]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/PowerPC/PPCISelLowering.h
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / PowerPC / PPCISelLowering.h
1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that PPC uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
15 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16
17 #include "PPCInstrInfo.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/SelectionDAGNodes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/MachineValueType.h"
32 #include <utility>
33
34 namespace llvm {
35
36   namespace PPCISD {
37
38     // When adding a NEW PPCISD node please add it to the correct position in
39     // the enum. The order of elements in this enum matters!
40     // Values that are added after this entry:
41     //     STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
42     // are considered memory opcodes and are treated differently than entries
43     // that come before it. For example, ADD or MUL should be placed before
44     // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
45     // after it.
46   enum NodeType : unsigned {
47     // Start the numbering where the builtin ops and target ops leave off.
48     FIRST_NUMBER = ISD::BUILTIN_OP_END,
49
50     /// FSEL - Traditional three-operand fsel node.
51     ///
52     FSEL,
53
54     /// XSMAXCDP, XSMINCDP - C-type min/max instructions.
55     XSMAXCDP,
56     XSMINCDP,
57
58     /// FCFID - The FCFID instruction, taking an f64 operand and producing
59     /// and f64 value containing the FP representation of the integer that
60     /// was temporarily in the f64 operand.
61     FCFID,
62
63     /// Newer FCFID[US] integer-to-floating-point conversion instructions for
64     /// unsigned integers and single-precision outputs.
65     FCFIDU,
66     FCFIDS,
67     FCFIDUS,
68
69     /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
70     /// operand, producing an f64 value containing the integer representation
71     /// of that FP value.
72     FCTIDZ,
73     FCTIWZ,
74
75     /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
76     /// unsigned integers with round toward zero.
77     FCTIDUZ,
78     FCTIWUZ,
79
80     /// Floating-point-to-interger conversion instructions
81     FP_TO_UINT_IN_VSR,
82     FP_TO_SINT_IN_VSR,
83
84     /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
85     /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
86     VEXTS,
87
88     /// SExtVElems, takes an input vector of a smaller type and sign
89     /// extends to an output vector of a larger type.
90     SExtVElems,
91
92     /// Reciprocal estimate instructions (unary FP ops).
93     FRE,
94     FRSQRTE,
95
96     // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
97     // three v4f32 operands and producing a v4f32 result.
98     VMADDFP,
99     VNMSUBFP,
100
101     /// VPERM - The PPC VPERM Instruction.
102     ///
103     VPERM,
104
105     /// XXSPLT - The PPC VSX splat instructions
106     ///
107     XXSPLT,
108
109     /// VECINSERT - The PPC vector insert instruction
110     ///
111     VECINSERT,
112
113     /// VECSHL - The PPC vector shift left instruction
114     ///
115     VECSHL,
116
117     /// XXPERMDI - The PPC XXPERMDI instruction
118     ///
119     XXPERMDI,
120
121     /// The CMPB instruction (takes two operands of i32 or i64).
122     CMPB,
123
124     /// Hi/Lo - These represent the high and low 16-bit parts of a global
125     /// address respectively.  These nodes have two operands, the first of
126     /// which must be a TargetGlobalAddress, and the second of which must be a
127     /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
128     /// though these are usually folded into other nodes.
129     Hi,
130     Lo,
131
132     /// The following two target-specific nodes are used for calls through
133     /// function pointers in the 64-bit SVR4 ABI.
134
135     /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
136     /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
137     /// compute an allocation on the stack.
138     DYNALLOC,
139
140     /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
141     /// compute an offset from native SP to the address  of the most recent
142     /// dynamic alloca.
143     DYNAREAOFFSET,
144
145     /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
146     /// at function entry, used for PIC code.
147     GlobalBaseReg,
148
149     /// These nodes represent PPC shifts.
150     ///
151     /// For scalar types, only the last `n + 1` bits of the shift amounts
152     /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
153     /// for exact behaviors.
154     ///
155     /// For vector types, only the last n bits are used. See vsld.
156     SRL,
157     SRA,
158     SHL,
159
160     /// EXTSWSLI = The PPC extswsli instruction, which does an extend-sign
161     /// word and shift left immediate.
162     EXTSWSLI,
163
164     /// The combination of sra[wd]i and addze used to implemented signed
165     /// integer division by a power of 2. The first operand is the dividend,
166     /// and the second is the constant shift amount (representing the
167     /// divisor).
168     SRA_ADDZE,
169
170     /// CALL - A direct function call.
171     /// CALL_NOP is a call with the special NOP which follows 64-bit
172     /// SVR4 calls and 32-bit/64-bit AIX calls.
173     CALL,
174     CALL_NOP,
175
176     /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
177     /// MTCTR instruction.
178     MTCTR,
179
180     /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
181     /// BCTRL instruction.
182     BCTRL,
183
184     /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
185     /// instruction and the TOC reload required on 64-bit ELF, 32-bit AIX
186     /// and 64-bit AIX.
187     BCTRL_LOAD_TOC,
188
189     /// Return with a flag operand, matched by 'blr'
190     RET_FLAG,
191
192     /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
193     /// This copies the bits corresponding to the specified CRREG into the
194     /// resultant GPR.  Bits corresponding to other CR regs are undefined.
