]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoD.td
MFV r368607:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / RISCV / RISCVInstrInfoD.td
1 //===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the RISC-V instructions from the standard 'D',
10 // Double-Precision Floating-Point instruction set extension.
11 //
12 //===----------------------------------------------------------------------===//
13
14 //===----------------------------------------------------------------------===//
15 // RISC-V specific DAG Nodes.
16 //===----------------------------------------------------------------------===//
17
18 def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
19                                                  SDTCisVT<1, i32>,
20                                                  SDTCisSameAs<1, 2>]>;
21 def SDT_RISCVSplitF64     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>,
22                                                  SDTCisVT<1, i32>,
23                                                  SDTCisVT<2, f64>]>;
24
25 def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>;
26 def RISCVSplitF64     : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>;
27
28 //===----------------------------------------------------------------------===//
29 // Instruction Class Templates
30 //===----------------------------------------------------------------------===//
31
32 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
33 class FPFMAD_rrr_frm<RISCVOpcode opcode, string opcodestr>
34     : RVInstR4<0b01, opcode, (outs FPR64:$rd),
35                (ins FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, frmarg:$funct3),
36                 opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
37
38 class FPFMADDynFrmAlias<FPFMAD_rrr_frm Inst, string OpcodeStr>
39     : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
40                 (Inst FPR64:$rd, FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
41
42 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
43 class FPALUD_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
44     : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR64:$rd),
45               (ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">;
46
47 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
48 class FPALUD_rr_frm<bits<7> funct7, string opcodestr>
49     : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR64:$rd),
50                 (ins FPR64:$rs1, FPR64:$rs2, frmarg:$funct3), opcodestr,
51                  "$rd, $rs1, $rs2, $funct3">;
52
53 class FPALUDDynFrmAlias<FPALUD_rr_frm Inst, string OpcodeStr>
54     : InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
55                 (Inst FPR64:$rd, FPR64:$rs1, FPR64:$rs2, 0b111)>;
56
57 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
58 class FPCmpD_rr<bits<3> funct3, string opcodestr>
59     : RVInstR<0b1010001, funct3, OPC_OP_FP, (outs GPR:$rd),
60               (ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">,
61       Sched<[WriteFCmp64, ReadFCmp64, ReadFCmp64]>;
62
63 //===----------------------------------------------------------------------===//
64 // Instructions
65 //===----------------------------------------------------------------------===//
66
67 let Predicates = [HasStdExtD] in {
68
69 let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
70 def FLD : RVInstI<0b011, OPC_LOAD_FP, (outs FPR64:$rd),
71                   (ins GPR:$rs1, simm12:$imm12),
72                   "fld", "$rd, ${imm12}(${rs1})">,
73           Sched<[WriteFLD64, ReadFMemBase]>;
74
75 // Operands for stores are in the order srcreg, base, offset rather than
76 // reflecting the order these fields are specified in the instruction
77 // encoding.
78 let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
79 def FSD : RVInstS<0b011, OPC_STORE_FP, (outs),
80                   (ins FPR64:$rs2, GPR:$rs1, simm12:$imm12),
81                    "fsd", "$rs2, ${imm12}(${rs1})">,
82           Sched<[WriteFST64, ReadStoreData, ReadFMemBase]>;
83
84 def FMADD_D  : FPFMAD_rrr_frm<OPC_MADD, "fmadd.d">,
85                Sched<[WriteFMulAdd64, ReadFMulAdd64, ReadFMulAdd64, ReadFMulAdd64]>;
86 def          : FPFMADDynFrmAlias<FMADD_D, "fmadd.d">;
87 def FMSUB_D  : FPFMAD_rrr_frm<OPC_MSUB, "fmsub.d">,
88                Sched<[WriteFMulSub64, ReadFMulSub64, ReadFMulSub64, ReadFMulSub64]>;
89 def          : FPFMADDynFrmAlias<FMSUB_D, "fmsub.d">;
90 def FNMSUB_D : FPFMAD_rrr_frm<OPC_NMSUB, "fnmsub.d">,
91                Sched<[WriteFMulSub64, ReadFMulSub64, ReadFMulSub64, ReadFMulSub64]>;
92 def          : FPFMADDynFrmAlias<FNMSUB_D, "fnmsub.d">;
93 def FNMADD_D : FPFMAD_rrr_frm<OPC_NMADD, "fnmadd.d">,
