea);
7075
7076   return Chain;
7077 }
7078
7079 SDValue PPCTargetLowering::LowerCall_AIX(
7080     SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
7081     bool isTailCall, bool isPatchPoint,
7082     const SmallVectorImpl<ISD::OutputArg> &Outs,
7083     const SmallVectorImpl<SDValue> &OutVals,
7084     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7085     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7086     ImmutableCallSite CS) const {
7087
7088   assert((CallConv == CallingConv::C ||
7089           CallConv == CallingConv::Cold ||
7090           CallConv == CallingConv::Fast) && "Unexpected calling convention!");
7091
7092   if (isPatchPoint)
7093     report_fatal_error("This call type is unimplemented on AIX.");
7094
7095   const PPCSubtarget& Subtarget =
7096       static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7097   if (Subtarget.hasQPX())
7098     report_fatal_error("QPX is not supported on AIX.");
7099   if (Subtarget.hasAltivec())
7100     report_fatal_error("Altivec support is unimplemented on AIX.");
7101
7102   MachineFunction &MF = DAG.getMachineFunction();
7103   SmallVector<CCValAssign, 16> ArgLocs;
7104   CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7105
7106   // Reserve space for the linkage save area (LSA) on the stack.
7107   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7108   //   [SP][CR][LR][2 x reserved][TOC].
7109   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7110   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7111   const bool IsPPC64 = Subtarget.isPPC64();
7112   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7113   CCInfo.AllocateStack(LinkageSize, PtrByteSize);
7114   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7115
7116   // The prolog code of the callee may store up to 8 GPR argument registers to
7117   // the stack, allowing va_start to index over them in memory if the callee
7118   // is variadic.
7119   // Because we cannot tell if this is needed on the caller side, we have to
7120   // conservatively assume that it is needed.  As such, make sure we have at
7121   // least enough stack space for the caller to store the 8 GPRs.
7122   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7123   const unsigned NumBytes = LinkageSize + MinParameterSaveAreaSize;
7124
7125   // Adjust the stack pointer for the new arguments...
7126   // These operations are automatically eliminated by the prolog/epilog pass.
7127   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7128   SDValue CallSeqStart = Chain;
7129
7130   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7131
7132   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7133     CCValAssign &VA = ArgLocs[I++];
7134
7135     if (VA.isMemLoc())
7136       report_fatal_error("Handling of placing parameters on the stack is "
7137                          "unimplemented!");
7138     if (!VA.isRegLoc())
7139       report_fatal_error(
7140           "Unexpected non-register location for function call argument.");
7141
7142     SDValue Arg = OutVals[VA.getValNo()];
7143
7144     if (!VA.needsCustom()) {
7145       switch (VA.getLocInfo()) {
7146       default:
7147         report_fatal_error("Unexpected argument extension type.");
7148       case CCValAssign::Full:
7149         break;
7150       case CCValAssign::ZExt:
7151         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7152         break;
7153       case CCValAssign::SExt:
7154         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7155         break;
7156       }
7157       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7158
7159       continue;
7160     }
7161
7162     // Custom handling is used for GPR initializations for vararg float
7163     // arguments.
7164     assert(isVarArg && VA.getValVT().isFloatingPoint() &&
7165            VA.getLocVT().isInteger() &&
7166            "Unexpected custom register handling for calling convention.");
7167
7168     SDValue ArgAsInt =
7169         DAG.getBitcast(MVT::getIntegerVT(VA.getValVT().getSizeInBits()), Arg);
7170
7171     if (Arg.getValueType().getStoreSize() == VA.getLocVT().getStoreSize())
7172       // f32 in 32-bit GPR
7173       // f64 in 64-bit GPR
7174       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7175     else if (Arg.getValueType().getSizeInBits() < VA.getLocVT().getSizeInBits())
7176       // f32 in 64-bit GPR.
7177       RegsToPass.push_back(std::make_pair(
7178           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, VA.getLocVT())));
7179     else {
7180       // f64 in two 32-bit GPRs
7181       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7182       assert(Arg.getValueType() == MVT::f64 && isVarArg && !IsPPC64 &&
7183              "Unexpected custom register for argument!");
7184       CCValAssign &GPR1 = VA;
7185       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7186                                      DAG.getConstant(32, dl, MVT::i8));
7187       RegsToPass.push_back(std::make_pair(
7188           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7189       assert(I != E && "A second custom GPR is expected!");
7190       CCValAssign &GPR2 = ArgLocs[I++];
7191       assert(GPR2.isRegLoc() && GPR2.getValNo() == GPR1.getValNo() &&
7192              GPR2.needsCustom() && "A second custom GPR is expected!");
7193       RegsToPass.push_back(std::make_pair(
7194           GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7195     }
7196   }
7197
7198   // For indirect calls, we need to save the TOC base to the stack for
7199   // restoration after the call.
7200   if (!isTailCall && !isPatchPoint &&
7201       !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) {
7202     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7203     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7204     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7205     const unsigned TOCSaveOffset =
7206         Subtarget.getFrameLowering()->getTOCSaveOffset();
7207
7208     setUsesTOCBasePtr(DAG);
7209     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7210     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7211     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7212     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7213     Chain = DAG.getStore(
7214         Val.getValue(1), dl, Val, AddPtr,
7215         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7216   }
7217
7218   // Build a sequence of copy-to-reg nodes chained together with token chain
7219   // and flag operands which copy the outgoing args into the appropriate regs.
7220   SDValue InFlag;
7221   for (auto Reg : RegsToPass) {
7222     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7223     InFlag = Chain.getValue(1);
7224   }
7225
7226   const int SPDiff = 0;
7227   return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
7228                     /* unused except on PPC64 ELFv1 */ false, DAG, RegsToPass,
7229                     InFlag, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins,
7230                     InVals, CS);
7231 }
7232
7233 bool
7234 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7235                                   MachineFunction &MF, bool isVarArg,
7236                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7237                                   LLVMContext &Context) const {
7238   SmallVector<CCValAssign, 16> RVLocs;
7239   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7240   return CCInfo.CheckReturn(
7241       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7242                 ? RetCC_PPC_Cold
7243                 : RetCC_PPC);
7244 }
7245
7246 SDValue
7247 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7248                                bool isVarArg,
7249                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7250                                const SmallVectorImpl<SDValue> &OutVals,
7251                                const SDLoc &dl, SelectionDAG &DAG) const {
7252   SmallVector<CCValAssign, 16> RVLocs;
7253   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7254                  *DAG.getContext());
7255   CCInfo.AnalyzeReturn(Outs,
7256                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7257                            ? RetCC_PPC_Cold
7258                            : RetCC_PPC);
7259
7260   SDValue Flag;
7261   SmallVector<SDValue, 4> RetOps(1, Chain);
7262
7263   // Copy the result values into the output registers.
7264   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7265     CCValAssign &VA = RVLocs[i];
7266     assert(VA.isRegLoc() && "Can only return in registers!");
7267
7268     SDValue Arg = OutVals[RealResIdx];
7269
7270     switch (VA.getLocInfo()) {
7271     default: llvm_unreachable("Unknown loc info!");
7272     case CCValAssign::Full: break;
7273     case CCValAssign::AExt:
7274       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7275       break;
7276     case CCValAssign::ZExt:
7277       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7278       break;
7279     case CCValAssign::SExt:
7280       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7281       break;
7282     }
7283     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7284       bool isLittleEndian = Subtarget.isLittleEndian();
7285       // Legalize ret f64 -> ret 2 x i32.
7286       SDValue SVal =
7287           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7288                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7289       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7290       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7291       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7292                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7293       Flag = Chain.getValue(1);
7294       VA = RVLocs[++i]; // skip ahead to next loc
7295       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7296     } else
7297       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7298     Flag = Chain.getValue(1);
7299     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7300   }
7301
7302   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
7303   const MCPhysReg *I =
7304     TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
7305   if (I) {
7306     for (; *I; ++I) {
7307
7308       if (PPC::G8RCRegClass.contains(*I))
7309         RetOps.push_back(DAG.getRegister(*I, MVT::i64));
7310       else if (PPC::F8RCRegClass.contains(*I))
7311         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
7312       else if (PPC::CRRCRegClass.contains(*I))
7313         RetOps.push_back(DAG.getRegister(*I, MVT::i1));
7314       else if (PPC::VRRCRegClass.contains(*I))
7315         RetOps.push_back(DAG.getRegister(*I, MVT::Other));
7316       else
7317         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
7318     }
7319   }
7320
7321   RetOps[0] = Chain;  // Update chain.
7322
7323   // Add the flag if we have it.
7324   if (Flag.getNode())
7325     RetOps.push_back(Flag);
7326
7327   return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7328 }
7329
7330 SDValue
7331 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7332                                                 SelectionDAG &DAG) const {
7333   SDLoc dl(Op);
7334
7335   // Get the correct type for integers.
7336   EVT IntVT = Op.getValueType();
7337
7338   // Get the inputs.
7339   SDValue Chain = Op.getOperand(0);
7340   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7341   // Build a DYNAREAOFFSET node.
7342   SDValue Ops[2] = {Chain, FPSIdx};
7343   SDVTList VTs = DAG.getVTList(IntVT);
7344   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7345 }
7346
7347 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7348                                              SelectionDAG &DAG) const {
7349   // When we pop the dynamic allocation we need to restore the SP link.
7350   SDLoc dl(Op);
7351
7352   // Get the correct type for pointers.
7353   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7354
7355   // Construct the stack pointer operand.
7356   bool isPPC64 = Subtarget.isPPC64();
7357   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7358   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7359
7360   // Get the operands for the STACKRESTORE.
7361   SDValue Chain = Op.getOperand(0);
7362   SDValue SaveSP = Op.getOperand(1);
7363
7364   // Load the old link SP.
7365   SDValue LoadLinkSP =
7366       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7367
7368   // Restore the stack pointer.
7369   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7370
7371   // Store the old link SP.
7372   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7373 }
7374
7375 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7376   MachineFunction &MF = DAG.getMachineFunction();
7377   bool isPPC64 = Subtarget.isPPC64();
7378   EVT PtrVT = getPointerTy(MF.getDataLayout());
7379
7380   // Get current frame pointer save index.  The users of this index will be
7381   // primarily DYNALLOC instructions.
7382   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7383   int RASI = FI->getReturnAddrSaveIndex();
7384
7385   // If the frame pointer save index hasn't been defined yet.
7386   if (!RASI) {
7387     // Find out what the fix offset of the frame pointer save area.
7388     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7389     // Allocate the frame index for frame pointer save area.
7390     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7391     // Save the result.
7392     FI->setReturnAddrSaveIndex(RASI);
7393   }
7394   return DAG.getFrameIndex(RASI, PtrVT);
7395 }
7396
7397 SDValue
7398 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7399   MachineFunction &MF = DAG.getMachineFunction();
7400   bool isPPC64 = Subtarget.isPPC64();
7401   EVT PtrVT = getPointerTy(MF.getDataLayout());
7402
7403   // Get current frame pointer save index.  The users of this index will be
7404   // primarily DYNALLOC instructions.
7405   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7406   int FPSI = FI->getFramePointerSaveIndex();
7407
7408   // If the frame pointer save index hasn't been defined yet.
7409   if (!FPSI) {
7410     // Find out what the fix offset of the frame pointer save area.
7411     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7412     // Allocate the frame index for frame pointer save area.
7413     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7414     // Save the result.
7415     FI->setFramePointerSaveIndex(FPSI);
7416   }
7417   return DAG.getFrameIndex(FPSI, PtrVT);
7418 }
7419
7420 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7421                                                    SelectionDAG &DAG) const {
7422   // Get the inputs.
7423   SDValue Chain = Op.getOperand(0);
7424   SDValue Size  = Op.getOperand(1);
7425   SDLoc dl(Op);
7426
7427   // Get the correct type for pointers.
7428   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7429   // Negate the size.
7430   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7431                                 DAG.getConstant(0, dl, PtrVT), Size);
7432   // Construct a node for the frame pointer save index.
7433   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7434   // Build a DYNALLOC node.
7435   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7436   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7437   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7438 }
7439
7440 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7441                                                      SelectionDAG &DAG) const {
7442   MachineFunction &MF = DAG.getMachineFunction();
7443
7444   bool isPPC64 = Subtarget.isPPC64();
7445   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7446
7447   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7448   return DAG.getFrameIndex(FI, PtrVT);
7449 }
7450
7451 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7452                                                SelectionDAG &DAG) const {
7453   SDLoc DL(Op);
7454   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7455                      DAG.getVTList(MVT::i32, MVT::Other),
7456                      Op.getOperand(0), Op.getOperand(1));
7457 }
7458
7459 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7460                                                 SelectionDAG &DAG) const {
7461   SDLoc DL(Op);
7462   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7463                      Op.getOperand(0), Op.getOperand(1));
7464 }
7465
7466 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7467   if (Op.getValueType().isVector())
7468     return LowerVectorLoad(Op, DAG);
7469
7470   assert(Op.getValueType() == MVT::i1 &&
7471          "Custom lowering only for i1 loads");
7472
7473   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7474
7475   SDLoc dl(Op);
7476   LoadSDNode *LD = cast<LoadSDNode>(Op);
7477
7478   SDValue Chain = LD->getChain();
7479   SDValue BasePtr = LD->getBasePtr();
7480   MachineMemOperand *MMO = LD->getMemOperand();
7481
7482   SDValue NewLD =
7483       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7484                      BasePtr, MVT::i8, MMO);
7485   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7486
7487   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7488   return DAG.getMergeValues(Ops, dl);
7489 }
7490
7491 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7492   if (Op.getOperand(1).getValueType().isVector())
7493     return LowerVectorStore(Op, DAG);
7494
7495   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7496          "Custom lowering only for i1 stores");
7497
7498   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7499
7500   SDLoc dl(Op);
7501   StoreSDNode *ST = cast<StoreSDNode>(Op);
7502
7503   SDValue Chain = ST->getChain();
7504   SDValue BasePtr = ST->getBasePtr();
7505   SDValue Value = ST->getValue();
7506   MachineMemOperand *MMO = ST->getMemOperand();
7507
7508   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7509                       Value);
7510   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7511 }
7512
7513 // FIXME: Remove this once the ANDI glue bug is fixed:
7514 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7515   assert(Op.getValueType() == MVT::i1 &&
7516          "Custom lowering only for i1 results");
7517
7518   SDLoc DL(Op);
7519   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7520 }
7521
7522 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7523                                                SelectionDAG &DAG) const {
7524
7525   // Implements a vector truncate that fits in a vector register as a shuffle.
7526   // We want to legalize vector truncates down to where the source fits in
7527   // a vector register (and target is therefore smaller than vector register
7528   // size).  At that point legalization will try to custom lower the sub-legal
7529   // result and get here - where we can contain the truncate as a single target
7530   // operation.
7531
7532   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7533   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7534   //
7535   // We will implement it for big-endian ordering as this (where x denotes
7536   // undefined):
7537   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7538   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7539   //
7540   // The same operation in little-endian ordering will be:
7541   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7542   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7543
7544   assert(Op.getValueType().isVector() && "Vector type expected.");
7545
7546   SDLoc DL(Op);
7547   SDValue N1 = Op.getOperand(0);
7548   unsigned SrcSize = N1.getValueType().getSizeInBits();
7549   assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7550   SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7551
7552   EVT TrgVT = Op.getValueType();
7553   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7554   EVT EltVT = TrgVT.getVectorElementType();
7555   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7556   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7557
7558   // First list the elements we want to keep.
7559   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7560   SmallVector<int, 16> ShuffV;
7561   if (Subtarget.isLittleEndian())
7562     for (unsigned i = 0; i < TrgNumElts; ++i)
7563       ShuffV.push_back(i * SizeMult);
7564   else
7565     for (unsigned i = 1; i <= TrgNumElts; ++i)
7566       ShuffV.push_back(i * SizeMult - 1);
7567
7568   // Populate the remaining elements with undefs.
7569   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7570     // ShuffV.push_back(i + WideNumElts);
7571     ShuffV.push_back(WideNumElts + 1);
7572
7573   SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7574   return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7575 }
7576
7577 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7578 /// possible.
7579 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7580   // Not FP? Not a fsel.
7581   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7582       !Op.getOperand(2).getValueType().isFloatingPoint())
7583     return Op;
7584
7585   bool HasNoInfs = DAG.getTarget().Options.NoInfsFPMath;
7586   bool HasNoNaNs = DAG.getTarget().Options.NoNaNsFPMath;
7587   // We might be able to do better than this under some circumstances, but in
7588   // general, fsel-based lowering of select is a finite-math-only optimization.
7589   // For more information, see section F.3 of the 2.06 ISA specification.
7590   // With ISA 3.0, we have xsmaxcdp/xsmincdp which are OK to emit even in the
7591   // presence of infinities.
7592   if (!Subtarget.hasP9Vector() && (!HasNoInfs || !HasNoNaNs))
7593     return Op;
7594   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7595
7596   EVT ResVT = Op.getValueType();
7597   EVT CmpVT = Op.getOperand(0).getValueType();
7598   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7599   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7600   SDLoc dl(Op);
7601
7602   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7603     switch (CC) {
7604     default:
7605       // Not a min/max but with finite math, we may still be able to use fsel.
7606       if (HasNoInfs && HasNoNaNs)
7607         break;
7608       return Op;
7609     case ISD::SETOGT:
7610     case ISD::SETGT:
7611       return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7612     case ISD::SETOLT:
7613     case ISD::SETLT:
7614       return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7615     }
7616   }
7617
7618   // TODO: Propagate flags from the select rather than global settings.
7619   SDNodeFlags Flags;
7620   Flags.setNoInfs(true);
7621   Flags.setNoNaNs(true);
7622
7623   // If the RHS of the comparison is a 0.0, we don't need to do the
7624   // subtraction at all.
7625   SDValue Sel1;
7626   if (isFloatingPointZero(RHS))
7627     switch (CC) {
7628     default: break;       // SETUO etc aren't handled by fsel.
7629     case ISD::SETNE:
7630       std::swap(TV, FV);
7631       LLVM_FALLTHROUGH;
7632     case ISD::SETEQ:
7633       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7634         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7635       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7636       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7637         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7638       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7639                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7640     case ISD::SETULT:
7641     case ISD::SETLT:
7642       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7643       LLVM_FALLTHROUGH;
7644     case ISD::SETOGE:
7645     case ISD::SETGE:
7646       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7647         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7648       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7649     case ISD::SETUGT:
7650     case ISD::SETGT:
7651       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7652       LLVM_FALLTHROUGH;
7653     case ISD::SETOLE:
7654     case ISD::SETLE:
7655       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7656         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7657       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7658                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7659     }
7660
7661   SDValue Cmp;
7662   switch (CC) {
7663   default: break;       // SETUO etc aren't handled by fsel.
7664   case ISD::SETNE:
7665     std::swap(TV, FV);
7666     LLVM_FALLTHROUGH;
7667   case ISD::SETEQ:
7668     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7669     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7670       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7671     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7672     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7673       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7674     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7675                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7676   case ISD::SETULT:
7677   case ISD::SETLT:
7678     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7679     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7680       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7681     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7682   case ISD::SETOGE:
7683   case ISD::SETGE:
7684     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7685     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7686       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7687     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7688   case ISD::SETUGT:
7689   case ISD::SETGT:
7690     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7691     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7692       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7693     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7694   case ISD::SETOLE:
7695   case ISD::SETLE:
7696     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7697     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7698       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7699     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7700   }
7701   return Op;
7702 }
7703
7704 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7705                                                SelectionDAG &DAG,
7706                                                const SDLoc &dl) const {
7707   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7708   SDValue Src = Op.getOperand(0);
7709   if (Src.getValueType() == MVT::f32)
7710     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7711
7712   SDValue Tmp;
7713   switch (Op.getSimpleValueType().SimpleTy) {
7714   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7715   case MVT::i32:
7716     Tmp = DAG.getNode(
7717         Op.getOpcode() == ISD::FP_TO_SINT
7718             ? PPCISD::FCTIWZ
7719             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7720         dl, MVT::f64, Src);
7721     break;
7722   case MVT::i64:
7723     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7724            "i64 FP_TO_UINT is supported only with FPCVT");
7725     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7726                                                         PPCISD::FCTIDUZ,
7727                       dl, MVT::f64, Src);
7728     break;
7729   }
7730
7731   // Convert the FP value to an int value through memory.
7732   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7733     (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7734   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7735   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7736   MachinePointerInfo MPI =
7737       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7738
7739   // Emit a store to the stack slot.
7740   SDValue Chain;
7741   unsigned Alignment = DAG.getEVTAlignment(Tmp.getValueType());
7742   if (i32Stack) {
7743     MachineFunction &MF = DAG.getMachineFunction();
7744     Alignment = 4;
7745     MachineMemOperand *MMO =
7746       MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
7747     SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7748     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7749               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7750   } else
7751     Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI, Alignment);
7752
7753   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7754   // add in a bias on big endian.
7755   if (Op.getValueType() == MVT::i32 && !i32Stack) {
7756     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7757                         DAG.getConstant(4, dl, FIPtr.getValueType()));
7758     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7759   }
7760
7761   RLI.Chain = Chain;
7762   RLI.Ptr = FIPtr;
7763   RLI.MPI = MPI;
7764   RLI.Alignment = Alignment;
7765 }
7766
7767 /// Custom lowers floating point to integer conversions to use
7768 /// the direct move instructions available in ISA 2.07 to avoid the
7769 /// need for load/store combinations.
7770 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7771                                                     SelectionDAG &DAG,
7772                                                     const SDLoc &dl) const {
7773   assert(Op.getOperand(0).getValueType().isFloatingPoint());
7774   SDValue Src = Op.getOperand(0);
7775
7776   if (Src.getValueType() == MVT::f32)
7777     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7778
7779   SDValue Tmp;
7780   switch (Op.getSimpleValueType().SimpleTy) {
7781   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7782   case MVT::i32:
7783     Tmp = DAG.getNode(
7784         Op.getOpcode() == ISD::FP_TO_SINT
7785             ? PPCISD::FCTIWZ
7786             : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7787         dl, MVT::f64, Src);
7788     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7789     break;
7790   case MVT::i64:
7791     assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7792            "i64 FP_TO_UINT is supported only with FPCVT");
7793     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7794                                                         PPCISD::FCTIDUZ,
7795                       dl, MVT::f64, Src);
7796     Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7797     break;
7798   }
7799   return Tmp;
7800 }
7801
7802 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7803                                           const SDLoc &dl) const {
7804
7805   // FP to INT conversions are legal for f128.
7806   if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7807     return Op;
7808
7809   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7810   // PPC (the libcall is not available).
7811   if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7812     if (Op.getValueType() == MVT::i32) {
7813       if (Op.getOpcode() == ISD::FP_TO_SINT) {
7814         SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7815                                  MVT::f64, Op.getOperand(0),
7816                                  DAG.getIntPtrConstant(0, dl));
7817         SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7818                                  MVT::f64, Op.getOperand(0),
7819                                  DAG.getIntPtrConstant(1, dl));
7820
7821         // Add the two halves of the long double in round-to-zero mode.
7822         SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7823
7824         // Now use a smaller FP_TO_SINT.
7825         return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7826       }
7827       if (Op.getOpcode() == ISD::FP_TO_UINT) {
7828         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7829         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7830         SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7831         //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7832         // FIXME: generated code sucks.
7833         // TODO: Are there fast-math-flags to propagate to this FSUB?
7834         SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7835                                    Op.getOperand(0), Tmp);
7836         True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7837         True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7838                            DAG.getConstant(0x80000000, dl, MVT::i32));
7839         SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7840                                     Op.getOperand(0));
7841         return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7842                                ISD::SETGE);
7843       }
7844     }
7845
7846     return SDValue();
7847   }
7848
7849   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7850     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7851
7852   ReuseLoadInfo RLI;
7853   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7854
7855   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7856                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7857 }
7858
7859 // We're trying to insert a regular store, S, and then a load, L. If the
7860 // incoming value, O, is a load, we might just be able to have our load use the
7861 // address used by O. However, we don't know if anything else will store to
7862 // that address before we can load from it. To prevent this situation, we need
7863 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7864 // the same chain operand as O, we create a token factor from the chain results
7865 // of O and L, and we replace all uses of O's chain result with that token
7866 // factor (see spliceIntoChain below for this last part).
7867 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7868                                             ReuseLoadInfo &RLI,
7869                                             SelectionDAG &DAG,
7870                                             ISD::LoadExtType ET) const {
7871   SDLoc dl(Op);
7872   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
7873                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
7874   if (ET == ISD::NON_EXTLOAD &&
7875       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
7876       isOperationLegalOrCustom(Op.getOpcode(),
7877                                Op.getOperand(0).getValueType())) {
7878
7879     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7880     return true;
7881   }
7882
7883   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7884   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7885       LD->isNonTemporal())
7886     return false;
7887   if (LD->getMemoryVT() != MemVT)
7888     return false;
7889
7890   RLI.Ptr = LD->getBasePtr();
7891   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7892     assert(LD->getAddressingMode() == ISD::PRE_INC &&
7893            "Non-pre-inc AM on PPC?");
7894     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7895                           LD->getOffset());
7896   }
7897
7898   RLI.Chain = LD->getChain();
7899   RLI.MPI = LD->getPointerInfo();
7900   RLI.IsDereferenceable = LD->isDereferenceable();
7901   RLI.IsInvariant = LD->isInvariant();
7902   RLI.Alignment = LD->getAlignment();
7903   RLI.AAInfo = LD->getAAInfo();
7904   RLI.Ranges = LD->getRanges();
7905
7906   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7907   return true;
7908 }
7909
7910 // Given the head of the old chain, ResChain, insert a token factor containing
7911 // it and NewResChain, and make users of ResChain now be users of that token
7912 // factor.
7913 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7914 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7915                                         SDValue NewResChain,
7916                                         SelectionDAG &DAG) const {
7917   if (!ResChain)
7918     return;
7919
7920   SDLoc dl(NewResChain);
7921
7922   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7923                            NewResChain, DAG.getUNDEF(MVT::Other));
7924   assert(TF.getNode() != NewResChain.getNode() &&
7925          "A new TF really is required here");
7926
7927   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7928   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7929 }
7930
7931 /// Analyze profitability of direct move
7932 /// prefer float load to int load plus direct move
7933 /// when there is no integer use of int load
7934 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7935   SDNode *Origin = Op.getOperand(0).getNode();
7936   if (Origin->getOpcode() != ISD::LOAD)
7937     return true;
7938
7939   // If there is no LXSIBZX/LXSIHZX, like Power8,
7940   // prefer direct move if the memory size is 1 or 2 bytes.
7941   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7942   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7943     return true;
7944
7945   for (SDNode::use_iterator UI = Origin->use_begin(),
7946                             UE = Origin->use_end();
7947        UI != UE; ++UI) {
7948
7949     // Only look at the users of the loaded value.
7950     if (UI.getUse().get().getResNo() != 0)
7951       continue;
7952
7953     if (UI->getOpcode() != ISD::SINT_TO_FP &&
7954         UI->getOpcode() != ISD::UINT_TO_FP)
7955       return true;
7956   }
7957
7958   return false;
7959 }
7960
7961 /// Custom lowers integer to floating point conversions to use
7962 /// the direct move instructions available in ISA 2.07 to avoid the
7963 /// need for load/store combinations.
7964 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7965                                                     SelectionDAG &DAG,
7966                                                     const SDLoc &dl) const {
7967   assert((Op.getValueType() == MVT::f32 ||
7968           Op.getValueType() == MVT::f64) &&
7969          "Invalid floating point type as target of conversion");
7970   assert(Subtarget.hasFPCVT() &&
7971          "Int to FP conversions with direct moves require FPCVT");
7972   SDValue FP;
7973   SDValue Src = Op.getOperand(0);
7974   bool SinglePrec = Op.getValueType() == MVT::f32;
7975   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7976   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7977   unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7978                              (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7979
7980   if (WordInt) {
7981     FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7982                      dl, MVT::f64, Src);
7983     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7984   }
7985   else {
7986     FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7987     FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7988   }
7989
7990   return FP;
7991 }
7992
7993 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7994
7995   EVT VecVT = Vec.getValueType();
7996   assert(VecVT.isVector() && "Expected a vector type.");
7997   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7998
7999   EVT EltVT = VecVT.getVectorElementType();
8000   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8001   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8002
8003   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8004   SmallVector<SDValue, 16> Ops(NumConcat);
8005   Ops[0] = Vec;
8006   SDValue UndefVec = DAG.getUNDEF(VecVT);
8007   for (unsigned i = 1; i < NumConcat; ++i)
8008     Ops[i] = UndefVec;
8009
8010   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8011 }
8012
8013 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8014                                                 const SDLoc &dl) const {
8015
8016   unsigned Opc = Op.getOpcode();
8017   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
8018          "Unexpected conversion type");
8019   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8020          "Supports conversions to v2f64/v4f32 only.");
8021
8022   bool SignedConv = Opc == ISD::SINT_TO_FP;
8023   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8024
8025   SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8026   EVT WideVT = Wide.getValueType();
8027   unsigned WideNumElts = WideVT.getVectorNumElements();
8028   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8029
8030   SmallVector<int, 16> ShuffV;
8031   for (unsigned i = 0; i < WideNumElts; ++i)
8032     ShuffV.push_back(i + WideNumElts);
8033
8034   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8035   int SaveElts = FourEltRes ? 4 : 2;
8036   if (Subtarget.isLittleEndian())
8037     for (int i = 0; i < SaveElts; i++)
8038       ShuffV[i * Stride] = i;
8039   else
8040     for (int i = 1; i <= SaveElts; i++)
8041       ShuffV[i * Stride - 1] = i - 1;
8042
8043   SDValue ShuffleSrc2 =
8044       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8045   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8046   unsigned ExtendOp =
8047       SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
8048
8049   SDValue Extend;
8050   if (!Subtarget.hasP9Altivec() && SignedConv) {
8051     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8052     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8053                          DAG.getValueType(Op.getOperand(0).getValueType()));
8054   } else
8055     Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
8056
8057   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8058 }
8059
8060 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8061                                           SelectionDAG &DAG) const {
8062   SDLoc dl(Op);
8063
8064   EVT InVT = Op.getOperand(0).getValueType();
8065   EVT OutVT = Op.getValueType();
8066   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8067       isOperationCustom(Op.getOpcode(), InVT))
8068     return LowerINT_TO_FPVector(Op, DAG, dl);
8069
8070   // Conversions to f128 are legal.
8071   if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
8072     return Op;
8073
8074   if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
8075     if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
8076       return SDValue();
8077
8078     SDValue Value = Op.getOperand(0);
8079     // The values are now known to be -1 (false) or 1 (true). To convert this
8080     // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8081     // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8082     Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8083
8084     SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8085
8086     Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8087
8088     if (Op.getValueType() != MVT::v4f64)
8089       Value = DAG.getNode(ISD::FP_ROUND, dl,
8090                           Op.getValueType(), Value,
8091                           DAG.getIntPtrConstant(1, dl));
8092     return Value;
8093   }
8094
8095   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8096   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8097     return SDValue();
8098
8099   if (Op.getOperand(0).getValueType() == MVT::i1)
8100     return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8101                        DAG.getConstantFP(1.0, dl, Op.getValueType()),
8102                        DAG.getConstantFP(0.0, dl, Op.getValueType()));
8103
8104   // If we have direct moves, we can do all the conversion, skip the store/load
8105   // however, without FPCVT we can't do most conversions.
8106   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8107       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8108     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8109
8110   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8111          "UINT_TO_FP is supported only with FPCVT");
8112
8113   // If we have FCFIDS, then use it when converting to single-precision.
8114   // Otherwise, convert to double-precision and then round.
8115   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8116                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8117                                                             : PPCISD::FCFIDS)
8118                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8119                                                             : PPCISD::FCFID);
8120   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8121                   ? MVT::f32
8122                   : MVT::f64;
8123
8124   if (Op.getOperand(0).getValueType() == MVT::i64) {
8125     SDValue SINT = Op.getOperand(0);
8126     // When converting to single-precision, we actually need to convert
8127     // to double-precision first and then round to single-precision.
8128     // To avoid double-rounding effects during that operation, we have
8129     // to prepare the input operand.  Bits that might be truncated when
8130     // converting to double-precision are replaced by a bit that won't
8131     // be lost at this stage, but is below the single-precision rounding
8132     // position.
8133     //
8134     // However, if -enable-unsafe-fp-math is in effect, accept double
8135     // rounding to avoid the extra overhead.
8136     if (Op.getValueType() == MVT::f32 &&
8137         !Subtarget.hasFPCVT() &&
8138         !DAG.getTarget().Options.UnsafeFPMath) {
8139
8140       // Twiddle input to make sure the low 11 bits are zero.  (If this
8141       // is the case, we are guaranteed the value will fit into the 53 bit
8142       // mantissa of an IEEE double-precision value without rounding.)
8143       // If any of those low 11 bits were not zero originally, make sure
8144       // bit 12 (value 2048) is set instead, so that the final rounding
8145       // to single-precision gets the correct result.
8146       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8147                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8148       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8149                           Round, DAG.getConstant(2047, dl, MVT::i64));
8150       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8151       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8152                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8153
8154       // However, we cannot use that value unconditionally: if the magnitude
8155       // of the input value is small, the bit-twiddling we did above might
8156       // end up visibly changing the output.  Fortunately, in that case, we
8157       // don't need to twiddle bits since the original input will convert
8158       // exactly to double-precision floating-point already.  Therefore,
8159       // construct a conditional to use the original value if the top 11
8160       // bits are all sign-bit copies, and use the rounded value computed
8161       // above otherwise.
8162       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8163                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8164       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8165                          Cond, DAG.getConstant(1, dl, MVT::i64));
8166       Cond = DAG.getSetCC(dl, MVT::i32,
8167                           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8168
8169       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8170     }
8171
8172     ReuseLoadInfo RLI;
8173     SDValue Bits;
8174
8175     MachineFunction &MF = DAG.getMachineFunction();
8176     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8177       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8178                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8179       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8180     } else if (Subtarget.hasLFIWAX() &&
8181                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8182       MachineMemOperand *MMO =
8183         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8184                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8185       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8186       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8187                                      DAG.getVTList(MVT::f64, MVT::Other),
8188                                      Ops, MVT::i32, MMO);
8189       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8190     } else if (Subtarget.hasFPCVT() &&
8191                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8192       MachineMemOperand *MMO =
8193         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8194                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8195       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8196       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8197                                      DAG.getVTList(MVT::f64, MVT::Other),
8198                                      Ops, MVT::i32, MMO);
8199       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8200     } else if (((Subtarget.hasLFIWAX() &&
8201                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8202                 (Subtarget.hasFPCVT() &&
8203                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8204                SINT.getOperand(0).getValueType() == MVT::i32) {
8205       MachineFrameInfo &MFI = MF.getFrameInfo();
8206       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8207
8208       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8209       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8210
8211       SDValue Store =
8212           DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8213                        MachinePointerInfo::getFixedStack(
8214                            DAG.getMachineFunction(), FrameIdx));
8215
8216       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8217              "Expected an i32 store");
8218
8219       RLI.Ptr = FIdx;
8220       RLI.Chain = Store;
8221       RLI.MPI =
8222           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8223       RLI.Alignment = 4;
8224
8225       MachineMemOperand *MMO =
8226         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8227                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8228       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8229       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8230                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8231                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8232                                      Ops, MVT::i32, MMO);
8233     } else
8234       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8235
8236     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8237
8238     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8239       FP = DAG.getNode(ISD::FP_ROUND, dl,
8240                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8241     return FP;
8242   }
8243
8244   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8245          "Unhandled INT_TO_FP type in custom expander!");
8246   // Since we only generate this in 64-bit mode, we can take advantage of
8247   // 64-bit registers.  In particular, sign extend the input value into the
8248   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8249   // then lfd it and fcfid it.
