]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp
MFV r367082:
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / SystemZ / SystemZISelLowering.cpp
1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28
29 using namespace llvm;
30
31 #define DEBUG_TYPE "systemz-lower"
32
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       // Expand individual DIV and REMs into DIVREMs.
168       setOperationAction(ISD::SDIV, VT, Expand);
169       setOperationAction(ISD::UDIV, VT, Expand);
170       setOperationAction(ISD::SREM, VT, Expand);
171       setOperationAction(ISD::UREM, VT, Expand);
172       setOperationAction(ISD::SDIVREM, VT, Custom);
173       setOperationAction(ISD::UDIVREM, VT, Custom);
174
175       // Support addition/subtraction with overflow.
176       setOperationAction(ISD::SADDO, VT, Custom);
177       setOperationAction(ISD::SSUBO, VT, Custom);
178
179       // Support addition/subtraction with carry.
180       setOperationAction(ISD::UADDO, VT, Custom);
181       setOperationAction(ISD::USUBO, VT, Custom);
182
183       // Support carry in as value rather than glue.
184       setOperationAction(ISD::ADDCARRY, VT, Custom);
185       setOperationAction(ISD::SUBCARRY, VT, Custom);
186
187       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
188       // stores, putting a serialization instruction after the stores.
189       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
190       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
191
192       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
193       // available, or if the operand is constant.
194       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
195
196       // Use POPCNT on z196 and above.
197       if (Subtarget.hasPopulationCount())
198         setOperationAction(ISD::CTPOP, VT, Custom);
199       else
200         setOperationAction(ISD::CTPOP, VT, Expand);
201
202       // No special instructions for these.
203       setOperationAction(ISD::CTTZ,            VT, Expand);
204       setOperationAction(ISD::ROTR,            VT, Expand);
205
206       // Use *MUL_LOHI where possible instead of MULH*.
207       setOperationAction(ISD::MULHS, VT, Expand);
208       setOperationAction(ISD::MULHU, VT, Expand);
209       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
210       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
211
212       // Only z196 and above have native support for conversions to unsigned.
213       // On z10, promoting to i64 doesn't generate an inexact condition for
214       // values that are outside the i32 range but in the i64 range, so use
215       // the default expansion.
216       if (!Subtarget.hasFPExtension())
217         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
218
219       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
220       // default to Expand, so need to be modified to Legal where appropriate.
221       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
222       if (Subtarget.hasFPExtension())
223         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
224
225       // And similarly for STRICT_[SU]INT_TO_FP.
226       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
227       if (Subtarget.hasFPExtension())
228         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
229     }
230   }
231
232   // Type legalization will convert 8- and 16-bit atomic operations into
233   // forms that operate on i32s (but still keeping the original memory VT).
234   // Lower them into full i32 operations.
235   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
236   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
237   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
246
247   // Even though i128 is not a legal type, we still need to custom lower
248   // the atomic operations in order to exploit SystemZ instructions.
249   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
250   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
251
252   // We can use the CC result of compare-and-swap to implement
253   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
254   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
255   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
257
258   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
259
260   // Traps are legal, as we will convert them to "j .+2".
261   setOperationAction(ISD::TRAP, MVT::Other, Legal);
262
263   // z10 has instructions for signed but not unsigned FP conversion.
264   // Handle unsigned 32-bit types as signed 64-bit types.
265   if (!Subtarget.hasFPExtension()) {
266     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
267     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
268     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
270   }
271
272   // We have native support for a 64-bit CTLZ, via FLOGR.
273   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
274   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
275   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
276
277   // On z15 we have native support for a 64-bit CTPOP.
278   if (Subtarget.hasMiscellaneousExtensions3()) {
279     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
280     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
281   }
282
283   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
284   setOperationAction(ISD::OR, MVT::i64, Custom);
285
286   // FIXME: Can we support these natively?
287   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
288   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
289   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
290
291   // We have native instructions for i8, i16 and i32 extensions, but not i1.
292   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
293   for (MVT VT : MVT::integer_valuetypes()) {
294     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
295     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
296     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
297   }
298
299   // Handle the various types of symbolic address.
300   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
301   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
302   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
303   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
304   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
305
306   // We need to handle dynamic allocations specially because of the
307   // 160-byte area at the bottom of the stack.
308   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
309   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
310
311   // Use custom expanders so that we can force the function to use
312   // a frame pointer.
313   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
314   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
315
316   // Handle prefetches with PFD or PFDRL.
317   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
318
319   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
320     // Assume by default that all vector operations need to be expanded.
321     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
322       if (getOperationAction(Opcode, VT) == Legal)
323         setOperationAction(Opcode, VT, Expand);
324
325     // Likewise all truncating stores and extending loads.
326     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
327       setTruncStoreAction(VT, InnerVT, Expand);
328       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
329       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
330       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
331     }
332
333     if (isTypeLegal(VT)) {
334       // These operations are legal for anything that can be stored in a
335       // vector register, even if there is no native support for the format
336       // as such.  In particular, we can do these for v4f32 even though there
337       // are no specific instructions for that format.
338       setOperationAction(ISD::LOAD, VT, Legal);
339       setOperationAction(ISD::STORE, VT, Legal);
340       setOperationAction(ISD::VSELECT, VT, Legal);
341       setOperationAction(ISD::BITCAST, VT, Legal);
342       setOperationAction(ISD::UNDEF, VT, Legal);
343
344       // Likewise, except that we need to replace the nodes with something
345       // more specific.
346       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
347       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
348     }
349   }
350
351   // Handle integer vector types.
352   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
353     if (isTypeLegal(VT)) {
354       // These operations have direct equivalents.
355       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
356       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
357       setOperationAction(ISD::ADD, VT, Legal);
358       setOperationAction(ISD::SUB, VT, Legal);
359       if (VT != MVT::v2i64)
360         setOperationAction(ISD::MUL, VT, Legal);
361       setOperationAction(ISD::AND, VT, Legal);
362       setOperationAction(ISD::OR, VT, Legal);
363       setOperationAction(ISD::XOR, VT, Legal);
364       if (Subtarget.hasVectorEnhancements1())
365         setOperationAction(ISD::CTPOP, VT, Legal);
366       else
367         setOperationAction(ISD::CTPOP, VT, Custom);
368       setOperationAction(ISD::CTTZ, VT, Legal);
369       setOperationAction(ISD::CTLZ, VT, Legal);
370
371       // Convert a GPR scalar to a vector by inserting it into element 0.
372       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
373
374       // Use a series of unpacks for extensions.
375       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
376       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
377
378       // Detect shifts by a scalar amount and convert them into
379       // V*_BY_SCALAR.
380       setOperationAction(ISD::SHL, VT, Custom);
381       setOperationAction(ISD::SRA, VT, Custom);
382       setOperationAction(ISD::SRL, VT, Custom);
383
384       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
385       // converted into ROTL.
386       setOperationAction(ISD::ROTL, VT, Expand);
387       setOperationAction(ISD::ROTR, VT, Expand);
388
389       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
390       // and inverting the result as necessary.
391       setOperationAction(ISD::SETCC, VT, Custom);
392       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
393       if (Subtarget.hasVectorEnhancements1())
394         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
395     }
396   }
397
398   if (Subtarget.hasVector()) {
399     // There should be no need to check for float types other than v2f64
400     // since <2 x f32> isn't a legal type.
