]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfoF.td
Update to bmake-20201101
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / RISCV / RISCVInstrInfoF.td
1 //===-- RISCVInstrInfoF.td - RISC-V 'F' instructions -------*- tablegen -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes the RISC-V instructions from the standard 'F',
10 // Single-Precision Floating-Point instruction set extension.
11 //
12 //===----------------------------------------------------------------------===//
13
14 //===----------------------------------------------------------------------===//
15 // RISC-V specific DAG Nodes.
16 //===----------------------------------------------------------------------===//
17
18 def SDT_RISCVFMV_W_X_RV64
19     : SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisVT<1, i64>]>;
20 def SDT_RISCVFMV_X_ANYEXTW_RV64
21     : SDTypeProfile<1, 1, [SDTCisVT<0, i64>, SDTCisVT<1, f32>]>;
22
23 def riscv_fmv_w_x_rv64
24     : SDNode<"RISCVISD::FMV_W_X_RV64", SDT_RISCVFMV_W_X_RV64>;
25 def riscv_fmv_x_anyextw_rv64
26     : SDNode<"RISCVISD::FMV_X_ANYEXTW_RV64", SDT_RISCVFMV_X_ANYEXTW_RV64>;
27
28 //===----------------------------------------------------------------------===//
29 // Operand and SDNode transformation definitions.
30 //===----------------------------------------------------------------------===//
31
32 // Floating-point rounding mode
33
34 def FRMArg : AsmOperandClass {
35   let Name = "FRMArg";
36   let RenderMethod = "addFRMArgOperands";
37   let DiagnosticType = "InvalidFRMArg";
38 }
39
40 def frmarg : Operand<XLenVT> {
41   let ParserMatchClass = FRMArg;
42   let PrintMethod = "printFRMArg";
43   let DecoderMethod = "decodeFRMArg";
44 }
45
46 //===----------------------------------------------------------------------===//
47 // Instruction class templates
48 //===----------------------------------------------------------------------===//
49
50 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
51 class FPFMAS_rrr_frm<RISCVOpcode opcode, string opcodestr>
52     : RVInstR4<0b00, opcode, (outs FPR32:$rd),
53                (ins FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, frmarg:$funct3),
54                 opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
55
56 class FPFMASDynFrmAlias<FPFMAS_rrr_frm Inst, string OpcodeStr>
57     : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
58                 (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
59
60 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
61 class FPALUS_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
62     : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR32:$rd),
63               (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">;
64
65 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
66 class FPALUS_rr_frm<bits<7> funct7, string opcodestr>
67     : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR32:$rd),
68                  (ins FPR32:$rs1, FPR32:$rs2, frmarg:$funct3), opcodestr,
69                   "$rd, $rs1, $rs2, $funct3">;
70
71 class FPALUSDynFrmAlias<FPALUS_rr_frm Inst, string OpcodeStr>
72     : InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
73                 (Inst FPR32:$rd, FPR32:$rs1, FPR32:$rs2, 0b111)>;
74
75 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
76 class FPUnaryOp_r<bits<7> funct7, bits<3> funct3, RegisterClass rdty,
77                 RegisterClass rs1ty, string opcodestr>
78     : RVInstR<funct7, funct3, OPC_OP_FP, (outs rdty:$rd), (ins rs1ty:$rs1),
79               opcodestr, "$rd, $rs1">;
80
81 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
82 class FPUnaryOp_r_frm<bits<7> funct7, RegisterClass rdty, RegisterClass rs1ty,
83                       string opcodestr>
84     : RVInstRFrm<funct7, OPC_OP_FP, (outs rdty:$rd),
85                  (ins rs1ty:$rs1, frmarg:$funct3), opcodestr,
86                   "$rd, $rs1, $funct3">;
87
88 class FPUnaryOpDynFrmAlias<FPUnaryOp_r_frm Inst, string OpcodeStr,
89                            RegisterClass rdty, RegisterClass rs1ty>
90     : InstAlias<OpcodeStr#" $rd, $rs1",
91                 (Inst rdty:$rd, rs1ty:$rs1, 0b111)>;
92
93 let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
94 class FPCmpS_rr<bits<3> funct3, string opcodestr>
95     : RVInstR<0b1010000, funct3, OPC_OP_FP, (outs GPR:$rd),
96               (ins FPR32:$rs1, FPR32:$rs2), opcodestr, "$rd, $rs1, $rs2">,
97       Sched<[WriteFCmp32, ReadFCmp32, ReadFCmp32]>;
98
99 //===----------------------------------------------------------------------===//
100 // Instructions
101 //===----------------------------------------------------------------------===//
102
103 let Predicates = [HasStdExtF] in {
104 let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
105 def FLW : RVInstI<0b010, OPC_LOAD_FP, (outs FPR32:$rd),
106                   (ins GPR:$rs1, simm12:$imm12),
107                    "flw", "$rd, ${imm12}(${rs1})">,
108           Sched<[WriteFLD32, ReadFMemBase]>;
109
110 // Operands for stores are in the order srcreg, base, offset rather than
111 // reflecting the order these fields are specified in the instruction
112 // encoding.