8250   MachineFunction &MF = DAG.getMachineFunction();
8251   MachineFrameInfo &MFI = MF.getFrameInfo();
8252   EVT PtrVT = getPointerTy(MF.getDataLayout());
8253
8254   SDValue Ld;
8255   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8256     ReuseLoadInfo RLI;
8257     bool ReusingLoad;
8258     if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8259                                             DAG))) {
8260       int FrameIdx = MFI.CreateStackObject(4, 4, false);
8261       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8262
8263       SDValue Store =
8264           DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8265                        MachinePointerInfo::getFixedStack(
8266                            DAG.getMachineFunction(), FrameIdx));
8267
8268       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8269              "Expected an i32 store");
8270
8271       RLI.Ptr = FIdx;
8272       RLI.Chain = Store;
8273       RLI.MPI =
8274           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8275       RLI.Alignment = 4;
8276     }
8277
8278     MachineMemOperand *MMO =
8279       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8280                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8281     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8282     Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8283                                    PPCISD::LFIWZX : PPCISD::LFIWAX,
8284                                  dl, DAG.getVTList(MVT::f64, MVT::Other),
8285                                  Ops, MVT::i32, MMO);
8286     if (ReusingLoad)
8287       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8288   } else {
8289     assert(Subtarget.isPPC64() &&
8290            "i32->FP without LFIWAX supported only on PPC64");
8291
8292     int FrameIdx = MFI.CreateStackObject(8, 8, false);
8293     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8294
8295     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8296                                 Op.getOperand(0));
8297
8298     // STD the extended value into the stack slot.
8299     SDValue Store = DAG.getStore(
8300         DAG.getEntryNode(), dl, Ext64, FIdx,
8301         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8302
8303     // Load the value as a double.
8304     Ld = DAG.getLoad(
8305         MVT::f64, dl, Store, FIdx,
8306         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8307   }
8308
8309   // FCFID it and return it.
8310   SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8311   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8312     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8313                      DAG.getIntPtrConstant(0, dl));
8314   return FP;
8315 }
8316
8317 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8318                                             SelectionDAG &DAG) const {
8319   SDLoc dl(Op);
8320   /*
8321    The rounding mode is in bits 30:31 of FPSR, and has the following
8322    settings:
8323      00 Round to nearest
8324      01 Round to 0
8325      10 Round to +inf
8326      11 Round to -inf
8327
8328   FLT_ROUNDS, on the other hand, expects the following:
8329     -1 Undefined
8330      0 Round to 0
8331      1 Round to nearest
8332      2 Round to +inf
8333      3 Round to -inf
8334
8335   To perform the conversion, we do:
8336     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8337   */
8338
8339   MachineFunction &MF = DAG.getMachineFunction();
8340   EVT VT = Op.getValueType();
8341   EVT PtrVT = getPointerTy(MF.getDataLayout());
8342
8343   // Save FP Control Word to register
8344   EVT NodeTys[] = {
8345     MVT::f64,    // return register
8346     MVT::Glue    // unused in this context
8347   };
8348   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
8349
8350   // Save FP register to stack slot
8351   int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
8352   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8353   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
8354                                MachinePointerInfo());
8355
8356   // Load FP Control Word from low 32 bits of stack slot.
8357   SDValue Four = DAG.getConstant(4, dl, PtrVT);
8358   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8359   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
8360
8361   // Transform as necessary
8362   SDValue CWD1 =
8363     DAG.getNode(ISD::AND, dl, MVT::i32,
8364                 CWD, DAG.getConstant(3, dl, MVT::i32));
8365   SDValue CWD2 =
8366     DAG.getNode(ISD::SRL, dl, MVT::i32,
8367                 DAG.getNode(ISD::AND, dl, MVT::i32,
8368                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8369                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8370                             DAG.getConstant(3, dl, MVT::i32)),
8371                 DAG.getConstant(1, dl, MVT::i32));
8372
8373   SDValue RetVal =
8374     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8375
8376   return DAG.getNode((VT.getSizeInBits() < 16 ?
8377                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
8378 }
8379
8380 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8381   EVT VT = Op.getValueType();
8382   unsigned BitWidth = VT.getSizeInBits();
8383   SDLoc dl(Op);
8384   assert(Op.getNumOperands() == 3 &&
8385          VT == Op.getOperand(1).getValueType() &&
8386          "Unexpected SHL!");
8387
8388   // Expand into a bunch of logical ops.  Note that these ops
8389   // depend on the PPC behavior for oversized shift amounts.
8390   SDValue Lo = Op.getOperand(0);
8391   SDValue Hi = Op.getOperand(1);
8392   SDValue Amt = Op.getOperand(2);
8393   EVT AmtVT = Amt.getValueType();
8394
8395   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8396                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8397   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8398   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8399   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8400   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8401                              DAG.getConstant(-BitWidth, dl, AmtVT));
8402   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8403   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8404   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8405   SDValue OutOps[] = { OutLo, OutHi };
8406   return DAG.getMergeValues(OutOps, dl);
8407 }
8408
8409 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8410   EVT VT = Op.getValueType();
8411   SDLoc dl(Op);
8412   unsigned BitWidth = VT.getSizeInBits();
8413   assert(Op.getNumOperands() == 3 &&
8414          VT == Op.getOperand(1).getValueType() &&
8415          "Unexpected SRL!");
8416
8417   // Expand into a bunch of logical ops.  Note that these ops
8418   // depend on the PPC behavior for oversized shift amounts.
8419   SDValue Lo = Op.getOperand(0);
8420   SDValue Hi = Op.getOperand(1);
8421   SDValue Amt = Op.getOperand(2);
8422   EVT AmtVT = Amt.getValueType();
8423
8424   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8425                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8426   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8427   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8428   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8429   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8430                              DAG.getConstant(-BitWidth, dl, AmtVT));
8431   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8432   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8433   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8434   SDValue OutOps[] = { OutLo, OutHi };
8435   return DAG.getMergeValues(OutOps, dl);
8436 }
8437
8438 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8439   SDLoc dl(Op);
8440   EVT VT = Op.getValueType();
8441   unsigned BitWidth = VT.getSizeInBits();
8442   assert(Op.getNumOperands() == 3 &&
8443          VT == Op.getOperand(1).getValueType() &&
8444          "Unexpected SRA!");
8445
8446   // Expand into a bunch of logical ops, followed by a select_cc.
8447   SDValue Lo = Op.getOperand(0);
8448   SDValue Hi = Op.getOperand(1);
8449   SDValue Amt = Op.getOperand(2);
8450   EVT AmtVT = Amt.getValueType();
8451
8452   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8453                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8454   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8455   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8456   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8457   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8458                              DAG.getConstant(-BitWidth, dl, AmtVT));
8459   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8460   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8461   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8462                                   Tmp4, Tmp6, ISD::SETLE);
8463   SDValue OutOps[] = { OutLo, OutHi };
8464   return DAG.getMergeValues(OutOps, dl);
8465 }
8466
8467 //===----------------------------------------------------------------------===//
8468 // Vector related lowering.
8469 //
8470
8471 /// BuildSplatI - Build a canonical splati of Val with an element size of
8472 /// SplatSize.  Cast the result to VT.
8473 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8474                            SelectionDAG &DAG, const SDLoc &dl) {
8475   static const MVT VTys[] = { // canonical VT to use for each size.
8476     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8477   };
8478
8479   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8480
8481   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8482   if (Val == -1)
8483     SplatSize = 1;
8484
8485   EVT CanonicalVT = VTys[SplatSize-1];
8486
8487   // Build a canonical splat for this value.
8488   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8489 }
8490
8491 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8492 /// specified intrinsic ID.
8493 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8494                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
8495   if (DestVT == MVT::Other) DestVT = Op.getValueType();
8496   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8497                      DAG.getConstant(IID, dl, MVT::i32), Op);
8498 }
8499
8500 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8501 /// specified intrinsic ID.
8502 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8503                                 SelectionDAG &DAG, const SDLoc &dl,
8504                                 EVT DestVT = MVT::Other) {
8505   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8506   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8507                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8508 }
8509
8510 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8511 /// specified intrinsic ID.
8512 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8513                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8514                                 EVT DestVT = MVT::Other) {
8515   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8516   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8517                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8518 }
8519
8520 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8521 /// amount.  The result has the specified value type.
8522 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8523                            SelectionDAG &DAG, const SDLoc &dl) {
8524   // Force LHS/RHS to be the right type.
8525   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8526   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8527
8528   int Ops[16];
8529   for (unsigned i = 0; i != 16; ++i)
8530     Ops[i] = i + Amt;
8531   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8532   return DAG.getNode(ISD::BITCAST, dl, VT, T);
8533 }
8534
8535 /// Do we have an efficient pattern in a .td file for this node?
8536 ///
8537 /// \param V - pointer to the BuildVectorSDNode being matched
8538 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8539 ///
8540 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8541 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8542 /// the opposite is true (expansion is beneficial) are:
8543 /// - The node builds a vector out of integers that are not 32 or 64-bits
8544 /// - The node builds a vector out of constants
8545 /// - The node is a "load-and-splat"
8546 /// In all other cases, we will choose to keep the BUILD_VECTOR.
8547 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8548                                             bool HasDirectMove,
8549                                             bool HasP8Vector) {
8550   EVT VecVT = V->getValueType(0);
8551   bool RightType = VecVT == MVT::v2f64 ||
8552     (HasP8Vector && VecVT == MVT::v4f32) ||
8553     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8554   if (!RightType)
8555     return false;
8556
8557   bool IsSplat = true;
8558   bool IsLoad = false;
8559   SDValue Op0 = V->getOperand(0);
8560
8561   // This function is called in a block that confirms the node is not a constant
8562   // splat. So a constant BUILD_VECTOR here means the vector is built out of
8563   // different constants.
8564   if (V->isConstant())
8565     return false;
8566   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8567     if (V->getOperand(i).isUndef())
8568       return false;
8569     // We want to expand nodes that represent load-and-splat even if the
8570     // loaded value is a floating point truncation or conversion to int.
8571     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8572         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8573          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8574         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8575          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8576         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8577          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8578       IsLoad = true;
8579     // If the operands are different or the input is not a load and has more
8580     // uses than just this BV node, then it isn't a splat.
8581     if (V->getOperand(i) != Op0 ||
8582         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8583       IsSplat = false;
8584   }
8585   return !(IsSplat && IsLoad);
8586 }
8587
8588 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8589 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8590
8591   SDLoc dl(Op);
8592   SDValue Op0 = Op->getOperand(0);
8593
8594   if (!EnableQuadPrecision ||
8595       (Op.getValueType() != MVT::f128 ) ||
8596       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8597       (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
8598       (Op0.getOperand(1).getValueType() != MVT::i64))
8599     return SDValue();
8600
8601   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8602                      Op0.getOperand(1));
8603 }
8604
8605 static const SDValue *getNormalLoadInput(const SDValue &Op) {
8606   const SDValue *InputLoad = &Op;
8607   if (InputLoad->getOpcode() == ISD::BITCAST)
8608     InputLoad = &InputLoad->getOperand(0);
8609   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR)
8610     InputLoad = &InputLoad->getOperand(0);
8611   if (InputLoad->getOpcode() != ISD::LOAD)
8612     return nullptr;
8613   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8614   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8615 }
8616
8617 // If this is a case we can't handle, return null and let the default
8618 // expansion code take care of it.  If we CAN select this case, and if it
8619 // selects to a single instruction, return Op.  Otherwise, if we can codegen
8620 // this case more efficiently than a constant pool load, lower it to the
8621 // sequence of ops that should be used.
8622 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8623                                              SelectionDAG &DAG) const {
8624   SDLoc dl(Op);
8625   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8626   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8627
8628   if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
8629     // We first build an i32 vector, load it into a QPX register,
8630     // then convert it to a floating-point vector and compare it
8631     // to a zero vector to get the boolean result.
8632     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8633     int FrameIdx = MFI.CreateStackObject(16, 16, false);
8634     MachinePointerInfo PtrInfo =
8635         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8636     EVT PtrVT = getPointerTy(DAG.getDataLayout());
8637     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8638
8639     assert(BVN->getNumOperands() == 4 &&
8640       "BUILD_VECTOR for v4i1 does not have 4 operands");
8641
8642     bool IsConst = true;
8643     for (unsigned i = 0; i < 4; ++i) {
8644       if (BVN->getOperand(i).isUndef()) continue;
8645       if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
8646         IsConst = false;
8647         break;
8648       }
8649     }
8650
8651     if (IsConst) {
8652       Constant *One =
8653         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
8654       Constant *NegOne =
8655         ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
8656
8657       Constant *CV[4];
8658       for (unsigned i = 0; i < 4; ++i) {
8659         if (BVN->getOperand(i).isUndef())
8660           CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
8661         else if (isNullConstant(BVN->getOperand(i)))
8662           CV[i] = NegOne;
8663         else
8664           CV[i] = One;
8665       }
8666
8667       Constant *CP = ConstantVector::get(CV);
8668       SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
8669                                           16 /* alignment */);
8670
8671       SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
8672       SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
8673       return DAG.getMemIntrinsicNode(
8674           PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
8675           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
8676     }
8677
8678     SmallVector<SDValue, 4> Stores;
8679     for (unsigned i = 0; i < 4; ++i) {
8680       if (BVN->getOperand(i).isUndef()) continue;
8681
8682       unsigned Offset = 4*i;
8683       SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8684       Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8685
8686       unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
8687       if (StoreSize > 4) {
8688         Stores.push_back(
8689             DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
8690                               PtrInfo.getWithOffset(Offset), MVT::i32));
8691       } else {
8692         SDValue StoreValue = BVN->getOperand(i);
8693         if (StoreSize < 4)
8694           StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
8695
8696         Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
8697                                       PtrInfo.getWithOffset(Offset)));
8698       }
8699     }
8700
8701     SDValue StoreChain;
8702     if (!Stores.empty())
8703       StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8704     else
8705       StoreChain = DAG.getEntryNode();
8706
8707     // Now load from v4i32 into the QPX register; this will extend it to
8708     // v4i64 but not yet convert it to a floating point. Nevertheless, this
8709     // is typed as v4f64 because the QPX register integer states are not
8710     // explicitly represented.
8711
8712     SDValue Ops[] = {StoreChain,
8713                      DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
8714                      FIdx};
8715     SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
8716
8717     SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8718       dl, VTs, Ops, MVT::v4i32, PtrInfo);
8719     LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8720       DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8721       LoadedVect);
8722
8723     SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8724
8725     return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8726   }
8727
8728   // All other QPX vectors are handled by generic code.
8729   if (Subtarget.hasQPX())
8730     return SDValue();
8731
8732   // Check if this is a splat of a constant value.
8733   APInt APSplatBits, APSplatUndef;
8734   unsigned SplatBitSize;
8735   bool HasAnyUndefs;
8736   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8737                              HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8738       SplatBitSize > 32) {
8739
8740     const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
8741     // Handle load-and-splat patterns as we have instructions that will do this
8742     // in one go.
8743     if (InputLoad && DAG.isSplatValue(Op, true)) {
8744       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8745
8746       // We have handling for 4 and 8 byte elements.
8747       unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8748
8749       // Checking for a single use of this load, we have to check for vector
8750       // width (128 bits) / ElementSize uses (since each operand of the
8751       // BUILD_VECTOR is a separate use of the value.
8752       if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
8753           ((Subtarget.hasVSX() && ElementSize == 64) ||
8754            (Subtarget.hasP9Vector() && ElementSize == 32))) {
8755         SDValue Ops[] = {
8756           LD->getChain(),    // Chain
8757           LD->getBasePtr(),  // Ptr
8758           DAG.getValueType(Op.getValueType()) // VT
8759         };
8760         return
8761           DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
8762                                   DAG.getVTList(Op.getValueType(), MVT::Other),
8763                                   Ops, LD->getMemoryVT(), LD->getMemOperand());
8764       }
8765     }
8766
8767     // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8768     // lowered to VSX instructions under certain conditions.
8769     // Without VSX, there is no pattern more efficient than expanding the node.
8770     if (Subtarget.hasVSX() &&
8771         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8772                                         Subtarget.hasP8Vector()))
8773       return Op;
8774     return SDValue();
8775   }
8776
8777   unsigned SplatBits = APSplatBits.getZExtValue();
8778   unsigned SplatUndef = APSplatUndef.getZExtValue();
8779   unsigned SplatSize = SplatBitSize / 8;
8780
8781   // First, handle single instruction cases.
8782
8783   // All zeros?
8784   if (SplatBits == 0) {
8785     // Canonicalize all zero vectors to be v4i32.
8786     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8787       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8788       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8789     }
8790     return Op;
8791   }
8792
8793   // We have XXSPLTIB for constant splats one byte wide
8794   // FIXME: SplatBits is an unsigned int being cast to an int while passing it
8795   // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here.
8796   if (Subtarget.hasP9Vector() && SplatSize == 1)
8797     return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl);
8798
8799   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8800   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8801                     (32-SplatBitSize));
8802   if (SextVal >= -16 && SextVal <= 15)
8803     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8804
8805   // Two instruction sequences.
8806
8807   // If this value is in the range [-32,30] and is even, use:
8808   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8809   // If this value is in the range [17,31] and is odd, use:
8810   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8811   // If this value is in the range [-31,-17] and is odd, use:
8812   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8813   // Note the last two are three-instruction sequences.
8814   if (SextVal >= -32 && SextVal <= 31) {
8815     // To avoid having these optimizations undone by constant folding,
8816     // we convert to a pseudo that will be expanded later into one of
8817     // the above forms.
8818     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8819     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8820               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8821     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8822     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8823     if (VT == Op.getValueType())
8824       return RetVal;
8825     else
8826       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8827   }
8828
8829   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8830   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8831   // for fneg/fabs.
8832   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8833     // Make -1 and vspltisw -1:
8834     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8835
8836     // Make the VSLW intrinsic, computing 0x8000_0000.
8837     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8838                                    OnesV, DAG, dl);
8839
8840     // xor by OnesV to invert it.
8841     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8842     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8843   }
8844
8845   // Check to see if this is a wide variety of vsplti*, binop self cases.
8846   static const signed char SplatCsts[] = {
8847     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8848     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8849   };
8850
8851   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8852     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8853     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8854     int i = SplatCsts[idx];
8855
8856     // Figure out what shift amount will be used by altivec if shifted by i in
8857     // this splat size.
8858     unsigned TypeShiftAmt = i & (SplatBitSize-1);
8859
8860     // vsplti + shl self.
8861     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8862       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8863       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8864         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8865         Intrinsic::ppc_altivec_vslw
8866       };
8867       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8868       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8869     }
8870
8871     // vsplti + srl self.
8872     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8873       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8874       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8875         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8876         Intrinsic::ppc_altivec_vsrw
8877       };
8878       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8879       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8880     }
8881
8882     // vsplti + sra self.
8883     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8884       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8885       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8886         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8887         Intrinsic::ppc_altivec_vsraw
8888       };
8889       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8890       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8891     }
8892
8893     // vsplti + rol self.
8894     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8895                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8896       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8897       static const unsigned IIDs[] = { // Intrinsic to use for each size.
8898         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8899         Intrinsic::ppc_altivec_vrlw
8900       };
8901       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8902       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8903     }
8904
8905     // t = vsplti c, result = vsldoi t, t, 1
8906     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8907       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8908       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8909       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8910     }
8911     // t = vsplti c, result = vsldoi t, t, 2
8912     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8913       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8914       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8915       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8916     }
8917     // t = vsplti c, result = vsldoi t, t, 3
8918     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8919       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8920       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8921       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8922     }
8923   }
8924
8925   return SDValue();
8926 }
8927
8928 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8929 /// the specified operations to build the shuffle.
8930 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8931                                       SDValue RHS, SelectionDAG &DAG,
8932                                       const SDLoc &dl) {
8933   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8934   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8935   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8936
8937   enum {
8938     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8939     OP_VMRGHW,
8940     OP_VMRGLW,
8941     OP_VSPLTISW0,
8942     OP_VSPLTISW1,
8943     OP_VSPLTISW2,
8944     OP_VSPLTISW3,
8945     OP_VSLDOI4,
8946     OP_VSLDOI8,
8947     OP_VSLDOI12
8948   };
8949
8950   if (OpNum == OP_COPY) {
8951     if (LHSID == (1*9+2)*9+3) return LHS;
8952     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8953     return RHS;
8954   }
8955
8956   SDValue OpLHS, OpRHS;
8957   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8958   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8959
8960   int ShufIdxs[16];
8961   switch (OpNum) {
8962   default: llvm_unreachable("Unknown i32 permute!");
8963   case OP_VMRGHW:
8964     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8965     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8966     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8967     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8968     break;
8969   case OP_VMRGLW:
8970     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8971     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8972     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8973     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8974     break;
8975   case OP_VSPLTISW0:
8976     for (unsigned i = 0; i != 16; ++i)
8977       ShufIdxs[i] = (i&3)+0;
8978     break;
8979   case OP_VSPLTISW1:
8980     for (unsigned i = 0; i != 16; ++i)
8981       ShufIdxs[i] = (i&3)+4;
8982     break;
8983   case OP_VSPLTISW2:
8984     for (unsigned i = 0; i != 16; ++i)
8985       ShufIdxs[i] = (i&3)+8;
8986     break;
8987   case OP_VSPLTISW3:
8988     for (unsigned i = 0; i != 16; ++i)
8989       ShufIdxs[i] = (i&3)+12;
8990     break;
8991   case OP_VSLDOI4:
8992     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8993   case OP_VSLDOI8:
8994     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8995   case OP_VSLDOI12:
8996     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8997   }
8998   EVT VT = OpLHS.getValueType();
8999   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9000   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9001   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9002   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9003 }
9004
9005 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9006 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9007 /// SDValue.
9008 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9009                                            SelectionDAG &DAG) const {
9010   const unsigned BytesInVector = 16;
9011   bool IsLE = Subtarget.isLittleEndian();
9012   SDLoc dl(N);
9013   SDValue V1 = N->getOperand(0);
9014   SDValue V2 = N->getOperand(1);
9015   unsigned ShiftElts = 0, InsertAtByte = 0;
9016   bool Swap = false;
9017
9018   // Shifts required to get the byte we want at element 7.
9019   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9020                                    0, 15, 14, 13, 12, 11, 10, 9};
9021   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9022                                 1, 2,  3,  4,  5,  6,  7,  8};
9023
9024   ArrayRef<int> Mask = N->getMask();
9025   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9026
9027   // For each mask element, find out if we're just inserting something
9028   // from V2 into V1 or vice versa.
9029   // Possible permutations inserting an element from V2 into V1:
9030   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9031   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9032   //   ...
9033   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9034   // Inserting from V1 into V2 will be similar, except mask range will be
9035   // [16,31].
9036
9037   bool FoundCandidate = false;
9038   // If both vector operands for the shuffle are the same vector, the mask
9039   // will contain only elements from the first one and the second one will be
9040   // undef.
9041   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9042   // Go through the mask of half-words to find an element that's being moved
9043   // from one vector to the other.
9044   for (unsigned i = 0; i < BytesInVector; ++i) {
9045     unsigned CurrentElement = Mask[i];
9046     // If 2nd operand is undefined, we should only look for element 7 in the
9047     // Mask.
9048     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9049       continue;
9050
9051     bool OtherElementsInOrder = true;
9052     // Examine the other elements in the Mask to see if they're in original
9053     // order.
9054     for (unsigned j = 0; j < BytesInVector; ++j) {
9055       if (j == i)
9056         continue;
9057       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9058       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9059       // in which we always assume we're always picking from the 1st operand.
9060       int MaskOffset =
9061           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9062       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9063         OtherElementsInOrder = false;
9064         break;
9065       }
9066     }
9067     // If other elements are in original order, we record the number of shifts
9068     // we need to get the element we want into element 7. Also record which byte
9069     // in the vector we should insert into.
9070     if (OtherElementsInOrder) {
9071       // If 2nd operand is undefined, we assume no shifts and no swapping.
9072       if (V2.isUndef()) {
9073         ShiftElts = 0;
9074         Swap = false;
9075       } else {
9076         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9077         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9078                          : BigEndianShifts[CurrentElement & 0xF];
9079         Swap = CurrentElement < BytesInVector;
9080       }
9081       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9082       FoundCandidate = true;
9083       break;
9084     }
9085   }
9086
9087   if (!FoundCandidate)
9088     return SDValue();
9089
9090   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9091   // optionally with VECSHL if shift is required.
9092   if (Swap)
9093     std::swap(V1, V2);
9094   if (V2.isUndef())
9095     V2 = V1;
9096   if (ShiftElts) {
9097     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9098                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9099     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9100                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9101   }
9102   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9103                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9104 }
9105
9106 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9107 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9108 /// SDValue.
9109 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9110                                            SelectionDAG &DAG) const {
9111   const unsigned NumHalfWords = 8;
9112   const unsigned BytesInVector = NumHalfWords * 2;
9113   // Check that the shuffle is on half-words.
9114   if (!isNByteElemShuffleMask(N, 2, 1))
9115     return SDValue();
9116
9117   bool IsLE = Subtarget.isLittleEndian();
9118   SDLoc dl(N);
9119   SDValue V1 = N->getOperand(0);
9120   SDValue V2 = N->getOperand(1);
9121   unsigned ShiftElts = 0, InsertAtByte = 0;
9122   bool Swap = false;
9123
9124   // Shifts required to get the half-word we want at element 3.
9125   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9126   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9127
9128   uint32_t Mask = 0;
9129   uint32_t OriginalOrderLow = 0x1234567;
9130   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9131   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9132   // 32-bit space, only need 4-bit nibbles per element.
9133   for (unsigned i = 0; i < NumHalfWords; ++i) {
9134     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9135     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9136   }
9137
9138   // For each mask element, find out if we're just inserting something
9139   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9140   // from V2 into V1:
9141   //   X, 1, 2, 3, 4, 5, 6, 7
9142   //   0, X, 2, 3, 4, 5, 6, 7
9143   //   0, 1, X, 3, 4, 5, 6, 7
9144   //   0, 1, 2, X, 4, 5, 6, 7
9145   //   0, 1, 2, 3, X, 5, 6, 7
9146   //   0, 1, 2, 3, 4, X, 6, 7
9147   //   0, 1, 2, 3, 4, 5, X, 7
9148   //   0, 1, 2, 3, 4, 5, 6, X
9149   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9150
9151   bool FoundCandidate = false;
9152   // Go through the mask of half-words to find an element that's being moved
9153   // from one vector to the other.
9154   for (unsigned i = 0; i < NumHalfWords; ++i) {
9155     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9156     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9157     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9158     uint32_t TargetOrder = 0x0;
9159
9160     // If both vector operands for the shuffle are the same vector, the mask
9161     // will contain only elements from the first one and the second one will be
9162     // undef.
9163     if (V2.isUndef()) {
9164       ShiftElts = 0;
9165       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9166       TargetOrder = OriginalOrderLow;
9167       Swap = false;
9168       // Skip if not the correct element or mask of other elements don't equal
9169       // to our expected order.
9170       if (MaskOneElt == VINSERTHSrcElem &&
9171           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9172         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9173         FoundCandidate = true;
9174         break;
9175       }
9176     } else { // If both operands are defined.
9177       // Target order is [8,15] if the current mask is between [0,7].
9178       TargetOrder =
9179           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9180       // Skip if mask of other elements don't equal our expected order.
9181       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9182         // We only need the last 3 bits for the number of shifts.
9183         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9184                          : BigEndianShifts[MaskOneElt & 0x7];
9185         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9186         Swap = MaskOneElt < NumHalfWords;
9187         FoundCandidate = true;
9188         break;
9189       }
9190     }
9191   }
9192
9193   if (!FoundCandidate)
9194     return SDValue();
9195
9196   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9197   // optionally with VECSHL if shift is required.
9198   if (Swap)
9199     std::swap(V1, V2);
9200   if (V2.isUndef())
9201     V2 = V1;
9202   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9203   if (ShiftElts) {
9204     // Double ShiftElts because we're left shifting on v16i8 type.
9205     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9206                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9207     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9208     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9209                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9210     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9211   }
9212   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9213   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9214                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9215   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9216 }
9217
9218 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9219 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9220 /// return the code it can be lowered into.  Worst case, it can always be
9221 /// lowered into a vperm.
9222 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9223                                                SelectionDAG &DAG) const {
9224   SDLoc dl(Op);
9225   SDValue V1 = Op.getOperand(0);
9226   SDValue V2 = Op.getOperand(1);
9227   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9228   EVT VT = Op.getValueType();
9229   bool isLittleEndian = Subtarget.isLittleEndian();
9230
9231   unsigned ShiftElts, InsertAtByte;
9232   bool Swap = false;
9233
9234   // If this is a load-and-splat, we can do that with a single instruction
9235   // in some cases. However if the load has multiple uses, we don't want to
9236   // combine it because that will just produce multiple loads.
9237   const SDValue *InputLoad = getNormalLoadInput(V1);
9238   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9239       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9240       InputLoad->hasOneUse()) {
9241     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9242     int SplatIdx =
9243       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9244
9245     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9246     // For 4-byte load-and-splat, we need Power9.
9247     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9248       uint64_t Offset = 0;
9249       if (IsFourByte)
9250         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9251       else
9252         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9253       SDValue BasePtr = LD->getBasePtr();
9254       if (Offset != 0)
9255         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9256                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
9257       SDValue Ops[] = {
9258         LD->getChain(),    // Chain
9259         BasePtr,           // BasePtr
9260         DAG.getValueType(Op.getValueType()) // VT
9261       };
9262       SDVTList VTL =
9263         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9264       SDValue LdSplt =
9265         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9266                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
9267       if (LdSplt.getValueType() != SVOp->getValueType(0))
9268         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9269       return LdSplt;
9270     }
9271   }
9272   if (Subtarget.hasP9Vector() &&
9273       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9274                            isLittleEndian)) {
9275     if (Swap)
9276       std::swap(V1, V2);
9277     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9278     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9279     if (ShiftElts) {
9280       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9281                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
9282       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9283                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9284       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9285     }
9286     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9287                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9288     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9289   }
9290
9291   if (Subtarget.hasP9Altivec()) {
9292     SDValue NewISDNode;
9293     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9294       return NewISDNode;
9295
9296     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9297       return NewISDNode;
9298   }
9299
9300   if (Subtarget.hasVSX() &&
9301       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9302     if (Swap)
9303       std::swap(V1, V2);
9304     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9305     SDValue Conv2 =
9306         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9307
9308     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9309                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9310     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9311   }
9312
9313   if (Subtarget.hasVSX() &&
9314     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9315     if (Swap)
9316       std::swap(V1, V2);
9317     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9318     SDValue Conv2 =
9319         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9320
9321     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9322                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9323     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9324   }
9325
9326   if (Subtarget.hasP9Vector()) {
9327      if (PPC::isXXBRHShuffleMask(SVOp)) {
9328       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9329       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9330       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9331     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9332       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9333       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9334       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9335     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9336       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9337       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9338       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9339     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9340       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9341       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9342       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9343     }
9344   }
9345
9346   if (Subtarget.hasVSX()) {
9347     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9348       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9349
9350       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9351       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9352                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
9353       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9354     }
9355
9356     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9357     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9358       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9359       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9360       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9361     }
9362   }
9363
9364   if (Subtarget.hasQPX()) {
9365     if (VT.getVectorNumElements() != 4)
9366       return SDValue();
9367
9368     if (V2.isUndef()) V2 = V1;
9369
9370     int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9371     if (AlignIdx != -1) {
9372       return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9373                          DAG.getConstant(AlignIdx, dl, MVT::i32));
9374     } else if (SVOp->isSplat()) {
9375       int SplatIdx = SVOp->getSplatIndex();
9376       if (SplatIdx >= 4) {
9377         std::swap(V1, V2);
9378         SplatIdx -= 4;
9379       }
9380
9381       return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9382                          DAG.getConstant(SplatIdx, dl, MVT::i32));
9383     }
9384
9385     // Lower this into a qvgpci/qvfperm pair.
9386
9387     // Compute the qvgpci literal
9388     unsigned idx = 0;
9389     for (unsigned i = 0; i < 4; ++i) {
9390       int m = SVOp->getMaskElt(i);
9391       unsigned mm = m >= 0 ? (unsigned) m : i;
9392       idx |= mm << (3-i)*3;
9393     }
9394
9395     SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9396                              DAG.getConstant(idx, dl, MVT::i32));
9397     return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9398   }
9399
9400   // Cases that are handled by instructions that take permute immediates
9401   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9402   // selected by the instruction selector.
9403   if (V2.isUndef()) {
9404     if (PPC::isSplatShuffleMask(SVOp, 1) ||
9405         PPC::isSplatShuffleMask(SVOp, 2) ||
9406         PPC::isSplatShuffleMask(SVOp, 4) ||
9407         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9408         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9409         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9410         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9411         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9412         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9413         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9414         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9415         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9416         (Subtarget.hasP8Altivec() && (
9417          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9418          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9419          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9420       return Op;
9421     }
9422   }
9423
9424   // Altivec has a variety of "shuffle immediates" that take two vector inputs
9425   // and produce a fixed permutation.  If any of these match, do not lower to
9426   // VPERM.
9427   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9428   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9429       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9430       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9431       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9432       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9433       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9434       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9435       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9436       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9437       (Subtarget.hasP8Altivec() && (
9438        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9439        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9440        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9441     return Op;
9442
9443   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9444   // perfect shuffle table to emit an optimal matching sequence.
9445   ArrayRef<int> PermMask = SVOp->getMask();
9446
9447   unsigned PFIndexes[4];
9448   bool isFourElementShuffle = true;
9449   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9450     unsigned EltNo = 8;   // Start out undef.
9451     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9452       if (PermMask[i*4+j] < 0)
9453         continue;   // Undef, ignore it.
9454
9455       unsigned ByteSource = PermMask[i*4+j];
9456       if ((ByteSource & 3) != j) {
9457         isFourElementShuffle = false;
9458         break;
9459       }
9460
9461       if (EltNo == 8) {
9462         EltNo = ByteSource/4;
9463       } else if (EltNo != ByteSource/4) {
9464         isFourElementShuffle = false;
9465         break;
9466       }
9467     }
9468     PFIndexes[i] = EltNo;
9469   }
9470
9471   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9472   // perfect shuffle vector to determine if it is cost effective to do this as
9473   // discrete instructions, or whether we should use a vperm.