195     MFOCRF,
196
197     /// Direct move from a VSX register to a GPR
198     MFVSR,
199
200     /// Direct move from a GPR to a VSX register (algebraic)
201     MTVSRA,
202
203     /// Direct move from a GPR to a VSX register (zero)
204     MTVSRZ,
205
206     /// Direct move of 2 consecutive GPR to a VSX register.
207     BUILD_FP128,
208
209     /// BUILD_SPE64 and EXTRACT_SPE are analogous to BUILD_PAIR and
210     /// EXTRACT_ELEMENT but take f64 arguments instead of i64, as i64 is
211     /// unsupported for this target.
212     /// Merge 2 GPRs to a single SPE register.
213     BUILD_SPE64,
214
215     /// Extract SPE register component, second argument is high or low.
216     EXTRACT_SPE,
217
218     /// Extract a subvector from signed integer vector and convert to FP.
219     /// It is primarily used to convert a (widened) illegal integer vector
220     /// type to a legal floating point vector type.
221     /// For example v2i32 -> widened to v4i32 -> v2f64
222     SINT_VEC_TO_FP,
223
224     /// Extract a subvector from unsigned integer vector and convert to FP.
225     /// As with SINT_VEC_TO_FP, used for converting illegal types.
226     UINT_VEC_TO_FP,
227
228     // FIXME: Remove these once the ANDI glue bug is fixed:
229     /// i1 = ANDI_rec_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
230     /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
231     /// implement truncation of i32 or i64 to i1.
232     ANDI_rec_1_EQ_BIT,
233     ANDI_rec_1_GT_BIT,
234
235     // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
236     // target (returns (Lo, Hi)). It takes a chain operand.
237     READ_TIME_BASE,
238
239     // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
240     EH_SJLJ_SETJMP,
241
242     // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
243     EH_SJLJ_LONGJMP,
244
245     /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
246     /// instructions.  For lack of better number, we use the opcode number
247     /// encoding for the OPC field to identify the compare.  For example, 838
248     /// is VCMPGTSH.
249     VCMP,
250
251     /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
252     /// altivec VCMP*o instructions.  For lack of better number, we use the
253     /// opcode number encoding for the OPC field to identify the compare.  For
254     /// example, 838 is VCMPGTSH.
255     VCMPo,
256
257     /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
258     /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
259     /// condition register to branch on, OPC is the branch opcode to use (e.g.
260     /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
261     /// an optional input flag argument.
262     COND_BRANCH,
263
264     /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
265     /// loops.
266     BDNZ,
267     BDZ,
268
269     /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
270     /// towards zero.  Used only as part of the long double-to-int
271     /// conversion sequence.
272     FADDRTZ,
273
274     /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
275     MFFS,
276
277     /// TC_RETURN - A tail call return.
278     ///   operand #0 chain
279     ///   operand #1 callee (register or absolute)
280     ///   operand #2 stack adjustment
281     ///   operand #3 optional in flag
282     TC_RETURN,
283
284     /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
285     CR6SET,
286     CR6UNSET,
287
288     /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
289     /// for non-position independent code on PPC32.
290     PPC32_GOT,
291
292     /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
293     /// local dynamic TLS and position indendepent code on PPC32.
294     PPC32_PICGOT,
295
296     /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
297     /// TLS model, produces an ADDIS8 instruction that adds the GOT
298     /// base to sym\@got\@tprel\@ha.
299     ADDIS_GOT_TPREL_HA,
300
301     /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
302     /// TLS model, produces a LD instruction with base register G8RReg
303     /// and offset sym\@got\@tprel\@l.  This completes the addition that
304     /// finds the offset of "sym" relative to the thread pointer.
305     LD_GOT_TPREL_L,
306
307     /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
308     /// model, produces an ADD instruction that adds the contents of
309     /// G8RReg to the thread pointer.  Symbol contains a relocation
310     /// sym\@tls which is to be replaced by the thread pointer and
311     /// identifies to the linker that the instruction is part of a
312     /// TLS sequence.
313     ADD_TLS,
314
315     /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
316     /// model, produces an ADDIS8 instruction that adds the GOT base
317     /// register to sym\@got\@tlsgd\@ha.
318     ADDIS_TLSGD_HA,
319
320     /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
321     /// model, produces an ADDI8 instruction that adds G8RReg to
322     /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
323     /// ADDIS_TLSGD_L_ADDR until after register assignment.
324     ADDI_TLSGD_L,
325
326     /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
327     /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
328     /// ADDIS_TLSGD_L_ADDR until after register assignment.
329     GET_TLS_ADDR,
330
331     /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
332     /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
333     /// register assignment.
334     ADDI_TLSGD_L_ADDR,
335
336     /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
337     /// model, produces an ADDIS8 instruction that adds the GOT base
338     /// register to sym\@got\@tlsld\@ha.
339     ADDIS_TLSLD_HA,
340
341     /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
342     /// model, produces an ADDI8 instruction that adds G8RReg to
343     /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
344     /// ADDIS_TLSLD_L_ADDR until after register assignment.