113 let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
114 def FSW : RVInstS<0b010, OPC_STORE_FP, (outs),
115                   (ins FPR32:$rs2, GPR:$rs1, simm12:$imm12),
116                    "fsw", "$rs2, ${imm12}(${rs1})">,
117           Sched<[WriteFST32, ReadStoreData, ReadFMemBase]>;
118
119 def FMADD_S  : FPFMAS_rrr_frm<OPC_MADD, "fmadd.s">,
120                Sched<[WriteFMulAdd32, ReadFMulAdd32, ReadFMulAdd32, ReadFMulAdd32]>;
121 def          : FPFMASDynFrmAlias<FMADD_S, "fmadd.s">;
122 def FMSUB_S  : FPFMAS_rrr_frm<OPC_MSUB, "fmsub.s">,
123                Sched<[WriteFMulSub32, ReadFMulSub32, ReadFMulSub32, ReadFMulSub32]>;
124 def          : FPFMASDynFrmAlias<FMSUB_S, "fmsub.s">;
125 def FNMSUB_S : FPFMAS_rrr_frm<OPC_NMSUB, "fnmsub.s">,
126                Sched<[WriteFMulSub32, ReadFMulSub32, ReadFMulSub32, ReadFMulSub32]>;
127 def          : FPFMASDynFrmAlias<FNMSUB_S, "fnmsub.s">;
128 def FNMADD_S : FPFMAS_rrr_frm<OPC_NMADD, "fnmadd.s">,
129                Sched<[WriteFMulAdd32, ReadFMulAdd32, ReadFMulAdd32, ReadFMulAdd32]>;
130 def          : FPFMASDynFrmAlias<FNMADD_S, "fnmadd.s">;
131
132 def FADD_S : FPALUS_rr_frm<0b0000000, "fadd.s">,
133              Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
134 def        : FPALUSDynFrmAlias<FADD_S, "fadd.s">;
135 def FSUB_S : FPALUS_rr_frm<0b0000100, "fsub.s">,
136              Sched<[WriteFALU32, ReadFALU32, ReadFALU32]>;
137 def        : FPALUSDynFrmAlias<FSUB_S, "fsub.s">;
138 def FMUL_S : FPALUS_rr_frm<0b0001000, "fmul.s">,
139              Sched<[WriteFMul32, ReadFMul32, ReadFMul32]>;
140 def        : FPALUSDynFrmAlias<FMUL_S, "fmul.s">;
141 def FDIV_S : FPALUS_rr_frm<0b0001100, "fdiv.s">,
142              Sched<[WriteFDiv32, ReadFDiv32, ReadFDiv32]>;
143 def        : FPALUSDynFrmAlias<FDIV_S, "fdiv.s">;
144
145 def FSQRT_S : FPUnaryOp_r_frm<0b0101100, FPR32, FPR32, "fsqrt.s">,
146               Sched<[WriteFSqrt32, ReadFSqrt32]> {
147   let rs2 = 0b00000;
148 }
149 def         : FPUnaryOpDynFrmAlias<FSQRT_S, "fsqrt.s", FPR32, FPR32>;
150
151 def FSGNJ_S  : FPALUS_rr<0b0010000, 0b000, "fsgnj.s">,
152                Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
153 def FSGNJN_S : FPALUS_rr<0b0010000, 0b001, "fsgnjn.s">,
154                Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
155 def FSGNJX_S : FPALUS_rr<0b0010000, 0b010, "fsgnjx.s">,
156                Sched<[WriteFSGNJ32, ReadFSGNJ32, ReadFSGNJ32]>;
157 def FMIN_S   : FPALUS_rr<0b0010100, 0b000, "fmin.s">,
158                Sched<[WriteFMinMax32, ReadFMinMax32, ReadFMinMax32]>;
159 def FMAX_S   : FPALUS_rr<0b0010100, 0b001, "fmax.s">,
160                Sched<[WriteFMinMax32, ReadFMinMax32, ReadFMinMax32]>;
161
162 def FCVT_W_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.w.s">,
163                Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> {