401     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
402     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
403     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
404     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
405     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
406     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
407     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
408     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
409
410     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
418   }
419
420   if (Subtarget.hasVectorEnhancements2()) {
421     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
422     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
423     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
424     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
425     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
426     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
427     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
428     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
429
430     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
438   }
439
440   // Handle floating-point types.
441   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
442        I <= MVT::LAST_FP_VALUETYPE;
443        ++I) {
444     MVT VT = MVT::SimpleValueType(I);
445     if (isTypeLegal(VT)) {
446       // We can use FI for FRINT.
447       setOperationAction(ISD::FRINT, VT, Legal);
448
449       // We can use the extended form of FI for other rounding operations.
450       if (Subtarget.hasFPExtension()) {
451         setOperationAction(ISD::FNEARBYINT, VT, Legal);
452         setOperationAction(ISD::FFLOOR, VT, Legal);
453         setOperationAction(ISD::FCEIL, VT, Legal);
454         setOperationAction(ISD::FTRUNC, VT, Legal);
455         setOperationAction(ISD::FROUND, VT, Legal);
456       }
457
458       // No special instructions for these.
459       setOperationAction(ISD::FSIN, VT, Expand);
460       setOperationAction(ISD::FCOS, VT, Expand);
461       setOperationAction(ISD::FSINCOS, VT, Expand);
462       setOperationAction(ISD::FREM, VT, Expand);
463       setOperationAction(ISD::FPOW, VT, Expand);
464
465       // Handle constrained floating-point operations.
466       setOperationAction(ISD::STRICT_FADD, VT, Legal);
467       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
468       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
469       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
470       setOperationAction(ISD::STRICT_FMA, VT, Legal);
471       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
472       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
473       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
474       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
475       if (Subtarget.hasFPExtension()) {
476         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
477         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
478         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
479         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
480         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
481       }
482     }
483   }
484
485   // Handle floating-point vector types.
486   if (Subtarget.hasVector()) {
487     // Scalar-to-vector conversion is just a subreg.
488     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
489     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
490
491     // Some insertions and extractions can be done directly but others
492     // need to go via integers.
493     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
494     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
495     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
496     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
497
498     // These operations have direct equivalents.
499     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
500     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
501     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
502     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
503     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
504     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
505     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
506     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
507     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
508     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
509     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
510     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
511     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
512     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
513
514     // Handle constrained floating-point operations.
515     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
516     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
517     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
518     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
520     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
521     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
527   }
528
529   // The vector enhancements facility 1 has instructions for these.
530   if (Subtarget.hasVectorEnhancements1()) {
531     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
532     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
533     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
534     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
535     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
536     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
537     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
538     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
539     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
540     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
541     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
542     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
543     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
544     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
545
546     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
547     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
548     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
549     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
550
551     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
552     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
553     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
554     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
555
556     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
557     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
558     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
559     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
560
561     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
562     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
563     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
564     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
565
566     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
567     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
568     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
569     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
570
571     // Handle constrained floating-point operations.
572     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
573     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
574     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
575     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
576     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
577     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
578     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
584     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
585                      MVT::v4f32, MVT::v2f64 }) {
586       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
587       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
588       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
589       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
590     }
591   }
592
593   // We only have fused f128 multiply-addition on vector registers.
594   if (!Subtarget.hasVectorEnhancements1()) {
595     setOperationAction(ISD::FMA, MVT::f128, Expand);
596     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
597   }
598
599   // We don't have a copysign instruction on vector registers.
600   if (Subtarget.hasVectorEnhancements1())
601     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
602
603   // Needed so that we don't try to implement f128 constant loads using
604   // a load-and-extend of a f80 constant (in cases where the constant
605   // would fit in an f80).
606   for (MVT VT : MVT::fp_valuetypes())
607     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
608
609   // We don't have extending load instruction on vector registers.
610   if (Subtarget.hasVectorEnhancements1()) {
611     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
612     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
613   }
614
615   // Floating-point truncation and stores need to be done separately.
616   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
617   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
618   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
619
620   // We have 64-bit FPR<->GPR moves, but need special handling for
621   // 32-bit forms.
622   if (!Subtarget.hasVector()) {
623     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
624     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
625   }
626
627   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
628   // structure, but VAEND is a no-op.
629   setOperationAction(ISD::VASTART, MVT::Other, Custom);
630   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
631   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
632
633   // Codes for which we want to perform some z-specific combinations.
634   setTargetDAGCombine(ISD::ZERO_EXTEND);
635   setTargetDAGCombine(ISD::SIGN_EXTEND);
636   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
637   setTargetDAGCombine(ISD::LOAD);
638   setTargetDAGCombine(ISD::STORE);
639   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
640   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
641   setTargetDAGCombine(ISD::FP_ROUND);
642   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
643   setTargetDAGCombine(ISD::FP_EXTEND);
644   setTargetDAGCombine(ISD::SINT_TO_FP);
645   setTargetDAGCombine(ISD::UINT_TO_FP);
646   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
647   setTargetDAGCombine(ISD::BSWAP);
648   setTargetDAGCombine(ISD::SDIV);
649   setTargetDAGCombine(ISD::UDIV);
650   setTargetDAGCombine(ISD::SREM);
651   setTargetDAGCombine(ISD::UREM);
652   setTargetDAGCombine(ISD::INTRINSIC_VOID);
653   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
654
655   // Handle intrinsics.
656   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
657   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
658
659   // We want to use MVC in preference to even a single load/store pair.
660   MaxStoresPerMemcpy = 0;
661   MaxStoresPerMemcpyOptSize = 0;
662
663   // The main memset sequence is a byte store followed by an MVC.
664   // Two STC or MV..I stores win over that, but the kind of fused stores
665   // generated by target-independent code don't when the byte value is
666   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
667   // than "STC;MVC".  Handle the choice in target-specific code instead.
668   MaxStoresPerMemset = 0;
669   MaxStoresPerMemsetOptSize = 0;
670
671   // Default to having -disable-strictnode-mutation on
672   IsStrictFPEnabled = true;
673 }
674
675 bool SystemZTargetLowering::useSoftFloat() const {
676   return Subtarget.hasSoftFloat();
677 }
678
679 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
680                                               LLVMContext &, EVT VT) const {
681   if (!VT.isVector())
682     return MVT::i32;
683   return VT.changeVectorElementTypeToInteger();
684 }
685
686 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
687     const MachineFunction &MF, EVT VT) const {
688   VT = VT.getScalarType();
689
690   if (!VT.isSimple())
691     return false;
692
693   switch (VT.getSimpleVT().SimpleTy) {
694   case MVT::f32:
695   case MVT::f64:
696     return true;
697   case MVT::f128:
698     return Subtarget.hasVectorEnhancements1();
699   default:
700     break;
701   }
702
703   return false;
704 }
705
706 // Return true if the constant can be generated with a vector instruction,
707 // such as VGM, VGMB or VREPI.
708 bool SystemZVectorConstantInfo::isVectorConstantLegal(
709     const SystemZSubtarget &Subtarget) {
710   const SystemZInstrInfo *TII =
711       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
712   if (!Subtarget.hasVector() ||
713       (isFP128 && !Subtarget.hasVectorEnhancements1()))
714     return false;
715
716   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
717   // preferred way of creating all-zero and all-one vectors so give it
718   // priority over other methods below.