345     ADDI_TLSLD_L,
346
347     /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
348     /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
349     /// ADDIS_TLSLD_L_ADDR until after register assignment.
350     GET_TLSLD_ADDR,
351
352     /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
353     /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
354     /// following register assignment.
355     ADDI_TLSLD_L_ADDR,
356
357     /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
358     /// model, produces an ADDIS8 instruction that adds X3 to
359     /// sym\@dtprel\@ha.
360     ADDIS_DTPREL_HA,
361
362     /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
363     /// model, produces an ADDI8 instruction that adds G8RReg to
364     /// sym\@got\@dtprel\@l.
365     ADDI_DTPREL_L,
366
367     /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
368     /// during instruction selection to optimize a BUILD_VECTOR into
369     /// operations on splats.  This is necessary to avoid losing these
370     /// optimizations due to constant folding.
371     VADD_SPLAT,
372
373     /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
374     /// operand identifies the operating system entry point.
375     SC,
376
377     /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
378     CLRBHRB,
379
380     /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
381     /// history rolling buffer entry.
382     MFBHRBE,
383
384     /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
385     RFEBB,
386
387     /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
388     /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
389     /// or stxvd2x instruction.  The chain is necessary because the
390     /// sequence replaces a load and needs to provide the same number
391     /// of outputs.
392     XXSWAPD,
393
394     /// An SDNode for swaps that are not associated with any loads/stores
395     /// and thereby have no chain.
396     SWAP_NO_CHAIN,
397
398     /// An SDNode for Power9 vector absolute value difference.
399     /// operand #0 vector
400     /// operand #1 vector
401     /// operand #2 constant i32 0 or 1, to indicate whether needs to patch
402     /// the most significant bit for signed i32
403     ///
404     /// Power9 VABSD* instructions are designed to support unsigned integer
405     /// vectors (byte/halfword/word), if we want to make use of them for signed
406     /// integer vectors, we have to flip their sign bits first. To flip sign bit
407     /// for byte/halfword integer vector would become inefficient, but for word
408     /// integer vector, we can leverage XVNEGSP to make it efficiently. eg:
409     /// abs(sub(a,b)) => VABSDUW(a+0x80000000, b+0x80000000)
410     ///               => VABSDUW((XVNEGSP a), (XVNEGSP b))
411     VABSD,
412
413     /// QVFPERM = This corresponds to the QPX qvfperm instruction.
414     QVFPERM,
415
416     /// QVGPCI = This corresponds to the QPX qvgpci instruction.
417     QVGPCI,
418
419     /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
420     QVALIGNI,
421
422     /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
423     QVESPLATI,
424
425     /// QBFLT = Access the underlying QPX floating-point boolean
426     /// representation.
427     QBFLT,
428
429     /// FP_EXTEND_HALF(VECTOR, IDX) - Custom extend upper (IDX=0) half or
430     /// lower (IDX=1) half of v4f32 to v2f64.
431     FP_EXTEND_HALF,
432
433     /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
434     /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
435     /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
436     /// i32.
437     STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
438
439     /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
440     /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
441     /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
442     /// or i32.
443     LBRX,
444
445     /// STFIWX - The STFIWX instruction.  The first operand is an input token
446     /// chain, then an f64 value to store, then an address to store it to.
447     STFIWX,
448
449     /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
450     /// load which sign-extends from a 32-bit integer value into the
451     /// destination 64-bit register.
452     LFIWAX,
453
454     /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
455     /// load which zero-extends from a 32-bit integer value into the
456     /// destination 64-bit register.
457     LFIWZX,
458
459     /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
460     /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
461     /// This can be used for converting loaded integers to floating point.
462     LXSIZX,
463
464     /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
465     /// chain, then an f64 value to store, then an address to store it to,
466     /// followed by a byte-width for the store.
467     STXSIX,
468
469     /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
470     /// Maps directly to an lxvd2x instruction that will be followed by
471     /// an xxswapd.
472     LXVD2X,
473
474     /// VSRC, CHAIN = LOAD_VEC_BE CHAIN, Ptr - Occurs only for little endian.
475     /// Maps directly to one of lxvd2x/lxvw4x/lxvh8x/lxvb16x depending on
476     /// the vector type to load vector in big-endian element order.
477     LOAD_VEC_BE,
478
479     /// VSRC, CHAIN = LD_VSX_LH CHAIN, Ptr - This is a floating-point load of a
480     /// v2f32 value into the lower half of a VSR register.
481     LD_VSX_LH,
482
483     /// VSRC, CHAIN = LD_SPLAT, CHAIN, Ptr - a splatting load memory
484     /// instructions such as LXVDSX, LXVWSX.
485     LD_SPLAT,
486
487     /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
488     /// Maps directly to an stxvd2x instruction that will be preceded by
489     /// an xxswapd.
490     STXVD2X,
491
492     /// CHAIN = STORE_VEC_BE CHAIN, VSRC, Ptr - Occurs only for little endian.
493     /// Maps directly to one of stxvd2x/stxvw4x/stxvh8x/stxvb16x depending on
494     /// the vector type to store vector in big-endian element order.