9474   // For now, we skip this for little endian until such time as we have a
9475   // little-endian perfect shuffle table.
9476   if (isFourElementShuffle && !isLittleEndian) {
9477     // Compute the index in the perfect shuffle table.
9478     unsigned PFTableIndex =
9479       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9480
9481     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9482     unsigned Cost  = (PFEntry >> 30);
9483
9484     // Determining when to avoid vperm is tricky.  Many things affect the cost
9485     // of vperm, particularly how many times the perm mask needs to be computed.
9486     // For example, if the perm mask can be hoisted out of a loop or is already
9487     // used (perhaps because there are multiple permutes with the same shuffle
9488     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9489     // the loop requires an extra register.
9490     //
9491     // As a compromise, we only emit discrete instructions if the shuffle can be
9492     // generated in 3 or fewer operations.  When we have loop information
9493     // available, if this block is within a loop, we should avoid using vperm
9494     // for 3-operation perms and use a constant pool load instead.
9495     if (Cost < 3)
9496       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9497   }
9498
9499   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9500   // vector that will get spilled to the constant pool.
9501   if (V2.isUndef()) V2 = V1;
9502
9503   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9504   // that it is in input element units, not in bytes.  Convert now.
9505
9506   // For little endian, the order of the input vectors is reversed, and
9507   // the permutation mask is complemented with respect to 31.  This is
9508   // necessary to produce proper semantics with the big-endian-biased vperm
9509   // instruction.
9510   EVT EltVT = V1.getValueType().getVectorElementType();
9511   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9512
9513   SmallVector<SDValue, 16> ResultMask;
9514   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9515     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9516
9517     for (unsigned j = 0; j != BytesPerElement; ++j)
9518       if (isLittleEndian)
9519         ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9520                                              dl, MVT::i32));
9521       else
9522         ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9523                                              MVT::i32));
9524   }
9525
9526   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9527   if (isLittleEndian)
9528     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9529                        V2, V1, VPermMask);
9530   else
9531     return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9532                        V1, V2, VPermMask);
9533 }
9534
9535 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9536 /// vector comparison.  If it is, return true and fill in Opc/isDot with
9537 /// information about the intrinsic.
9538 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9539                                  bool &isDot, const PPCSubtarget &Subtarget) {
9540   unsigned IntrinsicID =
9541       cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9542   CompareOpc = -1;
9543   isDot = false;
9544   switch (IntrinsicID) {
9545   default:
9546     return false;
9547   // Comparison predicates.
9548   case Intrinsic::ppc_altivec_vcmpbfp_p:
9549     CompareOpc = 966;
9550     isDot = true;
9551     break;
9552   case Intrinsic::ppc_altivec_vcmpeqfp_p:
9553     CompareOpc = 198;
9554     isDot = true;
9555     break;
9556   case Intrinsic::ppc_altivec_vcmpequb_p:
9557     CompareOpc = 6;
9558     isDot = true;
9559     break;
9560   case Intrinsic::ppc_altivec_vcmpequh_p:
9561     CompareOpc = 70;
9562     isDot = true;
9563     break;
9564   case Intrinsic::ppc_altivec_vcmpequw_p:
9565     CompareOpc = 134;
9566     isDot = true;
9567     break;
9568   case Intrinsic::ppc_altivec_vcmpequd_p:
9569     if (Subtarget.hasP8Altivec()) {
9570       CompareOpc = 199;
9571       isDot = true;
9572     } else
9573       return false;
9574     break;
9575   case Intrinsic::ppc_altivec_vcmpneb_p:
9576   case Intrinsic::ppc_altivec_vcmpneh_p:
9577   case Intrinsic::ppc_altivec_vcmpnew_p:
9578   case Intrinsic::ppc_altivec_vcmpnezb_p:
9579   case Intrinsic::ppc_altivec_vcmpnezh_p:
9580   case Intrinsic::ppc_altivec_vcmpnezw_p:
9581     if (Subtarget.hasP9Altivec()) {
9582       switch (IntrinsicID) {
9583       default:
9584         llvm_unreachable("Unknown comparison intrinsic.");
9585       case Intrinsic::ppc_altivec_vcmpneb_p:
9586         CompareOpc = 7;
9587         break;
9588       case Intrinsic::ppc_altivec_vcmpneh_p:
9589         CompareOpc = 71;
9590         break;
9591       case Intrinsic::ppc_altivec_vcmpnew_p:
9592         CompareOpc = 135;
9593         break;
9594       case Intrinsic::ppc_altivec_vcmpnezb_p:
9595         CompareOpc = 263;
9596         break;
9597       case Intrinsic::ppc_altivec_vcmpnezh_p:
9598         CompareOpc = 327;
9599         break;
9600       case Intrinsic::ppc_altivec_vcmpnezw_p:
9601         CompareOpc = 391;
9602         break;
9603       }
9604       isDot = true;
9605     } else
9606       return false;
9607     break;
9608   case Intrinsic::ppc_altivec_vcmpgefp_p:
9609     CompareOpc = 454;
9610     isDot = true;
9611     break;
9612   case Intrinsic::ppc_altivec_vcmpgtfp_p:
9613     CompareOpc = 710;
9614     isDot = true;
9615     break;
9616   case Intrinsic::ppc_altivec_vcmpgtsb_p:
9617     CompareOpc = 774;
9618     isDot = true;
9619     break;
9620   case Intrinsic::ppc_altivec_vcmpgtsh_p:
9621     CompareOpc = 838;
9622     isDot = true;
9623     break;
9624   case Intrinsic::ppc_altivec_vcmpgtsw_p:
9625     CompareOpc = 902;
9626     isDot = true;
9627     break;
9628   case Intrinsic::ppc_altivec_vcmpgtsd_p:
9629     if (Subtarget.hasP8Altivec()) {
9630       CompareOpc = 967;
9631       isDot = true;
9632     } else
9633       return false;
9634     break;
9635   case Intrinsic::ppc_altivec_vcmpgtub_p:
9636     CompareOpc = 518;
9637     isDot = true;
9638     break;
9639   case Intrinsic::ppc_altivec_vcmpgtuh_p:
9640     CompareOpc = 582;
9641     isDot = true;
9642     break;
9643   case Intrinsic::ppc_altivec_vcmpgtuw_p:
9644     CompareOpc = 646;
9645     isDot = true;
9646     break;
9647   case Intrinsic::ppc_altivec_vcmpgtud_p:
9648     if (Subtarget.hasP8Altivec()) {
9649       CompareOpc = 711;
9650       isDot = true;
9651     } else
9652       return false;
9653     break;
9654
9655   // VSX predicate comparisons use the same infrastructure
9656   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9657   case Intrinsic::ppc_vsx_xvcmpgedp_p:
9658   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9659   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9660   case Intrinsic::ppc_vsx_xvcmpgesp_p:
9661   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9662     if (Subtarget.hasVSX()) {
9663       switch (IntrinsicID) {
9664       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9665         CompareOpc = 99;
9666         break;
9667       case Intrinsic::ppc_vsx_xvcmpgedp_p:
9668         CompareOpc = 115;
9669         break;
9670       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9671         CompareOpc = 107;
9672         break;
9673       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9674         CompareOpc = 67;
9675         break;
9676       case Intrinsic::ppc_vsx_xvcmpgesp_p:
9677         CompareOpc = 83;
9678         break;
9679       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9680         CompareOpc = 75;
9681         break;
9682       }
9683       isDot = true;
9684     } else
9685       return false;
9686     break;
9687
9688   // Normal Comparisons.
9689   case Intrinsic::ppc_altivec_vcmpbfp:
9690     CompareOpc = 966;
9691     break;
9692   case Intrinsic::ppc_altivec_vcmpeqfp:
9693     CompareOpc = 198;
9694     break;
9695   case Intrinsic::ppc_altivec_vcmpequb:
9696     CompareOpc = 6;
9697     break;
9698   case Intrinsic::ppc_altivec_vcmpequh:
9699     CompareOpc = 70;
9700     break;
9701   case Intrinsic::ppc_altivec_vcmpequw:
9702     CompareOpc = 134;
9703     break;
9704   case Intrinsic::ppc_altivec_vcmpequd:
9705     if (Subtarget.hasP8Altivec())
9706       CompareOpc = 199;
9707     else
9708       return false;
9709     break;
9710   case Intrinsic::ppc_altivec_vcmpneb:
9711   case Intrinsic::ppc_altivec_vcmpneh:
9712   case Intrinsic::ppc_altivec_vcmpnew:
9713   case Intrinsic::ppc_altivec_vcmpnezb:
9714   case Intrinsic::ppc_altivec_vcmpnezh:
9715   case Intrinsic::ppc_altivec_vcmpnezw:
9716     if (Subtarget.hasP9Altivec())
9717       switch (IntrinsicID) {
9718       default:
9719         llvm_unreachable("Unknown comparison intrinsic.");
9720       case Intrinsic::ppc_altivec_vcmpneb:
9721         CompareOpc = 7;
9722         break;
9723       case Intrinsic::ppc_altivec_vcmpneh:
9724         CompareOpc = 71;
9725         break;
9726       case Intrinsic::ppc_altivec_vcmpnew:
9727         CompareOpc = 135;
9728         break;
9729       case Intrinsic::ppc_altivec_vcmpnezb:
9730         CompareOpc = 263;
9731         break;
9732       case Intrinsic::ppc_altivec_vcmpnezh:
9733         CompareOpc = 327;
9734         break;
9735       case Intrinsic::ppc_altivec_vcmpnezw:
9736         CompareOpc = 391;
9737         break;
9738       }
9739     else
9740       return false;
9741     break;
9742   case Intrinsic::ppc_altivec_vcmpgefp:
9743     CompareOpc = 454;
9744     break;
9745   case Intrinsic::ppc_altivec_vcmpgtfp:
9746     CompareOpc = 710;
9747     break;
9748   case Intrinsic::ppc_altivec_vcmpgtsb:
9749     CompareOpc = 774;
9750     break;
9751   case Intrinsic::ppc_altivec_vcmpgtsh:
9752     CompareOpc = 838;
9753     break;
9754   case Intrinsic::ppc_altivec_vcmpgtsw:
9755     CompareOpc = 902;
9756     break;
9757   case Intrinsic::ppc_altivec_vcmpgtsd:
9758     if (Subtarget.hasP8Altivec())
9759       CompareOpc = 967;
9760     else
9761       return false;
9762     break;
9763   case Intrinsic::ppc_altivec_vcmpgtub:
9764     CompareOpc = 518;
9765     break;
9766   case Intrinsic::ppc_altivec_vcmpgtuh:
9767     CompareOpc = 582;
9768     break;
9769   case Intrinsic::ppc_altivec_vcmpgtuw:
9770     CompareOpc = 646;
9771     break;
9772   case Intrinsic::ppc_altivec_vcmpgtud:
9773     if (Subtarget.hasP8Altivec())
9774       CompareOpc = 711;
9775     else
9776       return false;
9777     break;
9778   }
9779   return true;
9780 }
9781
9782 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9783 /// lower, do it, otherwise return null.
9784 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9785                                                    SelectionDAG &DAG) const {
9786   unsigned IntrinsicID =
9787     cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9788
9789   SDLoc dl(Op);
9790
9791   if (IntrinsicID == Intrinsic::thread_pointer) {
9792     // Reads the thread pointer register, used for __builtin_thread_pointer.
9793     if (Subtarget.isPPC64())
9794       return DAG.getRegister(PPC::X13, MVT::i64);
9795     return DAG.getRegister(PPC::R2, MVT::i32);
9796   }
9797
9798   // If this is a lowered altivec predicate compare, CompareOpc is set to the
9799   // opcode number of the comparison.
9800   int CompareOpc;
9801   bool isDot;
9802   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9803     return SDValue();    // Don't custom lower most intrinsics.
9804
9805   // If this is a non-dot comparison, make the VCMP node and we are done.
9806   if (!isDot) {
9807     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9808                               Op.getOperand(1), Op.getOperand(2),
9809                               DAG.getConstant(CompareOpc, dl, MVT::i32));
9810     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9811   }
9812
9813   // Create the PPCISD altivec 'dot' comparison node.
9814   SDValue Ops[] = {
9815     Op.getOperand(2),  // LHS
9816     Op.getOperand(3),  // RHS
9817     DAG.getConstant(CompareOpc, dl, MVT::i32)
9818   };
9819   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9820   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9821
9822   // Now that we have the comparison, emit a copy from the CR to a GPR.
9823   // This is flagged to the above dot comparison.
9824   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9825                                 DAG.getRegister(PPC::CR6, MVT::i32),
9826                                 CompNode.getValue(1));
9827
9828   // Unpack the result based on how the target uses it.
9829   unsigned BitNo;   // Bit # of CR6.
9830   bool InvertBit;   // Invert result?
9831   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9832   default:  // Can't happen, don't crash on invalid number though.
9833   case 0:   // Return the value of the EQ bit of CR6.
9834     BitNo = 0; InvertBit = false;
9835     break;
9836   case 1:   // Return the inverted value of the EQ bit of CR6.
9837     BitNo = 0; InvertBit = true;
9838     break;
9839   case 2:   // Return the value of the LT bit of CR6.
9840     BitNo = 2; InvertBit = false;
9841     break;
9842   case 3:   // Return the inverted value of the LT bit of CR6.
9843     BitNo = 2; InvertBit = true;
9844     break;
9845   }
9846
9847   // Shift the bit into the low position.
9848   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9849                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9850   // Isolate the bit.
9851   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9852                       DAG.getConstant(1, dl, MVT::i32));
9853
9854   // If we are supposed to, toggle the bit.
9855   if (InvertBit)
9856     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9857                         DAG.getConstant(1, dl, MVT::i32));
9858   return Flags;
9859 }
9860
9861 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9862                                                SelectionDAG &DAG) const {
9863   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9864   // the beginning of the argument list.
9865   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9866   SDLoc DL(Op);
9867   switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9868   case Intrinsic::ppc_cfence: {
9869     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9870     assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9871     return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9872                                       DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9873                                                   Op.getOperand(ArgStart + 1)),
9874                                       Op.getOperand(0)),
9875                    0);
9876   }
9877   default:
9878     break;
9879   }
9880   return SDValue();
9881 }
9882
9883 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9884   // Check for a DIV with the same operands as this REM.
9885   for (auto UI : Op.getOperand(1)->uses()) {
9886     if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9887         (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9888       if (UI->getOperand(0) == Op.getOperand(0) &&
9889           UI->getOperand(1) == Op.getOperand(1))
9890         return SDValue();
9891   }
9892   return Op;
9893 }
9894
9895 // Lower scalar BSWAP64 to xxbrd.
9896 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9897   SDLoc dl(Op);
9898   // MTVSRDD
9899   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9900                    Op.getOperand(0));
9901   // XXBRD
9902   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
9903   // MFVSRD
9904   int VectorIndex = 0;
9905   if (Subtarget.isLittleEndian())
9906     VectorIndex = 1;
9907   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9908                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9909   return Op;
9910 }
9911
9912 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9913 // compared to a value that is atomically loaded (atomic loads zero-extend).
9914 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9915                                                 SelectionDAG &DAG) const {
9916   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9917          "Expecting an atomic compare-and-swap here.");
9918   SDLoc dl(Op);
9919   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9920   EVT MemVT = AtomicNode->getMemoryVT();
9921   if (MemVT.getSizeInBits() >= 32)
9922     return Op;
9923
9924   SDValue CmpOp = Op.getOperand(2);
9925   // If this is already correctly zero-extended, leave it alone.
9926   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9927   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9928     return Op;
9929
9930   // Clear the high bits of the compare operand.
9931   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9932   SDValue NewCmpOp =
9933     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9934                 DAG.getConstant(MaskVal, dl, MVT::i32));
9935
9936   // Replace the existing compare operand with the properly zero-extended one.
9937   SmallVector<SDValue, 4> Ops;
9938   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9939     Ops.push_back(AtomicNode->getOperand(i));
9940   Ops[2] = NewCmpOp;
9941   MachineMemOperand *MMO = AtomicNode->getMemOperand();
9942   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9943   auto NodeTy =
9944     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9945   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9946 }
9947
9948 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9949                                                  SelectionDAG &DAG) const {
9950   SDLoc dl(Op);
9951   // Create a stack slot that is 16-byte aligned.
9952   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9953   int FrameIdx = MFI.CreateStackObject(16, 16, false);
9954   EVT PtrVT = getPointerTy(DAG.getDataLayout());
9955   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9956
9957   // Store the input value into Value#0 of the stack slot.
9958   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9959                                MachinePointerInfo());
9960   // Load it out.
9961   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9962 }
9963
9964 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9965                                                   SelectionDAG &DAG) const {
9966   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9967          "Should only be called for ISD::INSERT_VECTOR_ELT");
9968
9969   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9970   // We have legal lowering for constant indices but not for variable ones.
9971   if (!C)
9972     return SDValue();
9973
9974   EVT VT = Op.getValueType();
9975   SDLoc dl(Op);
9976   SDValue V1 = Op.getOperand(0);
9977   SDValue V2 = Op.getOperand(1);
9978   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9979   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9980     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9981     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9982     unsigned InsertAtElement = C->getZExtValue();
9983     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9984     if (Subtarget.isLittleEndian()) {
9985       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9986     }
9987     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9988                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9989   }
9990   return Op;
9991 }
9992
9993 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9994                                                    SelectionDAG &DAG) const {
9995   SDLoc dl(Op);
9996   SDNode *N = Op.getNode();
9997
9998   assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9999          "Unknown extract_vector_elt type");
10000
10001   SDValue Value = N->getOperand(0);
10002
10003   // The first part of this is like the store lowering except that we don't
10004   // need to track the chain.
10005
10006   // The values are now known to be -1 (false) or 1 (true). To convert this
10007   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10008   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10009   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10010
10011   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10012   // understand how to form the extending load.
10013   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10014
10015   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10016
10017   // Now convert to an integer and store.
10018   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10019     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10020     Value);
10021
10022   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10023   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10024   MachinePointerInfo PtrInfo =
10025       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10026   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10027   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10028
10029   SDValue StoreChain = DAG.getEntryNode();
10030   SDValue Ops[] = {StoreChain,
10031                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10032                    Value, FIdx};
10033   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10034
10035   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10036     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10037
10038   // Extract the value requested.
10039   unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10040   SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10041   Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10042
10043   SDValue IntVal =
10044       DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
10045
10046   if (!Subtarget.useCRBits())
10047     return IntVal;
10048
10049   return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
10050 }
10051
10052 /// Lowering for QPX v4i1 loads
10053 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10054                                            SelectionDAG &DAG) const {
10055   SDLoc dl(Op);
10056   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10057   SDValue LoadChain = LN->getChain();
10058   SDValue BasePtr = LN->getBasePtr();
10059
10060   if (Op.getValueType() == MVT::v4f64 ||
10061       Op.getValueType() == MVT::v4f32) {
10062     EVT MemVT = LN->getMemoryVT();
10063     unsigned Alignment = LN->getAlignment();
10064
10065     // If this load is properly aligned, then it is legal.
10066     if (Alignment >= MemVT.getStoreSize())
10067       return Op;
10068
10069     EVT ScalarVT = Op.getValueType().getScalarType(),
10070         ScalarMemVT = MemVT.getScalarType();
10071     unsigned Stride = ScalarMemVT.getStoreSize();
10072
10073     SDValue Vals[4], LoadChains[4];
10074     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10075       SDValue Load;
10076       if (ScalarVT != ScalarMemVT)
10077         Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
10078                               BasePtr,
10079                               LN->getPointerInfo().getWithOffset(Idx * Stride),
10080                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10081                               LN->getMemOperand()->getFlags(), LN->getAAInfo());
10082       else
10083         Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
10084                            LN->getPointerInfo().getWithOffset(Idx * Stride),
10085                            MinAlign(Alignment, Idx * Stride),
10086                            LN->getMemOperand()->getFlags(), LN->getAAInfo());
10087
10088       if (Idx == 0 && LN->isIndexed()) {
10089         assert(LN->getAddressingMode() == ISD::PRE_INC &&
10090                "Unknown addressing mode on vector load");
10091         Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
10092                                   LN->getAddressingMode());
10093       }
10094
10095       Vals[Idx] = Load;
10096       LoadChains[Idx] = Load.getValue(1);
10097
10098       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10099                             DAG.getConstant(Stride, dl,
10100                                             BasePtr.getValueType()));
10101     }
10102
10103     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10104     SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
10105
10106     if (LN->isIndexed()) {
10107       SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
10108       return DAG.getMergeValues(RetOps, dl);
10109     }
10110
10111     SDValue RetOps[] = { Value, TF };
10112     return DAG.getMergeValues(RetOps, dl);
10113   }
10114
10115   assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
10116   assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
10117
10118   // To lower v4i1 from a byte array, we load the byte elements of the
10119   // vector and then reuse the BUILD_VECTOR logic.
10120
10121   SDValue VectElmts[4], VectElmtChains[4];
10122   for (unsigned i = 0; i < 4; ++i) {
10123     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10124     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10125
10126     VectElmts[i] = DAG.getExtLoad(
10127         ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
10128         LN->getPointerInfo().getWithOffset(i), MVT::i8,
10129         /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
10130     VectElmtChains[i] = VectElmts[i].getValue(1);
10131   }
10132
10133   LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
10134   SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
10135
10136   SDValue RVals[] = { Value, LoadChain };
10137   return DAG.getMergeValues(RVals, dl);
10138 }
10139
10140 /// Lowering for QPX v4i1 stores
10141 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10142                                             SelectionDAG &DAG) const {
10143   SDLoc dl(Op);
10144   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10145   SDValue StoreChain = SN->getChain();
10146   SDValue BasePtr = SN->getBasePtr();
10147   SDValue Value = SN->getValue();
10148
10149   if (Value.getValueType() == MVT::v4f64 ||
10150       Value.getValueType() == MVT::v4f32) {
10151     EVT MemVT = SN->getMemoryVT();
10152     unsigned Alignment = SN->getAlignment();
10153
10154     // If this store is properly aligned, then it is legal.
10155     if (Alignment >= MemVT.getStoreSize())
10156       return Op;
10157
10158     EVT ScalarVT = Value.getValueType().getScalarType(),
10159         ScalarMemVT = MemVT.getScalarType();
10160     unsigned Stride = ScalarMemVT.getStoreSize();
10161
10162     SDValue Stores[4];
10163     for (unsigned Idx = 0; Idx < 4; ++Idx) {
10164       SDValue Ex = DAG.getNode(
10165           ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10166           DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
10167       SDValue Store;
10168       if (ScalarVT != ScalarMemVT)
10169         Store =
10170             DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10171                               SN->getPointerInfo().getWithOffset(Idx * Stride),
10172                               ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10173                               SN->getMemOperand()->getFlags(), SN->getAAInfo());
10174       else
10175         Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10176                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10177                              MinAlign(Alignment, Idx * Stride),
10178                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10179
10180       if (Idx == 0 && SN->isIndexed()) {
10181         assert(SN->getAddressingMode() == ISD::PRE_INC &&
10182                "Unknown addressing mode on vector store");
10183         Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10184                                     SN->getAddressingMode());
10185       }
10186
10187       BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10188                             DAG.getConstant(Stride, dl,
10189                                             BasePtr.getValueType()));
10190       Stores[Idx] = Store;
10191     }
10192
10193     SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10194
10195     if (SN->isIndexed()) {
10196       SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10197       return DAG.getMergeValues(RetOps, dl);
10198     }
10199
10200     return TF;
10201   }
10202
10203   assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10204   assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10205
10206   // The values are now known to be -1 (false) or 1 (true). To convert this
10207   // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10208   // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10209   Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10210
10211   // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10212   // understand how to form the extending load.
10213   SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10214
10215   Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10216
10217   // Now convert to an integer and store.
10218   Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10219     DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10220     Value);
10221
10222   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10223   int FrameIdx = MFI.CreateStackObject(16, 16, false);
10224   MachinePointerInfo PtrInfo =
10225       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10226   EVT PtrVT = getPointerTy(DAG.getDataLayout());
10227   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10228
10229   SDValue Ops[] = {StoreChain,
10230                    DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10231                    Value, FIdx};
10232   SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10233
10234   StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10235     dl, VTs, Ops, MVT::v4i32, PtrInfo);
10236
10237   // Move data into the byte array.
10238   SDValue Loads[4], LoadChains[4];
10239   for (unsigned i = 0; i < 4; ++i) {
10240     unsigned Offset = 4*i;
10241     SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10242     Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10243
10244     Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10245                            PtrInfo.getWithOffset(Offset));
10246     LoadChains[i] = Loads[i].getValue(1);
10247   }
10248
10249   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10250
10251   SDValue Stores[4];
10252   for (unsigned i = 0; i < 4; ++i) {
10253     SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10254     Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10255
10256     Stores[i] = DAG.getTruncStore(
10257         StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10258         MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10259         SN->getAAInfo());
10260   }
10261
10262   StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10263
10264   return StoreChain;
10265 }
10266
10267 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10268   SDLoc dl(Op);
10269   if (Op.getValueType() == MVT::v4i32) {
10270     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10271
10272     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
10273     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
10274
10275     SDValue RHSSwap =   // = vrlw RHS, 16
10276       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10277
10278     // Shrinkify inputs to v8i16.
10279     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10280     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10281     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10282
10283     // Low parts multiplied together, generating 32-bit results (we ignore the
10284     // top parts).
10285     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10286                                         LHS, RHS, DAG, dl, MVT::v4i32);
10287
10288     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10289                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10290     // Shift the high parts up 16 bits.
10291     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10292                               Neg16, DAG, dl);
10293     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10294   } else if (Op.getValueType() == MVT::v8i16) {
10295     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10296
10297     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
10298
10299     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
10300                             LHS, RHS, Zero, DAG, dl);
10301   } else if (Op.getValueType() == MVT::v16i8) {
10302     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10303     bool isLittleEndian = Subtarget.isLittleEndian();
10304
10305     // Multiply the even 8-bit parts, producing 16-bit sums.
10306     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10307                                            LHS, RHS, DAG, dl, MVT::v8i16);
10308     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10309
10310     // Multiply the odd 8-bit parts, producing 16-bit sums.
10311     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10312                                           LHS, RHS, DAG, dl, MVT::v8i16);
10313     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10314
10315     // Merge the results together.  Because vmuleub and vmuloub are
10316     // instructions with a big-endian bias, we must reverse the
10317     // element numbering and reverse the meaning of "odd" and "even"
10318     // when generating little endian code.
10319     int Ops[16];
10320     for (unsigned i = 0; i != 8; ++i) {
10321       if (isLittleEndian) {
10322         Ops[i*2  ] = 2*i;
10323         Ops[i*2+1] = 2*i+16;
10324       } else {
10325         Ops[i*2  ] = 2*i+1;
10326         Ops[i*2+1] = 2*i+1+16;
10327       }
10328     }
10329     if (isLittleEndian)
10330       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10331     else
10332       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10333   } else {
10334     llvm_unreachable("Unknown mul to lower!");
10335   }
10336 }
10337
10338 SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10339
10340   assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10341
10342   EVT VT = Op.getValueType();
10343   assert(VT.isVector() &&
10344          "Only set vector abs as custom, scalar abs shouldn't reach here!");
10345   assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10346           VT == MVT::v16i8) &&
10347          "Unexpected vector element type!");
10348   assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10349          "Current subtarget doesn't support smax v2i64!");
10350
10351   // For vector abs, it can be lowered to:
10352   // abs x
10353   // ==>
10354   // y = -x
10355   // smax(x, y)
10356
10357   SDLoc dl(Op);
10358   SDValue X = Op.getOperand(0);
10359   SDValue Zero = DAG.getConstant(0, dl, VT);
10360   SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10361
10362   // SMAX patch https://reviews.llvm.org/D47332
10363   // hasn't landed yet, so use intrinsic first here.
10364   // TODO: Should use SMAX directly once SMAX patch landed
10365   Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10366   if (VT == MVT::v2i64)
10367     BifID = Intrinsic::ppc_altivec_vmaxsd;
10368   else if (VT == MVT::v8i16)
10369     BifID = Intrinsic::ppc_altivec_vmaxsh;
10370   else if (VT == MVT::v16i8)
10371     BifID = Intrinsic::ppc_altivec_vmaxsb;
10372
10373   return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10374 }
10375
10376 // Custom lowering for fpext vf32 to v2f64
10377 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10378
10379   assert(Op.getOpcode() == ISD::FP_EXTEND &&
10380          "Should only be called for ISD::FP_EXTEND");
10381
10382   // FIXME: handle extends from half precision float vectors on P9.
10383   // We only want to custom lower an extend from v2f32 to v2f64.
10384   if (Op.getValueType() != MVT::v2f64 ||
10385       Op.getOperand(0).getValueType() != MVT::v2f32)
10386     return SDValue();
10387
10388   SDLoc dl(Op);
10389   SDValue Op0 = Op.getOperand(0);
10390
10391   switch (Op0.getOpcode()) {
10392   default:
10393     return SDValue();
10394   case ISD::EXTRACT_SUBVECTOR: {
10395     assert(Op0.getNumOperands() == 2 &&
10396            isa<ConstantSDNode>(Op0->getOperand(1)) &&
10397            "Node should have 2 operands with second one being a constant!");
10398
10399     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10400       return SDValue();
10401
10402     // Custom lower is only done for high or low doubleword.
10403     int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10404     if (Idx % 2 != 0)
10405       return SDValue();
10406
10407     // Since input is v4f32, at this point Idx is either 0 or 2.
10408     // Shift to get the doubleword position we want.
10409     int DWord = Idx >> 1;
10410
10411     // High and low word positions are different on little endian.
10412     if (Subtarget.isLittleEndian())
10413       DWord ^= 0x1;
10414
10415     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10416                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10417   }
10418   case ISD::FADD:
10419   case ISD::FMUL:
10420   case ISD::FSUB: {
10421     SDValue NewLoad[2];
10422     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10423       // Ensure both input are loads.
10424       SDValue LdOp = Op0.getOperand(i);
10425       if (LdOp.getOpcode() != ISD::LOAD)
10426         return SDValue();
10427       // Generate new load node.
10428       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10429       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10430       NewLoad[i] = DAG.getMemIntrinsicNode(
10431           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10432           LD->getMemoryVT(), LD->getMemOperand());
10433     }
10434     SDValue NewOp =
10435         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10436                     NewLoad[1], Op0.getNode()->getFlags());
10437     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10438                        DAG.getConstant(0, dl, MVT::i32));
10439   }
10440   case ISD::LOAD: {
10441     LoadSDNode *LD = cast<LoadSDNode>(Op0);
10442     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10443     SDValue NewLd = DAG.getMemIntrinsicNode(
10444         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10445         LD->getMemoryVT(), LD->getMemOperand());
10446     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10447                        DAG.getConstant(0, dl, MVT::i32));
10448   }
10449   }
10450   llvm_unreachable("ERROR:Should return for all cases within swtich.");
10451 }
10452
10453 /// LowerOperation - Provide custom lowering hooks for some operations.
10454 ///
10455 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10456   switch (Op.getOpcode()) {
10457   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10458   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10459   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10460   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10461   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10462   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10463   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10464   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10465   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10466
10467   // Variable argument lowering.
10468   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10469   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10470   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10471
10472   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10473   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10474   case ISD::GET_DYNAMIC_AREA_OFFSET:
10475     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10476
10477   // Exception handling lowering.
10478   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10479   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10480   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10481
10482   case ISD::LOAD:               return LowerLOAD(Op, DAG);
10483   case ISD::STORE:              return LowerSTORE(Op, DAG);
10484   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10485   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10486   case ISD::FP_TO_UINT:
10487   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10488   case ISD::UINT_TO_FP:
10489   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10490   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10491
10492   // Lower 64-bit shifts.
10493   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10494   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10495   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10496
10497   // Vector-related lowering.
10498   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10499   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10500   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10501   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10502   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10503   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10504   case ISD::MUL:                return LowerMUL(Op, DAG);
10505   case ISD::ABS:                return LowerABS(Op, DAG);
10506   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10507
10508   // For counter-based loop handling.
10509   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10510
10511   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10512
10513   // Frame & Return address.
10514   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10515   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10516
10517   case ISD::INTRINSIC_VOID:
10518     return LowerINTRINSIC_VOID(Op, DAG);
10519   case ISD::SREM:
10520   case ISD::UREM:
10521     return LowerREM(Op, DAG);
10522   case ISD::BSWAP:
10523     return LowerBSWAP(Op, DAG);
10524   case ISD::ATOMIC_CMP_SWAP:
10525     return LowerATOMIC_CMP_SWAP(Op, DAG);
10526   }
10527 }
10528
10529 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10530                                            SmallVectorImpl<SDValue>&Results,
10531                                            SelectionDAG &DAG) const {
10532   SDLoc dl(N);
10533   switch (N->getOpcode()) {
10534   default:
10535     llvm_unreachable("Do not know how to custom type legalize this operation!");
10536   case ISD::READCYCLECOUNTER: {
10537     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10538     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10539
10540     Results.push_back(RTB);
10541     Results.push_back(RTB.getValue(1));
10542     Results.push_back(RTB.getValue(2));
10543     break;
10544   }
10545   case ISD::INTRINSIC_W_CHAIN: {
10546     if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10547         Intrinsic::loop_decrement)
10548       break;
10549
10550     assert(N->getValueType(0) == MVT::i1 &&
10551            "Unexpected result type for CTR decrement intrinsic");
10552     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10553                                  N->getValueType(0));
10554     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10555     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10556                                  N->getOperand(1));
10557
10558     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10559     Results.push_back(NewInt.getValue(1));
10560     break;
10561   }
10562   case ISD::VAARG: {
10563     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10564       return;
10565
10566     EVT VT = N->getValueType(0);
10567
10568     if (VT == MVT::i64) {
10569       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10570
10571       Results.push_back(NewNode);
10572       Results.push_back(NewNode.getValue(1));
10573     }
10574     return;
10575   }
10576   case ISD::FP_TO_SINT:
10577   case ISD::FP_TO_UINT:
10578     // LowerFP_TO_INT() can only handle f32 and f64.
10579     if (N->getOperand(0).getValueType() == MVT::ppcf128)
10580       return;
10581     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10582     return;
10583   case ISD::TRUNCATE: {
10584     EVT TrgVT = N->getValueType(0);
10585     EVT OpVT = N->getOperand(0).getValueType();
10586     if (TrgVT.isVector() &&
10587         isOperationCustom(N->getOpcode(), TrgVT) &&
10588         OpVT.getSizeInBits() <= 128 &&
10589         isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10590       Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10591     return;
10592   }
10593   case ISD::BITCAST:
10594     // Don't handle bitcast here.