719   unsigned Mask = 0;
720   unsigned I = 0;
721   for (; I < SystemZ::VectorBytes; ++I) {
722     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
723     if (Byte == 0xff)
724       Mask |= 1ULL << I;
725     else if (Byte != 0)
726       break;
727   }
728   if (I == SystemZ::VectorBytes) {
729     Opcode = SystemZISD::BYTE_MASK;
730     OpVals.push_back(Mask);
731     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
732     return true;
733   }
734
735   if (SplatBitSize > 64)
736     return false;
737
738   auto tryValue = [&](uint64_t Value) -> bool {
739     // Try VECTOR REPLICATE IMMEDIATE
740     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
741     if (isInt<16>(SignedValue)) {
742       OpVals.push_back(((unsigned) SignedValue));
743       Opcode = SystemZISD::REPLICATE;
744       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
745                                SystemZ::VectorBits / SplatBitSize);
746       return true;
747     }
748     // Try VECTOR GENERATE MASK
749     unsigned Start, End;
750     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
751       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
752       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
753       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
754       OpVals.push_back(Start - (64 - SplatBitSize));
755       OpVals.push_back(End - (64 - SplatBitSize));
756       Opcode = SystemZISD::ROTATE_MASK;
757       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
758                                SystemZ::VectorBits / SplatBitSize);
759       return true;
760     }
761     return false;
762   };
763
764   // First try assuming that any undefined bits above the highest set bit
765   // and below the lowest set bit are 1s.  This increases the likelihood of
766   // being able to use a sign-extended element value in VECTOR REPLICATE
767   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
768   uint64_t SplatBitsZ = SplatBits.getZExtValue();
769   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
770   uint64_t Lower =
771       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
772   uint64_t Upper =
773       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
774   if (tryValue(SplatBitsZ | Upper | Lower))
775     return true;
776
777   // Now try assuming that any undefined bits between the first and
778   // last defined set bits are set.  This increases the chances of
779   // using a non-wraparound mask.
780   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
781   return tryValue(SplatBitsZ | Middle);
782 }
783
784 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
785   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
786   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
787
788   // Find the smallest splat.
789   SplatBits = FPImm.bitcastToAPInt();
790   unsigned Width = SplatBits.getBitWidth();
791   while (Width > 8) {
792     unsigned HalfSize = Width / 2;
793     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
794     APInt LowValue = SplatBits.trunc(HalfSize);
795
796     // If the two halves do not match, stop here.
797     if (HighValue != LowValue || 8 > HalfSize)
798       break;
799
800     SplatBits = HighValue;
801     Width = HalfSize;
802   }
803   SplatUndef = 0;
804   SplatBitSize = Width;
805 }
806
807 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
808   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
809   bool HasAnyUndefs;
810
811   // Get IntBits by finding the 128 bit splat.
812   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
813                        true);
814
815   // Get SplatBits by finding the 8 bit or greater splat.
816   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
817                        true);
818 }
819
820 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
821                                          bool ForCodeSize) const {
822   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
823   if (Imm.isZero() || Imm.isNegZero())
824     return true;
825
826   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
827 }
828
829 /// Returns true if stack probing through inline assembly is requested.
830 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
831   // If the function specifically requests inline stack probes, emit them.
832   if (MF.getFunction().hasFnAttribute("probe-stack"))
833     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
834            "inline-asm";
835   return false;
836 }
837
838 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
839   // We can use CGFI or CLGFI.
840   return isInt<32>(Imm) || isUInt<32>(Imm);
841 }
842
843 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
844   // We can use ALGFI or SLGFI.
845   return isUInt<32>(Imm) || isUInt<32>(-Imm);
846 }
847
848 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
849     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
850   // Unaligned accesses should never be slower than the expanded version.
851   // We check specifically for aligned accesses in the few cases where
852   // they are required.
853   if (Fast)
854     *Fast = true;
855   return true;
856 }
857
858 // Information about the addressing mode for a memory access.
859 struct AddressingMode {
860   // True if a long displacement is supported.
861   bool LongDisplacement;
862
863   // True if use of index register is supported.
864   bool IndexReg;
865
866   AddressingMode(bool LongDispl, bool IdxReg) :
867     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
868 };
869
870 // Return the desired addressing mode for a Load which has only one use (in
871 // the same block) which is a Store.
872 static AddressingMode getLoadStoreAddrMode(bool HasVector,
873                                           Type *Ty) {
874   // With vector support a Load->Store combination may be combined to either
875   // an MVC or vector operations and it seems to work best to allow the
876   // vector addressing mode.
877   if (HasVector)
878     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
879
880   // Otherwise only the MVC case is special.
881   bool MVC = Ty->isIntegerTy(8);
882   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
883 }
884
885 // Return the addressing mode which seems most desirable given an LLVM
886 // Instruction pointer.
887 static AddressingMode
888 supportedAddressingMode(Instruction *I, bool HasVector) {
889   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
890     switch (II->getIntrinsicID()) {
891     default: break;
892     case Intrinsic::memset:
893     case Intrinsic::memmove:
894     case Intrinsic::memcpy:
895       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
896     }
897   }
898
899   if (isa<LoadInst>(I) && I->hasOneUse()) {
900     auto *SingleUser = cast<Instruction>(*I->user_begin());
901     if (SingleUser->getParent() == I->getParent()) {
902       if (isa<ICmpInst>(SingleUser)) {
903         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
904           if (C->getBitWidth() <= 64 &&
905               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
906             // Comparison of memory with 16 bit signed / unsigned immediate
907             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
908       } else if (isa<StoreInst>(SingleUser))
909         // Load->Store
910         return getLoadStoreAddrMode(HasVector, I->getType());
911     }
912   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
913     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
914       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
915         // Load->Store
916         return getLoadStoreAddrMode(HasVector, LoadI->getType());
917   }
918
919   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
920
921     // * Use LDE instead of LE/LEY for z13 to avoid partial register
922     //   dependencies (LDE only supports small offsets).
923     // * Utilize the vector registers to hold floating point
924     //   values (vector load / store instructions only support small
925     //   offsets).
926
927     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
928                          I->getOperand(0)->getType());
929     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
930     bool IsVectorAccess = MemAccessTy->isVectorTy();
931
932     // A store of an extracted vector element will be combined into a VSTE type
933     // instruction.
934     if (!IsVectorAccess && isa<StoreInst>(I)) {
935       Value *DataOp = I->getOperand(0);
936       if (isa<ExtractElementInst>(DataOp))
937         IsVectorAccess = true;
938     }
939
940     // A load which gets inserted into a vector element will be combined into a
941     // VLE type instruction.
942     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
943       User *LoadUser = *I->user_begin();
944       if (isa<InsertElementInst>(LoadUser))
945         IsVectorAccess = true;
946     }
947
948     if (IsFPAccess || IsVectorAccess)
949       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
950   }
951
952   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
953 }
954
955 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
956        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
957   // Punt on globals for now, although they can be used in limited
958   // RELATIVE LONG cases.
959   if (AM.BaseGV)
960     return false;
961
962   // Require a 20-bit signed offset.
963   if (!isInt<20>(AM.BaseOffs))
964     return false;
965
966   AddressingMode SupportedAM(true, true);
967   if (I != nullptr)
968     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
969
970   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
971     return false;
972
973   if (!SupportedAM.IndexReg)
974     // No indexing allowed.
975     return AM.Scale == 0;
976   else
977     // Indexing is OK but no scale factor can be applied.