495     STORE_VEC_BE,
496
497     /// Store scalar integers from VSR.
498     ST_VSR_SCAL_INT,
499
500     /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
501     /// The 4xf32 load used for v4i1 constants.
502     QVLFSb,
503
504     /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
505     /// except they ensure that the compare input is zero-extended for
506     /// sub-word versions because the atomic loads zero-extend.
507     ATOMIC_CMP_SWAP_8,
508     ATOMIC_CMP_SWAP_16,
509
510     /// GPRC = TOC_ENTRY GA, TOC
511     /// Loads the entry for GA from the TOC, where the TOC base is given by
512     /// the last operand.
513     TOC_ENTRY
514   };
515
516   } // end namespace PPCISD
517
518   /// Define some predicates that are used for node matching.
519   namespace PPC {
520
521     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
522     /// VPKUHUM instruction.
523     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
524                               SelectionDAG &DAG);
525
526     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
527     /// VPKUWUM instruction.
528     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
529                               SelectionDAG &DAG);
530
531     /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
532     /// VPKUDUM instruction.
533     bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
534                               SelectionDAG &DAG);
535
536     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
537     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
538     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
539                             unsigned ShuffleKind, SelectionDAG &DAG);
540
541     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
542     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
543     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
544                             unsigned ShuffleKind, SelectionDAG &DAG);
545
546     /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
547     /// a VMRGEW or VMRGOW instruction
548     bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
549                              unsigned ShuffleKind, SelectionDAG &DAG);
550     /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
551     /// for a XXSLDWI instruction.
552     bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
553                               bool &Swap, bool IsLE);
554
555     /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
556     /// for a XXBRH instruction.
557     bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
558
559     /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
560     /// for a XXBRW instruction.
561     bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
562
563     /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
564     /// for a XXBRD instruction.
565     bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
566
567     /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
568     /// for a XXBRQ instruction.
569     bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
570
571     /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
572     /// for a XXPERMDI instruction.
573     bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
574                               bool &Swap, bool IsLE);
575
576     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
577     /// shift amount, otherwise return -1.
578     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
579                             SelectionDAG &DAG);
580
581     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
582     /// specifies a splat of a single element that is suitable for input to
583     /// VSPLTB/VSPLTH/VSPLTW.
584     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
585
586     /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
587     /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
588     /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
589     /// vector into the other. This function will also set a couple of
590     /// output parameters for how much the source vector needs to be shifted and
591     /// what byte number needs to be specified for the instruction to put the
592     /// element in the desired location of the target vector.
593     bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
594                          unsigned &InsertAtByte, bool &Swap, bool IsLE);
595
596     /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
597     /// appropriate for PPC mnemonics (which have a big endian bias - namely
598     /// elements are counted from the left of the vector register).
599     unsigned getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
600                                         SelectionDAG &DAG);
601
602     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
603     /// formed by using a vspltis[bhw] instruction of the specified element
604     /// size, return the constant being splatted.  The ByteSize field indicates
605     /// the number of bytes of each element [124] -> [bhw].
606     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
607
608     /// If this is a qvaligni shuffle mask, return the shift
609     /// amount, otherwise return -1.
610     int isQVALIGNIShuffleMask(SDNode *N);
611
612   } // end namespace PPC
613
614   class PPCTargetLowering : public TargetLowering {
615     const PPCSubtarget &Subtarget;
616
617   public:
618     explicit PPCTargetLowering(const PPCTargetMachine &TM,
619                                const PPCSubtarget &STI);
620
621     /// getTargetNodeName() - This method returns the name of a target specific
622     /// DAG node.
623     const char *getTargetNodeName(unsigned Opcode) const override;
624
625     bool isSelectSupported(SelectSupportKind Kind) const override {
626       // PowerPC does not support scalar condition selects on vectors.
627       return (Kind != SelectSupportKind::ScalarCondVectorVal);
628     }
629
630     /// getPreferredVectorAction - The code we generate when vector types are
631     /// legalized by promoting the integer element type is often much worse
632     /// than code we generate if we widen the type for applicable vector types.
633     /// The issue with promoting is that the vector is scalaraized, individual
634     /// elements promoted and then the vector is rebuilt. So say we load a pair
635     /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
636     /// loads, moves back into VSR's (or memory ops if we don't have moves) and
637     /// then the VPERM for the shuffle. All in all a very slow sequence.