10595     return;
10596   case ISD::FP_EXTEND:
10597     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
10598     if (Lowered)
10599       Results.push_back(Lowered);
10600     return;
10601   }
10602 }
10603
10604 //===----------------------------------------------------------------------===//
10605 //  Other Lowering Code
10606 //===----------------------------------------------------------------------===//
10607
10608 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10609   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10610   Function *Func = Intrinsic::getDeclaration(M, Id);
10611   return Builder.CreateCall(Func, {});
10612 }
10613
10614 // The mappings for emitLeading/TrailingFence is taken from
10615 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10616 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10617                                                  Instruction *Inst,
10618                                                  AtomicOrdering Ord) const {
10619   if (Ord == AtomicOrdering::SequentiallyConsistent)
10620     return callIntrinsic(Builder, Intrinsic::ppc_sync);
10621   if (isReleaseOrStronger(Ord))
10622     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10623   return nullptr;
10624 }
10625
10626 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10627                                                   Instruction *Inst,
10628                                                   AtomicOrdering Ord) const {
10629   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10630     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10631     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10632     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10633     if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10634       return Builder.CreateCall(
10635           Intrinsic::getDeclaration(
10636               Builder.GetInsertBlock()->getParent()->getParent(),
10637               Intrinsic::ppc_cfence, {Inst->getType()}),
10638           {Inst});
10639     // FIXME: Can use isync for rmw operation.
10640     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10641   }
10642   return nullptr;
10643 }
10644
10645 MachineBasicBlock *
10646 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10647                                     unsigned AtomicSize,
10648                                     unsigned BinOpcode,
10649                                     unsigned CmpOpcode,
10650                                     unsigned CmpPred) const {
10651   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10652   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10653
10654   auto LoadMnemonic = PPC::LDARX;
10655   auto StoreMnemonic = PPC::STDCX;
10656   switch (AtomicSize) {
10657   default:
10658     llvm_unreachable("Unexpected size of atomic entity");
10659   case 1:
10660     LoadMnemonic = PPC::LBARX;
10661     StoreMnemonic = PPC::STBCX;
10662     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10663     break;
10664   case 2:
10665     LoadMnemonic = PPC::LHARX;
10666     StoreMnemonic = PPC::STHCX;
10667     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10668     break;
10669   case 4:
10670     LoadMnemonic = PPC::LWARX;
10671     StoreMnemonic = PPC::STWCX;
10672     break;
10673   case 8:
10674     LoadMnemonic = PPC::LDARX;
10675     StoreMnemonic = PPC::STDCX;
10676     break;
10677   }
10678
10679   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10680   MachineFunction *F = BB->getParent();
10681   MachineFunction::iterator It = ++BB->getIterator();
10682
10683   Register dest = MI.getOperand(0).getReg();
10684   Register ptrA = MI.getOperand(1).getReg();
10685   Register ptrB = MI.getOperand(2).getReg();
10686   Register incr = MI.getOperand(3).getReg();
10687   DebugLoc dl = MI.getDebugLoc();
10688
10689   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10690   MachineBasicBlock *loop2MBB =
10691     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10692   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10693   F->insert(It, loopMBB);
10694   if (CmpOpcode)
10695     F->insert(It, loop2MBB);
10696   F->insert(It, exitMBB);
10697   exitMBB->splice(exitMBB->begin(), BB,
10698                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10699   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10700
10701   MachineRegisterInfo &RegInfo = F->getRegInfo();
10702   Register TmpReg = (!BinOpcode) ? incr :
10703     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10704                                            : &PPC::GPRCRegClass);
10705
10706   //  thisMBB:
10707   //   ...
10708   //   fallthrough --> loopMBB
10709   BB->addSuccessor(loopMBB);
10710
10711   //  loopMBB:
10712   //   l[wd]arx dest, ptr
10713   //   add r0, dest, incr
10714   //   st[wd]cx. r0, ptr
10715   //   bne- loopMBB
10716   //   fallthrough --> exitMBB
10717
10718   // For max/min...
10719   //  loopMBB:
10720   //   l[wd]arx dest, ptr
10721   //   cmpl?[wd] incr, dest
10722   //   bgt exitMBB
10723   //  loop2MBB:
10724   //   st[wd]cx. dest, ptr
10725   //   bne- loopMBB
10726   //   fallthrough --> exitMBB
10727
10728   BB = loopMBB;
10729   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10730     .addReg(ptrA).addReg(ptrB);
10731   if (BinOpcode)
10732     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10733   if (CmpOpcode) {
10734     // Signed comparisons of byte or halfword values must be sign-extended.
10735     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10736       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10737       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10738               ExtReg).addReg(dest);
10739       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10740         .addReg(incr).addReg(ExtReg);
10741     } else
10742       BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10743         .addReg(incr).addReg(dest);
10744
10745     BuildMI(BB, dl, TII->get(PPC::BCC))
10746       .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10747     BB->addSuccessor(loop2MBB);
10748     BB->addSuccessor(exitMBB);
10749     BB = loop2MBB;
10750   }
10751   BuildMI(BB, dl, TII->get(StoreMnemonic))
10752     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10753   BuildMI(BB, dl, TII->get(PPC::BCC))
10754     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10755   BB->addSuccessor(loopMBB);
10756   BB->addSuccessor(exitMBB);
10757
10758   //  exitMBB:
10759   //   ...
10760   BB = exitMBB;
10761   return BB;
10762 }
10763
10764 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10765     MachineInstr &MI, MachineBasicBlock *BB,
10766     bool is8bit, // operation
10767     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10768   // If we support part-word atomic mnemonics, just use them
10769   if (Subtarget.hasPartwordAtomics())
10770     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10771                             CmpPred);
10772
10773   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10774   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10775   // In 64 bit mode we have to use 64 bits for addresses, even though the
10776   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10777   // registers without caring whether they're 32 or 64, but here we're
10778   // doing actual arithmetic on the addresses.
10779   bool is64bit = Subtarget.isPPC64();
10780   bool isLittleEndian = Subtarget.isLittleEndian();
10781   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10782
10783   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10784   MachineFunction *F = BB->getParent();
10785   MachineFunction::iterator It = ++BB->getIterator();
10786
10787   Register dest = MI.getOperand(0).getReg();
10788   Register ptrA = MI.getOperand(1).getReg();
10789   Register ptrB = MI.getOperand(2).getReg();
10790   Register incr = MI.getOperand(3).getReg();
10791   DebugLoc dl = MI.getDebugLoc();
10792
10793   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10794   MachineBasicBlock *loop2MBB =
10795       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10796   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10797   F->insert(It, loopMBB);
10798   if (CmpOpcode)
10799     F->insert(It, loop2MBB);
10800   F->insert(It, exitMBB);
10801   exitMBB->splice(exitMBB->begin(), BB,
10802                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10803   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10804
10805   MachineRegisterInfo &RegInfo = F->getRegInfo();
10806   const TargetRegisterClass *RC =
10807       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10808   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10809
10810   Register PtrReg = RegInfo.createVirtualRegister(RC);
10811   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10812   Register ShiftReg =
10813       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10814   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10815   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10816   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10817   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10818   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10819   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10820   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10821   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10822   Register Ptr1Reg;
10823   Register TmpReg =
10824       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10825
10826   //  thisMBB:
10827   //   ...
10828   //   fallthrough --> loopMBB
10829   BB->addSuccessor(loopMBB);
10830
10831   // The 4-byte load must be aligned, while a char or short may be
10832   // anywhere in the word.  Hence all this nasty bookkeeping code.
10833   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10834   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10835   //   xori shift, shift1, 24 [16]
10836   //   rlwinm ptr, ptr1, 0, 0, 29
10837   //   slw incr2, incr, shift
10838   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10839   //   slw mask, mask2, shift
10840   //  loopMBB:
10841   //   lwarx tmpDest, ptr
10842   //   add tmp, tmpDest, incr2
10843   //   andc tmp2, tmpDest, mask
10844   //   and tmp3, tmp, mask
10845   //   or tmp4, tmp3, tmp2
10846   //   stwcx. tmp4, ptr
10847   //   bne- loopMBB
10848   //   fallthrough --> exitMBB
10849   //   srw dest, tmpDest, shift
10850   if (ptrA != ZeroReg) {
10851     Ptr1Reg = RegInfo.createVirtualRegister(RC);
10852     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10853         .addReg(ptrA)
10854         .addReg(ptrB);
10855   } else {
10856     Ptr1Reg = ptrB;
10857   }
10858   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10859   // mode.
10860   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10861       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10862       .addImm(3)
10863       .addImm(27)
10864       .addImm(is8bit ? 28 : 27);
10865   if (!isLittleEndian)
10866     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10867         .addReg(Shift1Reg)
10868         .addImm(is8bit ? 24 : 16);
10869   if (is64bit)
10870     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10871         .addReg(Ptr1Reg)
10872         .addImm(0)
10873         .addImm(61);
10874   else
10875     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10876         .addReg(Ptr1Reg)
10877         .addImm(0)
10878         .addImm(0)
10879         .addImm(29);
10880   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10881   if (is8bit)
10882     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10883   else {
10884     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10885     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10886         .addReg(Mask3Reg)
10887         .addImm(65535);
10888   }
10889   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10890       .addReg(Mask2Reg)
10891       .addReg(ShiftReg);
10892
10893   BB = loopMBB;
10894   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10895       .addReg(ZeroReg)
10896       .addReg(PtrReg);
10897   if (BinOpcode)
10898     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10899         .addReg(Incr2Reg)
10900         .addReg(TmpDestReg);
10901   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10902       .addReg(TmpDestReg)
10903       .addReg(MaskReg);
10904   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10905   if (CmpOpcode) {
10906     // For unsigned comparisons, we can directly compare the shifted values.
10907     // For signed comparisons we shift and sign extend.
10908     Register SReg = RegInfo.createVirtualRegister(GPRC);
10909     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10910         .addReg(TmpDestReg)
10911         .addReg(MaskReg);
10912     unsigned ValueReg = SReg;
10913     unsigned CmpReg = Incr2Reg;
10914     if (CmpOpcode == PPC::CMPW) {
10915       ValueReg = RegInfo.createVirtualRegister(GPRC);
10916       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10917           .addReg(SReg)
10918           .addReg(ShiftReg);
10919       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10920       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10921           .addReg(ValueReg);
10922       ValueReg = ValueSReg;
10923       CmpReg = incr;
10924     }
10925     BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10926         .addReg(CmpReg)
10927         .addReg(ValueReg);
10928     BuildMI(BB, dl, TII->get(PPC::BCC))
10929         .addImm(CmpPred)
10930         .addReg(PPC::CR0)
10931         .addMBB(exitMBB);
10932     BB->addSuccessor(loop2MBB);
10933     BB->addSuccessor(exitMBB);
10934     BB = loop2MBB;
10935   }
10936   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10937   BuildMI(BB, dl, TII->get(PPC::STWCX))
10938       .addReg(Tmp4Reg)
10939       .addReg(ZeroReg)
10940       .addReg(PtrReg);
10941   BuildMI(BB, dl, TII->get(PPC::BCC))
10942       .addImm(PPC::PRED_NE)
10943       .addReg(PPC::CR0)
10944       .addMBB(loopMBB);
10945   BB->addSuccessor(loopMBB);
10946   BB->addSuccessor(exitMBB);
10947
10948   //  exitMBB:
10949   //   ...
10950   BB = exitMBB;
10951   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10952       .addReg(TmpDestReg)
10953       .addReg(ShiftReg);
10954   return BB;
10955 }
10956
10957 llvm::MachineBasicBlock *
10958 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10959                                     MachineBasicBlock *MBB) const {
10960   DebugLoc DL = MI.getDebugLoc();
10961   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10962   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10963
10964   MachineFunction *MF = MBB->getParent();
10965   MachineRegisterInfo &MRI = MF->getRegInfo();
10966
10967   const BasicBlock *BB = MBB->getBasicBlock();
10968   MachineFunction::iterator I = ++MBB->getIterator();
10969
10970   Register DstReg = MI.getOperand(0).getReg();
10971   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10972   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10973   Register mainDstReg = MRI.createVirtualRegister(RC);
10974   Register restoreDstReg = MRI.createVirtualRegister(RC);
10975
10976   MVT PVT = getPointerTy(MF->getDataLayout());
10977   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10978          "Invalid Pointer Size!");
10979   // For v = setjmp(buf), we generate
10980   //
10981   // thisMBB:
10982   //  SjLjSetup mainMBB
10983   //  bl mainMBB
10984   //  v_restore = 1
10985   //  b sinkMBB
10986   //
10987   // mainMBB:
10988   //  buf[LabelOffset] = LR
10989   //  v_main = 0
10990   //
10991   // sinkMBB:
10992   //  v = phi(main, restore)
10993   //
10994
10995   MachineBasicBlock *thisMBB = MBB;
10996   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10997   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10998   MF->insert(I, mainMBB);
10999   MF->insert(I, sinkMBB);
11000
11001   MachineInstrBuilder MIB;
11002
11003   // Transfer the remainder of BB and its successor edges to sinkMBB.
11004   sinkMBB->splice(sinkMBB->begin(), MBB,
11005                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11006   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
11007
11008   // Note that the structure of the jmp_buf used here is not compatible
11009   // with that used by libc, and is not designed to be. Specifically, it
11010   // stores only those 'reserved' registers that LLVM does not otherwise
11011   // understand how to spill. Also, by convention, by the time this
11012   // intrinsic is called, Clang has already stored the frame address in the
11013   // first slot of the buffer and stack address in the third. Following the
11014   // X86 target code, we'll store the jump address in the second slot. We also
11015   // need to save the TOC pointer (R2) to handle jumps between shared
11016   // libraries, and that will be stored in the fourth slot. The thread
11017   // identifier (R13) is not affected.
11018
11019   // thisMBB:
11020   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11021   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11022   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11023
11024   // Prepare IP either in reg.
11025   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
11026   Register LabelReg = MRI.createVirtualRegister(PtrRC);
11027   Register BufReg = MI.getOperand(1).getReg();
11028
11029   if (Subtarget.is64BitELFABI()) {
11030     setUsesTOCBasePtr(*MBB->getParent());
11031     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11032               .addReg(PPC::X2)
11033               .addImm(TOCOffset)
11034               .addReg(BufReg)
11035               .cloneMemRefs(MI);
11036   }
11037
11038   // Naked functions never have a base pointer, and so we use r1. For all
11039   // other functions, this decision must be delayed until during PEI.
11040   unsigned BaseReg;
11041   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11042     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11043   else
11044     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11045
11046   MIB = BuildMI(*thisMBB, MI, DL,
11047                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11048             .addReg(BaseReg)
11049             .addImm(BPOffset)
11050             .addReg(BufReg)
11051             .cloneMemRefs(MI);
11052
11053   // Setup
11054   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11055   MIB.addRegMask(TRI->getNoPreservedMask());
11056
11057   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11058
11059   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11060           .addMBB(mainMBB);
11061   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11062
11063   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11064   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11065
11066   // mainMBB:
11067   //  mainDstReg = 0
11068   MIB =
11069       BuildMI(mainMBB, DL,
11070               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11071
11072   // Store IP
11073   if (Subtarget.isPPC64()) {
11074     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11075             .addReg(LabelReg)
11076             .addImm(LabelOffset)
11077             .addReg(BufReg);
11078   } else {
11079     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11080             .addReg(LabelReg)
11081             .addImm(LabelOffset)
11082             .addReg(BufReg);
11083   }
11084   MIB.cloneMemRefs(MI);
11085
11086   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11087   mainMBB->addSuccessor(sinkMBB);
11088
11089   // sinkMBB:
11090   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11091           TII->get(PPC::PHI), DstReg)
11092     .addReg(mainDstReg).addMBB(mainMBB)
11093     .addReg(restoreDstReg).addMBB(thisMBB);
11094
11095   MI.eraseFromParent();
11096   return sinkMBB;
11097 }
11098
11099 MachineBasicBlock *
11100 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11101                                      MachineBasicBlock *MBB) const {
11102   DebugLoc DL = MI.getDebugLoc();
11103   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11104
11105   MachineFunction *MF = MBB->getParent();
11106   MachineRegisterInfo &MRI = MF->getRegInfo();
11107
11108   MVT PVT = getPointerTy(MF->getDataLayout());
11109   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11110          "Invalid Pointer Size!");
11111
11112   const TargetRegisterClass *RC =
11113     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11114   Register Tmp = MRI.createVirtualRegister(RC);
11115   // Since FP is only updated here but NOT referenced, it's treated as GPR.
11116   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11117   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11118   unsigned BP =
11119       (PVT == MVT::i64)
11120           ? PPC::X30
11121           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11122                                                               : PPC::R30);
11123
11124   MachineInstrBuilder MIB;
11125
11126   const int64_t LabelOffset = 1 * PVT.getStoreSize();
11127   const int64_t SPOffset    = 2 * PVT.getStoreSize();
11128   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11129   const int64_t BPOffset    = 4 * PVT.getStoreSize();
11130
11131   Register BufReg = MI.getOperand(0).getReg();
11132
11133   // Reload FP (the jumped-to function may not have had a
11134   // frame pointer, and if so, then its r31 will be restored
11135   // as necessary).
11136   if (PVT == MVT::i64) {
11137     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11138             .addImm(0)
11139             .addReg(BufReg);
11140   } else {
11141     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11142             .addImm(0)
11143             .addReg(BufReg);
11144   }
11145   MIB.cloneMemRefs(MI);
11146
11147   // Reload IP
11148   if (PVT == MVT::i64) {
11149     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11150             .addImm(LabelOffset)
11151             .addReg(BufReg);
11152   } else {
11153     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11154             .addImm(LabelOffset)
11155             .addReg(BufReg);
11156   }
11157   MIB.cloneMemRefs(MI);
11158
11159   // Reload SP
11160   if (PVT == MVT::i64) {
11161     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11162             .addImm(SPOffset)
11163             .addReg(BufReg);
11164   } else {
11165     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11166             .addImm(SPOffset)
11167             .addReg(BufReg);
11168   }
11169   MIB.cloneMemRefs(MI);
11170
11171   // Reload BP
11172   if (PVT == MVT::i64) {
11173     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11174             .addImm(BPOffset)
11175             .addReg(BufReg);
11176   } else {
11177     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11178             .addImm(BPOffset)
11179             .addReg(BufReg);
11180   }
11181   MIB.cloneMemRefs(MI);
11182
11183   // Reload TOC
11184   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11185     setUsesTOCBasePtr(*MBB->getParent());
11186     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11187               .addImm(TOCOffset)
11188               .addReg(BufReg)
11189               .cloneMemRefs(MI);
11190   }
11191
11192   // Jump
11193   BuildMI(*MBB, MI, DL,
11194           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11195   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11196
11197   MI.eraseFromParent();
11198   return MBB;
11199 }
11200
11201 MachineBasicBlock *
11202 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11203                                                MachineBasicBlock *BB) const {
11204   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11205       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11206     if (Subtarget.is64BitELFABI() &&
11207         MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11208       // Call lowering should have added an r2 operand to indicate a dependence
11209       // on the TOC base pointer value. It can't however, because there is no
11210       // way to mark the dependence as implicit there, and so the stackmap code
11211       // will confuse it with a regular operand. Instead, add the dependence
11212       // here.
11213       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11214     }
11215
11216     return emitPatchPoint(MI, BB);
11217   }
11218
11219   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11220       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11221     return emitEHSjLjSetJmp(MI, BB);
11222   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11223              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11224     return emitEHSjLjLongJmp(MI, BB);
11225   }
11226
11227   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11228
11229   // To "insert" these instructions we actually have to insert their
11230   // control-flow patterns.
11231   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11232   MachineFunction::iterator It = ++BB->getIterator();
11233
11234   MachineFunction *F = BB->getParent();
11235
11236   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11237       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11238       MI.getOpcode() == PPC::SELECT_I8) {
11239     SmallVector<MachineOperand, 2> Cond;
11240     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11241         MI.getOpcode() == PPC::SELECT_CC_I8)
11242       Cond.push_back(MI.getOperand(4));
11243     else
11244       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11245     Cond.push_back(MI.getOperand(1));
11246
11247     DebugLoc dl = MI.getDebugLoc();
11248     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11249                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11250   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11251              MI.getOpcode() == PPC::SELECT_CC_F8 ||
11252              MI.getOpcode() == PPC::SELECT_CC_F16 ||
11253              MI.getOpcode() == PPC::SELECT_CC_QFRC ||
11254              MI.getOpcode() == PPC::SELECT_CC_QSRC ||
11255              MI.getOpcode() == PPC::SELECT_CC_QBRC ||
11256              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11257              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11258              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11259              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11260              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11261              MI.getOpcode() == PPC::SELECT_CC_SPE ||
11262              MI.getOpcode() == PPC::SELECT_F4 ||
11263              MI.getOpcode() == PPC::SELECT_F8 ||
11264              MI.getOpcode() == PPC::SELECT_F16 ||
11265              MI.getOpcode() == PPC::SELECT_QFRC ||
11266              MI.getOpcode() == PPC::SELECT_QSRC ||
11267              MI.getOpcode() == PPC::SELECT_QBRC ||
11268              MI.getOpcode() == PPC::SELECT_SPE ||
11269              MI.getOpcode() == PPC::SELECT_SPE4 ||
11270              MI.getOpcode() == PPC::SELECT_VRRC ||
11271              MI.getOpcode() == PPC::SELECT_VSFRC ||
11272              MI.getOpcode() == PPC::SELECT_VSSRC ||
11273              MI.getOpcode() == PPC::SELECT_VSRC) {
11274     // The incoming instruction knows the destination vreg to set, the
11275     // condition code register to branch on, the true/false values to
11276     // select between, and a branch opcode to use.
11277
11278     //  thisMBB:
11279     //  ...
11280     //   TrueVal = ...
11281     //   cmpTY ccX, r1, r2
11282     //   bCC copy1MBB
11283     //   fallthrough --> copy0MBB
11284     MachineBasicBlock *thisMBB = BB;
11285     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11286     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11287     DebugLoc dl = MI.getDebugLoc();
11288     F->insert(It, copy0MBB);
11289     F->insert(It, sinkMBB);
11290
11291     // Transfer the remainder of BB and its successor edges to sinkMBB.
11292     sinkMBB->splice(sinkMBB->begin(), BB,
11293                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11294     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11295
11296     // Next, add the true and fallthrough blocks as its successors.
11297     BB->addSuccessor(copy0MBB);
11298     BB->addSuccessor(sinkMBB);
11299
11300     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11301         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11302         MI.getOpcode() == PPC::SELECT_F16 ||
11303         MI.getOpcode() == PPC::SELECT_SPE4 ||
11304         MI.getOpcode() == PPC::SELECT_SPE ||
11305         MI.getOpcode() == PPC::SELECT_QFRC ||
11306         MI.getOpcode() == PPC::SELECT_QSRC ||
11307         MI.getOpcode() == PPC::SELECT_QBRC ||
11308         MI.getOpcode() == PPC::SELECT_VRRC ||
11309         MI.getOpcode() == PPC::SELECT_VSFRC ||
11310         MI.getOpcode() == PPC::SELECT_VSSRC ||
11311         MI.getOpcode() == PPC::SELECT_VSRC) {
11312       BuildMI(BB, dl, TII->get(PPC::BC))
11313           .addReg(MI.getOperand(1).getReg())
11314           .addMBB(sinkMBB);
11315     } else {
11316       unsigned SelectPred = MI.getOperand(4).getImm();
11317       BuildMI(BB, dl, TII->get(PPC::BCC))
11318           .addImm(SelectPred)
11319           .addReg(MI.getOperand(1).getReg())
11320           .addMBB(sinkMBB);
11321     }
11322
11323     //  copy0MBB:
11324     //   %FalseValue = ...
11325     //   # fallthrough to sinkMBB
11326     BB = copy0MBB;
11327
11328     // Update machine-CFG edges
11329     BB->addSuccessor(sinkMBB);
11330
11331     //  sinkMBB:
11332     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11333     //  ...
11334     BB = sinkMBB;
11335     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11336         .addReg(MI.getOperand(3).getReg())
11337         .addMBB(copy0MBB)
11338         .addReg(MI.getOperand(2).getReg())
11339         .addMBB(thisMBB);
11340   } else if (MI.getOpcode() == PPC::ReadTB) {
11341     // To read the 64-bit time-base register on a 32-bit target, we read the
11342     // two halves. Should the counter have wrapped while it was being read, we
11343     // need to try again.
11344     // ...
11345     // readLoop:
11346     // mfspr Rx,TBU # load from TBU
11347     // mfspr Ry,TB  # load from TB
11348     // mfspr Rz,TBU # load from TBU
11349     // cmpw crX,Rx,Rz # check if 'old'='new'
11350     // bne readLoop   # branch if they're not equal
11351     // ...
11352
11353     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11354     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11355     DebugLoc dl = MI.getDebugLoc();
11356     F->insert(It, readMBB);
11357     F->insert(It, sinkMBB);
11358
11359     // Transfer the remainder of BB and its successor edges to sinkMBB.
11360     sinkMBB->splice(sinkMBB->begin(), BB,
11361                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11362     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11363
11364     BB->addSuccessor(readMBB);
11365     BB = readMBB;
11366
11367     MachineRegisterInfo &RegInfo = F->getRegInfo();
11368     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11369     Register LoReg = MI.getOperand(0).getReg();
11370     Register HiReg = MI.getOperand(1).getReg();
11371
11372     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11373     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11374     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11375
11376     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11377
11378     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11379         .addReg(HiReg)
11380         .addReg(ReadAgainReg);
11381     BuildMI(BB, dl, TII->get(PPC::BCC))
11382         .addImm(PPC::PRED_NE)
11383         .addReg(CmpReg)
11384         .addMBB(readMBB);
11385
11386     BB->addSuccessor(readMBB);
11387     BB->addSuccessor(sinkMBB);
11388   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11389     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11390   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11391     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11392   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11393     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11394   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11395     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11396
11397   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11398     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11399   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11400     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11401   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11402     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11403   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11404     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11405
11406   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11407     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11408   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11409     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11410   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11411     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11412   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11413     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11414
11415   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11416     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11417   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11418     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11419   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11420     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11421   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11422     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11423
11424   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11425     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11426   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11427     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11428   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11429     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11430   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11431     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11432
11433   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11434     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11435   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11436     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11437   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11438     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11439   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11440     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11441
11442   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11443     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11444   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11445     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11446   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11447     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11448   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11449     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11450
11451   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11452     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11453   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11454     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11455   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11456     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11457   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11458     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11459
11460   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11461     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11462   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11463     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11464   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11465     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11466   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11467     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11468
11469   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11470     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11471   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11472     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11473   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11474     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11475   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11476     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11477
11478   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11479     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11480   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11481     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11482   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11483     BB = EmitAtomicBinary(MI, BB, 4, 0);
11484   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11485     BB = EmitAtomicBinary(MI, BB, 8, 0);
11486   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11487            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11488            (Subtarget.hasPartwordAtomics() &&
11489             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11490            (Subtarget.hasPartwordAtomics() &&
11491             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11492     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11493
11494     auto LoadMnemonic = PPC::LDARX;
11495     auto StoreMnemonic = PPC::STDCX;
11496     switch (MI.getOpcode()) {
11497     default:
11498       llvm_unreachable("Compare and swap of unknown size");
11499     case PPC::ATOMIC_CMP_SWAP_I8:
11500       LoadMnemonic = PPC::LBARX;
11501       StoreMnemonic = PPC::STBCX;
11502       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11503       break;
11504     case PPC::ATOMIC_CMP_SWAP_I16:
11505       LoadMnemonic = PPC::LHARX;
11506       StoreMnemonic = PPC::STHCX;
11507       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11508       break;
11509     case PPC::ATOMIC_CMP_SWAP_I32:
11510       LoadMnemonic = PPC::LWARX;
11511       StoreMnemonic = PPC::STWCX;
11512       break;
11513     case PPC::ATOMIC_CMP_SWAP_I64:
11514       LoadMnemonic = PPC::LDARX;
11515       StoreMnemonic = PPC::STDCX;
11516       break;
11517     }
11518     Register dest = MI.getOperand(0).getReg();
11519     Register ptrA = MI.getOperand(1).getReg();
11520     Register ptrB = MI.getOperand(2).getReg();
11521     Register oldval = MI.getOperand(3).getReg();
11522     Register newval = MI.getOperand(4).getReg();
11523     DebugLoc dl = MI.getDebugLoc();
11524
11525     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11526     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11527     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11528     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11529     F->insert(It, loop1MBB);
11530     F->insert(It, loop2MBB);
11531     F->insert(It, midMBB);
11532     F->insert(It, exitMBB);
11533     exitMBB->splice(exitMBB->begin(), BB,
11534                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11535     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11536
11537     //  thisMBB:
11538     //   ...
11539     //   fallthrough --> loopMBB
11540     BB->addSuccessor(loop1MBB);
11541
11542     // loop1MBB:
11543     //   l[bhwd]arx dest, ptr
11544     //   cmp[wd] dest, oldval
11545     //   bne- midMBB
11546     // loop2MBB:
11547     //   st[bhwd]cx. newval, ptr
11548     //   bne- loopMBB
11549     //   b exitBB
11550     // midMBB:
11551     //   st[bhwd]cx. dest, ptr
11552     // exitBB:
11553     BB = loop1MBB;
11554     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11555     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11556         .addReg(oldval)
11557         .addReg(dest);
11558     BuildMI(BB, dl, TII->get(PPC::BCC))
11559         .addImm(PPC::PRED_NE)
11560         .addReg(PPC::CR0)
11561         .addMBB(midMBB);
11562     BB->addSuccessor(loop2MBB);
11563     BB->addSuccessor(midMBB);
11564
11565     BB = loop2MBB;
11566     BuildMI(BB, dl, TII->get(StoreMnemonic))
11567         .addReg(newval)
11568         .addReg(ptrA)
11569         .addReg(ptrB);
11570     BuildMI(BB, dl, TII->get(PPC::BCC))
11571         .addImm(PPC::PRED_NE)
11572         .addReg(PPC::CR0)
11573         .addMBB(loop1MBB);
11574     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11575     BB->addSuccessor(loop1MBB);
11576     BB->addSuccessor(exitMBB);
11577
11578     BB = midMBB;
11579     BuildMI(BB, dl, TII->get(StoreMnemonic))
11580         .addReg(dest)
11581         .addReg(ptrA)
11582         .addReg(ptrB);
11583     BB->addSuccessor(exitMBB);
11584
11585     //  exitMBB:
11586     //   ...
11587     BB = exitMBB;
11588   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11589              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11590     // We must use 64-bit registers for addresses when targeting 64-bit,
11591     // since we're actually doing arithmetic on them.  Other registers
11592     // can be 32-bit.
11593     bool is64bit = Subtarget.isPPC64();
11594     bool isLittleEndian = Subtarget.isLittleEndian();
11595     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11596
11597     Register dest = MI.getOperand(0).getReg();
11598     Register ptrA = MI.getOperand(1).getReg();
11599     Register ptrB = MI.getOperand(2).getReg();
11600     Register oldval = MI.getOperand(3).getReg();
11601     Register newval = MI.getOperand(4).getReg();
11602     DebugLoc dl = MI.getDebugLoc();
11603
11604     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11605     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11606     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11607     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11608     F->insert(It, loop1MBB);
11609     F->insert(It, loop2MBB);
11610     F->insert(It, midMBB);
11611     F->insert(It, exitMBB);
11612     exitMBB->splice(exitMBB->begin(), BB,
11613                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11614     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11615
11616     MachineRegisterInfo &RegInfo = F->getRegInfo();
11617     const TargetRegisterClass *RC =
11618         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11619     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11620
11621     Register PtrReg = RegInfo.createVirtualRegister(RC);
11622     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11623     Register ShiftReg =
11624         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11625     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11626     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11627     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11628     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11629     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11630     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11631     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11632     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11633     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11634     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11635     Register Ptr1Reg;
11636     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11637     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11638     //  thisMBB:
11639     //   ...
11640     //   fallthrough --> loopMBB
11641     BB->addSuccessor(loop1MBB);
11642
11643     // The 4-byte load must be aligned, while a char or short may be
11644     // anywhere in the word.  Hence all this nasty bookkeeping code.
11645     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11646     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11647     //   xori shift, shift1, 24 [16]
11648     //   rlwinm ptr, ptr1, 0, 0, 29
11649     //   slw newval2, newval, shift
11650     //   slw oldval2, oldval,shift
11651     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11652     //   slw mask, mask2, shift
11653     //   and newval3, newval2, mask
11654     //   and oldval3, oldval2, mask
11655     // loop1MBB:
11656     //   lwarx tmpDest, ptr
11657     //   and tmp, tmpDest, mask
11658     //   cmpw tmp, oldval3
11659     //   bne- midMBB
11660     // loop2MBB:
11661     //   andc tmp2, tmpDest, mask
11662     //   or tmp4, tmp2, newval3
11663     //   stwcx. tmp4, ptr
11664     //   bne- loop1MBB
11665     //   b exitBB
11666     // midMBB:
11667     //   stwcx. tmpDest, ptr
11668     // exitBB:
11669     //   srw dest, tmpDest, shift
11670     if (ptrA != ZeroReg) {
11671       Ptr1Reg = RegInfo.createVirtualRegister(RC);
11672       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11673           .addReg(ptrA)
11674           .addReg(ptrB);
11675     } else {
11676       Ptr1Reg = ptrB;
11677     }
11678
11679     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11680     // mode.
11681     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11682         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11683         .addImm(3)
11684         .addImm(27)
11685         .addImm(is8bit ? 28 : 27);
11686     if (!isLittleEndian)
11687       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11688           .addReg(Shift1Reg)
11689           .addImm(is8bit ? 24 : 16);
11690     if (is64bit)
11691       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11692           .addReg(Ptr1Reg)
11693           .addImm(0)
11694           .addImm(61);
11695     else
11696       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11697           .addReg(Ptr1Reg)
11698           .addImm(0)
11699           .addImm(0)
11700           .addImm(29);
11701     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11702         .addReg(newval)
11703         .addReg(ShiftReg);
11704     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11705         .addReg(oldval)
11706         .addReg(ShiftReg);
11707     if (is8bit)
11708       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11709     else {
11710       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11711       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11712           .addReg(Mask3Reg)
11713           .addImm(65535);
11714     }
11715     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11716         .addReg(Mask2Reg)
11717         .addReg(ShiftReg);
11718     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11719         .addReg(NewVal2Reg)
11720         .addReg(MaskReg);
11721     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11722         .addReg(OldVal2Reg)
11723         .addReg(MaskReg);
11724
11725     BB = loop1MBB;
11726     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11727         .addReg(ZeroReg)
11728         .addReg(PtrReg);
11729     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11730         .addReg(TmpDestReg)
11731         .addReg(MaskReg);
11732     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11733         .addReg(TmpReg)
11734         .addReg(OldVal3Reg);
11735     BuildMI(BB, dl, TII->get(PPC::BCC))
11736         .addImm(PPC::PRED_NE)
11737         .addReg(PPC::CR0)
11738         .addMBB(midMBB);
11739     BB->addSuccessor(loop2MBB);
11740     BB->addSuccessor(midMBB);
11741
11742     BB = loop2MBB;
11743     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11744         .addReg(TmpDestReg)
11745         .addReg(MaskReg);
11746     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11747         .addReg(Tmp2Reg)
11748         .addReg(NewVal3Reg);
11749     BuildMI(BB, dl, TII->get(PPC::STWCX))
11750         .addReg(Tmp4Reg)
11751         .addReg(ZeroReg)
11752         .addReg(PtrReg);
11753     BuildMI(BB, dl, TII->get(PPC::BCC))
11754         .addImm(PPC::PRED_NE)
11755         .addReg(PPC::CR0)
11756         .addMBB(loop1MBB);
11757     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11758     BB->addSuccessor(loop1MBB);
11759     BB->addSuccessor(exitMBB);
11760
11761     BB = midMBB;
11762     BuildMI(BB, dl, TII->get(PPC::STWCX))
11763         .addReg(TmpDestReg)
11764         .addReg(ZeroReg)
11765         .addReg(PtrReg);
11766     BB->addSuccessor(exitMBB);
11767
11768     //  exitMBB:
11769     //   ...