978     return AM.Scale == 0 || AM.Scale == 1;
979 }
980
981 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
982   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
983     return false;
984   unsigned FromBits = FromType->getPrimitiveSizeInBits();
985   unsigned ToBits = ToType->getPrimitiveSizeInBits();
986   return FromBits > ToBits;
987 }
988
989 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
990   if (!FromVT.isInteger() || !ToVT.isInteger())
991     return false;
992   unsigned FromBits = FromVT.getSizeInBits();
993   unsigned ToBits = ToVT.getSizeInBits();
994   return FromBits > ToBits;
995 }
996
997 //===----------------------------------------------------------------------===//
998 // Inline asm support
999 //===----------------------------------------------------------------------===//
1000
1001 TargetLowering::ConstraintType
1002 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1003   if (Constraint.size() == 1) {
1004     switch (Constraint[0]) {
1005     case 'a': // Address register
1006     case 'd': // Data register (equivalent to 'r')
1007     case 'f': // Floating-point register
1008     case 'h': // High-part register
1009     case 'r': // General-purpose register
1010     case 'v': // Vector register
1011       return C_RegisterClass;
1012
1013     case 'Q': // Memory with base and unsigned 12-bit displacement
1014     case 'R': // Likewise, plus an index
1015     case 'S': // Memory with base and signed 20-bit displacement
1016     case 'T': // Likewise, plus an index
1017     case 'm': // Equivalent to 'T'.
1018       return C_Memory;
1019
1020     case 'I': // Unsigned 8-bit constant
1021     case 'J': // Unsigned 12-bit constant
1022     case 'K': // Signed 16-bit constant
1023     case 'L': // Signed 20-bit displacement (on all targets we support)
1024     case 'M': // 0x7fffffff
1025       return C_Immediate;
1026
1027     default:
1028       break;
1029     }
1030   }
1031   return TargetLowering::getConstraintType(Constraint);
1032 }
1033
1034 TargetLowering::ConstraintWeight SystemZTargetLowering::
1035 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1036                                const char *constraint) const {
1037   ConstraintWeight weight = CW_Invalid;
1038   Value *CallOperandVal = info.CallOperandVal;
1039   // If we don't have a value, we can't do a match,
1040   // but allow it at the lowest weight.
1041   if (!CallOperandVal)
1042     return CW_Default;
1043   Type *type = CallOperandVal->getType();
1044   // Look at the constraint type.
1045   switch (*constraint) {
1046   default:
1047     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1048     break;
1049
1050   case 'a': // Address register
1051   case 'd': // Data register (equivalent to 'r')
1052   case 'h': // High-part register
1053   case 'r': // General-purpose register
1054     if (CallOperandVal->getType()->isIntegerTy())
1055       weight = CW_Register;
1056     break;
1057
1058   case 'f': // Floating-point register
1059     if (type->isFloatingPointTy())
1060       weight = CW_Register;
1061     break;
1062
1063   case 'v': // Vector register
1064     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1065         Subtarget.hasVector())
1066       weight = CW_Register;
1067     break;
1068
1069   case 'I': // Unsigned 8-bit constant
1070     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1071       if (isUInt<8>(C->getZExtValue()))
1072         weight = CW_Constant;
1073     break;
1074
1075   case 'J': // Unsigned 12-bit constant
1076     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1077       if (isUInt<12>(C->getZExtValue()))
1078         weight = CW_Constant;
1079     break;
1080
1081   case 'K': // Signed 16-bit constant
1082     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1083       if (isInt<16>(C->getSExtValue()))
1084         weight = CW_Constant;
1085     break;
1086
1087   case 'L': // Signed 20-bit displacement (on all targets we support)
1088     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1089       if (isInt<20>(C->getSExtValue()))
1090         weight = CW_Constant;
1091     break;
1092
1093   case 'M': // 0x7fffffff
1094     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1095       if (C->getZExtValue() == 0x7fffffff)
1096         weight = CW_Constant;
1097     break;
1098   }
1099   return weight;
1100 }
1101
1102 // Parse a "{tNNN}" register constraint for which the register type "t"
1103 // has already been verified.  MC is the class associated with "t" and
1104 // Map maps 0-based register numbers to LLVM register numbers.
1105 static std::pair<unsigned, const TargetRegisterClass *>
1106 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1107                     const unsigned *Map, unsigned Size) {
1108   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1109   if (isdigit(Constraint[2])) {
1110     unsigned Index;
1111     bool Failed =
1112         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1113     if (!Failed && Index < Size && Map[Index])
1114       return std::make_pair(Map[Index], RC);
1115   }
1116   return std::make_pair(0U, nullptr);
1117 }
1118
1119 std::pair<unsigned, const TargetRegisterClass *>
1120 SystemZTargetLowering::getRegForInlineAsmConstraint(
1121     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1122   if (Constraint.size() == 1) {
1123     // GCC Constraint Letters
1124     switch (Constraint[0]) {
1125     default: break;
1126     case 'd': // Data register (equivalent to 'r')
1127     case 'r': // General-purpose register
1128       if (VT == MVT::i64)
1129         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1130       else if (VT == MVT::i128)
1131         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1132       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1133
1134     case 'a': // Address register
1135       if (VT == MVT::i64)
1136         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1137       else if (VT == MVT::i128)
1138         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1139       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1140
1141     case 'h': // High-part register (an LLVM extension)
1142       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1143
1144     case 'f': // Floating-point register
1145       if (!useSoftFloat()) {
1146         if (VT == MVT::f64)
1147           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1148         else if (VT == MVT::f128)
1149           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1150         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1151       }
1152       break;
1153     case 'v': // Vector register
1154       if (Subtarget.hasVector()) {
1155         if (VT == MVT::f32)
1156           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1157         if (VT == MVT::f64)
1158           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1159         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1160       }
1161       break;
1162     }
1163   }
1164   if (Constraint.size() > 0 && Constraint[0] == '{') {
1165     // We need to override the default register parsing for GPRs and FPRs
1166     // because the interpretation depends on VT.  The internal names of
1167     // the registers are also different from the external names
1168     // (F0D and F0S instead of F0, etc.).
1169     if (Constraint[1] == 'r') {
1170       if (VT == MVT::i32)
1171         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1172                                    SystemZMC::GR32Regs, 16);
1173       if (VT == MVT::i128)
1174         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1175                                    SystemZMC::GR128Regs, 16);
1176       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1177                                  SystemZMC::GR64Regs, 16);
1178     }
1179     if (Constraint[1] == 'f') {
1180       if (useSoftFloat())
1181         return std::make_pair(
1182             0u, static_cast<const TargetRegisterClass *>(nullptr));
1183       if (VT == MVT::f32)
1184         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1185                                    SystemZMC::FP32Regs, 16);
1186       if (VT == MVT::f128)
1187         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1188                                    SystemZMC::FP128Regs, 16);
1189       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1190                                  SystemZMC::FP64Regs, 16);
1191     }
1192     if (Constraint[1] == 'v') {
1193       if (!Subtarget.hasVector())
1194         return std::make_pair(
1195             0u, static_cast<const TargetRegisterClass *>(nullptr));
1196       if (VT == MVT::f32)
1197         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1198                                    SystemZMC::VR32Regs, 32);
1199       if (VT == MVT::f64)
1200         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1201                                    SystemZMC::VR64Regs, 32);
1202       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1203                                  SystemZMC::VR128Regs, 32);
1204     }
1205   }
1206   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1207 }
1208
1209 // FIXME? Maybe this could be a TableGen attribute on some registers and
1210 // this table could be generated automatically from RegInfo.