164   let rs2 = 0b00000;
165 }
166 def          : FPUnaryOpDynFrmAlias<FCVT_W_S, "fcvt.w.s", GPR, FPR32>;
167
168 def FCVT_WU_S : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.wu.s">,
169                 Sched<[WriteFCvtF32ToI32, ReadFCvtF32ToI32]> {
170   let rs2 = 0b00001;
171 }
172 def           : FPUnaryOpDynFrmAlias<FCVT_WU_S, "fcvt.wu.s", GPR, FPR32>;
173
174 def FMV_X_W : FPUnaryOp_r<0b1110000, 0b000, GPR, FPR32, "fmv.x.w">,
175               Sched<[WriteFMovF32ToI32, ReadFMovF32ToI32]> {
176   let rs2 = 0b00000;
177 }
178
179 def FEQ_S : FPCmpS_rr<0b010, "feq.s">;
180 def FLT_S : FPCmpS_rr<0b001, "flt.s">;
181 def FLE_S : FPCmpS_rr<0b000, "fle.s">;
182
183 def FCLASS_S : FPUnaryOp_r<0b1110000, 0b001, GPR, FPR32, "fclass.s">,
184                Sched<[WriteFClass32, ReadFClass32]> {
185   let rs2 = 0b00000;
186 }
187
188 def FCVT_S_W : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.w">,
189                Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> {
190   let rs2 = 0b00000;
191 }
192 def          : FPUnaryOpDynFrmAlias<FCVT_S_W, "fcvt.s.w", FPR32, GPR>;
193
194 def FCVT_S_WU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.wu">,
195                 Sched<[WriteFCvtI32ToF32, ReadFCvtI32ToF32]> {
196   let rs2 = 0b00001;
197 }
198 def           : FPUnaryOpDynFrmAlias<FCVT_S_WU, "fcvt.s.wu", FPR32, GPR>;
199
200 def FMV_W_X : FPUnaryOp_r<0b1111000, 0b000, FPR32, GPR, "fmv.w.x">,
201               Sched<[WriteFMovI32ToF32, ReadFMovI32ToF32]> {
202   let rs2 = 0b00000;
203 }
204 } // Predicates = [HasStdExtF]
205
206 let Predicates = [HasStdExtF, IsRV64] in {
207 def FCVT_L_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.l.s">,
208                 Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> {
209   let rs2 = 0b00010;
210 }
211 def           : FPUnaryOpDynFrmAlias<FCVT_L_S, "fcvt.l.s", GPR, FPR32>;
212
213 def FCVT_LU_S  : FPUnaryOp_r_frm<0b1100000, GPR, FPR32, "fcvt.lu.s">,
214                  Sched<[WriteFCvtF32ToI64, ReadFCvtF32ToI64]> {
215   let rs2 = 0b00011;
216 }
217 def            : FPUnaryOpDynFrmAlias<FCVT_LU_S, "fcvt.lu.s", GPR, FPR32>;
218
219 def FCVT_S_L : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.l">,
220                Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> {
221   let rs2 = 0b00010;
222 }
223 def          : FPUnaryOpDynFrmAlias<FCVT_S_L, "fcvt.s.l", FPR32, GPR>;
224
225 def FCVT_S_LU : FPUnaryOp_r_frm<0b1101000, FPR32, GPR, "fcvt.s.lu">,
226                 Sched<[WriteFCvtI64ToF32, ReadFCvtI64ToF32]> {
227   let rs2 = 0b00011;
228 }
229 def           : FPUnaryOpDynFrmAlias<FCVT_S_LU, "fcvt.s.lu", FPR32, GPR>;
230 } // Predicates = [HasStdExtF, IsRV64]
231
232 //===----------------------------------------------------------------------===//
233 // Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