11770     BB = exitMBB;
11771     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11772         .addReg(TmpReg)
11773         .addReg(ShiftReg);
11774   } else if (MI.getOpcode() == PPC::FADDrtz) {
11775     // This pseudo performs an FADD with rounding mode temporarily forced
11776     // to round-to-zero.  We emit this via custom inserter since the FPSCR
11777     // is not modeled at the SelectionDAG level.
11778     Register Dest = MI.getOperand(0).getReg();
11779     Register Src1 = MI.getOperand(1).getReg();
11780     Register Src2 = MI.getOperand(2).getReg();
11781     DebugLoc dl = MI.getDebugLoc();
11782
11783     MachineRegisterInfo &RegInfo = F->getRegInfo();
11784     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11785
11786     // Save FPSCR value.
11787     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11788
11789     // Set rounding mode to round-to-zero.
11790     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
11791     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
11792
11793     // Perform addition.
11794     BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11795
11796     // Restore FPSCR value.
11797     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11798   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11799              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
11800              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11801              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
11802     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11803                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
11804                           ? PPC::ANDI8_rec
11805                           : PPC::ANDI_rec;
11806     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11807                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
11808
11809     MachineRegisterInfo &RegInfo = F->getRegInfo();
11810     Register Dest = RegInfo.createVirtualRegister(
11811         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11812
11813     DebugLoc Dl = MI.getDebugLoc();
11814     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
11815         .addReg(MI.getOperand(1).getReg())
11816         .addImm(1);
11817     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11818             MI.getOperand(0).getReg())
11819         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
11820   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11821     DebugLoc Dl = MI.getDebugLoc();
11822     MachineRegisterInfo &RegInfo = F->getRegInfo();
11823     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11824     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11825     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11826             MI.getOperand(0).getReg())
11827         .addReg(CRReg);
11828   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11829     DebugLoc Dl = MI.getDebugLoc();
11830     unsigned Imm = MI.getOperand(1).getImm();
11831     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11832     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11833             MI.getOperand(0).getReg())
11834         .addReg(PPC::CR0EQ);
11835   } else if (MI.getOpcode() == PPC::SETRNDi) {
11836     DebugLoc dl = MI.getDebugLoc();
11837     Register OldFPSCRReg = MI.getOperand(0).getReg();
11838
11839     // Save FPSCR value.
11840     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11841
11842     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11843     // the following settings:
11844     //   00 Round to nearest
11845     //   01 Round to 0
11846     //   10 Round to +inf
11847     //   11 Round to -inf
11848
11849     // When the operand is immediate, using the two least significant bits of
11850     // the immediate to set the bits 62:63 of FPSCR.
11851     unsigned Mode = MI.getOperand(1).getImm();
11852     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11853       .addImm(31);
11854
11855     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11856       .addImm(30);
11857   } else if (MI.getOpcode() == PPC::SETRND) {
11858     DebugLoc dl = MI.getDebugLoc();
11859
11860     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11861     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11862     // If the target doesn't have DirectMove, we should use stack to do the
11863     // conversion, because the target doesn't have the instructions like mtvsrd
11864     // or mfvsrd to do this conversion directly.
11865     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11866       if (Subtarget.hasDirectMove()) {
11867         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11868           .addReg(SrcReg);
11869       } else {
11870         // Use stack to do the register copy.
11871         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11872         MachineRegisterInfo &RegInfo = F->getRegInfo();
11873         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
11874         if (RC == &PPC::F8RCRegClass) {
11875           // Copy register from F8RCRegClass to G8RCRegclass.
11876           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11877                  "Unsupported RegClass.");
11878
11879           StoreOp = PPC::STFD;
11880           LoadOp = PPC::LD;
11881         } else {
11882           // Copy register from G8RCRegClass to F8RCRegclass.
11883           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11884                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11885                  "Unsupported RegClass.");
11886         }
11887
11888         MachineFrameInfo &MFI = F->getFrameInfo();
11889         int FrameIdx = MFI.CreateStackObject(8, 8, false);
11890
11891         MachineMemOperand *MMOStore = F->getMachineMemOperand(
11892           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11893           MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11894           MFI.getObjectAlignment(FrameIdx));
11895
11896         // Store the SrcReg into the stack.
11897         BuildMI(*BB, MI, dl, TII->get(StoreOp))
11898           .addReg(SrcReg)
11899           .addImm(0)
11900           .addFrameIndex(FrameIdx)
11901           .addMemOperand(MMOStore);
11902
11903         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11904           MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11905           MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11906           MFI.getObjectAlignment(FrameIdx));
11907
11908         // Load from the stack where SrcReg is stored, and save to DestReg,
11909         // so we have done the RegClass conversion from RegClass::SrcReg to
11910         // RegClass::DestReg.
11911         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11912           .addImm(0)
11913           .addFrameIndex(FrameIdx)
11914           .addMemOperand(MMOLoad);
11915       }
11916     };
11917
11918     Register OldFPSCRReg = MI.getOperand(0).getReg();
11919
11920     // Save FPSCR value.
11921     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11922
11923     // When the operand is gprc register, use two least significant bits of the
11924     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11925     //
11926     // copy OldFPSCRTmpReg, OldFPSCRReg
11927     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11928     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11929     // copy NewFPSCRReg, NewFPSCRTmpReg
11930     // mtfsf 255, NewFPSCRReg
11931     MachineOperand SrcOp = MI.getOperand(1);
11932     MachineRegisterInfo &RegInfo = F->getRegInfo();
11933     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11934
11935     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11936
11937     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11938     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11939
11940     // The first operand of INSERT_SUBREG should be a register which has
11941     // subregisters, we only care about its RegClass, so we should use an
11942     // IMPLICIT_DEF register.
11943     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11944     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11945       .addReg(ImDefReg)
11946       .add(SrcOp)
11947       .addImm(1);
11948
11949     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11950     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11951       .addReg(OldFPSCRTmpReg)
11952       .addReg(ExtSrcReg)
11953       .addImm(0)
11954       .addImm(62);
11955
11956     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11957     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11958
11959     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11960     // bits of FPSCR.
11961     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11962       .addImm(255)
11963       .addReg(NewFPSCRReg)
11964       .addImm(0)
11965       .addImm(0);
11966   } else {
11967     llvm_unreachable("Unexpected instr type to insert");
11968   }
11969
11970   MI.eraseFromParent(); // The pseudo instruction is gone now.
11971   return BB;
11972 }
11973
11974 //===----------------------------------------------------------------------===//
11975 // Target Optimization Hooks
11976 //===----------------------------------------------------------------------===//
11977
11978 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11979   // For the estimates, convergence is quadratic, so we essentially double the
11980   // number of digits correct after every iteration. For both FRE and FRSQRTE,
11981   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11982   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11983   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11984   if (VT.getScalarType() == MVT::f64)
11985     RefinementSteps++;
11986   return RefinementSteps;
11987 }
11988
11989 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11990                                            int Enabled, int &RefinementSteps,
11991                                            bool &UseOneConstNR,
11992                                            bool Reciprocal) const {
11993   EVT VT = Operand.getValueType();
11994   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11995       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11996       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11997       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11998       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11999       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12000     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12001       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12002
12003     // The Newton-Raphson computation with a single constant does not provide
12004     // enough accuracy on some CPUs.
12005     UseOneConstNR = !Subtarget.needsTwoConstNR();
12006     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
12007   }
12008   return SDValue();
12009 }
12010
12011 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
12012                                             int Enabled,
12013                                             int &RefinementSteps) const {
12014   EVT VT = Operand.getValueType();
12015   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
12016       (VT == MVT::f64 && Subtarget.hasFRE()) ||
12017       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
12018       (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
12019       (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
12020       (VT == MVT::v4f64 && Subtarget.hasQPX())) {
12021     if (RefinementSteps == ReciprocalEstimate::Unspecified)
12022       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
12023     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
12024   }
12025   return SDValue();
12026 }
12027
12028 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12029   // Note: This functionality is used only when unsafe-fp-math is enabled, and
12030   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12031   // enabled for division), this functionality is redundant with the default
12032   // combiner logic (once the division -> reciprocal/multiply transformation
12033   // has taken place). As a result, this matters more for older cores than for
12034   // newer ones.
12035
12036   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12037   // reciprocal if there are two or more FDIVs (for embedded cores with only
12038   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12039   switch (Subtarget.getCPUDirective()) {
12040   default:
12041     return 3;
12042   case PPC::DIR_440:
12043   case PPC::DIR_A2:
12044   case PPC::DIR_E500:
12045   case PPC::DIR_E500mc:
12046   case PPC::DIR_E5500:
12047     return 2;
12048   }
12049 }
12050
12051 // isConsecutiveLSLoc needs to work even if all adds have not yet been
12052 // collapsed, and so we need to look through chains of them.
12053 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12054                                      int64_t& Offset, SelectionDAG &DAG) {
12055   if (DAG.isBaseWithConstantOffset(Loc)) {
12056     Base = Loc.getOperand(0);
12057     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12058
12059     // The base might itself be a base plus an offset, and if so, accumulate
12060     // that as well.
12061     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12062   }
12063 }
12064
12065 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12066                             unsigned Bytes, int Dist,
12067                             SelectionDAG &DAG) {
12068   if (VT.getSizeInBits() / 8 != Bytes)
12069     return false;
12070
12071   SDValue BaseLoc = Base->getBasePtr();
12072   if (Loc.getOpcode() == ISD::FrameIndex) {
12073     if (BaseLoc.getOpcode() != ISD::FrameIndex)
12074       return false;
12075     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12076     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12077     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12078     int FS  = MFI.getObjectSize(FI);
12079     int BFS = MFI.getObjectSize(BFI);
12080     if (FS != BFS || FS != (int)Bytes) return false;
12081     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12082   }
12083
12084   SDValue Base1 = Loc, Base2 = BaseLoc;
12085   int64_t Offset1 = 0, Offset2 = 0;
12086   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12087   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12088   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12089     return true;
12090
12091   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12092   const GlobalValue *GV1 = nullptr;
12093   const GlobalValue *GV2 = nullptr;
12094   Offset1 = 0;
12095   Offset2 = 0;
12096   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12097   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12098   if (isGA1 && isGA2 && GV1 == GV2)
12099     return Offset1 == (Offset2 + Dist*Bytes);
12100   return false;
12101 }
12102
12103 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12104 // not enforce equality of the chain operands.
12105 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12106                             unsigned Bytes, int Dist,
12107                             SelectionDAG &DAG) {
12108   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12109     EVT VT = LS->getMemoryVT();
12110     SDValue Loc = LS->getBasePtr();
12111     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12112   }
12113
12114   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12115     EVT VT;
12116     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12117     default: return false;
12118     case Intrinsic::ppc_qpx_qvlfd:
12119     case Intrinsic::ppc_qpx_qvlfda:
12120       VT = MVT::v4f64;
12121       break;
12122     case Intrinsic::ppc_qpx_qvlfs:
12123     case Intrinsic::ppc_qpx_qvlfsa:
12124       VT = MVT::v4f32;
12125       break;
12126     case Intrinsic::ppc_qpx_qvlfcd:
12127     case Intrinsic::ppc_qpx_qvlfcda:
12128       VT = MVT::v2f64;
12129       break;
12130     case Intrinsic::ppc_qpx_qvlfcs:
12131     case Intrinsic::ppc_qpx_qvlfcsa:
12132       VT = MVT::v2f32;
12133       break;
12134     case Intrinsic::ppc_qpx_qvlfiwa:
12135     case Intrinsic::ppc_qpx_qvlfiwz:
12136     case Intrinsic::ppc_altivec_lvx:
12137     case Intrinsic::ppc_altivec_lvxl:
12138     case Intrinsic::ppc_vsx_lxvw4x:
12139     case Intrinsic::ppc_vsx_lxvw4x_be:
12140       VT = MVT::v4i32;
12141       break;
12142     case Intrinsic::ppc_vsx_lxvd2x:
12143     case Intrinsic::ppc_vsx_lxvd2x_be:
12144       VT = MVT::v2f64;
12145       break;
12146     case Intrinsic::ppc_altivec_lvebx:
12147       VT = MVT::i8;
12148       break;
12149     case Intrinsic::ppc_altivec_lvehx:
12150       VT = MVT::i16;
12151       break;
12152     case Intrinsic::ppc_altivec_lvewx:
12153       VT = MVT::i32;
12154       break;
12155     }
12156
12157     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12158   }
12159
12160   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12161     EVT VT;
12162     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12163     default: return false;
12164     case Intrinsic::ppc_qpx_qvstfd:
12165     case Intrinsic::ppc_qpx_qvstfda:
12166       VT = MVT::v4f64;
12167       break;
12168     case Intrinsic::ppc_qpx_qvstfs:
12169     case Intrinsic::ppc_qpx_qvstfsa:
12170       VT = MVT::v4f32;
12171       break;
12172     case Intrinsic::ppc_qpx_qvstfcd:
12173     case Intrinsic::ppc_qpx_qvstfcda:
12174       VT = MVT::v2f64;
12175       break;
12176     case Intrinsic::ppc_qpx_qvstfcs:
12177     case Intrinsic::ppc_qpx_qvstfcsa:
12178       VT = MVT::v2f32;
12179       break;
12180     case Intrinsic::ppc_qpx_qvstfiw:
12181     case Intrinsic::ppc_qpx_qvstfiwa:
12182     case Intrinsic::ppc_altivec_stvx:
12183     case Intrinsic::ppc_altivec_stvxl:
12184     case Intrinsic::ppc_vsx_stxvw4x:
12185       VT = MVT::v4i32;
12186       break;
12187     case Intrinsic::ppc_vsx_stxvd2x:
12188       VT = MVT::v2f64;
12189       break;
12190     case Intrinsic::ppc_vsx_stxvw4x_be:
12191       VT = MVT::v4i32;
12192       break;
12193     case Intrinsic::ppc_vsx_stxvd2x_be:
12194       VT = MVT::v2f64;
12195       break;
12196     case Intrinsic::ppc_altivec_stvebx:
12197       VT = MVT::i8;
12198       break;
12199     case Intrinsic::ppc_altivec_stvehx:
12200       VT = MVT::i16;
12201       break;
12202     case Intrinsic::ppc_altivec_stvewx:
12203       VT = MVT::i32;
12204       break;
12205     }
12206
12207     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12208   }
12209
12210   return false;
12211 }
12212
12213 // Return true is there is a nearyby consecutive load to the one provided
12214 // (regardless of alignment). We search up and down the chain, looking though
12215 // token factors and other loads (but nothing else). As a result, a true result
12216 // indicates that it is safe to create a new consecutive load adjacent to the
12217 // load provided.
12218 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12219   SDValue Chain = LD->getChain();
12220   EVT VT = LD->getMemoryVT();
12221
12222   SmallSet<SDNode *, 16> LoadRoots;
12223   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12224   SmallSet<SDNode *, 16> Visited;
12225
12226   // First, search up the chain, branching to follow all token-factor operands.
12227   // If we find a consecutive load, then we're done, otherwise, record all
12228   // nodes just above the top-level loads and token factors.
12229   while (!Queue.empty()) {
12230     SDNode *ChainNext = Queue.pop_back_val();
12231     if (!Visited.insert(ChainNext).second)
12232       continue;
12233
12234     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12235       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12236         return true;
12237
12238       if (!Visited.count(ChainLD->getChain().getNode()))
12239         Queue.push_back(ChainLD->getChain().getNode());
12240     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12241       for (const SDUse &O : ChainNext->ops())
12242         if (!Visited.count(O.getNode()))
12243           Queue.push_back(O.getNode());
12244     } else
12245       LoadRoots.insert(ChainNext);
12246   }
12247
12248   // Second, search down the chain, starting from the top-level nodes recorded
12249   // in the first phase. These top-level nodes are the nodes just above all
12250   // loads and token factors. Starting with their uses, recursively look though
12251   // all loads (just the chain uses) and token factors to find a consecutive
12252   // load.
12253   Visited.clear();
12254   Queue.clear();
12255
12256   for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12257        IE = LoadRoots.end(); I != IE; ++I) {
12258     Queue.push_back(*I);
12259
12260     while (!Queue.empty()) {
12261       SDNode *LoadRoot = Queue.pop_back_val();
12262       if (!Visited.insert(LoadRoot).second)
12263         continue;
12264
12265       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12266         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12267           return true;
12268
12269       for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12270            UE = LoadRoot->use_end(); UI != UE; ++UI)
12271         if (((isa<MemSDNode>(*UI) &&
12272             cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12273             UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12274           Queue.push_back(*UI);
12275     }
12276   }
12277
12278   return false;
12279 }
12280
12281 /// This function is called when we have proved that a SETCC node can be replaced
12282 /// by subtraction (and other supporting instructions) so that the result of
12283 /// comparison is kept in a GPR instead of CR. This function is purely for
12284 /// codegen purposes and has some flags to guide the codegen process.
12285 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12286                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12287   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12288
12289   // Zero extend the operands to the largest legal integer. Originally, they
12290   // must be of a strictly smaller size.
12291   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12292                          DAG.getConstant(Size, DL, MVT::i32));
12293   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12294                          DAG.getConstant(Size, DL, MVT::i32));
12295
12296   // Swap if needed. Depends on the condition code.
12297   if (Swap)
12298     std::swap(Op0, Op1);
12299
12300   // Subtract extended integers.
12301   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12302
12303   // Move the sign bit to the least significant position and zero out the rest.
12304   // Now the least significant bit carries the result of original comparison.
12305   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12306                              DAG.getConstant(Size - 1, DL, MVT::i32));
12307   auto Final = Shifted;
12308
12309   // Complement the result if needed. Based on the condition code.
12310   if (Complement)
12311     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12312                         DAG.getConstant(1, DL, MVT::i64));
12313
12314   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12315 }
12316
12317 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12318                                                   DAGCombinerInfo &DCI) const {
12319   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12320
12321   SelectionDAG &DAG = DCI.DAG;
12322   SDLoc DL(N);
12323
12324   // Size of integers being compared has a critical role in the following
12325   // analysis, so we prefer to do this when all types are legal.
12326   if (!DCI.isAfterLegalizeDAG())
12327     return SDValue();
12328
12329   // If all users of SETCC extend its value to a legal integer type
12330   // then we replace SETCC with a subtraction
12331   for (SDNode::use_iterator UI = N->use_begin(),
12332        UE = N->use_end(); UI != UE; ++UI) {
12333     if (UI->getOpcode() != ISD::ZERO_EXTEND)
12334       return SDValue();
12335   }
12336
12337   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12338   auto OpSize = N->getOperand(0).getValueSizeInBits();
12339
12340   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12341
12342   if (OpSize < Size) {
12343     switch (CC) {
12344     default: break;
12345     case ISD::SETULT:
12346       return generateEquivalentSub(N, Size, false, false, DL, DAG);
12347     case ISD::SETULE:
12348       return generateEquivalentSub(N, Size, true, true, DL, DAG);
12349     case ISD::SETUGT:
12350       return generateEquivalentSub(N, Size, false, true, DL, DAG);
12351     case ISD::SETUGE:
12352       return generateEquivalentSub(N, Size, true, false, DL, DAG);
12353     }
12354   }
12355
12356   return SDValue();
12357 }
12358
12359 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12360                                                   DAGCombinerInfo &DCI) const {
12361   SelectionDAG &DAG = DCI.DAG;
12362   SDLoc dl(N);
12363
12364   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12365   // If we're tracking CR bits, we need to be careful that we don't have:
12366   //   trunc(binary-ops(zext(x), zext(y)))
12367   // or
12368   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12369   // such that we're unnecessarily moving things into GPRs when it would be
12370   // better to keep them in CR bits.
12371
12372   // Note that trunc here can be an actual i1 trunc, or can be the effective
12373   // truncation that comes from a setcc or select_cc.
12374   if (N->getOpcode() == ISD::TRUNCATE &&
12375       N->getValueType(0) != MVT::i1)
12376     return SDValue();
12377
12378   if (N->getOperand(0).getValueType() != MVT::i32 &&
12379       N->getOperand(0).getValueType() != MVT::i64)
12380     return SDValue();
12381
12382   if (N->getOpcode() == ISD::SETCC ||
12383       N->getOpcode() == ISD::SELECT_CC) {
12384     // If we're looking at a comparison, then we need to make sure that the
12385     // high bits (all except for the first) don't matter the result.
12386     ISD::CondCode CC =
12387       cast<CondCodeSDNode>(N->getOperand(
12388         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12389     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12390
12391     if (ISD::isSignedIntSetCC(CC)) {
12392       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12393           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12394         return SDValue();
12395     } else if (ISD::isUnsignedIntSetCC(CC)) {
12396       if (!DAG.MaskedValueIsZero(N->getOperand(0),
12397                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12398           !DAG.MaskedValueIsZero(N->getOperand(1),
12399                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
12400         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12401                                              : SDValue());
12402     } else {
12403       // This is neither a signed nor an unsigned comparison, just make sure
12404       // that the high bits are equal.
12405       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12406       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12407
12408       // We don't really care about what is known about the first bit (if
12409       // anything), so clear it in all masks prior to comparing them.
12410       Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12411       Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12412
12413       if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12414         return SDValue();
12415     }
12416   }
12417
12418   // We now know that the higher-order bits are irrelevant, we just need to
12419   // make sure that all of the intermediate operations are bit operations, and
12420   // all inputs are extensions.
12421   if (N->getOperand(0).getOpcode() != ISD::AND &&
12422       N->getOperand(0).getOpcode() != ISD::OR  &&
12423       N->getOperand(0).getOpcode() != ISD::XOR &&
12424       N->getOperand(0).getOpcode() != ISD::SELECT &&
12425       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12426       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12427       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12428       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12429       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12430     return SDValue();
12431
12432   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12433       N->getOperand(1).getOpcode() != ISD::AND &&
12434       N->getOperand(1).getOpcode() != ISD::OR  &&
12435       N->getOperand(1).getOpcode() != ISD::XOR &&
12436       N->getOperand(1).getOpcode() != ISD::SELECT &&
12437       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12438       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12439       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12440       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12441       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12442     return SDValue();
12443
12444   SmallVector<SDValue, 4> Inputs;
12445   SmallVector<SDValue, 8> BinOps, PromOps;
12446   SmallPtrSet<SDNode *, 16> Visited;
12447
12448   for (unsigned i = 0; i < 2; ++i) {
12449     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12450           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12451           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12452           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12453         isa<ConstantSDNode>(N->getOperand(i)))
12454       Inputs.push_back(N->getOperand(i));
12455     else
12456       BinOps.push_back(N->getOperand(i));
12457
12458     if (N->getOpcode() == ISD::TRUNCATE)
12459       break;
12460   }
12461
12462   // Visit all inputs, collect all binary operations (and, or, xor and
12463   // select) that are all fed by extensions.
12464   while (!BinOps.empty()) {
12465     SDValue BinOp = BinOps.back();
12466     BinOps.pop_back();
12467
12468     if (!Visited.insert(BinOp.getNode()).second)
12469       continue;
12470
12471     PromOps.push_back(BinOp);
12472
12473     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12474       // The condition of the select is not promoted.
12475       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12476         continue;
12477       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12478         continue;
12479
12480       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12481             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12482             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12483            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12484           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12485         Inputs.push_back(BinOp.getOperand(i));
12486       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12487                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12488                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12489                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12490                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12491                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12492                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12493                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12494                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12495         BinOps.push_back(BinOp.getOperand(i));
12496       } else {
12497         // We have an input that is not an extension or another binary
12498         // operation; we'll abort this transformation.
12499         return SDValue();
12500       }
12501     }
12502   }
12503
12504   // Make sure that this is a self-contained cluster of operations (which
12505   // is not quite the same thing as saying that everything has only one
12506   // use).
12507   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12508     if (isa<ConstantSDNode>(Inputs[i]))
12509       continue;
12510
12511     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12512                               UE = Inputs[i].getNode()->use_end();
12513          UI != UE; ++UI) {
12514       SDNode *User = *UI;
12515       if (User != N && !Visited.count(User))
12516         return SDValue();
12517
12518       // Make sure that we're not going to promote the non-output-value
12519       // operand(s) or SELECT or SELECT_CC.
12520       // FIXME: Although we could sometimes handle this, and it does occur in
12521       // practice that one of the condition inputs to the select is also one of
12522       // the outputs, we currently can't deal with this.
12523       if (User->getOpcode() == ISD::SELECT) {
12524         if (User->getOperand(0) == Inputs[i])
12525           return SDValue();
12526       } else if (User->getOpcode() == ISD::SELECT_CC) {
12527         if (User->getOperand(0) == Inputs[i] ||
12528             User->getOperand(1) == Inputs[i])
12529           return SDValue();
12530       }
12531     }
12532   }
12533
12534   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12535     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12536                               UE = PromOps[i].getNode()->use_end();
12537          UI != UE; ++UI) {
12538       SDNode *User = *UI;
12539       if (User != N && !Visited.count(User))
12540         return SDValue();
12541
12542       // Make sure that we're not going to promote the non-output-value
12543       // operand(s) or SELECT or SELECT_CC.
12544       // FIXME: Although we could sometimes handle this, and it does occur in
12545       // practice that one of the condition inputs to the select is also one of
12546       // the outputs, we currently can't deal with this.
12547       if (User->getOpcode() == ISD::SELECT) {
12548         if (User->getOperand(0) == PromOps[i])
12549           return SDValue();
12550       } else if (User->getOpcode() == ISD::SELECT_CC) {
12551         if (User->getOperand(0) == PromOps[i] ||
12552             User->getOperand(1) == PromOps[i])
12553           return SDValue();
12554       }
12555     }
12556   }
12557
12558   // Replace all inputs with the extension operand.
12559   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12560     // Constants may have users outside the cluster of to-be-promoted nodes,
12561     // and so we need to replace those as we do the promotions.
12562     if (isa<ConstantSDNode>(Inputs[i]))
12563       continue;
12564     else
12565       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12566   }
12567
12568   std::list<HandleSDNode> PromOpHandles;
12569   for (auto &PromOp : PromOps)
12570     PromOpHandles.emplace_back(PromOp);
12571
12572   // Replace all operations (these are all the same, but have a different
12573   // (i1) return type). DAG.getNode will validate that the types of
12574   // a binary operator match, so go through the list in reverse so that
12575   // we've likely promoted both operands first. Any intermediate truncations or
12576   // extensions disappear.
12577   while (!PromOpHandles.empty()) {
12578     SDValue PromOp = PromOpHandles.back().getValue();
12579     PromOpHandles.pop_back();
12580
12581     if (PromOp.getOpcode() == ISD::TRUNCATE ||
12582         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12583         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12584         PromOp.getOpcode() == ISD::ANY_EXTEND) {
12585       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12586           PromOp.getOperand(0).getValueType() != MVT::i1) {
12587         // The operand is not yet ready (see comment below).
12588         PromOpHandles.emplace_front(PromOp);
12589         continue;
12590       }
12591
12592       SDValue RepValue = PromOp.getOperand(0);
12593       if (isa<ConstantSDNode>(RepValue))
12594         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12595
12596       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12597       continue;
12598     }
12599
12600     unsigned C;
12601     switch (PromOp.getOpcode()) {
12602     default:             C = 0; break;
12603     case ISD::SELECT:    C = 1; break;
12604     case ISD::SELECT_CC: C = 2; break;
12605     }
12606
12607     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12608          PromOp.getOperand(C).getValueType() != MVT::i1) ||
12609         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12610          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12611       // The to-be-promoted operands of this node have not yet been
12612       // promoted (this should be rare because we're going through the
12613       // list backward, but if one of the operands has several users in
12614       // this cluster of to-be-promoted nodes, it is possible).
12615       PromOpHandles.emplace_front(PromOp);
12616       continue;
12617     }
12618
12619     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12620                                 PromOp.getNode()->op_end());
12621
12622     // If there are any constant inputs, make sure they're replaced now.
12623     for (unsigned i = 0; i < 2; ++i)
12624       if (isa<ConstantSDNode>(Ops[C+i]))
12625         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12626
12627     DAG.ReplaceAllUsesOfValueWith(PromOp,
12628       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12629   }
12630
12631   // Now we're left with the initial truncation itself.
12632   if (N->getOpcode() == ISD::TRUNCATE)
12633     return N->getOperand(0);
12634
12635   // Otherwise, this is a comparison. The operands to be compared have just
12636   // changed type (to i1), but everything else is the same.
12637   return SDValue(N, 0);
12638 }
12639
12640 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12641                                                   DAGCombinerInfo &DCI) const {
12642   SelectionDAG &DAG = DCI.DAG;
12643   SDLoc dl(N);
12644
12645   // If we're tracking CR bits, we need to be careful that we don't have:
12646   //   zext(binary-ops(trunc(x), trunc(y)))
12647   // or
12648   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12649   // such that we're unnecessarily moving things into CR bits that can more
12650   // efficiently stay in GPRs. Note that if we're not certain that the high
12651   // bits are set as required by the final extension, we still may need to do
12652   // some masking to get the proper behavior.
12653
12654   // This same functionality is important on PPC64 when dealing with
12655   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12656   // the return values of functions. Because it is so similar, it is handled
12657   // here as well.
12658
12659   if (N->getValueType(0) != MVT::i32 &&
12660       N->getValueType(0) != MVT::i64)
12661     return SDValue();
12662
12663   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12664         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12665     return SDValue();
12666
12667   if (N->getOperand(0).getOpcode() != ISD::AND &&
12668       N->getOperand(0).getOpcode() != ISD::OR  &&
12669       N->getOperand(0).getOpcode() != ISD::XOR &&
12670       N->getOperand(0).getOpcode() != ISD::SELECT &&
12671       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12672     return SDValue();
12673
12674   SmallVector<SDValue, 4> Inputs;
12675   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12676   SmallPtrSet<SDNode *, 16> Visited;
12677
12678   // Visit all inputs, collect all binary operations (and, or, xor and
12679   // select) that are all fed by truncations.
12680   while (!BinOps.empty()) {
12681     SDValue BinOp = BinOps.back();
12682     BinOps.pop_back();
12683
12684     if (!Visited.insert(BinOp.getNode()).second)
12685       continue;
12686
12687     PromOps.push_back(BinOp);
12688
12689     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12690       // The condition of the select is not promoted.
12691       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12692         continue;
12693       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12694         continue;
12695
12696       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12697           isa<ConstantSDNode>(BinOp.getOperand(i))) {
12698         Inputs.push_back(BinOp.getOperand(i));
12699       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12700                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12701                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12702                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12703                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12704         BinOps.push_back(BinOp.getOperand(i));
12705       } else {
12706         // We have an input that is not a truncation or another binary
12707         // operation; we'll abort this transformation.
12708         return SDValue();
12709       }
12710     }
12711   }
12712
12713   // The operands of a select that must be truncated when the select is
12714   // promoted because the operand is actually part of the to-be-promoted set.
12715   DenseMap<SDNode *, EVT> SelectTruncOp[2];
12716
12717   // Make sure that this is a self-contained cluster of operations (which
12718   // is not quite the same thing as saying that everything has only one
12719   // use).
12720   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12721     if (isa<ConstantSDNode>(Inputs[i]))
12722       continue;
12723
12724     for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12725                               UE = Inputs[i].getNode()->use_end();
12726          UI != UE; ++UI) {
12727       SDNode *User = *UI;
12728       if (User != N && !Visited.count(User))
12729         return SDValue();
12730
12731       // If we're going to promote the non-output-value operand(s) or SELECT or
12732       // SELECT_CC, record them for truncation.
12733       if (User->getOpcode() == ISD::SELECT) {
12734         if (User->getOperand(0) == Inputs[i])
12735           SelectTruncOp[0].insert(std::make_pair(User,
12736                                     User->getOperand(0).getValueType()));
12737       } else if (User->getOpcode() == ISD::SELECT_CC) {
12738         if (User->getOperand(0) == Inputs[i])
12739           SelectTruncOp[0].insert(std::make_pair(User,
12740                                     User->getOperand(0).getValueType()));
12741         if (User->getOperand(1) == Inputs[i])
12742           SelectTruncOp[1].insert(std::make_pair(User,
12743                                     User->getOperand(1).getValueType()));
12744       }
12745     }
12746   }
12747
12748   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12749     for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12750                               UE = PromOps[i].getNode()->use_end();
12751          UI != UE; ++UI) {
12752       SDNode *User = *UI;
12753       if (User != N && !Visited.count(User))
12754         return SDValue();
12755
12756       // If we're going to promote the non-output-value operand(s) or SELECT or
12757       // SELECT_CC, record them for truncation.
12758       if (User->getOpcode() == ISD::SELECT) {
12759         if (User->getOperand(0) == PromOps[i])
12760           SelectTruncOp[0].insert(std::make_pair(User,
12761                                     User->getOperand(0).getValueType()));
12762       } else if (User->getOpcode() == ISD::SELECT_CC) {
12763         if (User->getOperand(0) == PromOps[i])
12764           SelectTruncOp[0].insert(std::make_pair(User,
12765                                     User->getOperand(0).getValueType()));
12766         if (User->getOperand(1) == PromOps[i])
12767           SelectTruncOp[1].insert(std::make_pair(User,
12768                                     User->getOperand(1).getValueType()));
12769       }
12770     }
12771   }
12772
12773   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12774   bool ReallyNeedsExt = false;
12775   if (N->getOpcode() != ISD::ANY_EXTEND) {
12776     // If all of the inputs are not already sign/zero extended, then
12777     // we'll still need to do that at the end.
12778     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12779       if (isa<ConstantSDNode>(Inputs[i]))
12780         continue;
12781
12782       unsigned OpBits =
12783         Inputs[i].getOperand(0).getValueSizeInBits();
12784       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12785
12786       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12787            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12788                                   APInt::getHighBitsSet(OpBits,
12789                                                         OpBits-PromBits))) ||
12790           (N->getOpcode() == ISD::SIGN_EXTEND &&
12791            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12792              (OpBits-(PromBits-1)))) {
12793         ReallyNeedsExt = true;
12794         break;
12795       }
12796     }
12797   }
12798
12799   // Replace all inputs, either with the truncation operand, or a
12800   // truncation or extension to the final output type.