1211 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1212                                                   const MachineFunction &MF) const {
1213
1214   Register Reg = StringSwitch<Register>(RegName)
1215                    .Case("r15", SystemZ::R15D)
1216                    .Default(0);
1217   if (Reg)
1218     return Reg;
1219   report_fatal_error("Invalid register name global variable");
1220 }
1221
1222 void SystemZTargetLowering::
1223 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1224                              std::vector<SDValue> &Ops,
1225                              SelectionDAG &DAG) const {
1226   // Only support length 1 constraints for now.
1227   if (Constraint.length() == 1) {
1228     switch (Constraint[0]) {
1229     case 'I': // Unsigned 8-bit constant
1230       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1231         if (isUInt<8>(C->getZExtValue()))
1232           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1233                                               Op.getValueType()));
1234       return;
1235
1236     case 'J': // Unsigned 12-bit constant
1237       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1238         if (isUInt<12>(C->getZExtValue()))
1239           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1240                                               Op.getValueType()));
1241       return;
1242
1243     case 'K': // Signed 16-bit constant
1244       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1245         if (isInt<16>(C->getSExtValue()))
1246           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1247                                               Op.getValueType()));
1248       return;
1249
1250     case 'L': // Signed 20-bit displacement (on all targets we support)
1251       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1252         if (isInt<20>(C->getSExtValue()))
1253           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1254                                               Op.getValueType()));
1255       return;
1256
1257     case 'M': // 0x7fffffff
1258       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1259         if (C->getZExtValue() == 0x7fffffff)
1260           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1261                                               Op.getValueType()));
1262       return;
1263     }
1264   }
1265   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1266 }
1267
1268 //===----------------------------------------------------------------------===//
1269 // Calling conventions
1270 //===----------------------------------------------------------------------===//
1271
1272 #include "SystemZGenCallingConv.inc"
1273
1274 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1275   CallingConv::ID) const {
1276   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1277                                            SystemZ::R14D, 0 };
1278   return ScratchRegs;
1279 }
1280
1281 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1282                                                      Type *ToType) const {
1283   return isTruncateFree(FromType, ToType);
1284 }
1285
1286 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1287   return CI->isTailCall();
1288 }
1289
1290 // We do not yet support 128-bit single-element vector types.  If the user
1291 // attempts to use such types as function argument or return type, prefer
1292 // to error out instead of emitting code violating the ABI.
1293 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1294   if (ArgVT.isVector() && !VT.isVector())
1295     report_fatal_error("Unsupported vector argument or return type");
1296 }
1297
1298 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1299   for (unsigned i = 0; i < Ins.size(); ++i)
1300     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1301 }
1302
1303 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1304   for (unsigned i = 0; i < Outs.size(); ++i)
1305     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1306 }
1307
1308 // Value is a value that has been passed to us in the location described by VA
1309 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1310 // any loads onto Chain.
1311 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1312                                    CCValAssign &VA, SDValue Chain,
1313                                    SDValue Value) {
1314   // If the argument has been promoted from a smaller type, insert an
1315   // assertion to capture this.
1316   if (VA.getLocInfo() == CCValAssign::SExt)
1317     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1318                         DAG.getValueType(VA.getValVT()));
1319   else if (VA.getLocInfo() == CCValAssign::ZExt)
1320     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1321                         DAG.getValueType(VA.getValVT()));
1322
1323   if (VA.isExtInLoc())
1324     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1325   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1326     // If this is a short vector argument loaded from the stack,
1327     // extend from i64 to full vector size and then bitcast.
1328     assert(VA.getLocVT() == MVT::i64);
1329     assert(VA.getValVT().isVector());
1330     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1331     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1332   } else
1333     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1334   return Value;
1335 }
1336
1337 // Value is a value of type VA.getValVT() that we need to copy into
1338 // the location described by VA.  Return a copy of Value converted to
1339 // VA.getValVT().  The caller is responsible for handling indirect values.
1340 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1341                                    CCValAssign &VA, SDValue Value) {
1342   switch (VA.getLocInfo()) {
1343   case CCValAssign::SExt:
1344     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1345   case CCValAssign::ZExt:
1346     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1347   case CCValAssign::AExt:
1348     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1349   case CCValAssign::BCvt:
1350     // If this is a short vector argument to be stored to the stack,
1351     // bitcast to v2i64 and then extract first element.
1352     assert(VA.getLocVT() == MVT::i64);
1353     assert(VA.getValVT().isVector());
1354     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1355     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1356                        DAG.getConstant(0, DL, MVT::i32));
1357   case CCValAssign::Full:
1358     return Value;
1359   default:
1360     llvm_unreachable("Unhandled getLocInfo()");
1361   }
1362 }
1363
1364 SDValue SystemZTargetLowering::LowerFormalArguments(
1365     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1366     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1367     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1368   MachineFunction &MF = DAG.getMachineFunction();
1369   MachineFrameInfo &MFI = MF.getFrameInfo();
1370   MachineRegisterInfo &MRI = MF.getRegInfo();
1371   SystemZMachineFunctionInfo *FuncInfo =
1372       MF.getInfo<SystemZMachineFunctionInfo>();
1373   auto *TFL =
1374       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1375   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1376
1377   // Detect unsupported vector argument types.
1378   if (Subtarget.hasVector())
1379     VerifyVectorTypes(Ins);
1380
1381   // Assign locations to all of the incoming arguments.
1382   SmallVector<CCValAssign, 16> ArgLocs;
1383   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1384   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1385
1386   unsigned NumFixedGPRs = 0;
1387   unsigned NumFixedFPRs = 0;
1388   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1389     SDValue ArgValue;
1390     CCValAssign &VA = ArgLocs[I];
1391     EVT LocVT = VA.getLocVT();
1392     if (VA.isRegLoc()) {
1393       // Arguments passed in registers
1394       const TargetRegisterClass *RC;
1395       switch (LocVT.getSimpleVT().SimpleTy) {
1396       default:
1397         // Integers smaller than i64 should be promoted to i64.
1398         llvm_unreachable("Unexpected argument type");
1399       case MVT::i32:
1400         NumFixedGPRs += 1;
1401         RC = &SystemZ::GR32BitRegClass;
1402         break;
1403       case MVT::i64:
1404         NumFixedGPRs += 1;
1405         RC = &SystemZ::GR64BitRegClass;
1406         break;
1407       case MVT::f32:
1408         NumFixedFPRs += 1;
1409         RC = &SystemZ::FP32BitRegClass;
1410         break;
1411       case MVT::f64:
1412         NumFixedFPRs += 1;
1413         RC = &SystemZ::FP64BitRegClass;
1414         break;
1415       case MVT::v16i8:
1416       case MVT::v8i16:
1417       case MVT::v4i32:
1418       case MVT::v2i64:
1419       case MVT::v4f32:
1420       case MVT::v2f64:
1421         RC = &SystemZ::VR128BitRegClass;
1422         break;
1423       }
1424
1425       Register VReg = MRI.createVirtualRegister(RC);
1426       MRI.addLiveIn(VA.getLocReg(), VReg);
1427       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1428     } else {
1429       assert(VA.isMemLoc() && "Argument not register or memory");
1430
1431       // Create the frame index object for this incoming parameter.
1432       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1433                                      VA.getLocMemOffset(), true);
1434
1435       // Create the SelectionDAG nodes corresponding to a load
1436       // from this parameter.  Unpromoted ints and floats are
1437       // passed as right-justified 8-byte values.