234 //===----------------------------------------------------------------------===//
235
236 let Predicates = [HasStdExtF] in {
237 def : InstAlias<"flw $rd, (${rs1})",  (FLW FPR32:$rd,  GPR:$rs1, 0), 0>;
238 def : InstAlias<"fsw $rs2, (${rs1})", (FSW FPR32:$rs2, GPR:$rs1, 0), 0>;
239
240 def : InstAlias<"fmv.s $rd, $rs",  (FSGNJ_S  FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
241 def : InstAlias<"fabs.s $rd, $rs", (FSGNJX_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
242 def : InstAlias<"fneg.s $rd, $rs", (FSGNJN_S FPR32:$rd, FPR32:$rs, FPR32:$rs)>;
243
244 // fgt.s/fge.s are recognised by the GNU assembler but the canonical
245 // flt.s/fle.s forms will always be printed. Therefore, set a zero weight.
246 def : InstAlias<"fgt.s $rd, $rs, $rt",
247                 (FLT_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
248 def : InstAlias<"fge.s $rd, $rs, $rt",
249                 (FLE_S GPR:$rd, FPR32:$rt, FPR32:$rs), 0>;
250
251 // The following csr instructions actually alias instructions from the base ISA.
252 // However, it only makes sense to support them when the F extension is enabled.
253 // NOTE: "frcsr", "frrm", and "frflags" are more specialized version of "csrr".
254 def : InstAlias<"frcsr $rd",      (CSRRS GPR:$rd, FCSR.Encoding, X0), 2>;
255 def : InstAlias<"fscsr $rd, $rs", (CSRRW GPR:$rd, FCSR.Encoding, GPR:$rs)>;
256 def : InstAlias<"fscsr $rs",      (CSRRW      X0, FCSR.Encoding, GPR:$rs), 2>;
257
258 // frsr, fssr are obsolete aliases replaced by frcsr, fscsr, so give them
259 // zero weight.
260 def : InstAlias<"frsr $rd",       (CSRRS GPR:$rd, FCSR.Encoding, X0), 0>;
261 def : InstAlias<"fssr $rd, $rs",  (CSRRW GPR:$rd, FCSR.Encoding, GPR:$rs), 0>;
262 def : InstAlias<"fssr $rs",       (CSRRW      X0, FCSR.Encoding, GPR:$rs), 0>;
263
264 def : InstAlias<"frrm $rd",        (CSRRS  GPR:$rd, FRM.Encoding, X0), 2>;
265 def : InstAlias<"fsrm $rd, $rs",   (CSRRW  GPR:$rd, FRM.Encoding, GPR:$rs)>;
266 def : InstAlias<"fsrm $rs",        (CSRRW       X0, FRM.Encoding, GPR:$rs), 2>;
267 def : InstAlias<"fsrmi $rd, $imm", (CSRRWI GPR:$rd, FRM.Encoding, uimm5:$imm)>;
268 def : InstAlias<"fsrmi $imm",      (CSRRWI      X0, FRM.Encoding, uimm5:$imm), 2>;
269
270 def : InstAlias<"frflags $rd",        (CSRRS  GPR:$rd, FFLAGS.Encoding, X0), 2>;
271 def : InstAlias<"fsflags $rd, $rs",   (CSRRW  GPR:$rd, FFLAGS.Encoding, GPR:$rs)>;
272 def : InstAlias<"fsflags $rs",        (CSRRW       X0, FFLAGS.Encoding, GPR:$rs), 2>;
273 def : InstAlias<"fsflagsi $rd, $imm", (CSRRWI GPR:$rd, FFLAGS.Encoding, uimm5:$imm)>;
274 def : InstAlias<"fsflagsi $imm",      (CSRRWI      X0, FFLAGS.Encoding, uimm5:$imm), 2>;
275
276 // fmv.w.x and fmv.x.w were previously known as fmv.s.x and fmv.x.s. Both
277 // spellings should be supported by standard tools.
