]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/PowerPC/PPCVSXFMAMutate.cpp
MFV r357783:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / PowerPC / PPCVSXFMAMutate.cpp
1 //===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass mutates the form of VSX FMA instructions to avoid unnecessary
10 // copies.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCInstrBuilder.h"
17 #include "PPCInstrInfo.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/CodeGen/ScheduleDAG.h"
31 #include "llvm/CodeGen/SlotIndexes.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/TargetRegistry.h"
37 #include "llvm/Support/raw_ostream.h"
38
39 using namespace llvm;
40
41 // Temporarily disable FMA mutation by default, since it doesn't handle
42 // cross-basic-block intervals well.
43 // See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html
44 //      http://reviews.llvm.org/D17087
45 static cl::opt<bool> DisableVSXFMAMutate(
46     "disable-ppc-vsx-fma-mutation",
47     cl::desc("Disable VSX FMA instruction mutation"), cl::init(true),
48     cl::Hidden);
49
50 #define DEBUG_TYPE "ppc-vsx-fma-mutate"
51
52 namespace llvm { namespace PPC {
53   int getAltVSXFMAOpcode(uint16_t Opcode);
54 } }
55
56 namespace {
57   // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
58   // (Altivec and scalar floating-point registers), we need to transform the
59   // copies into subregister copies with other restrictions.
60   struct PPCVSXFMAMutate : public MachineFunctionPass {
61     static char ID;
62     PPCVSXFMAMutate() : MachineFunctionPass(ID) {
63       initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
64     }
65
66     LiveIntervals *LIS;
67     const PPCInstrInfo *TII;
68
69 protected:
70     bool processBlock(MachineBasicBlock &MBB) {
71       bool Changed = false;
72
73       MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
74       const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
75       for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
76            I != IE; ++I) {
77         MachineInstr &MI = *I;
78
79         // The default (A-type) VSX FMA form kills the addend (it is taken from
80         // the target register, which is then updated to reflect the result of
81         // the FMA). If the instruction, however, kills one of the registers
82         // used for the product, then we can use the M-form instruction (which
83         // will take that value from the to-be-defined register).
84
85         int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
86         if (AltOpc == -1)
87           continue;
88
89         // This pass is run after register coalescing, and so we're looking for
90         // a situation like this:
91         //   ...
92         //   %5 = COPY %9; VSLRC:%5,%9
93         //   %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
94         //                         implicit %rm; VSLRC:%5,%17,%16
95         //   ...
96         //   %9<def,tied1> = XSMADDADP %9<tied0>, %17, %19,
97         //                         implicit %rm; VSLRC:%9,%17,%19
98         //   ...
99         // Where we can eliminate the copy by changing from the A-type to the
100         // M-type instruction. Specifically, for this example, this means:
101         //   %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
102         //                         implicit %rm; VSLRC:%5,%17,%16
103         // is replaced by:
104         //   %16<def,tied1> = XSMADDMDP %16<tied0>, %18, %9,
105         //                         implicit %rm; VSLRC:%16,%18,%9
106         // and we remove: %5 = COPY %9; VSLRC:%5,%9
107
108         SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
109
110         VNInfo *AddendValNo =
111             LIS->getInterval(MI.getOperand(1).getReg()).Query(FMAIdx).valueIn();
112
113         // This can be null if the register is undef.
114         if (!AddendValNo)
115           continue;
116
117         MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
118
119         // The addend and this instruction must be in the same block.
120
121         if (!AddendMI || AddendMI->getParent() != MI.getParent())
122           continue;
123
124         // The addend must be a full copy within the same register class.
125
126         if (!AddendMI->isFullCopy())
127           continue;
128
129         unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
130         if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
131           if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
132               MRI.getRegClass(AddendSrcReg))
133             continue;
134         } else {
135           // If AddendSrcReg is a physical register, make sure the destination
136           // register class contains it.
137           if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
138                 ->contains(AddendSrcReg))
139             continue;
140         }
141
142         // In theory, there could be other uses of the addend copy before this
143         // fma.  We could deal with this, but that would require additional
144         // logic below and I suspect it will not occur in any relevant
145         // situations.  Additionally, check whether the copy source is killed
146         // prior to the fma.  In order to replace the addend here with the
147         // source of the copy, it must still be live here.  We can't use
148         // interval testing for a physical register, so as long as we're
149         // walking the MIs we may as well test liveness here.
150         //
151         // FIXME: There is a case that occurs in practice, like this:
152         //   %9 = COPY %f1; VSSRC:%9
153         //   ...