1438       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1439       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1440         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1441                           DAG.getIntPtrConstant(4, DL));
1442       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1443                              MachinePointerInfo::getFixedStack(MF, FI));
1444     }
1445
1446     // Convert the value of the argument register into the value that's
1447     // being passed.
1448     if (VA.getLocInfo() == CCValAssign::Indirect) {
1449       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1450                                    MachinePointerInfo()));
1451       // If the original argument was split (e.g. i128), we need
1452       // to load all parts of it here (using the same address).
1453       unsigned ArgIndex = Ins[I].OrigArgIndex;
1454       assert (Ins[I].PartOffset == 0);
1455       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1456         CCValAssign &PartVA = ArgLocs[I + 1];
1457         unsigned PartOffset = Ins[I + 1].PartOffset;
1458         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1459                                       DAG.getIntPtrConstant(PartOffset, DL));
1460         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1461                                      MachinePointerInfo()));
1462         ++I;
1463       }
1464     } else
1465       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1466   }
1467
1468   if (IsVarArg) {
1469     // Save the number of non-varargs registers for later use by va_start, etc.
1470     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1471     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1472
1473     // Likewise the address (in the form of a frame index) of where the
1474     // first stack vararg would be.  The 1-byte size here is arbitrary.
1475     int64_t StackSize = CCInfo.getNextStackOffset();
1476     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1477
1478     // ...and a similar frame index for the caller-allocated save area
1479     // that will be used to store the incoming registers.
1480     int64_t RegSaveOffset =
1481       -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1482     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1483     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1484
1485     // Store the FPR varargs in the reserved frame slots.  (We store the
1486     // GPRs as part of the prologue.)
1487     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1488       SDValue MemOps[SystemZ::NumArgFPRs];
1489       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1490         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]);
1491         int FI =
1492           MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true);
1493         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1494         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1495                                      &SystemZ::FP64BitRegClass);
1496         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1497         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1498                                  MachinePointerInfo::getFixedStack(MF, FI));
1499       }
1500       // Join the stores, which are independent of one another.
1501       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1502                           makeArrayRef(&MemOps[NumFixedFPRs],
1503                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1504     }
1505   }
1506
1507   return Chain;
1508 }
1509
1510 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1511                               SmallVectorImpl<CCValAssign> &ArgLocs,
1512                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1513   // Punt if there are any indirect or stack arguments, or if the call
1514   // needs the callee-saved argument register R6, or if the call uses
1515   // the callee-saved register arguments SwiftSelf and SwiftError.
1516   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1517     CCValAssign &VA = ArgLocs[I];
1518     if (VA.getLocInfo() == CCValAssign::Indirect)
1519       return false;
1520     if (!VA.isRegLoc())
1521       return false;
1522     Register Reg = VA.getLocReg();
1523     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1524       return false;
1525     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1526       return false;
1527   }
1528   return true;
1529 }
1530
1531 SDValue
1532 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1533                                  SmallVectorImpl<SDValue> &InVals) const {
1534   SelectionDAG &DAG = CLI.DAG;
1535   SDLoc &DL = CLI.DL;
1536   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1537   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1538   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1539   SDValue Chain = CLI.Chain;
1540   SDValue Callee = CLI.Callee;
1541   bool &IsTailCall = CLI.IsTailCall;
1542   CallingConv::ID CallConv = CLI.CallConv;
1543   bool IsVarArg = CLI.IsVarArg;
1544   MachineFunction &MF = DAG.getMachineFunction();
1545   EVT PtrVT = getPointerTy(MF.getDataLayout());
1546
1547   // Detect unsupported vector argument and return types.
1548   if (Subtarget.hasVector()) {
1549     VerifyVectorTypes(Outs);
1550     VerifyVectorTypes(Ins);
1551   }
1552
1553   // Analyze the operands of the call, assigning locations to each operand.
1554   SmallVector<CCValAssign, 16> ArgLocs;
1555   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1556   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1557
1558   // We don't support GuaranteedTailCallOpt, only automatically-detected
1559   // sibling calls.
1560   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1561     IsTailCall = false;
1562
1563   // Get a count of how many bytes are to be pushed on the stack.
1564   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1565
1566   // Mark the start of the call.
1567   if (!IsTailCall)
1568     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1569
1570   // Copy argument values to their designated locations.
1571   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1572   SmallVector<SDValue, 8> MemOpChains;
1573   SDValue StackPtr;
1574   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1575     CCValAssign &VA = ArgLocs[I];
1576     SDValue ArgValue = OutVals[I];
1577
1578     if (VA.getLocInfo() == CCValAssign::Indirect) {
1579       // Store the argument in a stack slot and pass its address.
1580       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1581       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1582       MemOpChains.push_back(
1583           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1584                        MachinePointerInfo::getFixedStack(MF, FI)));
1585       // If the original argument was split (e.g. i128), we need
1586       // to store all parts of it here (and pass just one address).
1587       unsigned ArgIndex = Outs[I].OrigArgIndex;
1588       assert (Outs[I].PartOffset == 0);
1589       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1590         SDValue PartValue = OutVals[I + 1];
1591         unsigned PartOffset = Outs[I + 1].PartOffset;
1592         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1593                                       DAG.getIntPtrConstant(PartOffset, DL));
1594         MemOpChains.push_back(
1595             DAG.getStore(Chain, DL, PartValue, Address,
1596                          MachinePointerInfo::getFixedStack(MF, FI)));
1597         ++I;
1598       }
1599       ArgValue = SpillSlot;
1600     } else
1601       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1602
1603     if (VA.isRegLoc())
1604       // Queue up the argument copies and emit them at the end.
1605       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1606     else {
1607       assert(VA.isMemLoc() && "Argument not register or memory");
1608
1609       // Work out the address of the stack slot.  Unpromoted ints and
1610       // floats are passed as right-justified 8-byte values.
1611       if (!StackPtr.getNode())
1612         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1613       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1614       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1615         Offset += 4;
1616       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1617                                     DAG.getIntPtrConstant(Offset, DL));
1618
1619       // Emit the store.
1620       MemOpChains.push_back(
1621           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1622     }
1623   }
1624
1625   // Join the stores, which are independent of one another.
1626   if (!MemOpChains.empty())
1627     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1628
1629   // Accept direct calls by converting symbolic call addresses to the
1630   // associated Target* opcodes.  Force %r1 to be used for indirect
1631   // tail calls.
1632   SDValue Glue;
1633   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1634     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1635     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1636   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1637     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1638     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1639   } else if (IsTailCall) {
1640     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1641     Glue = Chain.getValue(1);
1642     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1643   }
1644
1645   // Build a sequence of copy-to-reg nodes, chained and glued together.
1646   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1647     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1648                              RegsToPass[I].second, Glue);
1649     Glue = Chain.getValue(1);
1650   }
1651
1652   // The first call operand is the chain and the second is the target address.
1653   SmallVector<SDValue, 8> Ops;
1654   Ops.push_back(Chain);
1655   Ops.push_back(Callee);
1656
1657   // Add argument registers to the end of the list so that they are
1658   // known live into the call.
1659   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1660     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1661                                   RegsToPass[I].second.getValueType()));
1662
1663   // Add a register mask operand representing the call-preserved registers.
1664   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1665   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1666   assert(Mask && "Missing call preserved mask for calling convention");
1667   Ops.push_back(DAG.getRegisterMask(Mask));
1668
1669   // Glue the call to the argument copies, if any.