12801   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12802     // Constant inputs need to be replaced with the to-be-promoted nodes that
12803     // use them because they might have users outside of the cluster of
12804     // promoted nodes.
12805     if (isa<ConstantSDNode>(Inputs[i]))
12806       continue;
12807
12808     SDValue InSrc = Inputs[i].getOperand(0);
12809     if (Inputs[i].getValueType() == N->getValueType(0))
12810       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12811     else if (N->getOpcode() == ISD::SIGN_EXTEND)
12812       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12813         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12814     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12815       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12816         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12817     else
12818       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12819         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12820   }
12821
12822   std::list<HandleSDNode> PromOpHandles;
12823   for (auto &PromOp : PromOps)
12824     PromOpHandles.emplace_back(PromOp);
12825
12826   // Replace all operations (these are all the same, but have a different
12827   // (promoted) return type). DAG.getNode will validate that the types of
12828   // a binary operator match, so go through the list in reverse so that
12829   // we've likely promoted both operands first.
12830   while (!PromOpHandles.empty()) {
12831     SDValue PromOp = PromOpHandles.back().getValue();
12832     PromOpHandles.pop_back();
12833
12834     unsigned C;
12835     switch (PromOp.getOpcode()) {
12836     default:             C = 0; break;
12837     case ISD::SELECT:    C = 1; break;
12838     case ISD::SELECT_CC: C = 2; break;
12839     }
12840
12841     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12842          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12843         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12844          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12845       // The to-be-promoted operands of this node have not yet been
12846       // promoted (this should be rare because we're going through the
12847       // list backward, but if one of the operands has several users in
12848       // this cluster of to-be-promoted nodes, it is possible).
12849       PromOpHandles.emplace_front(PromOp);
12850       continue;
12851     }
12852
12853     // For SELECT and SELECT_CC nodes, we do a similar check for any
12854     // to-be-promoted comparison inputs.
12855     if (PromOp.getOpcode() == ISD::SELECT ||
12856         PromOp.getOpcode() == ISD::SELECT_CC) {
12857       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12858            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12859           (SelectTruncOp[1].count(PromOp.getNode()) &&
12860            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12861         PromOpHandles.emplace_front(PromOp);
12862         continue;
12863       }
12864     }
12865
12866     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12867                                 PromOp.getNode()->op_end());
12868
12869     // If this node has constant inputs, then they'll need to be promoted here.
12870     for (unsigned i = 0; i < 2; ++i) {
12871       if (!isa<ConstantSDNode>(Ops[C+i]))
12872         continue;
12873       if (Ops[C+i].getValueType() == N->getValueType(0))
12874         continue;
12875
12876       if (N->getOpcode() == ISD::SIGN_EXTEND)
12877         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12878       else if (N->getOpcode() == ISD::ZERO_EXTEND)
12879         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12880       else
12881         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12882     }
12883
12884     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12885     // truncate them again to the original value type.
12886     if (PromOp.getOpcode() == ISD::SELECT ||
12887         PromOp.getOpcode() == ISD::SELECT_CC) {
12888       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12889       if (SI0 != SelectTruncOp[0].end())
12890         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12891       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12892       if (SI1 != SelectTruncOp[1].end())
12893         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12894     }
12895
12896     DAG.ReplaceAllUsesOfValueWith(PromOp,
12897       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12898   }
12899
12900   // Now we're left with the initial extension itself.
12901   if (!ReallyNeedsExt)
12902     return N->getOperand(0);
12903
12904   // To zero extend, just mask off everything except for the first bit (in the
12905   // i1 case).
12906   if (N->getOpcode() == ISD::ZERO_EXTEND)
12907     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12908                        DAG.getConstant(APInt::getLowBitsSet(
12909                                          N->getValueSizeInBits(0), PromBits),
12910                                        dl, N->getValueType(0)));
12911
12912   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12913          "Invalid extension type");
12914   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12915   SDValue ShiftCst =
12916       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12917   return DAG.getNode(
12918       ISD::SRA, dl, N->getValueType(0),
12919       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12920       ShiftCst);
12921 }
12922
12923 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12924                                         DAGCombinerInfo &DCI) const {
12925   assert(N->getOpcode() == ISD::SETCC &&
12926          "Should be called with a SETCC node");
12927
12928   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12929   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12930     SDValue LHS = N->getOperand(0);
12931     SDValue RHS = N->getOperand(1);
12932
12933     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12934     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12935         LHS.hasOneUse())
12936       std::swap(LHS, RHS);
12937
12938     // x == 0-y --> x+y == 0
12939     // x != 0-y --> x+y != 0
12940     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12941         RHS.hasOneUse()) {
12942       SDLoc DL(N);
12943       SelectionDAG &DAG = DCI.DAG;
12944       EVT VT = N->getValueType(0);
12945       EVT OpVT = LHS.getValueType();
12946       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12947       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12948     }
12949   }
12950
12951   return DAGCombineTruncBoolExt(N, DCI);
12952 }
12953
12954 // Is this an extending load from an f32 to an f64?
12955 static bool isFPExtLoad(SDValue Op) {
12956   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12957     return LD->getExtensionType() == ISD::EXTLOAD &&
12958       Op.getValueType() == MVT::f64;
12959   return false;
12960 }
12961
12962 /// Reduces the number of fp-to-int conversion when building a vector.
12963 ///
12964 /// If this vector is built out of floating to integer conversions,
12965 /// transform it to a vector built out of floating point values followed by a
12966 /// single floating to integer conversion of the vector.
12967 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12968 /// becomes (fptosi (build_vector ($A, $B, ...)))
12969 SDValue PPCTargetLowering::
12970 combineElementTruncationToVectorTruncation(SDNode *N,
12971                                            DAGCombinerInfo &DCI) const {
12972   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12973          "Should be called with a BUILD_VECTOR node");
12974
12975   SelectionDAG &DAG = DCI.DAG;
12976   SDLoc dl(N);
12977
12978   SDValue FirstInput = N->getOperand(0);
12979   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12980          "The input operand must be an fp-to-int conversion.");
12981
12982   // This combine happens after legalization so the fp_to_[su]i nodes are
12983   // already converted to PPCSISD nodes.
12984   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12985   if (FirstConversion == PPCISD::FCTIDZ ||
12986       FirstConversion == PPCISD::FCTIDUZ ||
12987       FirstConversion == PPCISD::FCTIWZ ||
12988       FirstConversion == PPCISD::FCTIWUZ) {
12989     bool IsSplat = true;
12990     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12991       FirstConversion == PPCISD::FCTIWUZ;
12992     EVT SrcVT = FirstInput.getOperand(0).getValueType();
12993     SmallVector<SDValue, 4> Ops;
12994     EVT TargetVT = N->getValueType(0);
12995     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12996       SDValue NextOp = N->getOperand(i);
12997       if (NextOp.getOpcode() != PPCISD::MFVSR)
12998         return SDValue();
12999       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
13000       if (NextConversion != FirstConversion)
13001         return SDValue();
13002       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
13003       // This is not valid if the input was originally double precision. It is
13004       // also not profitable to do unless this is an extending load in which
13005       // case doing this combine will allow us to combine consecutive loads.
13006       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
13007         return SDValue();
13008       if (N->getOperand(i) != FirstInput)
13009         IsSplat = false;
13010     }
13011
13012     // If this is a splat, we leave it as-is since there will be only a single
13013     // fp-to-int conversion followed by a splat of the integer. This is better
13014     // for 32-bit and smaller ints and neutral for 64-bit ints.
13015     if (IsSplat)
13016       return SDValue();
13017
13018     // Now that we know we have the right type of node, get its operands
13019     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
13020       SDValue In = N->getOperand(i).getOperand(0);
13021       if (Is32Bit) {
13022         // For 32-bit values, we need to add an FP_ROUND node (if we made it
13023         // here, we know that all inputs are extending loads so this is safe).
13024         if (In.isUndef())
13025           Ops.push_back(DAG.getUNDEF(SrcVT));
13026         else {
13027           SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13028                                       MVT::f32, In.getOperand(0),
13029                                       DAG.getIntPtrConstant(1, dl));
13030           Ops.push_back(Trunc);
13031         }
13032       } else
13033         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13034     }
13035
13036     unsigned Opcode;
13037     if (FirstConversion == PPCISD::FCTIDZ ||
13038         FirstConversion == PPCISD::FCTIWZ)
13039       Opcode = ISD::FP_TO_SINT;
13040     else
13041       Opcode = ISD::FP_TO_UINT;
13042
13043     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13044     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13045     return DAG.getNode(Opcode, dl, TargetVT, BV);
13046   }
13047   return SDValue();
13048 }
13049
13050 /// Reduce the number of loads when building a vector.
13051 ///
13052 /// Building a vector out of multiple loads can be converted to a load
13053 /// of the vector type if the loads are consecutive. If the loads are
13054 /// consecutive but in descending order, a shuffle is added at the end
13055 /// to reorder the vector.
13056 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13057   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13058          "Should be called with a BUILD_VECTOR node");
13059
13060   SDLoc dl(N);
13061
13062   // Return early for non byte-sized type, as they can't be consecutive.
13063   if (!N->getValueType(0).getVectorElementType().isByteSized())
13064     return SDValue();
13065
13066   bool InputsAreConsecutiveLoads = true;
13067   bool InputsAreReverseConsecutive = true;
13068   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13069   SDValue FirstInput = N->getOperand(0);
13070   bool IsRoundOfExtLoad = false;
13071
13072   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13073       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13074     LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13075     IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13076   }
13077   // Not a build vector of (possibly fp_rounded) loads.
13078   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13079       N->getNumOperands() == 1)
13080     return SDValue();
13081
13082   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13083     // If any inputs are fp_round(extload), they all must be.
13084     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13085       return SDValue();
13086
13087     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13088       N->getOperand(i);
13089     if (NextInput.getOpcode() != ISD::LOAD)
13090       return SDValue();
13091
13092     SDValue PreviousInput =
13093       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13094     LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13095     LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13096
13097     // If any inputs are fp_round(extload), they all must be.
13098     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13099       return SDValue();
13100
13101     if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13102       InputsAreConsecutiveLoads = false;
13103     if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13104       InputsAreReverseConsecutive = false;
13105
13106     // Exit early if the loads are neither consecutive nor reverse consecutive.
13107     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13108       return SDValue();
13109   }
13110
13111   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13112          "The loads cannot be both consecutive and reverse consecutive.");
13113
13114   SDValue FirstLoadOp =
13115     IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13116   SDValue LastLoadOp =
13117     IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13118                        N->getOperand(N->getNumOperands()-1);
13119
13120   LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13121   LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13122   if (InputsAreConsecutiveLoads) {
13123     assert(LD1 && "Input needs to be a LoadSDNode.");
13124     return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13125                        LD1->getBasePtr(), LD1->getPointerInfo(),
13126                        LD1->getAlignment());
13127   }
13128   if (InputsAreReverseConsecutive) {
13129     assert(LDL && "Input needs to be a LoadSDNode.");
13130     SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13131                                LDL->getBasePtr(), LDL->getPointerInfo(),
13132                                LDL->getAlignment());
13133     SmallVector<int, 16> Ops;
13134     for (int i = N->getNumOperands() - 1; i >= 0; i--)
13135       Ops.push_back(i);
13136
13137     return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13138                                 DAG.getUNDEF(N->getValueType(0)), Ops);
13139   }
13140   return SDValue();
13141 }
13142
13143 // This function adds the required vector_shuffle needed to get
13144 // the elements of the vector extract in the correct position
13145 // as specified by the CorrectElems encoding.
13146 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13147                                       SDValue Input, uint64_t Elems,
13148                                       uint64_t CorrectElems) {
13149   SDLoc dl(N);
13150
13151   unsigned NumElems = Input.getValueType().getVectorNumElements();
13152   SmallVector<int, 16> ShuffleMask(NumElems, -1);
13153
13154   // Knowing the element indices being extracted from the original
13155   // vector and the order in which they're being inserted, just put
13156   // them at element indices required for the instruction.
13157   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13158     if (DAG.getDataLayout().isLittleEndian())
13159       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13160     else
13161       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13162     CorrectElems = CorrectElems >> 8;
13163     Elems = Elems >> 8;
13164   }
13165
13166   SDValue Shuffle =
13167       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13168                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13169
13170   EVT Ty = N->getValueType(0);
13171   SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
13172   return BV;
13173 }
13174
13175 // Look for build vector patterns where input operands come from sign
13176 // extended vector_extract elements of specific indices. If the correct indices
13177 // aren't used, add a vector shuffle to fix up the indices and create a new
13178 // PPCISD:SExtVElems node which selects the vector sign extend instructions
13179 // during instruction selection.
13180 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13181   // This array encodes the indices that the vector sign extend instructions
13182   // extract from when extending from one type to another for both BE and LE.
13183   // The right nibble of each byte corresponds to the LE incides.
13184   // and the left nibble of each byte corresponds to the BE incides.
13185   // For example: 0x3074B8FC  byte->word
13186   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13187   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13188   // For example: 0x000070F8  byte->double word
13189   // For LE: the allowed indices are: 0x0,0x8
13190   // For BE: the allowed indices are: 0x7,0xF
13191   uint64_t TargetElems[] = {
13192       0x3074B8FC, // b->w
13193       0x000070F8, // b->d
13194       0x10325476, // h->w
13195       0x00003074, // h->d
13196       0x00001032, // w->d
13197   };
13198
13199   uint64_t Elems = 0;
13200   int Index;
13201   SDValue Input;
13202
13203   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13204     if (!Op)
13205       return false;
13206     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13207         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13208       return false;
13209
13210     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13211     // of the right width.
13212     SDValue Extract = Op.getOperand(0);
13213     if (Extract.getOpcode() == ISD::ANY_EXTEND)
13214       Extract = Extract.getOperand(0);
13215     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13216       return false;
13217
13218     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13219     if (!ExtOp)
13220       return false;
13221
13222     Index = ExtOp->getZExtValue();
13223     if (Input && Input != Extract.getOperand(0))
13224       return false;
13225
13226     if (!Input)
13227       Input = Extract.getOperand(0);
13228
13229     Elems = Elems << 8;
13230     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13231     Elems |= Index;
13232
13233     return true;
13234   };
13235
13236   // If the build vector operands aren't sign extended vector extracts,
13237   // of the same input vector, then return.
13238   for (unsigned i = 0; i < N->getNumOperands(); i++) {
13239     if (!isSExtOfVecExtract(N->getOperand(i))) {
13240       return SDValue();
13241     }
13242   }
13243
13244   // If the vector extract indicies are not correct, add the appropriate
13245   // vector_shuffle.
13246   int TgtElemArrayIdx;
13247   int InputSize = Input.getValueType().getScalarSizeInBits();
13248   int OutputSize = N->getValueType(0).getScalarSizeInBits();
13249   if (InputSize + OutputSize == 40)
13250     TgtElemArrayIdx = 0;
13251   else if (InputSize + OutputSize == 72)
13252     TgtElemArrayIdx = 1;
13253   else if (InputSize + OutputSize == 48)
13254     TgtElemArrayIdx = 2;
13255   else if (InputSize + OutputSize == 80)
13256     TgtElemArrayIdx = 3;
13257   else if (InputSize + OutputSize == 96)
13258     TgtElemArrayIdx = 4;
13259   else
13260     return SDValue();
13261
13262   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13263   CorrectElems = DAG.getDataLayout().isLittleEndian()
13264                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13265                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13266   if (Elems != CorrectElems) {
13267     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13268   }
13269
13270   // Regular lowering will catch cases where a shuffle is not needed.
13271   return SDValue();
13272 }
13273
13274 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13275                                                  DAGCombinerInfo &DCI) const {
13276   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13277          "Should be called with a BUILD_VECTOR node");
13278
13279   SelectionDAG &DAG = DCI.DAG;
13280   SDLoc dl(N);
13281
13282   if (!Subtarget.hasVSX())
13283     return SDValue();
13284
13285   // The target independent DAG combiner will leave a build_vector of
13286   // float-to-int conversions intact. We can generate MUCH better code for
13287   // a float-to-int conversion of a vector of floats.
13288   SDValue FirstInput = N->getOperand(0);
13289   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13290     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13291     if (Reduced)
13292       return Reduced;
13293   }
13294
13295   // If we're building a vector out of consecutive loads, just load that
13296   // vector type.
13297   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13298   if (Reduced)
13299     return Reduced;
13300
13301   // If we're building a vector out of extended elements from another vector
13302   // we have P9 vector integer extend instructions. The code assumes legal
13303   // input types (i.e. it can't handle things like v4i16) so do not run before
13304   // legalization.
13305   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13306     Reduced = combineBVOfVecSExt(N, DAG);
13307     if (Reduced)
13308       return Reduced;
13309   }
13310
13311
13312   if (N->getValueType(0) != MVT::v2f64)
13313     return SDValue();
13314
13315   // Looking for:
13316   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13317   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13318       FirstInput.getOpcode() != ISD::UINT_TO_FP)
13319     return SDValue();
13320   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13321       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13322     return SDValue();
13323   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13324     return SDValue();
13325
13326   SDValue Ext1 = FirstInput.getOperand(0);
13327   SDValue Ext2 = N->getOperand(1).getOperand(0);
13328   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13329      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13330     return SDValue();
13331
13332   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13333   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13334   if (!Ext1Op || !Ext2Op)
13335     return SDValue();
13336   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13337       Ext1.getOperand(0) != Ext2.getOperand(0))
13338     return SDValue();
13339
13340   int FirstElem = Ext1Op->getZExtValue();
13341   int SecondElem = Ext2Op->getZExtValue();
13342   int SubvecIdx;
13343   if (FirstElem == 0 && SecondElem == 1)
13344     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13345   else if (FirstElem == 2 && SecondElem == 3)
13346     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13347   else
13348     return SDValue();
13349
13350   SDValue SrcVec = Ext1.getOperand(0);
13351   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13352     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13353   return DAG.getNode(NodeType, dl, MVT::v2f64,
13354                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13355 }
13356
13357 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13358                                               DAGCombinerInfo &DCI) const {
13359   assert((N->getOpcode() == ISD::SINT_TO_FP ||
13360           N->getOpcode() == ISD::UINT_TO_FP) &&
13361          "Need an int -> FP conversion node here");
13362
13363   if (useSoftFloat() || !Subtarget.has64BitSupport())
13364     return SDValue();
13365
13366   SelectionDAG &DAG = DCI.DAG;
13367   SDLoc dl(N);
13368   SDValue Op(N, 0);
13369
13370   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13371   // from the hardware.
13372   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13373     return SDValue();
13374   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13375       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13376     return SDValue();
13377
13378   SDValue FirstOperand(Op.getOperand(0));
13379   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13380     (FirstOperand.getValueType() == MVT::i8 ||
13381      FirstOperand.getValueType() == MVT::i16);
13382   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13383     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13384     bool DstDouble = Op.getValueType() == MVT::f64;
13385     unsigned ConvOp = Signed ?
13386       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13387       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13388     SDValue WidthConst =
13389       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13390                             dl, false);
13391     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13392     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13393     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13394                                          DAG.getVTList(MVT::f64, MVT::Other),
13395                                          Ops, MVT::i8, LDN->getMemOperand());
13396
13397     // For signed conversion, we need to sign-extend the value in the VSR
13398     if (Signed) {
13399       SDValue ExtOps[] = { Ld, WidthConst };
13400       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13401       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13402     } else
13403       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13404   }
13405
13406
13407   // For i32 intermediate values, unfortunately, the conversion functions
13408   // leave the upper 32 bits of the value are undefined. Within the set of
13409   // scalar instructions, we have no method for zero- or sign-extending the
13410   // value. Thus, we cannot handle i32 intermediate values here.
13411   if (Op.getOperand(0).getValueType() == MVT::i32)
13412     return SDValue();
13413
13414   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13415          "UINT_TO_FP is supported only with FPCVT");
13416
13417   // If we have FCFIDS, then use it when converting to single-precision.
13418   // Otherwise, convert to double-precision and then round.
13419   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13420                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13421                                                             : PPCISD::FCFIDS)
13422                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13423                                                             : PPCISD::FCFID);
13424   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13425                   ? MVT::f32
13426                   : MVT::f64;
13427
13428   // If we're converting from a float, to an int, and back to a float again,
13429   // then we don't need the store/load pair at all.
13430   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13431        Subtarget.hasFPCVT()) ||
13432       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13433     SDValue Src = Op.getOperand(0).getOperand(0);
13434     if (Src.getValueType() == MVT::f32) {
13435       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13436       DCI.AddToWorklist(Src.getNode());
13437     } else if (Src.getValueType() != MVT::f64) {
13438       // Make sure that we don't pick up a ppc_fp128 source value.
13439       return SDValue();
13440     }
13441
13442     unsigned FCTOp =
13443       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13444                                                         PPCISD::FCTIDUZ;
13445
13446     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13447     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13448
13449     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13450       FP = DAG.getNode(ISD::FP_ROUND, dl,
13451                        MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13452       DCI.AddToWorklist(FP.getNode());
13453     }
13454
13455     return FP;
13456   }
13457
13458   return SDValue();
13459 }
13460
13461 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13462 // builtins) into loads with swaps.
13463 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13464                                               DAGCombinerInfo &DCI) const {
13465   SelectionDAG &DAG = DCI.DAG;
13466   SDLoc dl(N);
13467   SDValue Chain;
13468   SDValue Base;
13469   MachineMemOperand *MMO;
13470
13471   switch (N->getOpcode()) {
13472   default:
13473     llvm_unreachable("Unexpected opcode for little endian VSX load");
13474   case ISD::LOAD: {
13475     LoadSDNode *LD = cast<LoadSDNode>(N);
13476     Chain = LD->getChain();
13477     Base = LD->getBasePtr();
13478     MMO = LD->getMemOperand();
13479     // If the MMO suggests this isn't a load of a full vector, leave
13480     // things alone.  For a built-in, we have to make the change for
13481     // correctness, so if there is a size problem that will be a bug.
13482     if (MMO->getSize() < 16)
13483       return SDValue();
13484     break;
13485   }
13486   case ISD::INTRINSIC_W_CHAIN: {
13487     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13488     Chain = Intrin->getChain();
13489     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13490     // us what we want. Get operand 2 instead.
13491     Base = Intrin->getOperand(2);
13492     MMO = Intrin->getMemOperand();
13493     break;
13494   }
13495   }
13496
13497   MVT VecTy = N->getValueType(0).getSimpleVT();
13498
13499   // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13500   // aligned and the type is a vector with elements up to 4 bytes
13501   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13502       && VecTy.getScalarSizeInBits() <= 32 ) {
13503     return SDValue();
13504   }
13505
13506   SDValue LoadOps[] = { Chain, Base };
13507   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13508                                          DAG.getVTList(MVT::v2f64, MVT::Other),
13509                                          LoadOps, MVT::v2f64, MMO);
13510
13511   DCI.AddToWorklist(Load.getNode());
13512   Chain = Load.getValue(1);
13513   SDValue Swap = DAG.getNode(
13514       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13515   DCI.AddToWorklist(Swap.getNode());
13516
13517   // Add a bitcast if the resulting load type doesn't match v2f64.
13518   if (VecTy != MVT::v2f64) {
13519     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13520     DCI.AddToWorklist(N.getNode());
13521     // Package {bitcast value, swap's chain} to match Load's shape.
13522     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13523                        N, Swap.getValue(1));
13524   }
13525
13526   return Swap;
13527 }
13528
13529 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13530 // builtins) into stores with swaps.
13531 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13532                                                DAGCombinerInfo &DCI) const {
13533   SelectionDAG &DAG = DCI.DAG;
13534   SDLoc dl(N);
13535   SDValue Chain;
13536   SDValue Base;
13537   unsigned SrcOpnd;
13538   MachineMemOperand *MMO;
13539
13540   switch (N->getOpcode()) {
13541   default:
13542     llvm_unreachable("Unexpected opcode for little endian VSX store");
13543   case ISD::STORE: {
13544     StoreSDNode *ST = cast<StoreSDNode>(N);
13545     Chain = ST->getChain();
13546     Base = ST->getBasePtr();
13547     MMO = ST->getMemOperand();
13548     SrcOpnd = 1;
13549     // If the MMO suggests this isn't a store of a full vector, leave
13550     // things alone.  For a built-in, we have to make the change for
13551     // correctness, so if there is a size problem that will be a bug.
13552     if (MMO->getSize() < 16)
13553       return SDValue();
13554     break;
13555   }
13556   case ISD::INTRINSIC_VOID: {
13557     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13558     Chain = Intrin->getChain();
13559     // Intrin->getBasePtr() oddly does not get what we want.
13560     Base = Intrin->getOperand(3);
13561     MMO = Intrin->getMemOperand();
13562     SrcOpnd = 2;
13563     break;
13564   }
13565   }
13566
13567   SDValue Src = N->getOperand(SrcOpnd);
13568   MVT VecTy = Src.getValueType().getSimpleVT();
13569
13570   // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13571   // aligned and the type is a vector with elements up to 4 bytes
13572   if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13573       && VecTy.getScalarSizeInBits() <= 32 ) {
13574     return SDValue();
13575   }
13576
13577   // All stores are done as v2f64 and possible bit cast.
13578   if (VecTy != MVT::v2f64) {
13579     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13580     DCI.AddToWorklist(Src.getNode());
13581   }
13582
13583   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13584                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13585   DCI.AddToWorklist(Swap.getNode());
13586   Chain = Swap.getValue(1);
13587   SDValue StoreOps[] = { Chain, Swap, Base };
13588   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13589                                           DAG.getVTList(MVT::Other),
13590                                           StoreOps, VecTy, MMO);
13591   DCI.AddToWorklist(Store.getNode());
13592   return Store;
13593 }
13594
13595 // Handle DAG combine for STORE (FP_TO_INT F).
13596 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13597                                                DAGCombinerInfo &DCI) const {
13598
13599   SelectionDAG &DAG = DCI.DAG;
13600   SDLoc dl(N);
13601   unsigned Opcode = N->getOperand(1).getOpcode();
13602
13603   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13604          && "Not a FP_TO_INT Instruction!");
13605
13606   SDValue Val = N->getOperand(1).getOperand(0);
13607   EVT Op1VT = N->getOperand(1).getValueType();
13608   EVT ResVT = Val.getValueType();
13609
13610   // Floating point types smaller than 32 bits are not legal on Power.
13611   if (ResVT.getScalarSizeInBits() < 32)
13612     return SDValue();
13613
13614   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13615   bool ValidTypeForStoreFltAsInt =
13616         (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13617          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13618
13619   if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Vector() ||
13620       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13621     return SDValue();
13622
13623   // Extend f32 values to f64
13624   if (ResVT.getScalarSizeInBits() == 32) {
13625     Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13626     DCI.AddToWorklist(Val.getNode());
13627   }
13628
13629   // Set signed or unsigned conversion opcode.
13630   unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13631                           PPCISD::FP_TO_SINT_IN_VSR :
13632                           PPCISD::FP_TO_UINT_IN_VSR;
13633
13634   Val = DAG.getNode(ConvOpcode,
13635                     dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13636   DCI.AddToWorklist(Val.getNode());
13637
13638   // Set number of bytes being converted.
13639   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13640   SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13641                     DAG.getIntPtrConstant(ByteSize, dl, false),
13642                     DAG.getValueType(Op1VT) };
13643
13644   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13645           DAG.getVTList(MVT::Other), Ops,
13646           cast<StoreSDNode>(N)->getMemoryVT(),
13647           cast<StoreSDNode>(N)->getMemOperand());
13648
13649   DCI.AddToWorklist(Val.getNode());
13650   return Val;
13651 }
13652
13653 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
13654                                                 LSBaseSDNode *LSBase,
13655                                                 DAGCombinerInfo &DCI) const {
13656   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
13657         "Not a reverse memop pattern!");
13658
13659   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
13660     auto Mask = SVN->getMask();
13661     int i = 0;
13662     auto I = Mask.rbegin();
13663     auto E = Mask.rend();
13664
13665     for (; I != E; ++I) {
13666       if (*I != i)
13667         return false;
13668       i++;
13669     }
13670     return true;
13671   };
13672
13673   SelectionDAG &DAG = DCI.DAG;
13674   EVT VT = SVN->getValueType(0);
13675
13676   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13677     return SDValue();
13678
13679   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
13680   // See comment in PPCVSXSwapRemoval.cpp.
13681   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
13682   if (!Subtarget.hasP9Vector())
13683     return SDValue();
13684
13685   if(!IsElementReverse(SVN))
13686     return SDValue();
13687
13688   if (LSBase->getOpcode() == ISD::LOAD) {
13689     SDLoc dl(SVN);
13690     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
13691     return DAG.getMemIntrinsicNode(
13692         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
13693         LSBase->getMemoryVT(), LSBase->getMemOperand());
13694   }
13695
13696   if (LSBase->getOpcode() == ISD::STORE) {
13697     SDLoc dl(LSBase);
13698     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
13699                           LSBase->getBasePtr()};
13700     return DAG.getMemIntrinsicNode(
13701         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
13702         LSBase->getMemoryVT(), LSBase->getMemOperand());
13703   }
13704
13705   llvm_unreachable("Expected a load or store node here");
13706 }
13707
13708 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
13709                                              DAGCombinerInfo &DCI) const {
13710   SelectionDAG &DAG = DCI.DAG;
13711   SDLoc dl(N);
13712   switch (N->getOpcode()) {
13713   default: break;
13714   case ISD::ADD:
13715     return combineADD(N, DCI);
13716   case ISD::SHL:
13717     return combineSHL(N, DCI);
13718   case ISD::SRA:
13719     return combineSRA(N, DCI);
13720   case ISD::SRL:
13721     return combineSRL(N, DCI);
13722   case ISD::MUL:
13723     return combineMUL(N, DCI);
13724   case PPCISD::SHL:
13725     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
13726         return N->getOperand(0);
13727     break;
13728   case PPCISD::SRL:
13729     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
13730         return N->getOperand(0);
13731     break;
13732   case PPCISD::SRA:
13733     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
13734       if (C->isNullValue() ||   //  0 >>s V -> 0.
13735           C->isAllOnesValue())    // -1 >>s V -> -1.
13736         return N->getOperand(0);
13737     }
13738     break;
13739   case ISD::SIGN_EXTEND:
13740   case ISD::ZERO_EXTEND:
13741   case ISD::ANY_EXTEND:
13742     return DAGCombineExtBoolTrunc(N, DCI);
13743   case ISD::TRUNCATE:
13744     return combineTRUNCATE(N, DCI);
13745   case ISD::SETCC:
13746     if (SDValue CSCC = combineSetCC(N, DCI))
13747       return CSCC;
13748     LLVM_FALLTHROUGH;
13749   case ISD::SELECT_CC:
13750     return DAGCombineTruncBoolExt(N, DCI);
13751   case ISD::SINT_TO_FP:
13752   case ISD::UINT_TO_FP:
13753     return combineFPToIntToFP(N, DCI);
13754   case ISD::VECTOR_SHUFFLE:
13755     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
13756       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
13757       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
13758     }
13759     break;
13760   case ISD::STORE: {
13761
13762     EVT Op1VT = N->getOperand(1).getValueType();
13763     unsigned Opcode = N->getOperand(1).getOpcode();
13764
13765     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
13766       SDValue Val= combineStoreFPToInt(N, DCI);
13767       if (Val)
13768         return Val;
13769     }
13770
13771     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
13772       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
13773       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
13774       if (Val)
13775         return Val;
13776     }
13777
13778     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
13779     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
13780         N->getOperand(1).getNode()->hasOneUse() &&
13781         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
13782          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
13783
13784       // STBRX can only handle simple types and it makes no sense to store less
13785       // two bytes in byte-reversed order.
13786       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
13787       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
13788         break;
13789
13790       SDValue BSwapOp = N->getOperand(1).getOperand(0);
13791       // Do an any-extend to 32-bits if this is a half-word input.
13792       if (BSwapOp.getValueType() == MVT::i16)
13793         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
13794
13795       // If the type of BSWAP operand is wider than stored memory width
13796       // it need to be shifted to the right side before STBRX.
13797       if (Op1VT.bitsGT(mVT)) {
13798         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
13799         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
13800                               DAG.getConstant(Shift, dl, MVT::i32));
13801         // Need to truncate if this is a bswap of i64 stored as i32/i16.
13802         if (Op1VT == MVT::i64)
13803           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
13804       }
13805
13806       SDValue Ops[] = {
13807         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
13808       };
13809       return
13810         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
13811                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
13812                                 cast<StoreSDNode>(N)->getMemOperand());
13813     }
13814
13815     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
13816     // So it can increase the chance of CSE constant construction.
13817     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
13818         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
13819       // Need to sign-extended to 64-bits to handle negative values.
13820       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
13821       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
13822                                     MemVT.getSizeInBits());
13823       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
13824
13825       // DAG.getTruncStore() can't be used here because it doesn't accept
13826       // the general (base + offset) addressing mode.
13827       // So we use UpdateNodeOperands and setTruncatingStore instead.
13828       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
13829                              N->getOperand(3));
13830       cast<StoreSDNode>(N)->setTruncatingStore(true);
13831       return SDValue(N, 0);
13832     }
13833
13834     // For little endian, VSX stores require generating xxswapd/lxvd2x.
13835     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13836     if (Op1VT.isSimple()) {
13837       MVT StoreVT = Op1VT.getSimpleVT();
13838       if (Subtarget.needsSwapsForVSXMemOps() &&
13839           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
13840            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
13841         return expandVSXStoreForLE(N, DCI);
13842     }
13843     break;
13844   }
13845   case ISD::LOAD: {
13846     LoadSDNode *LD = cast<LoadSDNode>(N);
13847     EVT VT = LD->getValueType(0);
13848
13849     // For little endian, VSX loads require generating lxvd2x/xxswapd.
13850     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13851     if (VT.isSimple()) {
13852       MVT LoadVT = VT.getSimpleVT();
13853       if (Subtarget.needsSwapsForVSXMemOps() &&
13854           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
13855            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
13856         return expandVSXLoadForLE(N, DCI);
13857     }
13858
13859     // We sometimes end up with a 64-bit integer load, from which we extract
13860     // two single-precision floating-point numbers. This happens with
13861     // std::complex<float>, and other similar structures, because of the way we
13862     // canonicalize structure copies. However, if we lack direct moves,
13863     // then the final bitcasts from the extracted integer values to the
13864     // floating-point numbers turn into store/load pairs. Even with direct moves,
13865     // just loading the two floating-point numbers is likely better.