94                Sched<[WriteFMulAdd64, ReadFMulAdd64, ReadFMulAdd64, ReadFMulAdd64]>;
95 def          : FPFMADDynFrmAlias<FNMADD_D, "fnmadd.d">;
96
97 def FADD_D : FPALUD_rr_frm<0b0000001, "fadd.d">,
98              Sched<[WriteFALU64, ReadFALU64, ReadFALU64]>;
99 def        : FPALUDDynFrmAlias<FADD_D, "fadd.d">;
100 def FSUB_D : FPALUD_rr_frm<0b0000101, "fsub.d">,
101              Sched<[WriteFALU64, ReadFALU64, ReadFALU64]>;
102 def        : FPALUDDynFrmAlias<FSUB_D, "fsub.d">;
103 def FMUL_D : FPALUD_rr_frm<0b0001001, "fmul.d">,
104              Sched<[WriteFMul64, ReadFMul64, ReadFMul64]>;
105 def        : FPALUDDynFrmAlias<FMUL_D, "fmul.d">;
106 def FDIV_D : FPALUD_rr_frm<0b0001101, "fdiv.d">,
107              Sched<[WriteFDiv64, ReadFDiv64, ReadFDiv64]>;
108 def        : FPALUDDynFrmAlias<FDIV_D, "fdiv.d">;
109
110 def FSQRT_D : FPUnaryOp_r_frm<0b0101101, FPR64, FPR64, "fsqrt.d">,
111               Sched<[WriteFSqrt64, ReadFSqrt64]> {
112   let rs2 = 0b00000;
113 }
114 def         : FPUnaryOpDynFrmAlias<FSQRT_D, "fsqrt.d", FPR64, FPR64>;
115
116 def FSGNJ_D  : FPALUD_rr<0b0010001, 0b000, "fsgnj.d">,
117                Sched<[WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64]>;
118 def FSGNJN_D : FPALUD_rr<0b0010001, 0b001, "fsgnjn.d">,
119                Sched<[WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64]>;
120 def FSGNJX_D : FPALUD_rr<0b0010001, 0b010, "fsgnjx.d">,
121                Sched<[WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64]>;
122 def FMIN_D   : FPALUD_rr<0b0010101, 0b000, "fmin.d">,
123                Sched<[WriteFMinMax64, ReadFMinMax64, ReadFMinMax64]>;
124 def FMAX_D   : FPALUD_rr<0b0010101, 0b001, "fmax.d">,
125                Sched<[WriteFMinMax64, ReadFMinMax64, ReadFMinMax64]>;
126
127 def FCVT_S_D : FPUnaryOp_r_frm<0b0100000, FPR32, FPR64, "fcvt.s.d">,
128                Sched<[WriteFCvtF64ToF32, ReadFCvtF64ToF32]> {
129   let rs2 = 0b00001;
130 }
131 def          : FPUnaryOpDynFrmAlias<FCVT_S_D, "fcvt.s.d", FPR32, FPR64>;
132
133 def FCVT_D_S : FPUnaryOp_r<0b0100001, 0b000, FPR64, FPR32, "fcvt.d.s">,
134                Sched<[WriteFCvtF32ToF64, ReadFCvtF32ToF64]> {
135   let rs2 = 0b00000;
136 }
137
138 def FEQ_D : FPCmpD_rr<0b010, "feq.d">;
139 def FLT_D : FPCmpD_rr<0b001, "flt.d">;
140 def FLE_D : FPCmpD_rr<0b000, "fle.d">;
141
142 def FCLASS_D : FPUnaryOp_r<0b1110001, 0b001, GPR, FPR64, "fclass.d">,
143                Sched<[WriteFClass64, ReadFClass64]> {
144   let rs2 = 0b00000;
145 }
146
147 def FCVT_W_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.w.d">,
148                Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]> {
149   let rs2 = 0b00000;
150 }
151 def          : FPUnaryOpDynFrmAlias<FCVT_W_D, "fcvt.w.d", GPR, FPR64>;
152
153 def FCVT_WU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.wu.d">,
154                 Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]> {
155   let rs2 = 0b00001;
156 }
157 def           : FPUnaryOpDynFrmAlias<FCVT_WU_D, "fcvt.wu.d", GPR, FPR64>;
158
159 def FCVT_D_W : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.w">,
160                Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]> {
161   let rs2 = 0b00000;
162 }
163
164 def FCVT_D_WU : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.wu">,
165                 Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]> {
166   let rs2 = 0b00001;
167 }
168 } // Predicates = [HasStdExtD]
169
170 let Predicates = [HasStdExtD, IsRV64] in {
171 def FCVT_L_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.l.d">,
172                Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]> {
173   let rs2 = 0b00010;
174 }
175 def          : FPUnaryOpDynFrmAlias<FCVT_L_D, "fcvt.l.d", GPR, FPR64>;
176
177 def FCVT_LU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.lu.d">,
178                 Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]> {
179   let rs2 = 0b00011;
180 }
181 def           : FPUnaryOpDynFrmAlias<FCVT_LU_D, "fcvt.lu.d", GPR, FPR64>;
182
183 def FMV_X_D : FPUnaryOp_r<0b1110001, 0b000, GPR, FPR64, "fmv.x.d">,
184               Sched<[WriteFMovF64ToI64, ReadFMovF64ToI64]> {
185   let rs2 = 0b00000;
186 }
187
188 def FCVT_D_L : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.l">,
189                Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]> {
190   let rs2 = 0b00010;
191 }
192 def          : FPUnaryOpDynFrmAlias<FCVT_D_L, "fcvt.d.l", FPR64, GPR>;
193
194 def FCVT_D_LU : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.lu">,
195                 Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]> {
196   let rs2 = 0b00011;
197 }