154         //   %6 = COPY %9; VSSRC:%6,%9
155         //   %7 = COPY %9; VSSRC:%7,%9
156         //   %9<def,tied1> = XSMADDASP %9<tied0>, %1, %4; VSSRC:
157         //   %6<def,tied1> = XSMADDASP %6<tied0>, %1, %2; VSSRC:
158         //   %7<def,tied1> = XSMADDASP %7<tied0>, %1, %3; VSSRC:
159         // which prevents an otherwise-profitable transformation.
160         bool OtherUsers = false, KillsAddendSrc = false;
161         for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
162              J != JE; --J) {
163           if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
164             OtherUsers = true;
165             break;
166           }
167           if (J->modifiesRegister(AddendSrcReg, TRI) ||
168               J->killsRegister(AddendSrcReg, TRI)) {
169             KillsAddendSrc = true;
170             break;
171           }
172         }
173
174         if (OtherUsers || KillsAddendSrc)
175           continue;
176
177
178         // The transformation doesn't work well with things like:
179         //    %5 = A-form-op %5, %11, %5;
180         // unless %11 is also a kill, so skip when it is not,
181         // and check operand 3 to see it is also a kill to handle the case:
182         //   %5 = A-form-op %5, %5, %11;
183         // where %5 and %11 are both kills. This case would be skipped
184         // otherwise.
185         unsigned OldFMAReg = MI.getOperand(0).getReg();
186
187         // Find one of the product operands that is killed by this instruction.
188         unsigned KilledProdOp = 0, OtherProdOp = 0;
189         unsigned Reg2 = MI.getOperand(2).getReg();
190         unsigned Reg3 = MI.getOperand(3).getReg();
191         if (LIS->getInterval(Reg2).Query(FMAIdx).isKill()
192             && Reg2 != OldFMAReg) {
193           KilledProdOp = 2;
194           OtherProdOp  = 3;
195         } else if (LIS->getInterval(Reg3).Query(FMAIdx).isKill()
196             && Reg3 != OldFMAReg) {
197           KilledProdOp = 3;
198           OtherProdOp  = 2;
199         }
200
201         // If there are no usable killed product operands, then this
202         // transformation is likely not profitable.
203         if (!KilledProdOp)
204           continue;
205
206         // If the addend copy is used only by this MI, then the addend source
207         // register is likely not live here. This could be fixed (based on the
208         // legality checks above, the live range for the addend source register
209         // could be extended), but it seems likely that such a trivial copy can
210         // be coalesced away later, and thus is not worth the effort.
211         if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg) &&
212             !LIS->getInterval(AddendSrcReg).liveAt(FMAIdx))
213           continue;
214
215         // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
216
217         unsigned KilledProdReg = MI.getOperand(KilledProdOp).getReg();
218         unsigned OtherProdReg = MI.getOperand(OtherProdOp).getReg();
219
220         unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
221         unsigned KilledProdSubReg = MI.getOperand(KilledProdOp).getSubReg();
222         unsigned OtherProdSubReg = MI.getOperand(OtherProdOp).getSubReg();
223
224         bool AddRegKill = AddendMI->getOperand(1).isKill();
225         bool KilledProdRegKill = MI.getOperand(KilledProdOp).isKill();
226         bool OtherProdRegKill = MI.getOperand(OtherProdOp).isKill();
227
228         bool AddRegUndef = AddendMI->getOperand(1).isUndef();
229         bool KilledProdRegUndef = MI.getOperand(KilledProdOp).isUndef();
230         bool OtherProdRegUndef = MI.getOperand(OtherProdOp).isUndef();
231
232         // If there isn't a class that fits, we can't perform the transform.
233         // This is needed for correctness with a mixture of VSX and Altivec
234         // instructions to make sure that a low VSX register is not assigned to
235         // the Altivec instruction.
236         if (!MRI.constrainRegClass(KilledProdReg,
237                                    MRI.getRegClass(OldFMAReg)))
238           continue;
239
240         assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
241                "Addend copy not tied to old FMA output!");
242
243         LLVM_DEBUG(dbgs() << "VSX FMA Mutation:\n    " << MI);
244
245         MI.getOperand(0).setReg(KilledProdReg);
246         MI.getOperand(1).setReg(KilledProdReg);
247         MI.getOperand(3).setReg(AddendSrcReg);
248
249         MI.getOperand(0).setSubReg(KilledProdSubReg);
250         MI.getOperand(1).setSubReg(KilledProdSubReg);
251         MI.getOperand(3).setSubReg(AddSubReg);
252
253         MI.getOperand(1).setIsKill(KilledProdRegKill);
254         MI.getOperand(3).setIsKill(AddRegKill);
255
256         MI.getOperand(1).setIsUndef(KilledProdRegUndef);
257         MI.getOperand(3).setIsUndef(AddRegUndef);
258
259         MI.setDesc(TII->get(AltOpc));
260
261         // If the addend is also a multiplicand, replace it with the addend
262         // source in both places.