638     TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
639       const override {
640       if (VT.getScalarSizeInBits() % 8 == 0)
641         return TypeWidenVector;
642       return TargetLoweringBase::getPreferredVectorAction(VT);
643     }
644
645     bool useSoftFloat() const override;
646
647     bool hasSPE() const;
648
649     MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
650       return MVT::i32;
651     }
652
653     bool isCheapToSpeculateCttz() const override {
654       return true;
655     }
656
657     bool isCheapToSpeculateCtlz() const override {
658       return true;
659     }
660
661     bool isCtlzFast() const override {
662       return true;
663     }
664
665     bool isEqualityCmpFoldedWithSignedCmp() const override {
666       return false;
667     }
668
669     bool hasAndNotCompare(SDValue) const override {
670       return true;
671     }
672
673     bool preferIncOfAddToSubOfNot(EVT VT) const override;
674
675     bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
676       return VT.isScalarInteger();
677     }
678
679     bool supportSplitCSR(MachineFunction *MF) const override {
680       return
681         MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
682         MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
683     }
684
685     void initializeSplitCSR(MachineBasicBlock *Entry) const override;
686
687     void insertCopiesSplitCSR(
688       MachineBasicBlock *Entry,
689       const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
690
691     /// getSetCCResultType - Return the ISD::SETCC ValueType
692     EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
693                            EVT VT) const override;
694
695     /// Return true if target always beneficiates from combining into FMA for a
696     /// given value type. This must typically return false on targets where FMA
697     /// takes more cycles to execute than FADD.
698     bool enableAggressiveFMAFusion(EVT VT) const override;
699
700     /// getPreIndexedAddressParts - returns true by value, base pointer and
701     /// offset pointer and addressing mode by reference if the node's address
702     /// can be legally represented as pre-indexed load / store address.
703     bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
704                                    SDValue &Offset,
705                                    ISD::MemIndexedMode &AM,
706                                    SelectionDAG &DAG) const override;
707
708     /// SelectAddressEVXRegReg - Given the specified addressed, check to see if
709     /// it can be more efficiently represented as [r+imm].
710     bool SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index,
711                                 SelectionDAG &DAG) const;
712
713     /// SelectAddressRegReg - Given the specified addressed, check to see if it
714     /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment
715     /// is non-zero, only accept displacement which is not suitable for [r+imm].
716     /// Returns false if it can be represented by [r+imm], which are preferred.
717     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
718                              SelectionDAG &DAG,
719                              unsigned EncodingAlignment = 0) const;
720
721     /// SelectAddressRegImm - Returns true if the address N can be represented
722     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
723     /// is not better represented as reg+reg. If \p EncodingAlignment is
724     /// non-zero, only accept displacements suitable for instruction encoding
725     /// requirement, i.e. multiples of 4 for DS form.
726     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
727                              SelectionDAG &DAG,
728                              unsigned EncodingAlignment) const;
729
730     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
731     /// represented as an indexed [r+r] operation.
732     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
733                                  SelectionDAG &DAG) const;
734
735     Sched::Preference getSchedulingPreference(SDNode *N) const override;
736
737     /// LowerOperation - Provide custom lowering hooks for some operations.
738     ///
739     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
740
741     /// ReplaceNodeResults - Replace the results of node with an illegal result
742     /// type with new values built out of custom code.
743     ///
744     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
745                             SelectionDAG &DAG) const override;
746
747     SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
748     SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
749
750     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
751
752     SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
753                           SmallVectorImpl<SDNode *> &Created) const override;
754
755     Register getRegisterByName(const char* RegName, LLT VT,
756                                const MachineFunction &MF) const override;
757
758     void computeKnownBitsForTargetNode(const SDValue Op,
759                                        KnownBits &Known,
760                                        const APInt &DemandedElts,
761                                        const SelectionDAG &DAG,
762                                        unsigned Depth = 0) const override;
763
764     Align getPrefLoopAlignment(MachineLoop *ML) const override;
765
766     bool shouldInsertFencesForAtomic(const Instruction *I) const override {
767       return true;
768     }
769
770     Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
771                                   AtomicOrdering Ord) const override;
772     Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst,
773                                    AtomicOrdering Ord) const override;
774
775     MachineBasicBlock *
776     EmitInstrWithCustomInserter(MachineInstr &MI,
777                                 MachineBasicBlock *MBB) const override;
778     MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
779                                         MachineBasicBlock *MBB,
780                                         unsigned AtomicSize,
781                                         unsigned BinOpcode,
782                                         unsigned CmpOpcode = 0,
783                                         unsigned CmpPred = 0) const;
784     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
785                                                 MachineBasicBlock *MBB,
786                                                 bool is8bit,
787                                                 unsigned Opcode,
788                                                 unsigned CmpOpcode = 0,
789                                                 unsigned CmpPred = 0) const;
790
791     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
792                                         MachineBasicBlock *MBB) const;
793
794     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
795                                          MachineBasicBlock *MBB) const;
796
797     ConstraintType getConstraintType(StringRef Constraint) const override;
798
799     /// Examine constraint string and operand type and determine a weight value.
800     /// The operand object must already have been set up with the operand type.
801     ConstraintWeight getSingleConstraintMatchWeight(
802       AsmOperandInfo &info, const char *constraint) const override;
803
804     std::pair<unsigned, const TargetRegisterClass *>
805     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
806                                  StringRef Constraint, MVT VT) const override;
807
808     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
809     /// function arguments in the caller parameter area.  This is the actual
810     /// alignment, not its logarithm.
811     unsigned getByValTypeAlignment(Type *Ty,
812                                    const DataLayout &DL) const override;
813
814     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
815     /// vector.  If it is invalid, don't add anything to Ops.