1670   if (Glue.getNode())
1671     Ops.push_back(Glue);
1672
1673   // Emit the call.
1674   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1675   if (IsTailCall)
1676     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1677   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1678   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1679   Glue = Chain.getValue(1);
1680
1681   // Mark the end of the call, which is glued to the call itself.
1682   Chain = DAG.getCALLSEQ_END(Chain,
1683                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1684                              DAG.getConstant(0, DL, PtrVT, true),
1685                              Glue, DL);
1686   Glue = Chain.getValue(1);
1687
1688   // Assign locations to each value returned by this call.
1689   SmallVector<CCValAssign, 16> RetLocs;
1690   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1691   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1692
1693   // Copy all of the result registers out of their specified physreg.
1694   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1695     CCValAssign &VA = RetLocs[I];
1696
1697     // Copy the value out, gluing the copy to the end of the call sequence.
1698     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1699                                           VA.getLocVT(), Glue);
1700     Chain = RetValue.getValue(1);
1701     Glue = RetValue.getValue(2);
1702
1703     // Convert the value of the return register into the value that's
1704     // being returned.
1705     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1706   }
1707
1708   return Chain;
1709 }
1710
1711 bool SystemZTargetLowering::
1712 CanLowerReturn(CallingConv::ID CallConv,
1713                MachineFunction &MF, bool isVarArg,
1714                const SmallVectorImpl<ISD::OutputArg> &Outs,
1715                LLVMContext &Context) const {
1716   // Detect unsupported vector return types.
1717   if (Subtarget.hasVector())
1718     VerifyVectorTypes(Outs);
1719
1720   // Special case that we cannot easily detect in RetCC_SystemZ since
1721   // i128 is not a legal type.
1722   for (auto &Out : Outs)
1723     if (Out.ArgVT == MVT::i128)
1724       return false;
1725
1726   SmallVector<CCValAssign, 16> RetLocs;
1727   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1728   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1729 }
1730
1731 SDValue
1732 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1733                                    bool IsVarArg,
1734                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1735                                    const SmallVectorImpl<SDValue> &OutVals,
1736                                    const SDLoc &DL, SelectionDAG &DAG) const {
1737   MachineFunction &MF = DAG.getMachineFunction();
1738
1739   // Detect unsupported vector return types.
1740   if (Subtarget.hasVector())
1741     VerifyVectorTypes(Outs);
1742
1743   // Assign locations to each returned value.
1744   SmallVector<CCValAssign, 16> RetLocs;
1745   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1746   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1747
1748   // Quick exit for void returns
1749   if (RetLocs.empty())
1750     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1751
1752   if (CallConv == CallingConv::GHC)
1753     report_fatal_error("GHC functions return void only");
1754
1755   // Copy the result values into the output registers.
1756   SDValue Glue;
1757   SmallVector<SDValue, 4> RetOps;
1758   RetOps.push_back(Chain);
1759   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1760     CCValAssign &VA = RetLocs[I];
1761     SDValue RetValue = OutVals[I];
1762
1763     // Make the return register live on exit.
1764     assert(VA.isRegLoc() && "Can only return in registers!");
1765
1766     // Promote the value as required.
1767     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1768
1769     // Chain and glue the copies together.
1770     Register Reg = VA.getLocReg();
1771     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1772     Glue = Chain.getValue(1);
1773     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1774   }
1775
1776   // Update chain and glue.
1777   RetOps[0] = Chain;
1778   if (Glue.getNode())
1779     RetOps.push_back(Glue);
1780
1781   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1782 }
1783
1784 // Return true if Op is an intrinsic node with chain that returns the CC value
1785 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1786 // the mask of valid CC values if so.
1787 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1788                                       unsigned &CCValid) {
1789   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1790   switch (Id) {
1791   case Intrinsic::s390_tbegin:
1792     Opcode = SystemZISD::TBEGIN;
1793     CCValid = SystemZ::CCMASK_TBEGIN;
1794     return true;
1795
1796   case Intrinsic::s390_tbegin_nofloat:
1797     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1798     CCValid = SystemZ::CCMASK_TBEGIN;
1799     return true;
1800
1801   case Intrinsic::s390_tend:
1802     Opcode = SystemZISD::TEND;
1803     CCValid = SystemZ::CCMASK_TEND;
1804     return true;
1805
1806   default:
1807     return false;
1808   }
1809 }
1810
1811 // Return true if Op is an intrinsic node without chain that returns the
1812 // CC value as its final argument.  Provide the associated SystemZISD
1813 // opcode and the mask of valid CC values if so.
1814 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1815   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1816   switch (Id) {
1817   case Intrinsic::s390_vpkshs:
1818   case Intrinsic::s390_vpksfs:
1819   case Intrinsic::s390_vpksgs:
1820     Opcode = SystemZISD::PACKS_CC;
1821     CCValid = SystemZ::CCMASK_VCMP;
1822     return true;
1823
1824   case Intrinsic::s390_vpklshs:
1825   case Intrinsic::s390_vpklsfs:
1826   case Intrinsic::s390_vpklsgs:
1827     Opcode = SystemZISD::PACKLS_CC;
1828     CCValid = SystemZ::CCMASK_VCMP;
1829     return true;
1830
1831   case Intrinsic::s390_vceqbs:
1832   case Intrinsic::s390_vceqhs:
1833   case Intrinsic::s390_vceqfs:
1834   case Intrinsic::s390_vceqgs:
1835     Opcode = SystemZISD::VICMPES;
1836     CCValid = SystemZ::CCMASK_VCMP;
1837     return true;
1838
1839   case Intrinsic::s390_vchbs:
1840   case Intrinsic::s390_vchhs:
1841   case Intrinsic::s390_vchfs:
1842   case Intrinsic::s390_vchgs:
1843     Opcode = SystemZISD::VICMPHS;
1844     CCValid = SystemZ::CCMASK_VCMP;
1845     return true;
1846
1847   case Intrinsic::s390_vchlbs:
1848   case Intrinsic::s390_vchlhs:
1849   case Intrinsic::s390_vchlfs:
1850   case Intrinsic::s390_vchlgs:
1851     Opcode = SystemZISD::VICMPHLS;
1852     CCValid = SystemZ::CCMASK_VCMP;
1853     return true;
1854
1855   case Intrinsic::s390_vtm:
1856     Opcode = SystemZISD::VTM;
1857     CCValid = SystemZ::CCMASK_VCMP;
1858     return true;
1859
1860   case Intrinsic::s390_vfaebs:
1861   case Intrinsic::s390_vfaehs:
1862   case Intrinsic::s390_vfaefs:
1863     Opcode = SystemZISD::VFAE_CC;
1864     CCValid = SystemZ::CCMASK_ANY;
1865     return true;
1866
1867   case Intrinsic::s390_vfaezbs:
1868   case Intrinsic::s390_vfaezhs:
1869   case Intrinsic::s390_vfaezfs:
1870     Opcode = SystemZISD::VFAEZ_CC;
1871     CCValid = SystemZ::CCMASK_ANY;
1872     return true;
1873
1874   case Intrinsic::s390_vfeebs:
1875   case Intrinsic::s390_vfeehs:
1876   case Intrinsic::s390_vfeefs:
1877     Opcode = SystemZISD::VFEE_CC;
1878     CCValid = SystemZ::CCMASK_ANY;
1879     return true;
1880
1881   case Intrinsic::s390_vfeezbs:
1882   case Intrinsic::s390_vfeezhs:
1883   case Intrinsic::s390_vfeezfs:
1884     Opcode = SystemZISD::VFEEZ_CC;