278 def : MnemonicAlias<"fmv.s.x", "fmv.w.x">;
279 def : MnemonicAlias<"fmv.x.s", "fmv.x.w">;
280
281 def PseudoFLW  : PseudoFloatLoad<"flw", FPR32>;
282 def PseudoFSW  : PseudoStore<"fsw", FPR32>;
283 } // Predicates = [HasStdExtF]
284
285 //===----------------------------------------------------------------------===//
286 // Pseudo-instructions and codegen patterns
287 //===----------------------------------------------------------------------===//
288
289 /// Floating point constants
290 def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
291
292 /// Generic pattern classes
293 class PatFpr32Fpr32<SDPatternOperator OpNode, RVInstR Inst>
294     : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2)>;
295
296 class PatFpr32Fpr32DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
297     : Pat<(OpNode FPR32:$rs1, FPR32:$rs2), (Inst $rs1, $rs2, 0b111)>;
298
299 let Predicates = [HasStdExtF] in {
300
301 /// Float constants
302 def : Pat<(f32 (fpimm0)), (FMV_W_X X0)>;
303
304 /// Float conversion operations
305
306 // Moves (no conversion)
307 def : Pat<(bitconvert GPR:$rs1), (FMV_W_X GPR:$rs1)>;
308 def : Pat<(bitconvert FPR32:$rs1), (FMV_X_W FPR32:$rs1)>;
309
310 // [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
311 // are defined later.
312
313 /// Float arithmetic operations
314
315 def : PatFpr32Fpr32DynFrm<fadd, FADD_S>;
316 def : PatFpr32Fpr32DynFrm<fsub, FSUB_S>;
317 def : PatFpr32Fpr32DynFrm<fmul, FMUL_S>;
318 def : PatFpr32Fpr32DynFrm<fdiv, FDIV_S>;
319
320 def : Pat<(fsqrt FPR32:$rs1), (FSQRT_S FPR32:$rs1, 0b111)>;
321
322 def : Pat<(fneg FPR32:$rs1), (FSGNJN_S $rs1, $rs1)>;
323 def : Pat<(fabs FPR32:$rs1), (FSGNJX_S $rs1, $rs1)>;
324
325 def : PatFpr32Fpr32<fcopysign, FSGNJ_S>;
326 def : Pat<(fcopysign FPR32:$rs1, (fneg FPR32:$rs2)), (FSGNJN_S $rs1, $rs2)>;
327
328 // fmadd: rs1 * rs2 + rs3
329 def : Pat<(fma FPR32:$rs1, FPR32:$rs2, FPR32:$rs3),
330           (FMADD_S $rs1, $rs2, $rs3, 0b111)>;
331
332 // fmsub: rs1 * rs2 - rs3
333 def : Pat<(fma FPR32:$rs1, FPR32:$rs2, (fneg FPR32:$rs3)),
334           (FMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
335
336 // fnmsub: -rs1 * rs2 + rs3
337 def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, FPR32:$rs3),
338           (FNMSUB_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
339
340 // fnmadd: -rs1 * rs2 - rs3
341 def : Pat<(fma (fneg FPR32:$rs1), FPR32:$rs2, (fneg FPR32:$rs3)),
342           (FNMADD_S FPR32:$rs1, FPR32:$rs2, FPR32:$rs3, 0b111)>;
343
344 // The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the
345 // canonical NaN when given a signaling NaN. This doesn't match the LLVM
346 // behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the
347 // draft 2.3 ISA spec changes the definition of fmin and fmax in a way that
348 // matches LLVM's fminnum and fmaxnum
349 // <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
350 def : PatFpr32Fpr32<fminnum, FMIN_S>;
351 def : PatFpr32Fpr32<fmaxnum, FMAX_S>;
352
353 /// Setcc
354
355 def : PatFpr32Fpr32<seteq, FEQ_S>;
356 def : PatFpr32Fpr32<setoeq, FEQ_S>;
357 def : PatFpr32Fpr32<setlt, FLT_S>;
358 def : PatFpr32Fpr32<setolt, FLT_S>;
359 def : PatFpr32Fpr32<setle, FLE_S>;
360 def : PatFpr32Fpr32<setole, FLE_S>;
361
362 // Define pattern expansions for setcc operations which aren't directly
363 // handled by a RISC-V instruction and aren't expanded in the SelectionDAG
364 // Legalizer.