816     void LowerAsmOperandForConstraint(SDValue Op,
817                                       std::string &Constraint,
818                                       std::vector<SDValue> &Ops,
819                                       SelectionDAG &DAG) const override;
820
821     unsigned
822     getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
823       if (ConstraintCode == "es")
824         return InlineAsm::Constraint_es;
825       else if (ConstraintCode == "o")
826         return InlineAsm::Constraint_o;
827       else if (ConstraintCode == "Q")
828         return InlineAsm::Constraint_Q;
829       else if (ConstraintCode == "Z")
830         return InlineAsm::Constraint_Z;
831       else if (ConstraintCode == "Zy")
832         return InlineAsm::Constraint_Zy;
833       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
834     }
835
836     /// isLegalAddressingMode - Return true if the addressing mode represented
837     /// by AM is legal for this target, for a load/store of the specified type.
838     bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
839                                Type *Ty, unsigned AS,
840                                Instruction *I = nullptr) const override;
841
842     /// isLegalICmpImmediate - Return true if the specified immediate is legal
843     /// icmp immediate, that is the target has icmp instructions which can
844     /// compare a register against the immediate without having to materialize
845     /// the immediate into a register.
846     bool isLegalICmpImmediate(int64_t Imm) const override;
847
848     /// isLegalAddImmediate - Return true if the specified immediate is legal
849     /// add immediate, that is the target has add instructions which can
850     /// add a register and the immediate without having to materialize
851     /// the immediate into a register.
852     bool isLegalAddImmediate(int64_t Imm) const override;
853
854     /// isTruncateFree - Return true if it's free to truncate a value of
855     /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
856     /// register X1 to i32 by referencing its sub-register R1.
857     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
858     bool isTruncateFree(EVT VT1, EVT VT2) const override;
859
860     bool isZExtFree(SDValue Val, EVT VT2) const override;
861
862     bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
863
864     /// Returns true if it is beneficial to convert a load of a constant
865     /// to just the constant itself.
866     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
867                                            Type *Ty) const override;
868
869     bool convertSelectOfConstantsToMath(EVT VT) const override {
870       return true;
871     }
872
873     bool isDesirableToTransformToIntegerOp(unsigned Opc,
874                                            EVT VT) const override {
875       // Only handle float load/store pair because float(fpr) load/store
876       // instruction has more cycles than integer(gpr) load/store in PPC.
877       if (Opc != ISD::LOAD && Opc != ISD::STORE)
878         return false;
879       if (VT != MVT::f32 && VT != MVT::f64)
880         return false;
881
882       return true; 
883     }
884
885     // Returns true if the address of the global is stored in TOC entry.
886     bool isAccessedAsGotIndirect(SDValue N) const;
887
888     bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
889
890     bool getTgtMemIntrinsic(IntrinsicInfo &Info,
891                             const CallInst &I,
892                             MachineFunction &MF,
893                             unsigned Intrinsic) const override;
894
895     /// getOptimalMemOpType - Returns the target specific optimal type for load
896     /// and store operations as a result of memset, memcpy, and memmove
897     /// lowering. If DstAlign is zero that means it's safe to destination
898     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
899     /// means there isn't a need to check it against alignment requirement,
900     /// probably because the source does not need to be loaded. If 'IsMemset' is
901     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
902     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
903     /// source is constant so it does not need to be loaded.
904     /// It returns EVT::Other if the type should be determined using generic
905     /// target-independent logic.
906     EVT
907     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
908                         bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
909                         const AttributeList &FuncAttributes) const override;
910
911     /// Is unaligned memory access allowed for the given type, and is it fast
912     /// relative to software emulation.
913     bool allowsMisalignedMemoryAccesses(
914         EVT VT, unsigned AddrSpace, unsigned Align = 1,
915         MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
916         bool *Fast = nullptr) const override;
917
918     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
919     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
920     /// expanded to FMAs when this method returns true, otherwise fmuladd is
921     /// expanded to fmul + fadd.
922     bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
923                                     EVT VT) const override;
924
925     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
926
927     // Should we expand the build vector with shuffles?
928     bool
929     shouldExpandBuildVectorWithShuffles(EVT VT,
930                                         unsigned DefinedValues) const override;
931
932     /// createFastISel - This method returns a target-specific FastISel object,
933     /// or null if the target does not support "fast" instruction selection.
934     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
935                              const TargetLibraryInfo *LibInfo) const override;
936
937     /// Returns true if an argument of type Ty needs to be passed in a
938     /// contiguous block of registers in calling convention CallConv.
939     bool functionArgumentNeedsConsecutiveRegisters(
940       Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
941       // We support any array type as "consecutive" block in the parameter
942       // save area.  The element type defines the alignment requirement and
943       // whether the argument should go in GPRs, FPRs, or VRs if available.
944       //
945       // Note that clang uses this capability both to implement the ELFv2
946       // homogeneous float/vector aggregate ABI, and to avoid having to use
947       // "byval" when passing aggregates that might fully fit in registers.
948       return Ty->isArrayTy();
949     }
950
951     /// If a physical register, this returns the register that receives the
952     /// exception address on entry to an EH pad.