13866     auto ReplaceTwoFloatLoad = [&]() {
13867       if (VT != MVT::i64)
13868         return false;
13869
13870       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
13871           LD->isVolatile())
13872         return false;
13873
13874       //  We're looking for a sequence like this:
13875       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
13876       //      t16: i64 = srl t13, Constant:i32<32>
13877       //    t17: i32 = truncate t16
13878       //  t18: f32 = bitcast t17
13879       //    t19: i32 = truncate t13
13880       //  t20: f32 = bitcast t19
13881
13882       if (!LD->hasNUsesOfValue(2, 0))
13883         return false;
13884
13885       auto UI = LD->use_begin();
13886       while (UI.getUse().getResNo() != 0) ++UI;
13887       SDNode *Trunc = *UI++;
13888       while (UI.getUse().getResNo() != 0) ++UI;
13889       SDNode *RightShift = *UI;
13890       if (Trunc->getOpcode() != ISD::TRUNCATE)
13891         std::swap(Trunc, RightShift);
13892
13893       if (Trunc->getOpcode() != ISD::TRUNCATE ||
13894           Trunc->getValueType(0) != MVT::i32 ||
13895           !Trunc->hasOneUse())
13896         return false;
13897       if (RightShift->getOpcode() != ISD::SRL ||
13898           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
13899           RightShift->getConstantOperandVal(1) != 32 ||
13900           !RightShift->hasOneUse())
13901         return false;
13902
13903       SDNode *Trunc2 = *RightShift->use_begin();
13904       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
13905           Trunc2->getValueType(0) != MVT::i32 ||
13906           !Trunc2->hasOneUse())
13907         return false;
13908
13909       SDNode *Bitcast = *Trunc->use_begin();
13910       SDNode *Bitcast2 = *Trunc2->use_begin();
13911
13912       if (Bitcast->getOpcode() != ISD::BITCAST ||
13913           Bitcast->getValueType(0) != MVT::f32)
13914         return false;
13915       if (Bitcast2->getOpcode() != ISD::BITCAST ||
13916           Bitcast2->getValueType(0) != MVT::f32)
13917         return false;
13918
13919       if (Subtarget.isLittleEndian())
13920         std::swap(Bitcast, Bitcast2);
13921
13922       // Bitcast has the second float (in memory-layout order) and Bitcast2
13923       // has the first one.
13924
13925       SDValue BasePtr = LD->getBasePtr();
13926       if (LD->isIndexed()) {
13927         assert(LD->getAddressingMode() == ISD::PRE_INC &&
13928                "Non-pre-inc AM on PPC?");
13929         BasePtr =
13930           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
13931                       LD->getOffset());
13932       }
13933
13934       auto MMOFlags =
13935           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
13936       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
13937                                       LD->getPointerInfo(), LD->getAlignment(),
13938                                       MMOFlags, LD->getAAInfo());
13939       SDValue AddPtr =
13940         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
13941                     BasePtr, DAG.getIntPtrConstant(4, dl));
13942       SDValue FloatLoad2 = DAG.getLoad(
13943           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
13944           LD->getPointerInfo().getWithOffset(4),
13945           MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
13946
13947       if (LD->isIndexed()) {
13948         // Note that DAGCombine should re-form any pre-increment load(s) from
13949         // what is produced here if that makes sense.
13950         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
13951       }
13952
13953       DCI.CombineTo(Bitcast2, FloatLoad);
13954       DCI.CombineTo(Bitcast, FloatLoad2);
13955
13956       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13957                                     SDValue(FloatLoad2.getNode(), 1));
13958       return true;
13959     };
13960
13961     if (ReplaceTwoFloatLoad())
13962       return SDValue(N, 0);
13963
13964     EVT MemVT = LD->getMemoryVT();
13965     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13966     unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13967     Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13968     unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13969     if (LD->isUnindexed() && VT.isVector() &&
13970         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13971           // P8 and later hardware should just use LOAD.
13972           !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13973                                        VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13974          (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13975           LD->getAlignment() >= ScalarABIAlignment)) &&
13976         LD->getAlignment() < ABIAlignment) {
13977       // This is a type-legal unaligned Altivec or QPX load.
13978       SDValue Chain = LD->getChain();
13979       SDValue Ptr = LD->getBasePtr();
13980       bool isLittleEndian = Subtarget.isLittleEndian();
13981
13982       // This implements the loading of unaligned vectors as described in
13983       // the venerable Apple Velocity Engine overview. Specifically:
13984       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13985       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13986       //
13987       // The general idea is to expand a sequence of one or more unaligned
13988       // loads into an alignment-based permutation-control instruction (lvsl
13989       // or lvsr), a series of regular vector loads (which always truncate
13990       // their input address to an aligned address), and a series of
13991       // permutations.  The results of these permutations are the requested
13992       // loaded values.  The trick is that the last "extra" load is not taken
13993       // from the address you might suspect (sizeof(vector) bytes after the
13994       // last requested load), but rather sizeof(vector) - 1 bytes after the
13995       // last requested vector. The point of this is to avoid a page fault if
13996       // the base address happened to be aligned. This works because if the
13997       // base address is aligned, then adding less than a full vector length
13998       // will cause the last vector in the sequence to be (re)loaded.
13999       // Otherwise, the next vector will be fetched as you might suspect was
14000       // necessary.
14001
14002       // We might be able to reuse the permutation generation from
14003       // a different base address offset from this one by an aligned amount.
14004       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
14005       // optimization later.
14006       Intrinsic::ID Intr, IntrLD, IntrPerm;
14007       MVT PermCntlTy, PermTy, LDTy;
14008       if (Subtarget.hasAltivec()) {
14009         Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
14010                                  Intrinsic::ppc_altivec_lvsl;
14011         IntrLD = Intrinsic::ppc_altivec_lvx;
14012         IntrPerm = Intrinsic::ppc_altivec_vperm;
14013         PermCntlTy = MVT::v16i8;
14014         PermTy = MVT::v4i32;
14015         LDTy = MVT::v4i32;
14016       } else {
14017         Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
14018                                        Intrinsic::ppc_qpx_qvlpcls;
14019         IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
14020                                        Intrinsic::ppc_qpx_qvlfs;
14021         IntrPerm = Intrinsic::ppc_qpx_qvfperm;
14022         PermCntlTy = MVT::v4f64;
14023         PermTy = MVT::v4f64;
14024         LDTy = MemVT.getSimpleVT();
14025       }
14026
14027       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14028
14029       // Create the new MMO for the new base load. It is like the original MMO,
14030       // but represents an area in memory almost twice the vector size centered
14031       // on the original address. If the address is unaligned, we might start
14032       // reading up to (sizeof(vector)-1) bytes below the address of the
14033       // original unaligned load.
14034       MachineFunction &MF = DAG.getMachineFunction();
14035       MachineMemOperand *BaseMMO =
14036         MF.getMachineMemOperand(LD->getMemOperand(),
14037                                 -(long)MemVT.getStoreSize()+1,
14038                                 2*MemVT.getStoreSize()-1);
14039
14040       // Create the new base load.
14041       SDValue LDXIntID =
14042           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14043       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14044       SDValue BaseLoad =
14045         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14046                                 DAG.getVTList(PermTy, MVT::Other),
14047                                 BaseLoadOps, LDTy, BaseMMO);
14048
14049       // Note that the value of IncOffset (which is provided to the next
14050       // load's pointer info offset value, and thus used to calculate the
14051       // alignment), and the value of IncValue (which is actually used to
14052       // increment the pointer value) are different! This is because we
14053       // require the next load to appear to be aligned, even though it
14054       // is actually offset from the base pointer by a lesser amount.
14055       int IncOffset = VT.getSizeInBits() / 8;
14056       int IncValue = IncOffset;
14057
14058       // Walk (both up and down) the chain looking for another load at the real
14059       // (aligned) offset (the alignment of the other load does not matter in
14060       // this case). If found, then do not use the offset reduction trick, as
14061       // that will prevent the loads from being later combined (as they would
14062       // otherwise be duplicates).
14063       if (!findConsecutiveLoad(LD, DAG))
14064         --IncValue;
14065
14066       SDValue Increment =
14067           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14068       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14069
14070       MachineMemOperand *ExtraMMO =
14071         MF.getMachineMemOperand(LD->getMemOperand(),
14072                                 1, 2*MemVT.getStoreSize()-1);
14073       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14074       SDValue ExtraLoad =
14075         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14076                                 DAG.getVTList(PermTy, MVT::Other),
14077                                 ExtraLoadOps, LDTy, ExtraMMO);
14078
14079       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14080         BaseLoad.getValue(1), ExtraLoad.getValue(1));
14081
14082       // Because vperm has a big-endian bias, we must reverse the order
14083       // of the input vectors and complement the permute control vector
14084       // when generating little endian code.  We have already handled the
14085       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14086       // and ExtraLoad here.
14087       SDValue Perm;
14088       if (isLittleEndian)
14089         Perm = BuildIntrinsicOp(IntrPerm,
14090                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14091       else
14092         Perm = BuildIntrinsicOp(IntrPerm,
14093                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14094
14095       if (VT != PermTy)
14096         Perm = Subtarget.hasAltivec() ?
14097                  DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
14098                  DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
14099                                DAG.getTargetConstant(1, dl, MVT::i64));
14100                                // second argument is 1 because this rounding
14101                                // is always exact.
14102
14103       // The output of the permutation is our loaded result, the TokenFactor is
14104       // our new chain.
14105       DCI.CombineTo(N, Perm, TF);
14106       return SDValue(N, 0);
14107     }
14108     }
14109     break;
14110     case ISD::INTRINSIC_WO_CHAIN: {
14111       bool isLittleEndian = Subtarget.isLittleEndian();
14112       unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14113       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14114                                            : Intrinsic::ppc_altivec_lvsl);
14115       if ((IID == Intr ||
14116            IID == Intrinsic::ppc_qpx_qvlpcld  ||
14117            IID == Intrinsic::ppc_qpx_qvlpcls) &&
14118         N->getOperand(1)->getOpcode() == ISD::ADD) {
14119         SDValue Add = N->getOperand(1);
14120
14121         int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
14122                    5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
14123
14124         if (DAG.MaskedValueIsZero(Add->getOperand(1),
14125                                   APInt::getAllOnesValue(Bits /* alignment */)
14126                                       .zext(Add.getScalarValueSizeInBits()))) {
14127           SDNode *BasePtr = Add->getOperand(0).getNode();
14128           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14129                                     UE = BasePtr->use_end();
14130                UI != UE; ++UI) {
14131             if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14132                 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
14133               // We've found another LVSL/LVSR, and this address is an aligned
14134               // multiple of that one. The results will be the same, so use the
14135               // one we've just found instead.
14136
14137               return SDValue(*UI, 0);
14138             }
14139           }
14140         }
14141
14142         if (isa<ConstantSDNode>(Add->getOperand(1))) {
14143           SDNode *BasePtr = Add->getOperand(0).getNode();
14144           for (SDNode::use_iterator UI = BasePtr->use_begin(),
14145                UE = BasePtr->use_end(); UI != UE; ++UI) {
14146             if (UI->getOpcode() == ISD::ADD &&
14147                 isa<ConstantSDNode>(UI->getOperand(1)) &&
14148                 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14149                  cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14150                 (1ULL << Bits) == 0) {
14151               SDNode *OtherAdd = *UI;
14152               for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14153                    VE = OtherAdd->use_end(); VI != VE; ++VI) {
14154                 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14155                     cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14156                   return SDValue(*VI, 0);
14157                 }
14158               }
14159             }
14160           }
14161         }
14162       }
14163
14164       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14165       // Expose the vabsduw/h/b opportunity for down stream
14166       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14167           (IID == Intrinsic::ppc_altivec_vmaxsw ||
14168            IID == Intrinsic::ppc_altivec_vmaxsh ||
14169            IID == Intrinsic::ppc_altivec_vmaxsb)) {
14170         SDValue V1 = N->getOperand(1);
14171         SDValue V2 = N->getOperand(2);
14172         if ((V1.getSimpleValueType() == MVT::v4i32 ||
14173              V1.getSimpleValueType() == MVT::v8i16 ||
14174              V1.getSimpleValueType() == MVT::v16i8) &&
14175             V1.getSimpleValueType() == V2.getSimpleValueType()) {
14176           // (0-a, a)
14177           if (V1.getOpcode() == ISD::SUB &&
14178               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14179               V1.getOperand(1) == V2) {
14180             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14181           }
14182           // (a, 0-a)
14183           if (V2.getOpcode() == ISD::SUB &&
14184               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14185               V2.getOperand(1) == V1) {
14186             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14187           }
14188           // (x-y, y-x)
14189           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14190               V1.getOperand(0) == V2.getOperand(1) &&
14191               V1.getOperand(1) == V2.getOperand(0)) {
14192             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14193           }
14194         }
14195       }
14196     }
14197
14198     break;
14199   case ISD::INTRINSIC_W_CHAIN:
14200     // For little endian, VSX loads require generating lxvd2x/xxswapd.
14201     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14202     if (Subtarget.needsSwapsForVSXMemOps()) {
14203       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14204       default:
14205         break;
14206       case Intrinsic::ppc_vsx_lxvw4x:
14207       case Intrinsic::ppc_vsx_lxvd2x:
14208         return expandVSXLoadForLE(N, DCI);
14209       }
14210     }
14211     break;
14212   case ISD::INTRINSIC_VOID:
14213     // For little endian, VSX stores require generating xxswapd/stxvd2x.
14214     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14215     if (Subtarget.needsSwapsForVSXMemOps()) {
14216       switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14217       default:
14218         break;
14219       case Intrinsic::ppc_vsx_stxvw4x:
14220       case Intrinsic::ppc_vsx_stxvd2x:
14221         return expandVSXStoreForLE(N, DCI);
14222       }
14223     }
14224     break;
14225   case ISD::BSWAP:
14226     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14227     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14228         N->getOperand(0).hasOneUse() &&
14229         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14230          (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14231           N->getValueType(0) == MVT::i64))) {
14232       SDValue Load = N->getOperand(0);
14233       LoadSDNode *LD = cast<LoadSDNode>(Load);
14234       // Create the byte-swapping load.
14235       SDValue Ops[] = {
14236         LD->getChain(),    // Chain
14237         LD->getBasePtr(),  // Ptr
14238         DAG.getValueType(N->getValueType(0)) // VT
14239       };
14240       SDValue BSLoad =
14241         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14242                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14243                                               MVT::i64 : MVT::i32, MVT::Other),
14244                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
14245
14246       // If this is an i16 load, insert the truncate.
14247       SDValue ResVal = BSLoad;
14248       if (N->getValueType(0) == MVT::i16)
14249         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14250
14251       // First, combine the bswap away.  This makes the value produced by the
14252       // load dead.
14253       DCI.CombineTo(N, ResVal);
14254
14255       // Next, combine the load away, we give it a bogus result value but a real
14256       // chain result.  The result value is dead because the bswap is dead.
14257       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14258
14259       // Return N so it doesn't get rechecked!
14260       return SDValue(N, 0);
14261     }
14262     break;
14263   case PPCISD::VCMP:
14264     // If a VCMPo node already exists with exactly the same operands as this
14265     // node, use its result instead of this node (VCMPo computes both a CR6 and
14266     // a normal output).
14267     //
14268     if (!N->getOperand(0).hasOneUse() &&
14269         !N->getOperand(1).hasOneUse() &&
14270         !N->getOperand(2).hasOneUse()) {
14271
14272       // Scan all of the users of the LHS, looking for VCMPo's that match.
14273       SDNode *VCMPoNode = nullptr;
14274
14275       SDNode *LHSN = N->getOperand(0).getNode();
14276       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14277            UI != E; ++UI)
14278         if (UI->getOpcode() == PPCISD::VCMPo &&
14279             UI->getOperand(1) == N->getOperand(1) &&
14280             UI->getOperand(2) == N->getOperand(2) &&
14281             UI->getOperand(0) == N->getOperand(0)) {
14282           VCMPoNode = *UI;
14283           break;
14284         }
14285
14286       // If there is no VCMPo node, or if the flag value has a single use, don't
14287       // transform this.
14288       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14289         break;
14290
14291       // Look at the (necessarily single) use of the flag value.  If it has a
14292       // chain, this transformation is more complex.  Note that multiple things
14293       // could use the value result, which we should ignore.
14294       SDNode *FlagUser = nullptr;
14295       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14296            FlagUser == nullptr; ++UI) {
14297         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14298         SDNode *User = *UI;
14299         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14300           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14301             FlagUser = User;
14302             break;
14303           }
14304         }
14305       }
14306
14307       // If the user is a MFOCRF instruction, we know this is safe.
14308       // Otherwise we give up for right now.
14309       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14310         return SDValue(VCMPoNode, 0);
14311     }
14312     break;
14313   case ISD::BRCOND: {
14314     SDValue Cond = N->getOperand(1);
14315     SDValue Target = N->getOperand(2);
14316
14317     if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14318         cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14319           Intrinsic::loop_decrement) {
14320
14321       // We now need to make the intrinsic dead (it cannot be instruction
14322       // selected).
14323       DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14324       assert(Cond.getNode()->hasOneUse() &&
14325              "Counter decrement has more than one use");
14326
14327       return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14328                          N->getOperand(0), Target);
14329     }
14330   }
14331   break;
14332   case ISD::BR_CC: {
14333     // If this is a branch on an altivec predicate comparison, lower this so
14334     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14335     // lowering is done pre-legalize, because the legalizer lowers the predicate
14336     // compare down to code that is difficult to reassemble.
14337     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14338     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14339
14340     // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14341     // value. If so, pass-through the AND to get to the intrinsic.
14342     if (LHS.getOpcode() == ISD::AND &&
14343         LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14344         cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14345           Intrinsic::loop_decrement &&
14346         isa<ConstantSDNode>(LHS.getOperand(1)) &&
14347         !isNullConstant(LHS.getOperand(1)))
14348       LHS = LHS.getOperand(0);
14349
14350     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14351         cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14352           Intrinsic::loop_decrement &&
14353         isa<ConstantSDNode>(RHS)) {
14354       assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14355              "Counter decrement comparison is not EQ or NE");
14356
14357       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14358       bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14359                     (CC == ISD::SETNE && !Val);
14360
14361       // We now need to make the intrinsic dead (it cannot be instruction
14362       // selected).
14363       DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14364       assert(LHS.getNode()->hasOneUse() &&
14365              "Counter decrement has more than one use");
14366
14367       return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14368                          N->getOperand(0), N->getOperand(4));
14369     }
14370
14371     int CompareOpc;
14372     bool isDot;
14373
14374     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14375         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14376         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14377       assert(isDot && "Can't compare against a vector result!");
14378
14379       // If this is a comparison against something other than 0/1, then we know
14380       // that the condition is never/always true.
14381       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14382       if (Val != 0 && Val != 1) {
14383         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14384           return N->getOperand(0);
14385         // Always !=, turn it into an unconditional branch.
14386         return DAG.getNode(ISD::BR, dl, MVT::Other,
14387                            N->getOperand(0), N->getOperand(4));
14388       }
14389
14390       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14391
14392       // Create the PPCISD altivec 'dot' comparison node.
14393       SDValue Ops[] = {
14394         LHS.getOperand(2),  // LHS of compare
14395         LHS.getOperand(3),  // RHS of compare
14396         DAG.getConstant(CompareOpc, dl, MVT::i32)
14397       };
14398       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14399       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14400
14401       // Unpack the result based on how the target uses it.
14402       PPC::Predicate CompOpc;
14403       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14404       default:  // Can't happen, don't crash on invalid number though.
14405       case 0:   // Branch on the value of the EQ bit of CR6.
14406         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14407         break;
14408       case 1:   // Branch on the inverted value of the EQ bit of CR6.
14409         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14410         break;
14411       case 2:   // Branch on the value of the LT bit of CR6.
14412         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14413         break;
14414       case 3:   // Branch on the inverted value of the LT bit of CR6.
14415         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14416         break;
14417       }
14418
14419       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14420                          DAG.getConstant(CompOpc, dl, MVT::i32),
14421                          DAG.getRegister(PPC::CR6, MVT::i32),
14422                          N->getOperand(4), CompNode.getValue(1));
14423     }
14424     break;
14425   }
14426   case ISD::BUILD_VECTOR:
14427     return DAGCombineBuildVector(N, DCI);
14428   case ISD::ABS:
14429     return combineABS(N, DCI);
14430   case ISD::VSELECT:
14431     return combineVSelect(N, DCI);
14432   }
14433
14434   return SDValue();
14435 }
14436
14437 SDValue
14438 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14439                                  SelectionDAG &DAG,
14440                                  SmallVectorImpl<SDNode *> &Created) const {
14441   // fold (sdiv X, pow2)
14442   EVT VT = N->getValueType(0);
14443   if (VT == MVT::i64 && !Subtarget.isPPC64())
14444     return SDValue();
14445   if ((VT != MVT::i32 && VT != MVT::i64) ||
14446       !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14447     return SDValue();
14448
14449   SDLoc DL(N);
14450   SDValue N0 = N->getOperand(0);
14451
14452   bool IsNegPow2 = (-Divisor).isPowerOf2();
14453   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14454   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14455
14456   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14457   Created.push_back(Op.getNode());
14458
14459   if (IsNegPow2) {
14460     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14461     Created.push_back(Op.getNode());
14462   }
14463
14464   return Op;
14465 }
14466
14467 //===----------------------------------------------------------------------===//
14468 // Inline Assembly Support
14469 //===----------------------------------------------------------------------===//
14470
14471 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14472                                                       KnownBits &Known,
14473                                                       const APInt &DemandedElts,
14474                                                       const SelectionDAG &DAG,
14475                                                       unsigned Depth) const {
14476   Known.resetAll();
14477   switch (Op.getOpcode()) {
14478   default: break;
14479   case PPCISD::LBRX: {
14480     // lhbrx is known to have the top bits cleared out.
14481     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14482       Known.Zero = 0xFFFF0000;
14483     break;
14484   }
14485   case ISD::INTRINSIC_WO_CHAIN: {
14486     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14487     default: break;
14488     case Intrinsic::ppc_altivec_vcmpbfp_p:
14489     case Intrinsic::ppc_altivec_vcmpeqfp_p:
14490     case Intrinsic::ppc_altivec_vcmpequb_p:
14491     case Intrinsic::ppc_altivec_vcmpequh_p:
14492     case Intrinsic::ppc_altivec_vcmpequw_p:
14493     case Intrinsic::ppc_altivec_vcmpequd_p:
14494     case Intrinsic::ppc_altivec_vcmpgefp_p:
14495     case Intrinsic::ppc_altivec_vcmpgtfp_p:
14496     case Intrinsic::ppc_altivec_vcmpgtsb_p:
14497     case Intrinsic::ppc_altivec_vcmpgtsh_p:
14498     case Intrinsic::ppc_altivec_vcmpgtsw_p:
14499     case Intrinsic::ppc_altivec_vcmpgtsd_p:
14500     case Intrinsic::ppc_altivec_vcmpgtub_p:
14501     case Intrinsic::ppc_altivec_vcmpgtuh_p:
14502     case Intrinsic::ppc_altivec_vcmpgtuw_p:
14503     case Intrinsic::ppc_altivec_vcmpgtud_p:
14504       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14505       break;
14506     }
14507   }
14508   }
14509 }
14510
14511 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14512   switch (Subtarget.getCPUDirective()) {
14513   default: break;
14514   case PPC::DIR_970:
14515   case PPC::DIR_PWR4:
14516   case PPC::DIR_PWR5:
14517   case PPC::DIR_PWR5X:
14518   case PPC::DIR_PWR6:
14519   case PPC::DIR_PWR6X:
14520   case PPC::DIR_PWR7:
14521   case PPC::DIR_PWR8:
14522   case PPC::DIR_PWR9:
14523   case PPC::DIR_PWR_FUTURE: {
14524     if (!ML)
14525       break;
14526
14527     if (!DisableInnermostLoopAlign32) {
14528       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14529       // so that we can decrease cache misses and branch-prediction misses.
14530       // Actual alignment of the loop will depend on the hotness check and other
14531       // logic in alignBlocks.
14532       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14533         return Align(32);
14534     }
14535
14536     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14537
14538     // For small loops (between 5 and 8 instructions), align to a 32-byte
14539     // boundary so that the entire loop fits in one instruction-cache line.
14540     uint64_t LoopSize = 0;
14541     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14542       for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14543         LoopSize += TII->getInstSizeInBytes(*J);
14544         if (LoopSize > 32)
14545           break;
14546       }
14547
14548     if (LoopSize > 16 && LoopSize <= 32)
14549       return Align(32);
14550
14551     break;
14552   }
14553   }
14554
14555   return TargetLowering::getPrefLoopAlignment(ML);
14556 }
14557
14558 /// getConstraintType - Given a constraint, return the type of
14559 /// constraint it is for this target.
14560 PPCTargetLowering::ConstraintType
14561 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14562   if (Constraint.size() == 1) {
14563     switch (Constraint[0]) {
14564     default: break;
14565     case 'b':
14566     case 'r':
14567     case 'f':
14568     case 'd':
14569     case 'v':
14570     case 'y':
14571       return C_RegisterClass;
14572     case 'Z':
14573       // FIXME: While Z does indicate a memory constraint, it specifically
14574       // indicates an r+r address (used in conjunction with the 'y' modifier
14575       // in the replacement string). Currently, we're forcing the base
14576       // register to be r0 in the asm printer (which is interpreted as zero)
14577       // and forming the complete address in the second register. This is
14578       // suboptimal.
14579       return C_Memory;
14580     }
14581   } else if (Constraint == "wc") { // individual CR bits.
14582     return C_RegisterClass;
14583   } else if (Constraint == "wa" || Constraint == "wd" ||
14584              Constraint == "wf" || Constraint == "ws" ||
14585              Constraint == "wi" || Constraint == "ww") {
14586     return C_RegisterClass; // VSX registers.
14587   }
14588   return TargetLowering::getConstraintType(Constraint);
14589 }
14590
14591 /// Examine constraint type and operand type and determine a weight value.
14592 /// This object must already have been set up with the operand type
14593 /// and the current alternative constraint selected.
14594 TargetLowering::ConstraintWeight
14595 PPCTargetLowering::getSingleConstraintMatchWeight(
14596     AsmOperandInfo &info, const char *constraint) const {
14597   ConstraintWeight weight = CW_Invalid;
14598   Value *CallOperandVal = info.CallOperandVal;
14599     // If we don't have a value, we can't do a match,
14600     // but allow it at the lowest weight.
14601   if (!CallOperandVal)
14602     return CW_Default;
14603   Type *type = CallOperandVal->getType();
14604
14605   // Look at the constraint type.
14606   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14607     return CW_Register; // an individual CR bit.
14608   else if ((StringRef(constraint) == "wa" ||
14609             StringRef(constraint) == "wd" ||
14610             StringRef(constraint) == "wf") &&
14611            type->isVectorTy())
14612     return CW_Register;
14613   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14614     return CW_Register; // just hold 64-bit integers data.
14615   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14616     return CW_Register;
14617   else if (StringRef(constraint) == "ww" && type->isFloatTy())
14618     return CW_Register;
14619
14620   switch (*constraint) {
14621   default:
14622     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14623     break;
14624   case 'b':
14625     if (type->isIntegerTy())
14626       weight = CW_Register;
14627     break;
14628   case 'f':
14629     if (type->isFloatTy())
14630       weight = CW_Register;
14631     break;
14632   case 'd':
14633     if (type->isDoubleTy())
14634       weight = CW_Register;
14635     break;
14636   case 'v':
14637     if (type->isVectorTy())
14638       weight = CW_Register;
14639     break;
14640   case 'y':
14641     weight = CW_Register;
14642     break;
14643   case 'Z':
14644     weight = CW_Memory;
14645     break;
14646   }
14647   return weight;
14648 }
14649
14650 std::pair<unsigned, const TargetRegisterClass *>
14651 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14652                                                 StringRef Constraint,
14653                                                 MVT VT) const {
14654   if (Constraint.size() == 1) {
14655     // GCC RS6000 Constraint Letters
14656     switch (Constraint[0]) {
14657     case 'b':   // R1-R31
14658       if (VT == MVT::i64 && Subtarget.isPPC64())
14659         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
14660       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
14661     case 'r':   // R0-R31
14662       if (VT == MVT::i64 && Subtarget.isPPC64())
14663         return std::make_pair(0U, &PPC::G8RCRegClass);
14664       return std::make_pair(0U, &PPC::GPRCRegClass);
14665     // 'd' and 'f' constraints are both defined to be "the floating point
14666     // registers", where one is for 32-bit and the other for 64-bit. We don't
14667     // really care overly much here so just give them all the same reg classes.
14668     case 'd':
14669     case 'f':
14670       if (Subtarget.hasSPE()) {
14671         if (VT == MVT::f32 || VT == MVT::i32)
14672           return std::make_pair(0U, &PPC::GPRCRegClass);
14673         if (VT == MVT::f64 || VT == MVT::i64)
14674           return std::make_pair(0U, &PPC::SPERCRegClass);
14675       } else {
14676         if (VT == MVT::f32 || VT == MVT::i32)
14677           return std::make_pair(0U, &PPC::F4RCRegClass);
14678         if (VT == MVT::f64 || VT == MVT::i64)
14679           return std::make_pair(0U, &PPC::F8RCRegClass);
14680         if (VT == MVT::v4f64 && Subtarget.hasQPX())
14681           return std::make_pair(0U, &PPC::QFRCRegClass);
14682         if (VT == MVT::v4f32 && Subtarget.hasQPX())
14683           return std::make_pair(0U, &PPC::QSRCRegClass);
14684       }
14685       break;
14686     case 'v':
14687       if (VT == MVT::v4f64 && Subtarget.hasQPX())
14688         return std::make_pair(0U, &PPC::QFRCRegClass);
14689       if (VT == MVT::v4f32 && Subtarget.hasQPX())
14690         return std::make_pair(0U, &PPC::QSRCRegClass);
14691       if (Subtarget.hasAltivec())
14692         return std::make_pair(0U, &PPC::VRRCRegClass);
14693       break;
14694     case 'y':   // crrc
14695       return std::make_pair(0U, &PPC::CRRCRegClass);
14696     }
14697   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
14698     // An individual CR bit.
14699     return std::make_pair(0U, &PPC::CRBITRCRegClass);
14700   } else if ((Constraint == "wa" || Constraint == "wd" ||
14701              Constraint == "wf" || Constraint == "wi") &&
14702              Subtarget.hasVSX()) {
14703     return std::make_pair(0U, &PPC::VSRCRegClass);
14704   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
14705     if (VT == MVT::f32 && Subtarget.hasP8Vector())
14706       return std::make_pair(0U, &PPC::VSSRCRegClass);
14707     else
14708       return std::make_pair(0U, &PPC::VSFRCRegClass);
14709   }
14710
14711   // If we name a VSX register, we can't defer to the base class because it
14712   // will not recognize the correct register (their names will be VSL{0-31}
14713   // and V{0-31} so they won't match). So we match them here.
14714   if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
14715     int VSNum = atoi(Constraint.data() + 3);
14716     assert(VSNum >= 0 && VSNum <= 63 &&
14717            "Attempted to access a vsr out of range");
14718     if (VSNum < 32)
14719       return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
14720     return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
14721   }
14722   std::pair<unsigned, const TargetRegisterClass *> R =
14723       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14724
14725   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
14726   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
14727   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
14728   // register.
14729   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
14730   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
14731   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
14732       PPC::GPRCRegClass.contains(R.first))
14733     return std::make_pair(TRI->getMatchingSuperReg(R.first,
14734                             PPC::sub_32, &PPC::G8RCRegClass),
14735                           &PPC::G8RCRegClass);
14736
14737   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
14738   if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
14739     R.first = PPC::CR0;
14740     R.second = &PPC::CRRCRegClass;
14741   }
14742
14743   return R;
14744 }
14745
14746 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14747 /// vector.  If it is invalid, don't add anything to Ops.
14748 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14749                                                      std::string &Constraint,
14750                                                      std::vector<SDValue>&Ops,
14751                                                      SelectionDAG &DAG) const {
14752   SDValue Result;
14753
14754   // Only support length 1 constraints.
14755   if (Constraint.length() > 1) return;
14756
14757   char Letter = Constraint[0];
14758   switch (Letter) {
14759   default: break;
14760   case 'I':
14761   case 'J':
14762   case 'K':
14763   case 'L':
14764   case 'M':
14765   case 'N':
14766   case 'O':
14767   case 'P': {
14768     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
14769     if (!CST) return; // Must be an immediate to match.
14770     SDLoc dl(Op);
14771     int64_t Value = CST->getSExtValue();
14772     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
14773                          // numbers are printed as such.
14774     switch (Letter) {
14775     default: llvm_unreachable("Unknown constraint letter!");
14776     case 'I':  // "I" is a signed 16-bit constant.
14777       if (isInt<16>(Value))
14778         Result = DAG.getTargetConstant(Value, dl, TCVT);
14779       break;
14780     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
14781       if (isShiftedUInt<16, 16>(Value))
14782         Result = DAG.getTargetConstant(Value, dl, TCVT);
14783       break;
14784     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
14785       if (isShiftedInt<16, 16>(Value))
14786         Result = DAG.getTargetConstant(Value, dl, TCVT);
14787       break;
14788     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
14789       if (isUInt<16>(Value))
14790         Result = DAG.getTargetConstant(Value, dl, TCVT);
14791       break;
14792     case 'M':  // "M" is a constant that is greater than 31.
14793       if (Value > 31)
14794         Result = DAG.getTargetConstant(Value, dl, TCVT);
14795       break;
14796     case 'N':  // "N" is a positive constant that is an exact power of two.
14797       if (Value > 0 && isPowerOf2_64(Value))
14798         Result = DAG.getTargetConstant(Value, dl, TCVT);
14799       break;
14800     case 'O':  // "O" is the constant zero.
14801       if (Value == 0)
14802         Result = DAG.getTargetConstant(Value, dl, TCVT);
14803       break;
14804     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
14805       if (isInt<16>(-Value))
14806         Result = DAG.getTargetConstant(Value, dl, TCVT);
14807       break;
14808     }
14809     break;
14810   }
14811   }
14812
14813   if (Result.getNode()) {
14814     Ops.push_back(Result);
14815     return;
14816   }
14817
14818   // Handle standard constraint letters.
14819   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14820 }
14821
14822 // isLegalAddressingMode - Return true if the addressing mode represented
14823 // by AM is legal for this target, for a load/store of the specified type.
14824 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14825                                               const AddrMode &AM, Type *Ty,
14826                                               unsigned AS, Instruction *I) const {
14827   // PPC does not allow r+i addressing modes for vectors!
14828   if (Ty->isVectorTy() && AM.BaseOffs != 0)
14829     return false;
14830
14831   // PPC allows a sign-extended 16-bit immediate field.
14832   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
14833     return false;
14834
14835   // No global is ever allowed as a base.
14836   if (AM.BaseGV)
14837     return false;
14838
14839   // PPC only support r+r,
14840   switch (AM.Scale) {
14841   case 0:  // "r+i" or just "i", depending on HasBaseReg.
14842     break;
14843   case 1:
14844     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
14845       return false;
14846     // Otherwise we have r+r or r+i.
14847     break;
14848   case 2:
14849     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
14850       return false;
14851     // Allow 2*r as r+r.
14852     break;
14853   default:
14854     // No other scales are supported.