263         if (OtherProdReg == AddendMI->getOperand(0).getReg()) {
264           MI.getOperand(2).setReg(AddendSrcReg);
265           MI.getOperand(2).setSubReg(AddSubReg);
266           MI.getOperand(2).setIsKill(AddRegKill);
267           MI.getOperand(2).setIsUndef(AddRegUndef);
268         } else {
269           MI.getOperand(2).setReg(OtherProdReg);
270           MI.getOperand(2).setSubReg(OtherProdSubReg);
271           MI.getOperand(2).setIsKill(OtherProdRegKill);
272           MI.getOperand(2).setIsUndef(OtherProdRegUndef);
273         }
274
275         LLVM_DEBUG(dbgs() << " -> " << MI);
276
277         // The killed product operand was killed here, so we can reuse it now
278         // for the result of the fma.
279
280         LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
281         VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
282         for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
283              UI != UE;) {
284           MachineOperand &UseMO = *UI;
285           MachineInstr *UseMI = UseMO.getParent();
286           ++UI;
287
288           // Don't replace the result register of the copy we're about to erase.
289           if (UseMI == AddendMI)
290             continue;
291
292           UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI);
293         }
294
295         // Extend the live intervals of the killed product operand to hold the
296         // fma result.
297
298         LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
299         for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
300              AI != AE; ++AI) {
301           // Don't add the segment that corresponds to the original copy.
302           if (AI->valno == AddendValNo)
303             continue;
304
305           VNInfo *NewFMAValNo =
306             NewFMAInt.getNextValue(AI->start,
307                                    LIS->getVNInfoAllocator());
308
309           NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
310                                                      NewFMAValNo));
311         }
312         LLVM_DEBUG(dbgs() << "  extended: " << NewFMAInt << '\n');
313
314         // Extend the live interval of the addend source (it might end at the
315         // copy to be removed, or somewhere in between there and here). This
316         // is necessary only if it is a physical register.
317         if (!TargetRegisterInfo::isVirtualRegister(AddendSrcReg))
318           for (MCRegUnitIterator Units(AddendSrcReg, TRI); Units.isValid();
319                ++Units) {
320             unsigned Unit = *Units;
321
322             LiveRange &AddendSrcRange = LIS->getRegUnit(Unit);
323             AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB),
324                                          FMAIdx.getRegSlot());
325             LLVM_DEBUG(dbgs() << "  extended: " << AddendSrcRange << '\n');
326           }
327
328         FMAInt.removeValNo(FMAValNo);
329         LLVM_DEBUG(dbgs() << "  trimmed:  " << FMAInt << '\n');
330
331         // Remove the (now unused) copy.
332
333         LLVM_DEBUG(dbgs() << "  removing: " << *AddendMI << '\n');
334         LIS->RemoveMachineInstrFromMaps(*AddendMI);
335         AddendMI->eraseFromParent();
336
337         Changed = true;
338       }
339
340       return Changed;
341     }
342
343 public:
344     bool runOnMachineFunction(MachineFunction &MF) override {
345       if (skipFunction(MF.getFunction()))
346         return false;
347
348       // If we don't have VSX then go ahead and return without doing
349       // anything.
350       const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
351       if (!STI.hasVSX())
352         return false;
353
354       LIS = &getAnalysis<LiveIntervals>();
355
356       TII = STI.getInstrInfo();
357
358       bool Changed = false;
359
360       if (DisableVSXFMAMutate)
361         return Changed;
362
363       for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
364         MachineBasicBlock &B = *I++;
365         if (processBlock(B))
366           Changed = true;
367       }
368
369       return Changed;
370     }
371
372     void getAnalysisUsage(AnalysisUsage &AU) const override {
373       AU.addRequired<LiveIntervals>();
374       AU.addPreserved<LiveIntervals>();
375       AU.addRequired<SlotIndexes>();
376       AU.addPreserved<SlotIndexes>();
377       AU.addRequired<MachineDominatorTree>();
378       AU.addPreserved<MachineDominatorTree>();
379       MachineFunctionPass::getAnalysisUsage(AU);
380     }
381   };
382 }
383
384 INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
385                       "PowerPC VSX FMA Mutation", false, false)
386 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
387 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
388 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
389 INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
390                     "PowerPC VSX FMA Mutation", false, false)
391
392 char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
393
394 char PPCVSXFMAMutate::ID = 0;
395 FunctionPass *llvm::createPPCVSXFMAMutatePass() {
396   return new PPCVSXFMAMutate();
397 }