953     unsigned
954     getExceptionPointerRegister(const Constant *PersonalityFn) const override;
955
956     /// If a physical register, this returns the register that receives the
957     /// exception typeid on entry to a landing pad.
958     unsigned
959     getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
960
961     /// Override to support customized stack guard loading.
962     bool useLoadStackGuardNode() const override;
963     void insertSSPDeclarations(Module &M) const override;
964
965     bool isFPImmLegal(const APFloat &Imm, EVT VT,
966                       bool ForCodeSize) const override;
967
968     unsigned getJumpTableEncoding() const override;
969     bool isJumpTableRelative() const override;
970     SDValue getPICJumpTableRelocBase(SDValue Table,
971                                      SelectionDAG &DAG) const override;
972     const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
973                                                unsigned JTI,
974                                                MCContext &Ctx) const override;
975
976   private:
977     struct ReuseLoadInfo {
978       SDValue Ptr;
979       SDValue Chain;
980       SDValue ResChain;
981       MachinePointerInfo MPI;
982       bool IsDereferenceable = false;
983       bool IsInvariant = false;
984       unsigned Alignment = 0;
985       AAMDNodes AAInfo;
986       const MDNode *Ranges = nullptr;
987
988       ReuseLoadInfo() = default;
989
990       MachineMemOperand::Flags MMOFlags() const {
991         MachineMemOperand::Flags F = MachineMemOperand::MONone;
992         if (IsDereferenceable)
993           F |= MachineMemOperand::MODereferenceable;
994         if (IsInvariant)
995           F |= MachineMemOperand::MOInvariant;
996         return F;
997       }
998     };
999
1000     bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override {
1001       // Addrspacecasts are always noops.
1002       return true;
1003     }
1004
1005     bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
1006                              SelectionDAG &DAG,
1007                              ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
1008     void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
1009                          SelectionDAG &DAG) const;
1010
1011     void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
1012                                 SelectionDAG &DAG, const SDLoc &dl) const;
1013     SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
1014                                      const SDLoc &dl) const;
1015
1016     bool directMoveIsProfitable(const SDValue &Op) const;
1017     SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
1018                                      const SDLoc &dl) const;
1019
1020     SDValue LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
1021                                  const SDLoc &dl) const;
1022
1023     SDValue LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const;
1024
1025     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
1026     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
1027
1028     bool
1029     IsEligibleForTailCallOptimization(SDValue Callee,
1030                                       CallingConv::ID CalleeCC,
1031                                       bool isVarArg,
1032                                       const SmallVectorImpl<ISD::InputArg> &Ins,
1033                                       SelectionDAG& DAG) const;
1034
1035     bool
1036     IsEligibleForTailCallOptimization_64SVR4(
1037                                     SDValue Callee,
1038                                     CallingConv::ID CalleeCC,
1039                                     ImmutableCallSite CS,
1040                                     bool isVarArg,
1041                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
1042                                     const SmallVectorImpl<ISD::InputArg> &Ins,
1043                                     SelectionDAG& DAG) const;
1044
1045     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
1046                                          SDValue Chain, SDValue &LROpOut,
1047                                          SDValue &FPOpOut,
1048                                          const SDLoc &dl) const;
1049
1050     SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const;
1051
1052     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1053     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1054     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1055     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1056     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1057     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1058     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1059     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1060     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1061     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1062     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1063     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1064     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
1065     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
1066     SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1067     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1068     SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
1069     SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
1070     SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
1071     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1072     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
1073     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1074                            const SDLoc &dl) const;
1075     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1076     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
1077     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1078     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
1079     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
1080     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1081     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
1082     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1083     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1084     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1085     SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
1086     SDValue LowerREM(SDValue Op, SelectionDAG &DAG) const;
1087     SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
1088     SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
1089     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1090     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
1091     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
1092     SDValue LowerABS(SDValue Op, SelectionDAG &DAG) const;
1093     SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1094
1095     SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
1096     SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
1097
1098     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1099                             CallingConv::ID CallConv, bool isVarArg,
1100                             const SmallVectorImpl<ISD::InputArg> &Ins,
1101                             const SDLoc &dl, SelectionDAG &DAG,
1102                             SmallVectorImpl<SDValue> &InVals) const;
1103     SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl,
1104                        bool isTailCall, bool isVarArg, bool isPatchPoint,
1105                        bool hasNest, SelectionDAG &DAG,
1106                        SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
1107                        SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
1108                        SDValue &Callee, int SPDiff, unsigned NumBytes,
1109                        const SmallVectorImpl<ISD::InputArg> &Ins,
1110                        SmallVectorImpl<SDValue> &InVals,
1111                        ImmutableCallSite CS) const;
1112
1113     SDValue
1114     LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1115                          const SmallVectorImpl<ISD::InputArg> &Ins,
1116                          const SDLoc &dl, SelectionDAG &DAG,