198 def           : FPUnaryOpDynFrmAlias<FCVT_D_LU, "fcvt.d.lu", FPR64, GPR>;
199
200 def FMV_D_X : FPUnaryOp_r<0b1111001, 0b000, FPR64, GPR, "fmv.d.x">,
201               Sched<[WriteFMovI64ToF64, ReadFMovI64ToF64]> {
202   let rs2 = 0b00000;
203 }
204 } // Predicates = [HasStdExtD, IsRV64]
205
206 //===----------------------------------------------------------------------===//
207 // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
208 //===----------------------------------------------------------------------===//
209
210 let Predicates = [HasStdExtD] in {
211 def : InstAlias<"fld $rd, (${rs1})",  (FLD FPR64:$rd,  GPR:$rs1, 0), 0>;
212 def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>;
213
214 def : InstAlias<"fmv.d $rd, $rs",  (FSGNJ_D  FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
215 def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
216 def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
217
218 // fgt.d/fge.d are recognised by the GNU assembler but the canonical
219 // flt.d/fle.d forms will always be printed. Therefore, set a zero weight.
220 def : InstAlias<"fgt.d $rd, $rs, $rt",
221                 (FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
222 def : InstAlias<"fge.d $rd, $rs, $rt",
223                 (FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
224
225 def PseudoFLD  : PseudoFloatLoad<"fld", FPR64>;
226 def PseudoFSD  : PseudoStore<"fsd", FPR64>;
227 } // Predicates = [HasStdExtD]
228
229 //===----------------------------------------------------------------------===//
230 // Pseudo-instructions and codegen patterns
231 //===----------------------------------------------------------------------===//
232
233 class PatFpr64Fpr64<SDPatternOperator OpNode, RVInstR Inst>
234     : Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2)>;
235
236 class PatFpr64Fpr64DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
237     : Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2, 0b111)>;
238
239 let Predicates = [HasStdExtD] in {
240
241 /// Float conversion operations
242
243 // f64 -> f32, f32 -> f64
244 def : Pat<(fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, 0b111)>;
245 def : Pat<(fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1)>;
246
247 // [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so
248 // are defined later.
249
250 /// Float arithmetic operations
251
252 def : PatFpr64Fpr64DynFrm<fadd, FADD_D>;
253 def : PatFpr64Fpr64DynFrm<fsub, FSUB_D>;
254 def : PatFpr64Fpr64DynFrm<fmul, FMUL_D>;
255 def : PatFpr64Fpr64DynFrm<fdiv, FDIV_D>;
256
257 def : Pat<(fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, 0b111)>;
258
259 def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>;
260 def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>;
261
262 def : PatFpr64Fpr64<fcopysign, FSGNJ_D>;
263 def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>;
264 def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2))>;
265 def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2,
266                                                               0b111))>;
267
268 // fmadd: rs1 * rs2 + rs3
269 def : Pat<(fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3),
270           (FMADD_D $rs1, $rs2, $rs3, 0b111)>;
271
272 // fmsub: rs1 * rs2 - rs3
273 def : Pat<(fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)),
274           (FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
275
276 // fnmsub: -rs1 * rs2 + rs3
277 def : Pat<(fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3),
278           (FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
279
280 // fnmadd: -rs1 * rs2 - rs3
281 def : Pat<(fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)),
282           (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
283
284 // The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the
285 // canonical NaN when giving a signaling NaN. This doesn't match the LLVM
286 // behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the
287 // draft 2.3 ISA spec changes the definition of fmin and fmax in a way that
288 // matches LLVM's fminnum and fmaxnum
289 // <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
290 def : PatFpr64Fpr64<fminnum, FMIN_D>;
291 def : PatFpr64Fpr64<fmaxnum, FMAX_D>;
292
293 /// Setcc
294
295 def : PatFpr64Fpr64<seteq, FEQ_D>;
296 def : PatFpr64Fpr64<setoeq, FEQ_D>;
297 def : PatFpr64Fpr64<setlt, FLT_D>;
298 def : PatFpr64Fpr64<setolt, FLT_D>;
299 def : PatFpr64Fpr64<setle, FLE_D>;
300 def : PatFpr64Fpr64<setole, FLE_D>;
301
302 // Define pattern expansions for setcc operations which aren't directly
303 // handled by a RISC-V instruction and aren't expanded in the SelectionDAG
304 // Legalizer.