365
366 def : Pat<(seto FPR32:$rs1, FPR32:$rs2),
367           (AND (FEQ_S FPR32:$rs1, FPR32:$rs1),
368                (FEQ_S FPR32:$rs2, FPR32:$rs2))>;
369 def : Pat<(seto FPR32:$rs1, FPR32:$rs1),
370           (FEQ_S $rs1, $rs1)>;
371
372 def : Pat<(setuo FPR32:$rs1, FPR32:$rs2),
373           (SLTIU (AND (FEQ_S FPR32:$rs1, FPR32:$rs1),
374                       (FEQ_S FPR32:$rs2, FPR32:$rs2)),
375                  1)>;
376 def : Pat<(setuo FPR32:$rs1, FPR32:$rs1),
377           (SLTIU (FEQ_S $rs1, $rs1), 1)>;
378
379 def Select_FPR32_Using_CC_GPR : SelectCC_rrirr<FPR32, GPR>;
380
381 /// Loads
382
383 defm : LdPat<load, FLW>;
384
385 /// Stores
386
387 defm : StPat<store, FSW, FPR32>;
388
389 } // Predicates = [HasStdExtF]
390
391 let Predicates = [HasStdExtF, IsRV32] in {
392 // float->[u]int. Round-to-zero must be used.
393 def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_W_S $rs1, 0b001)>;
394 def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_WU_S $rs1, 0b001)>;
395
396 // [u]int->float. Match GCC and default to using dynamic rounding mode.
397 def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_W $rs1, 0b111)>;
398 def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_WU $rs1, 0b111)>;
399 } // Predicates = [HasStdExtF, IsRV32]
400
401 let Predicates = [HasStdExtF, IsRV64] in {
402 def : Pat<(riscv_fmv_w_x_rv64 GPR:$src), (FMV_W_X GPR:$src)>;
403 def : Pat<(riscv_fmv_x_anyextw_rv64 FPR32:$src), (FMV_X_W FPR32:$src)>;
404 def : Pat<(sexti32 (riscv_fmv_x_anyextw_rv64 FPR32:$src)),
405           (FMV_X_W FPR32:$src)>;
406
407 // FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe
408 // because fpto[u|s]i produces poison if the value can't fit into the target.
409 // We match the single case below because fcvt.wu.s sign-extends its result so
410 // is cheaper than fcvt.lu.s+sext.w.
411 def : Pat<(sext_inreg (assertzexti32 (fp_to_uint FPR32:$rs1)), i32),
412           (FCVT_WU_S $rs1, 0b001)>;
413
414 // FP->[u]int64
415 def : Pat<(fp_to_sint FPR32:$rs1), (FCVT_L_S $rs1, 0b001)>;
416 def : Pat<(fp_to_uint FPR32:$rs1), (FCVT_LU_S $rs1, 0b001)>;
417
418 // [u]int->fp. Match GCC and default to using dynamic rounding mode.
419 def : Pat<(sint_to_fp (sext_inreg GPR:$rs1, i32)), (FCVT_S_W $rs1, 0b111)>;
420 def : Pat<(uint_to_fp (zexti32 GPR:$rs1)), (FCVT_S_WU $rs1, 0b111)>;
421 def : Pat<(sint_to_fp GPR:$rs1), (FCVT_S_L $rs1, 0b111)>;
422 def : Pat<(uint_to_fp GPR:$rs1), (FCVT_S_LU $rs1, 0b111)>;
423 } // Predicates = [HasStdExtF, IsRV64]