14855     return false;
14856   }
14857
14858   return true;
14859 }
14860
14861 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
14862                                            SelectionDAG &DAG) const {
14863   MachineFunction &MF = DAG.getMachineFunction();
14864   MachineFrameInfo &MFI = MF.getFrameInfo();
14865   MFI.setReturnAddressIsTaken(true);
14866
14867   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
14868     return SDValue();
14869
14870   SDLoc dl(Op);
14871   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14872
14873   // Make sure the function does not optimize away the store of the RA to
14874   // the stack.
14875   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
14876   FuncInfo->setLRStoreRequired();
14877   bool isPPC64 = Subtarget.isPPC64();
14878   auto PtrVT = getPointerTy(MF.getDataLayout());
14879
14880   if (Depth > 0) {
14881     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
14882     SDValue Offset =
14883         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
14884                         isPPC64 ? MVT::i64 : MVT::i32);
14885     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14886                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
14887                        MachinePointerInfo());
14888   }
14889
14890   // Just load the return address off the stack.
14891   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
14892   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
14893                      MachinePointerInfo());
14894 }
14895
14896 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
14897                                           SelectionDAG &DAG) const {
14898   SDLoc dl(Op);
14899   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14900
14901   MachineFunction &MF = DAG.getMachineFunction();
14902   MachineFrameInfo &MFI = MF.getFrameInfo();
14903   MFI.setFrameAddressIsTaken(true);
14904
14905   EVT PtrVT = getPointerTy(MF.getDataLayout());
14906   bool isPPC64 = PtrVT == MVT::i64;
14907
14908   // Naked functions never have a frame pointer, and so we use r1. For all
14909   // other functions, this decision must be delayed until during PEI.
14910   unsigned FrameReg;
14911   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
14912     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
14913   else
14914     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
14915
14916   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
14917                                          PtrVT);
14918   while (Depth--)
14919     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
14920                             FrameAddr, MachinePointerInfo());
14921   return FrameAddr;
14922 }
14923
14924 // FIXME? Maybe this could be a TableGen attribute on some registers and
14925 // this table could be generated automatically from RegInfo.
14926 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
14927                                               const MachineFunction &MF) const {
14928   bool isPPC64 = Subtarget.isPPC64();
14929   bool IsDarwinABI = Subtarget.isDarwinABI();
14930
14931   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
14932   if (!is64Bit && VT != LLT::scalar(32))
14933     report_fatal_error("Invalid register global variable type");
14934
14935   Register Reg = StringSwitch<Register>(RegName)
14936                    .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
14937                    .Case("r2", (IsDarwinABI || isPPC64) ? Register() : PPC::R2)
14938                    .Case("r13", (!isPPC64 && IsDarwinABI) ? Register() :
14939                                   (is64Bit ? PPC::X13 : PPC::R13))
14940                    .Default(Register());
14941
14942   if (Reg)
14943     return Reg;
14944   report_fatal_error("Invalid register name global variable");
14945 }
14946
14947 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
14948   // 32-bit SVR4 ABI access everything as got-indirect.
14949   if (Subtarget.is32BitELFABI())
14950     return true;
14951
14952   // AIX accesses everything indirectly through the TOC, which is similar to
14953   // the GOT.
14954   if (Subtarget.isAIXABI())
14955     return true;
14956
14957   CodeModel::Model CModel = getTargetMachine().getCodeModel();
14958   // If it is small or large code model, module locals are accessed
14959   // indirectly by loading their address from .toc/.got.
14960   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
14961     return true;
14962
14963   // JumpTable and BlockAddress are accessed as got-indirect.
14964   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
14965     return true;
14966
14967   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
14968     return Subtarget.isGVIndirectSymbol(G->getGlobal());
14969
14970   return false;
14971 }
14972
14973 bool
14974 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14975   // The PowerPC target isn't yet aware of offsets.
14976   return false;
14977 }
14978
14979 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14980                                            const CallInst &I,
14981                                            MachineFunction &MF,
14982                                            unsigned Intrinsic) const {
14983   switch (Intrinsic) {
14984   case Intrinsic::ppc_qpx_qvlfd:
14985   case Intrinsic::ppc_qpx_qvlfs:
14986   case Intrinsic::ppc_qpx_qvlfcd:
14987   case Intrinsic::ppc_qpx_qvlfcs:
14988   case Intrinsic::ppc_qpx_qvlfiwa:
14989   case Intrinsic::ppc_qpx_qvlfiwz:
14990   case Intrinsic::ppc_altivec_lvx:
14991   case Intrinsic::ppc_altivec_lvxl:
14992   case Intrinsic::ppc_altivec_lvebx:
14993   case Intrinsic::ppc_altivec_lvehx:
14994   case Intrinsic::ppc_altivec_lvewx:
14995   case Intrinsic::ppc_vsx_lxvd2x:
14996   case Intrinsic::ppc_vsx_lxvw4x: {
14997     EVT VT;
14998     switch (Intrinsic) {
14999     case Intrinsic::ppc_altivec_lvebx:
15000       VT = MVT::i8;
15001       break;
15002     case Intrinsic::ppc_altivec_lvehx:
15003       VT = MVT::i16;
15004       break;
15005     case Intrinsic::ppc_altivec_lvewx:
15006       VT = MVT::i32;
15007       break;
15008     case Intrinsic::ppc_vsx_lxvd2x:
15009       VT = MVT::v2f64;
15010       break;
15011     case Intrinsic::ppc_qpx_qvlfd:
15012       VT = MVT::v4f64;
15013       break;
15014     case Intrinsic::ppc_qpx_qvlfs:
15015       VT = MVT::v4f32;
15016       break;
15017     case Intrinsic::ppc_qpx_qvlfcd:
15018       VT = MVT::v2f64;
15019       break;
15020     case Intrinsic::ppc_qpx_qvlfcs:
15021       VT = MVT::v2f32;
15022       break;
15023     default:
15024       VT = MVT::v4i32;
15025       break;
15026     }
15027
15028     Info.opc = ISD::INTRINSIC_W_CHAIN;
15029     Info.memVT = VT;
15030     Info.ptrVal = I.getArgOperand(0);
15031     Info.offset = -VT.getStoreSize()+1;
15032     Info.size = 2*VT.getStoreSize()-1;
15033     Info.align = Align::None();
15034     Info.flags = MachineMemOperand::MOLoad;
15035     return true;
15036   }
15037   case Intrinsic::ppc_qpx_qvlfda:
15038   case Intrinsic::ppc_qpx_qvlfsa:
15039   case Intrinsic::ppc_qpx_qvlfcda:
15040   case Intrinsic::ppc_qpx_qvlfcsa:
15041   case Intrinsic::ppc_qpx_qvlfiwaa:
15042   case Intrinsic::ppc_qpx_qvlfiwza: {
15043     EVT VT;
15044     switch (Intrinsic) {
15045     case Intrinsic::ppc_qpx_qvlfda:
15046       VT = MVT::v4f64;
15047       break;
15048     case Intrinsic::ppc_qpx_qvlfsa:
15049       VT = MVT::v4f32;
15050       break;
15051     case Intrinsic::ppc_qpx_qvlfcda:
15052       VT = MVT::v2f64;
15053       break;
15054     case Intrinsic::ppc_qpx_qvlfcsa:
15055       VT = MVT::v2f32;
15056       break;
15057     default:
15058       VT = MVT::v4i32;
15059       break;
15060     }
15061
15062     Info.opc = ISD::INTRINSIC_W_CHAIN;
15063     Info.memVT = VT;
15064     Info.ptrVal = I.getArgOperand(0);
15065     Info.offset = 0;
15066     Info.size = VT.getStoreSize();
15067     Info.align = Align::None();
15068     Info.flags = MachineMemOperand::MOLoad;
15069     return true;
15070   }
15071   case Intrinsic::ppc_qpx_qvstfd:
15072   case Intrinsic::ppc_qpx_qvstfs:
15073   case Intrinsic::ppc_qpx_qvstfcd:
15074   case Intrinsic::ppc_qpx_qvstfcs:
15075   case Intrinsic::ppc_qpx_qvstfiw:
15076   case Intrinsic::ppc_altivec_stvx:
15077   case Intrinsic::ppc_altivec_stvxl:
15078   case Intrinsic::ppc_altivec_stvebx:
15079   case Intrinsic::ppc_altivec_stvehx:
15080   case Intrinsic::ppc_altivec_stvewx:
15081   case Intrinsic::ppc_vsx_stxvd2x:
15082   case Intrinsic::ppc_vsx_stxvw4x: {
15083     EVT VT;
15084     switch (Intrinsic) {
15085     case Intrinsic::ppc_altivec_stvebx:
15086       VT = MVT::i8;
15087       break;
15088     case Intrinsic::ppc_altivec_stvehx:
15089       VT = MVT::i16;
15090       break;
15091     case Intrinsic::ppc_altivec_stvewx:
15092       VT = MVT::i32;
15093       break;
15094     case Intrinsic::ppc_vsx_stxvd2x:
15095       VT = MVT::v2f64;
15096       break;
15097     case Intrinsic::ppc_qpx_qvstfd:
15098       VT = MVT::v4f64;
15099       break;
15100     case Intrinsic::ppc_qpx_qvstfs:
15101       VT = MVT::v4f32;
15102       break;
15103     case Intrinsic::ppc_qpx_qvstfcd:
15104       VT = MVT::v2f64;
15105       break;
15106     case Intrinsic::ppc_qpx_qvstfcs:
15107       VT = MVT::v2f32;
15108       break;
15109     default:
15110       VT = MVT::v4i32;
15111       break;
15112     }
15113
15114     Info.opc = ISD::INTRINSIC_VOID;
15115     Info.memVT = VT;
15116     Info.ptrVal = I.getArgOperand(1);
15117     Info.offset = -VT.getStoreSize()+1;
15118     Info.size = 2*VT.getStoreSize()-1;
15119     Info.align = Align::None();
15120     Info.flags = MachineMemOperand::MOStore;
15121     return true;
15122   }
15123   case Intrinsic::ppc_qpx_qvstfda:
15124   case Intrinsic::ppc_qpx_qvstfsa:
15125   case Intrinsic::ppc_qpx_qvstfcda:
15126   case Intrinsic::ppc_qpx_qvstfcsa:
15127   case Intrinsic::ppc_qpx_qvstfiwa: {
15128     EVT VT;
15129     switch (Intrinsic) {
15130     case Intrinsic::ppc_qpx_qvstfda:
15131       VT = MVT::v4f64;
15132       break;
15133     case Intrinsic::ppc_qpx_qvstfsa:
15134       VT = MVT::v4f32;
15135       break;
15136     case Intrinsic::ppc_qpx_qvstfcda:
15137       VT = MVT::v2f64;
15138       break;
15139     case Intrinsic::ppc_qpx_qvstfcsa:
15140       VT = MVT::v2f32;
15141       break;
15142     default:
15143       VT = MVT::v4i32;
15144       break;
15145     }
15146
15147     Info.opc = ISD::INTRINSIC_VOID;
15148     Info.memVT = VT;
15149     Info.ptrVal = I.getArgOperand(1);
15150     Info.offset = 0;
15151     Info.size = VT.getStoreSize();
15152     Info.align = Align::None();
15153     Info.flags = MachineMemOperand::MOStore;
15154     return true;
15155   }
15156   default:
15157     break;
15158   }
15159
15160   return false;
15161 }
15162
15163 /// getOptimalMemOpType - Returns the target specific optimal type for load
15164 /// and store operations as a result of memset, memcpy, and memmove
15165 /// lowering. If DstAlign is zero that means it's safe to destination
15166 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
15167 /// means there isn't a need to check it against alignment requirement,
15168 /// probably because the source does not need to be loaded. If 'IsMemset' is
15169 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
15170 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
15171 /// source is constant so it does not need to be loaded.
15172 /// It returns EVT::Other if the type should be determined using generic
15173 /// target-independent logic.
15174 EVT PPCTargetLowering::getOptimalMemOpType(
15175     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
15176     bool ZeroMemset, bool MemcpyStrSrc,
15177     const AttributeList &FuncAttributes) const {
15178   if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15179     // When expanding a memset, require at least two QPX instructions to cover
15180     // the cost of loading the value to be stored from the constant pool.
15181     if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
15182        (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
15183         !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
15184       return MVT::v4f64;
15185     }
15186
15187     // We should use Altivec/VSX loads and stores when available. For unaligned
15188     // addresses, unaligned VSX loads are only fast starting with the P8.
15189     if (Subtarget.hasAltivec() && Size >= 16 &&
15190         (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
15191          ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15192       return MVT::v4i32;
15193   }
15194
15195   if (Subtarget.isPPC64()) {
15196     return MVT::i64;
15197   }
15198
15199   return MVT::i32;
15200 }
15201
15202 /// Returns true if it is beneficial to convert a load of a constant
15203 /// to just the constant itself.
15204 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15205                                                           Type *Ty) const {
15206   assert(Ty->isIntegerTy());
15207
15208   unsigned BitSize = Ty->getPrimitiveSizeInBits();
15209   return !(BitSize == 0 || BitSize > 64);
15210 }
15211
15212 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15213   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15214     return false;
15215   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15216   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15217   return NumBits1 == 64 && NumBits2 == 32;
15218 }
15219
15220 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15221   if (!VT1.isInteger() || !VT2.isInteger())
15222     return false;
15223   unsigned NumBits1 = VT1.getSizeInBits();
15224   unsigned NumBits2 = VT2.getSizeInBits();
15225   return NumBits1 == 64 && NumBits2 == 32;
15226 }
15227
15228 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15229   // Generally speaking, zexts are not free, but they are free when they can be
15230   // folded with other operations.
15231   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15232     EVT MemVT = LD->getMemoryVT();
15233     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15234          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15235         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15236          LD->getExtensionType() == ISD::ZEXTLOAD))
15237       return true;
15238   }
15239
15240   // FIXME: Add other cases...
15241   //  - 32-bit shifts with a zext to i64
15242   //  - zext after ctlz, bswap, etc.
15243   //  - zext after and by a constant mask
15244
15245   return TargetLowering::isZExtFree(Val, VT2);
15246 }
15247
15248 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15249   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15250          "invalid fpext types");
15251   // Extending to float128 is not free.
15252   if (DestVT == MVT::f128)
15253     return false;
15254   return true;
15255 }
15256
15257 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15258   return isInt<16>(Imm) || isUInt<16>(Imm);
15259 }
15260
15261 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15262   return isInt<16>(Imm) || isUInt<16>(Imm);
15263 }
15264
15265 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15266                                                        unsigned,
15267                                                        unsigned,
15268                                                        MachineMemOperand::Flags,
15269                                                        bool *Fast) const {
15270   if (DisablePPCUnaligned)
15271     return false;
15272
15273   // PowerPC supports unaligned memory access for simple non-vector types.
15274   // Although accessing unaligned addresses is not as efficient as accessing
15275   // aligned addresses, it is generally more efficient than manual expansion,
15276   // and generally only traps for software emulation when crossing page
15277   // boundaries.
15278
15279   if (!VT.isSimple())
15280     return false;
15281
15282   if (VT.isFloatingPoint() && !VT.isVector() &&
15283       !Subtarget.allowsUnalignedFPAccess())
15284     return false;
15285
15286   if (VT.getSimpleVT().isVector()) {
15287     if (Subtarget.hasVSX()) {
15288       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15289           VT != MVT::v4f32 && VT != MVT::v4i32)
15290         return false;
15291     } else {
15292       return false;
15293     }
15294   }
15295
15296   if (VT == MVT::ppcf128)
15297     return false;
15298
15299   if (Fast)
15300     *Fast = true;
15301
15302   return true;
15303 }
15304
15305 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15306                                                    EVT VT) const {
15307   VT = VT.getScalarType();
15308
15309   if (!VT.isSimple())
15310     return false;
15311
15312   switch (VT.getSimpleVT().SimpleTy) {
15313   case MVT::f32:
15314   case MVT::f64:
15315     return true;
15316   case MVT::f128:
15317     return (EnableQuadPrecision && Subtarget.hasP9Vector());
15318   default:
15319     break;
15320   }
15321
15322   return false;
15323 }
15324
15325 const MCPhysReg *
15326 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15327   // LR is a callee-save register, but we must treat it as clobbered by any call
15328   // site. Hence we include LR in the scratch registers, which are in turn added
15329   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15330   // to CTR, which is used by any indirect call.
15331   static const MCPhysReg ScratchRegs[] = {
15332     PPC::X12, PPC::LR8, PPC::CTR8, 0
15333   };
15334
15335   return ScratchRegs;
15336 }
15337
15338 unsigned PPCTargetLowering::getExceptionPointerRegister(
15339     const Constant *PersonalityFn) const {
15340   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15341 }
15342
15343 unsigned PPCTargetLowering::getExceptionSelectorRegister(
15344     const Constant *PersonalityFn) const {
15345   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15346 }
15347
15348 bool
15349 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15350                      EVT VT , unsigned DefinedValues) const {
15351   if (VT == MVT::v2i64)
15352     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15353
15354   if (Subtarget.hasVSX() || Subtarget.hasQPX())
15355     return true;
15356
15357   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15358 }
15359
15360 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15361   if (DisableILPPref || Subtarget.enableMachineScheduler())
15362     return TargetLowering::getSchedulingPreference(N);
15363
15364   return Sched::ILP;
15365 }
15366
15367 // Create a fast isel object.
15368 FastISel *
15369 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15370                                   const TargetLibraryInfo *LibInfo) const {
15371   return PPC::createFastISel(FuncInfo, LibInfo);
15372 }
15373
15374 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15375   if (Subtarget.isDarwinABI()) return;
15376   if (!Subtarget.isPPC64()) return;
15377
15378   // Update IsSplitCSR in PPCFunctionInfo
15379   PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
15380   PFI->setIsSplitCSR(true);
15381 }
15382
15383 void PPCTargetLowering::insertCopiesSplitCSR(
15384   MachineBasicBlock *Entry,
15385   const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15386   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
15387   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15388   if (!IStart)
15389     return;
15390
15391   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
15392   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15393   MachineBasicBlock::iterator MBBI = Entry->begin();
15394   for (const MCPhysReg *I = IStart; *I; ++I) {
15395     const TargetRegisterClass *RC = nullptr;
15396     if (PPC::G8RCRegClass.contains(*I))
15397       RC = &PPC::G8RCRegClass;
15398     else if (PPC::F8RCRegClass.contains(*I))
15399       RC = &PPC::F8RCRegClass;
15400     else if (PPC::CRRCRegClass.contains(*I))
15401       RC = &PPC::CRRCRegClass;
15402     else if (PPC::VRRCRegClass.contains(*I))
15403       RC = &PPC::VRRCRegClass;
15404     else
15405       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15406
15407     Register NewVR = MRI->createVirtualRegister(RC);
15408     // Create copy from CSR to a virtual register.
15409     // FIXME: this currently does not emit CFI pseudo-instructions, it works
15410     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15411     // nounwind. If we want to generalize this later, we may need to emit
15412     // CFI pseudo-instructions.
15413     assert(Entry->getParent()->getFunction().hasFnAttribute(
15414              Attribute::NoUnwind) &&
15415            "Function should be nounwind in insertCopiesSplitCSR!");
15416     Entry->addLiveIn(*I);
15417     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15418       .addReg(*I);
15419
15420     // Insert the copy-back instructions right before the terminator.
15421     for (auto *Exit : Exits)
15422       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15423               TII->get(TargetOpcode::COPY), *I)
15424         .addReg(NewVR);
15425   }
15426 }
15427
15428 // Override to enable LOAD_STACK_GUARD lowering on Linux.
15429 bool PPCTargetLowering::useLoadStackGuardNode() const {
15430   if (!Subtarget.isTargetLinux())
15431     return TargetLowering::useLoadStackGuardNode();
15432   return true;
15433 }
15434
15435 // Override to disable global variable loading on Linux.
15436 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15437   if (!Subtarget.isTargetLinux())
15438     return TargetLowering::insertSSPDeclarations(M);
15439 }
15440
15441 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15442                                      bool ForCodeSize) const {
15443   if (!VT.isSimple() || !Subtarget.hasVSX())
15444     return false;
15445
15446   switch(VT.getSimpleVT().SimpleTy) {
15447   default:
15448     // For FP types that are currently not supported by PPC backend, return
15449     // false. Examples: f16, f80.
15450     return false;
15451   case MVT::f32:
15452   case MVT::f64:
15453   case MVT::ppcf128:
15454     return Imm.isPosZero();
15455   }
15456 }
15457
15458 // For vector shift operation op, fold
15459 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15460 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15461                                   SelectionDAG &DAG) {
15462   SDValue N0 = N->getOperand(0);
15463   SDValue N1 = N->getOperand(1);
15464   EVT VT = N0.getValueType();
15465   unsigned OpSizeInBits = VT.getScalarSizeInBits();
15466   unsigned Opcode = N->getOpcode();
15467   unsigned TargetOpcode;
15468
15469   switch (Opcode) {
15470   default:
15471     llvm_unreachable("Unexpected shift operation");
15472   case ISD::SHL:
15473     TargetOpcode = PPCISD::SHL;
15474     break;
15475   case ISD::SRL:
15476     TargetOpcode = PPCISD::SRL;
15477     break;
15478   case ISD::SRA:
15479     TargetOpcode = PPCISD::SRA;
15480     break;
15481   }
15482
15483   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15484       N1->getOpcode() == ISD::AND)
15485     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15486       if (Mask->getZExtValue() == OpSizeInBits - 1)
15487         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15488
15489   return SDValue();
15490 }
15491
15492 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15493   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15494     return Value;
15495
15496   SDValue N0 = N->getOperand(0);
15497   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15498   if (!Subtarget.isISA3_0() ||
15499       N0.getOpcode() != ISD::SIGN_EXTEND ||
15500       N0.getOperand(0).getValueType() != MVT::i32 ||
15501       CN1 == nullptr || N->getValueType(0) != MVT::i64)
15502     return SDValue();
15503
15504   // We can't save an operation here if the value is already extended, and
15505   // the existing shift is easier to combine.
15506   SDValue ExtsSrc = N0.getOperand(0);
15507   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15508       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15509     return SDValue();
15510
15511   SDLoc DL(N0);
15512   SDValue ShiftBy = SDValue(CN1, 0);
15513   // We want the shift amount to be i32 on the extswli, but the shift could
15514   // have an i64.
15515   if (ShiftBy.getValueType() == MVT::i64)
15516     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15517
15518   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15519                          ShiftBy);
15520 }
15521
15522 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15523   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15524     return Value;
15525
15526   return SDValue();
15527 }
15528
15529 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15530   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15531     return Value;
15532
15533   return SDValue();
15534 }
15535
15536 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15537 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15538 // When C is zero, the equation (addi Z, -C) can be simplified to Z
15539 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15540 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15541                                  const PPCSubtarget &Subtarget) {
15542   if (!Subtarget.isPPC64())
15543     return SDValue();
15544
15545   SDValue LHS = N->getOperand(0);
15546   SDValue RHS = N->getOperand(1);
15547
15548   auto isZextOfCompareWithConstant = [](SDValue Op) {
15549     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15550         Op.getValueType() != MVT::i64)
15551       return false;
15552
15553     SDValue Cmp = Op.getOperand(0);
15554     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15555         Cmp.getOperand(0).getValueType() != MVT::i64)
15556       return false;
15557
15558     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15559       int64_t NegConstant = 0 - Constant->getSExtValue();
15560       // Due to the limitations of the addi instruction,
15561       // -C is required to be [-32768, 32767].
15562       return isInt<16>(NegConstant);
15563     }
15564
15565     return false;
15566   };
15567
15568   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15569   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15570
15571   // If there is a pattern, canonicalize a zext operand to the RHS.
15572   if (LHSHasPattern && !RHSHasPattern)
15573     std::swap(LHS, RHS);
15574   else if (!LHSHasPattern && !RHSHasPattern)
15575     return SDValue();
15576
15577   SDLoc DL(N);
15578   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15579   SDValue Cmp = RHS.getOperand(0);
15580   SDValue Z = Cmp.getOperand(0);
15581   auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15582
15583   assert(Constant && "Constant Should not be a null pointer.");
15584   int64_t NegConstant = 0 - Constant->getSExtValue();
15585
15586   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15587   default: break;
15588   case ISD::SETNE: {
15589     //                                 when C == 0
15590     //                             --> addze X, (addic Z, -1).carry
15591     //                            /
15592     // add X, (zext(setne Z, C))--
15593     //                            \    when -32768 <= -C <= 32767 && C != 0
15594     //                             --> addze X, (addic (addi Z, -C), -1).carry
15595     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15596                               DAG.getConstant(NegConstant, DL, MVT::i64));
15597     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15598     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15599                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15600     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15601                        SDValue(Addc.getNode(), 1));
15602     }
15603   case ISD::SETEQ: {
15604     //                                 when C == 0
15605     //                             --> addze X, (subfic Z, 0).carry
15606     //                            /
15607     // add X, (zext(sete  Z, C))--
15608     //                            \    when -32768 <= -C <= 32767 && C != 0
15609     //                             --> addze X, (subfic (addi Z, -C), 0).carry
15610     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15611                               DAG.getConstant(NegConstant, DL, MVT::i64));
15612     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15613     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15614                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
15615     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15616                        SDValue(Subc.getNode(), 1));
15617     }
15618   }
15619
15620   return SDValue();
15621 }
15622
15623 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
15624   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
15625     return Value;
15626
15627   return SDValue();
15628 }
15629
15630 // Detect TRUNCATE operations on bitcasts of float128 values.
15631 // What we are looking for here is the situtation where we extract a subset
15632 // of bits from a 128 bit float.
15633 // This can be of two forms:
15634 // 1) BITCAST of f128 feeding TRUNCATE
15635 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
15636 // The reason this is required is because we do not have a legal i128 type
15637 // and so we want to prevent having to store the f128 and then reload part
15638 // of it.
15639 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
15640                                            DAGCombinerInfo &DCI) const {
15641   // If we are using CRBits then try that first.
15642   if (Subtarget.useCRBits()) {
15643     // Check if CRBits did anything and return that if it did.
15644     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
15645       return CRTruncValue;
15646   }
15647
15648   SDLoc dl(N);
15649   SDValue Op0 = N->getOperand(0);
15650
15651   // Looking for a truncate of i128 to i64.
15652   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
15653     return SDValue();
15654
15655   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
15656
15657   // SRL feeding TRUNCATE.
15658   if (Op0.getOpcode() == ISD::SRL) {
15659     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
15660     // The right shift has to be by 64 bits.
15661     if (!ConstNode || ConstNode->getZExtValue() != 64)
15662       return SDValue();
15663
15664     // Switch the element number to extract.
15665     EltToExtract = EltToExtract ? 0 : 1;
15666     // Update Op0 past the SRL.
15667     Op0 = Op0.getOperand(0);
15668   }
15669
15670   // BITCAST feeding a TRUNCATE possibly via SRL.
15671   if (Op0.getOpcode() == ISD::BITCAST &&
15672       Op0.getValueType() == MVT::i128 &&
15673       Op0.getOperand(0).getValueType() == MVT::f128) {
15674     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
15675     return DCI.DAG.getNode(
15676         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
15677         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
15678   }
15679   return SDValue();
15680 }
15681
15682 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
15683   SelectionDAG &DAG = DCI.DAG;
15684
15685   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
15686   if (!ConstOpOrElement)
15687     return SDValue();
15688
15689   // An imul is usually smaller than the alternative sequence for legal type.
15690   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
15691       isOperationLegal(ISD::MUL, N->getValueType(0)))
15692     return SDValue();
15693
15694   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
15695     switch (this->Subtarget.getCPUDirective()) {
15696     default:
15697       // TODO: enhance the condition for subtarget before pwr8
15698       return false;
15699     case PPC::DIR_PWR8:
15700       //  type        mul     add    shl
15701       // scalar        4       1      1
15702       // vector        7       2      2
15703       return true;
15704     case PPC::DIR_PWR9:
15705     case PPC::DIR_PWR_FUTURE:
15706       //  type        mul     add    shl
15707       // scalar        5       2      2
15708       // vector        7       2      2
15709
15710       // The cycle RATIO of related operations are showed as a table above.
15711       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
15712       // scalar and vector type. For 2 instrs patterns, add/sub + shl
15713       // are 4, it is always profitable; but for 3 instrs patterns
15714       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
15715       // So we should only do it for vector type.
15716       return IsAddOne && IsNeg ? VT.isVector() : true;
15717     }
15718   };
15719
15720   EVT VT = N->getValueType(0);
15721   SDLoc DL(N);
15722
15723   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
15724   bool IsNeg = MulAmt.isNegative();
15725   APInt MulAmtAbs = MulAmt.abs();
15726
15727   if ((MulAmtAbs - 1).isPowerOf2()) {
15728     // (mul x, 2^N + 1) => (add (shl x, N), x)
15729     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
15730
15731     if (!IsProfitable(IsNeg, true, VT))
15732       return SDValue();
15733
15734     SDValue Op0 = N->getOperand(0);
15735     SDValue Op1 =
15736         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15737                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
15738     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
15739
15740     if (!IsNeg)
15741       return Res;
15742
15743     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
15744   } else if ((MulAmtAbs + 1).isPowerOf2()) {
15745     // (mul x, 2^N - 1) => (sub (shl x, N), x)
15746     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
15747
15748     if (!IsProfitable(IsNeg, false, VT))
15749       return SDValue();
15750
15751     SDValue Op0 = N->getOperand(0);
15752     SDValue Op1 =
15753         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15754                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
15755
15756     if (!IsNeg)
15757       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
15758     else
15759       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
15760
15761   } else {
15762     return SDValue();
15763   }
15764 }
15765
15766 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
15767   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
15768   if (!Subtarget.is64BitELFABI())
15769     return false;
15770
15771   // If not a tail call then no need to proceed.
15772   if (!CI->isTailCall())
15773     return false;
15774
15775   // If sibling calls have been disabled and tail-calls aren't guaranteed
15776   // there is no reason to duplicate.
15777   auto &TM = getTargetMachine();
15778   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
15779     return false;
15780
15781   // Can't tail call a function called indirectly, or if it has variadic args.
15782   const Function *Callee = CI->getCalledFunction();
15783   if (!Callee || Callee->isVarArg())
15784     return false;
15785
15786   // Make sure the callee and caller calling conventions are eligible for tco.
15787   const Function *Caller = CI->getParent()->getParent();
15788   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
15789                                            CI->getCallingConv()))
15790       return false;
15791
15792   // If the function is local then we have a good chance at tail-calling it
15793   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
15794 }
15795
15796 bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
15797   if (!Subtarget.hasVSX())
15798     return false;
15799   if (Subtarget.hasP9Vector() && VT == MVT::f128)
15800     return true;
15801   return VT == MVT::f32 || VT == MVT::f64 ||
15802     VT == MVT::v4f32 || VT == MVT::v2f64;
15803 }
15804
15805 bool PPCTargetLowering::
15806 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
15807   const Value *Mask = AndI.getOperand(1);
15808   // If the mask is suitable for andi. or andis. we should sink the and.
15809   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
15810     // Can't handle constants wider than 64-bits.
15811     if (CI->getBitWidth() > 64)
15812       return false;
15813     int64_t ConstVal = CI->getZExtValue();
15814     return isUInt<16>(ConstVal) ||
15815       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
15816   }
15817
15818   // For non-constant masks, we can always use the record-form and.
15819   return true;
15820 }
15821
15822 // Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
15823 // Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
15824 // Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
15825 // Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
15826 // Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
15827 SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
15828   assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
15829   assert(Subtarget.hasP9Altivec() &&
15830          "Only combine this when P9 altivec supported!");
15831   EVT VT = N->getValueType(0);
15832   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15833     return SDValue();
15834
15835   SelectionDAG &DAG = DCI.DAG;
15836   SDLoc dl(N);
15837   if (N->getOperand(0).getOpcode() == ISD::SUB) {
15838     // Even for signed integers, if it's known to be positive (as signed
15839     // integer) due to zero-extended inputs.
15840     unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
15841     unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
15842     if ((SubOpcd0 == ISD::ZERO_EXTEND ||
15843          SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
15844         (SubOpcd1 == ISD::ZERO_EXTEND ||
15845          SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
15846       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15847                          N->getOperand(0)->getOperand(0),
15848                          N->getOperand(0)->getOperand(1),
15849                          DAG.getTargetConstant(0, dl, MVT::i32));
15850     }
15851
15852     // For type v4i32, it can be optimized with xvnegsp + vabsduw
15853     if (N->getOperand(0).getValueType() == MVT::v4i32 &&
15854         N->getOperand(0).hasOneUse()) {
15855       return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15856                          N->getOperand(0)->getOperand(0),
15857                          N->getOperand(0)->getOperand(1),
15858                          DAG.getTargetConstant(1, dl, MVT::i32));
15859     }
15860   }
15861
15862   return SDValue();
15863 }
15864
15865 // For type v4i32/v8ii16/v16i8, transform
15866 // from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
15867 // from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
15868 // from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
15869 // from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
15870 SDValue PPCTargetLowering::combineVSelect(SDNode *N,
15871                                           DAGCombinerInfo &DCI) const {
15872   assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
15873   assert(Subtarget.hasP9Altivec() &&
15874          "Only combine this when P9 altivec supported!");
15875
15876   SelectionDAG &DAG = DCI.DAG;
15877   SDLoc dl(N);
15878   SDValue Cond = N->getOperand(0);
15879   SDValue TrueOpnd = N->getOperand(1);
15880   SDValue FalseOpnd = N->getOperand(2);
15881   EVT VT = N->getOperand(1).getValueType();
15882
15883   if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
15884       FalseOpnd.getOpcode() != ISD::SUB)
15885     return SDValue();
15886
15887   // ABSD only available for type v4i32/v8i16/v16i8
15888   if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15889     return SDValue();
15890
15891   // At least to save one more dependent computation
15892   if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
15893     return SDValue();
15894
15895   ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15896
15897   // Can only handle unsigned comparison here
15898   switch (CC) {
15899   default:
15900     return SDValue();
15901   case ISD::SETUGT:
15902   case ISD::SETUGE:
15903     break;
15904   case ISD::SETULT:
15905   case ISD::SETULE:
15906     std::swap(TrueOpnd, FalseOpnd);
15907     break;
15908   }
15909
15910   SDValue CmpOpnd1 = Cond.getOperand(0);
15911   SDValue CmpOpnd2 = Cond.getOperand(1);
15912
15913   // SETCC CmpOpnd1 CmpOpnd2 cond
15914   // TrueOpnd = CmpOpnd1 - CmpOpnd2
15915   // FalseOpnd = CmpOpnd2 - CmpOpnd1
15916   if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
15917       TrueOpnd.getOperand(1) == CmpOpnd2 &&
15918       FalseOpnd.getOperand(0) == CmpOpnd2 &&
15919       FalseOpnd.getOperand(1) == CmpOpnd1) {
15920     return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
15921                        CmpOpnd1, CmpOpnd2,
15922                        DAG.getTargetConstant(0, dl, MVT::i32));
15923   }
15924
15925   return SDValue();
15926 }