1117                          SmallVectorImpl<SDValue> &InVals) const override;
1118
1119     SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
1120                       SmallVectorImpl<SDValue> &InVals) const override;
1121
1122     bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1123                         bool isVarArg,
1124                         const SmallVectorImpl<ISD::OutputArg> &Outs,
1125                         LLVMContext &Context) const override;
1126
1127     SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1128                         const SmallVectorImpl<ISD::OutputArg> &Outs,
1129                         const SmallVectorImpl<SDValue> &OutVals,
1130                         const SDLoc &dl, SelectionDAG &DAG) const override;
1131
1132     SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1133                               SelectionDAG &DAG, SDValue ArgVal,
1134                               const SDLoc &dl) const;
1135
1136     SDValue LowerFormalArguments_AIX(
1137         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1138         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1139         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1140     SDValue LowerFormalArguments_Darwin(
1141         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1142         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1143         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1144     SDValue LowerFormalArguments_64SVR4(
1145         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1146         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1147         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1148     SDValue LowerFormalArguments_32SVR4(
1149         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1150         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1151         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1152
1153     SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1154                                        SDValue CallSeqStart,
1155                                        ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1156                                        const SDLoc &dl) const;
1157
1158     SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee,
1159                              CallingConv::ID CallConv, bool isVarArg,
1160                              bool isTailCall, bool isPatchPoint,
1161                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1162                              const SmallVectorImpl<SDValue> &OutVals,
1163                              const SmallVectorImpl<ISD::InputArg> &Ins,
1164                              const SDLoc &dl, SelectionDAG &DAG,
1165                              SmallVectorImpl<SDValue> &InVals,
1166                              ImmutableCallSite CS) const;
1167     SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee,
1168                              CallingConv::ID CallConv, bool isVarArg,
1169                              bool isTailCall, bool isPatchPoint,
1170                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1171                              const SmallVectorImpl<SDValue> &OutVals,
1172                              const SmallVectorImpl<ISD::InputArg> &Ins,
1173                              const SDLoc &dl, SelectionDAG &DAG,
1174                              SmallVectorImpl<SDValue> &InVals,
1175                              ImmutableCallSite CS) const;
1176     SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee,
1177                              CallingConv::ID CallConv, bool isVarArg,
1178                              bool isTailCall, bool isPatchPoint,
1179                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1180                              const SmallVectorImpl<SDValue> &OutVals,
1181                              const SmallVectorImpl<ISD::InputArg> &Ins,
1182                              const SDLoc &dl, SelectionDAG &DAG,
1183                              SmallVectorImpl<SDValue> &InVals,
1184                              ImmutableCallSite CS) const;
1185     SDValue LowerCall_AIX(SDValue Chain, SDValue Callee,
1186                           CallingConv::ID CallConv, bool isVarArg,
1187                           bool isTailCall, bool isPatchPoint,
1188                           const SmallVectorImpl<ISD::OutputArg> &Outs,
1189                           const SmallVectorImpl<SDValue> &OutVals,
1190                           const SmallVectorImpl<ISD::InputArg> &Ins,
1191                           const SDLoc &dl, SelectionDAG &DAG,
1192                           SmallVectorImpl<SDValue> &InVals,
1193                           ImmutableCallSite CS) const;
1194
1195     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1196     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1197     SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
1198
1199     SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1200     SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1201     SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1202     SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
1203     SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1204     SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1205     SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1206     SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1207     SDValue combineMUL(SDNode *N, DAGCombinerInfo &DCI) const;
1208     SDValue combineADD(SDNode *N, DAGCombinerInfo &DCI) const;
1209     SDValue combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const;
1210     SDValue combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const;
1211     SDValue combineABS(SDNode *N, DAGCombinerInfo &DCI) const;
1212     SDValue combineVSelect(SDNode *N, DAGCombinerInfo &DCI) const;
1213     SDValue combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase,
1214                                  DAGCombinerInfo &DCI) const;
1215
1216     /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1217     /// SETCC with integer subtraction when (1) there is a legal way of doing it
1218     /// (2) keeping the result of comparison in GPR has performance benefit.
1219     SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1220
1221     SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1222                             int &RefinementSteps, bool &UseOneConstNR,
1223                             bool Reciprocal) const override;
1224     SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1225                              int &RefinementSteps) const override;
1226     unsigned combineRepeatedFPDivisors() const override;
1227
1228     SDValue
1229     combineElementTruncationToVectorTruncation(SDNode *N,
1230                                                DAGCombinerInfo &DCI) const;
1231
1232     /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1233     /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1234     /// essentially any shuffle of v8i16 vectors that just inserts one element
1235     /// from one vector into the other.
1236     SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1237
1238     /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1239     /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1240     /// essentially v16i8 vector version of VINSERTH.
1241     SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1242
1243     // Return whether the call instruction can potentially be optimized to a
1244     // tail call. This will cause the optimizers to attempt to move, or
1245     // duplicate return instructions to help enable tail call optimizations.
1246     bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1247     bool hasBitPreservingFPLogic(EVT VT) const override;
1248     bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1249   }; // end class PPCTargetLowering
1250
1251   namespace PPC {
1252
1253     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1254                              const TargetLibraryInfo *LibInfo);
1255
1256   } // end namespace PPC
1257
1258   bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1259   bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1260
1261 } // end namespace llvm
1262
1263 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H