305
306 def : Pat<(seto FPR64:$rs1, FPR64:$rs2),
307           (AND (FEQ_D FPR64:$rs1, FPR64:$rs1),
308                (FEQ_D FPR64:$rs2, FPR64:$rs2))>;
309 def : Pat<(seto FPR64:$rs1, FPR64:$rs1),
310           (FEQ_D $rs1, $rs1)>;
311
312 def : Pat<(setuo FPR64:$rs1, FPR64:$rs2),
313           (SLTIU (AND (FEQ_D FPR64:$rs1, FPR64:$rs1),
314                       (FEQ_D FPR64:$rs2, FPR64:$rs2)),
315                  1)>;
316 def : Pat<(setuo FPR64:$rs1, FPR64:$rs1),
317           (SLTIU (FEQ_D $rs1, $rs1), 1)>;
318
319 def Select_FPR64_Using_CC_GPR : SelectCC_rrirr<FPR64, GPR>;
320
321 /// Loads
322
323 defm : LdPat<load, FLD>;
324
325 /// Stores
326
327 defm : StPat<store, FSD, FPR64>;
328
329 /// Pseudo-instructions needed for the soft-float ABI with RV32D
330
331 // Moves two GPRs to an FPR.
332 let usesCustomInserter = 1 in
333 def BuildPairF64Pseudo
334     : Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2),
335              [(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;
336
337 // Moves an FPR to two GPRs.
338 let usesCustomInserter = 1 in
339 def SplitF64Pseudo
340     : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src),
341              [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>;
342
343 } // Predicates = [HasStdExtD]
344
345 let Predicates = [HasStdExtD, IsRV32] in {
346
347 /// Float constants
348 def : Pat<(f64 (fpimm0)), (FCVT_D_W X0)>;
349
350 // double->[u]int. Round-to-zero must be used.
351 def : Pat<(fp_to_sint FPR64:$rs1), (FCVT_W_D FPR64:$rs1, 0b001)>;
352 def : Pat<(fp_to_uint FPR64:$rs1), (FCVT_WU_D FPR64:$rs1, 0b001)>;
353
354 // [u]int->double.
355 def : Pat<(sint_to_fp GPR:$rs1), (FCVT_D_W GPR:$rs1)>;
356 def : Pat<(uint_to_fp GPR:$rs1), (FCVT_D_WU GPR:$rs1)>;
357 } // Predicates = [HasStdExtD, IsRV32]
358
359 let Predicates = [HasStdExtD, IsRV64] in {
360
361 /// Float constants
362 def : Pat<(f64 (fpimm0)), (FMV_D_X X0)>;
363
364 def : Pat<(bitconvert GPR:$rs1), (FMV_D_X GPR:$rs1)>;
365 def : Pat<(bitconvert FPR64:$rs1), (FMV_X_D FPR64:$rs1)>;
366
367 // FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe
368 // because fpto[u|s]i produce poison if the value can't fit into the target.
369 // We match the single case below because fcvt.wu.d sign-extends its result so
370 // is cheaper than fcvt.lu.d+sext.w.
371 def : Pat<(sext_inreg (zexti32 (fp_to_uint FPR64:$rs1)), i32),
372           (FCVT_WU_D $rs1, 0b001)>;
373
374 // [u]int32->fp
375 def : Pat<(sint_to_fp (sext_inreg GPR:$rs1, i32)), (FCVT_D_W $rs1)>;
376 def : Pat<(uint_to_fp (zexti32 GPR:$rs1)), (FCVT_D_WU $rs1)>;
377
378 def : Pat<(fp_to_sint FPR64:$rs1), (FCVT_L_D FPR64:$rs1, 0b001)>;
379 def : Pat<(fp_to_uint FPR64:$rs1), (FCVT_LU_D FPR64:$rs1, 0b001)>;
380
381 // [u]int64->fp. Match GCC and default to using dynamic rounding mode.
382 def : Pat<(sint_to_fp GPR:$rs1), (FCVT_D_L GPR:$rs1, 0b111)>;
383 def : Pat<(uint_to_fp GPR:$rs1), (FCVT_D_LU GPR:$rs1, 0b111)>;
384 } // Predicates = [HasStdExtD, IsRV64]