1885     CCValid = SystemZ::CCMASK_ANY;
1886     return true;
1887
1888   case Intrinsic::s390_vfenebs:
1889   case Intrinsic::s390_vfenehs:
1890   case Intrinsic::s390_vfenefs:
1891     Opcode = SystemZISD::VFENE_CC;
1892     CCValid = SystemZ::CCMASK_ANY;
1893     return true;
1894
1895   case Intrinsic::s390_vfenezbs:
1896   case Intrinsic::s390_vfenezhs:
1897   case Intrinsic::s390_vfenezfs:
1898     Opcode = SystemZISD::VFENEZ_CC;
1899     CCValid = SystemZ::CCMASK_ANY;
1900     return true;
1901
1902   case Intrinsic::s390_vistrbs:
1903   case Intrinsic::s390_vistrhs:
1904   case Intrinsic::s390_vistrfs:
1905     Opcode = SystemZISD::VISTR_CC;
1906     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1907     return true;
1908
1909   case Intrinsic::s390_vstrcbs:
1910   case Intrinsic::s390_vstrchs:
1911   case Intrinsic::s390_vstrcfs:
1912     Opcode = SystemZISD::VSTRC_CC;
1913     CCValid = SystemZ::CCMASK_ANY;
1914     return true;
1915
1916   case Intrinsic::s390_vstrczbs:
1917   case Intrinsic::s390_vstrczhs:
1918   case Intrinsic::s390_vstrczfs:
1919     Opcode = SystemZISD::VSTRCZ_CC;
1920     CCValid = SystemZ::CCMASK_ANY;
1921     return true;
1922
1923   case Intrinsic::s390_vstrsb:
1924   case Intrinsic::s390_vstrsh:
1925   case Intrinsic::s390_vstrsf:
1926     Opcode = SystemZISD::VSTRS_CC;
1927     CCValid = SystemZ::CCMASK_ANY;
1928     return true;
1929
1930   case Intrinsic::s390_vstrszb:
1931   case Intrinsic::s390_vstrszh:
1932   case Intrinsic::s390_vstrszf:
1933     Opcode = SystemZISD::VSTRSZ_CC;
1934     CCValid = SystemZ::CCMASK_ANY;
1935     return true;
1936
1937   case Intrinsic::s390_vfcedbs:
1938   case Intrinsic::s390_vfcesbs:
1939     Opcode = SystemZISD::VFCMPES;
1940     CCValid = SystemZ::CCMASK_VCMP;
1941     return true;
1942
1943   case Intrinsic::s390_vfchdbs:
1944   case Intrinsic::s390_vfchsbs:
1945     Opcode = SystemZISD::VFCMPHS;
1946     CCValid = SystemZ::CCMASK_VCMP;
1947     return true;
1948
1949   case Intrinsic::s390_vfchedbs:
1950   case Intrinsic::s390_vfchesbs:
1951     Opcode = SystemZISD::VFCMPHES;
1952     CCValid = SystemZ::CCMASK_VCMP;
1953     return true;
1954
1955   case Intrinsic::s390_vftcidb:
1956   case Intrinsic::s390_vftcisb:
1957     Opcode = SystemZISD::VFTCI;
1958     CCValid = SystemZ::CCMASK_VCMP;
1959     return true;
1960
1961   case Intrinsic::s390_tdc:
1962     Opcode = SystemZISD::TDC;
1963     CCValid = SystemZ::CCMASK_TDC;
1964     return true;
1965
1966   default:
1967     return false;
1968   }
1969 }
1970
1971 // Emit an intrinsic with chain and an explicit CC register result.
1972 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1973                                            unsigned Opcode) {
1974   // Copy all operands except the intrinsic ID.
1975   unsigned NumOps = Op.getNumOperands();
1976   SmallVector<SDValue, 6> Ops;
1977   Ops.reserve(NumOps - 1);
1978   Ops.push_back(Op.getOperand(0));
1979   for (unsigned I = 2; I < NumOps; ++I)
1980     Ops.push_back(Op.getOperand(I));
1981
1982   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1983   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1984   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1985   SDValue OldChain = SDValue(Op.getNode(), 1);
1986   SDValue NewChain = SDValue(Intr.getNode(), 1);
1987   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1988   return Intr.getNode();
1989 }
1990
1991 // Emit an intrinsic with an explicit CC register result.
1992 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1993                                    unsigned Opcode) {
1994   // Copy all operands except the intrinsic ID.
1995   unsigned NumOps = Op.getNumOperands();
1996   SmallVector<SDValue, 6> Ops;
1997   Ops.reserve(NumOps - 1);
1998   for (unsigned I = 1; I < NumOps; ++I)
1999     Ops.push_back(Op.getOperand(I));
2000
2001   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2002   return Intr.getNode();
2003 }
2004
2005 // CC is a comparison that will be implemented using an integer or
2006 // floating-point comparison.  Return the condition code mask for
2007 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2008 // unsigned comparisons and clear for signed ones.  In the floating-point
2009 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2010 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2011 #define CONV(X) \
2012   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2013   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2014   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2015
2016   switch (CC) {
2017   default:
2018     llvm_unreachable("Invalid integer condition!");
2019
2020   CONV(EQ);
2021   CONV(NE);
2022   CONV(GT);
2023   CONV(GE);
2024   CONV(LT);
2025   CONV(LE);
2026
2027   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2028   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2029   }
2030 #undef CONV
2031 }
2032
2033 // If C can be converted to a comparison against zero, adjust the operands
2034 // as necessary.
2035 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2036   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2037     return;
2038
2039   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2040   if (!ConstOp1)
2041     return;
2042
2043   int64_t Value = ConstOp1->getSExtValue();
2044   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2045       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2046       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2047       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2048     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2049     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2050   }
2051 }
2052
2053 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2054 // adjust the operands as necessary.
2055 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2056                              Comparison &C) {
2057   // For us to make any changes, it must a comparison between a single-use
2058   // load and a constant.
2059   if (!C.Op0.hasOneUse() ||
2060       C.Op0.getOpcode() != ISD::LOAD ||
2061       C.Op1.getOpcode() != ISD::Constant)
2062     return;
2063
2064   // We must have an 8- or 16-bit load.
2065   auto *Load = cast<LoadSDNode>(C.Op0);
2066   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2067   if ((NumBits != 8 && NumBits != 16) ||
2068       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2069     return;
2070
2071   // The load must be an extending one and the constant must be within the
2072   // range of the unextended value.
2073   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2074   uint64_t Value = ConstOp1->getZExtValue();
2075   uint64_t Mask = (1 << NumBits) - 1;
2076   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2077     // Make sure that ConstOp1 is in range of C.Op0.
2078     int64_t SignedValue = ConstOp1->getSExtValue();
2079     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2080       return;
2081     if (C.ICmpType != SystemZICMP::SignedOnly) {
2082       // Unsigned comparison between two sign-extended values is equivalent
2083       // to unsigned comparison between two zero-extended values.
2084       Value &= Mask;
2085     } else if (NumBits == 8) {
2086       // Try to treat the comparison as unsigned, so that we can use CLI.
2087       // Adjust CCMask and Value as necessary.
2088       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2089         // Test whether the high bit of the byte is set.
2090         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2091       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2092         // Test whether the high bit of the byte is clear.
2093         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2094       else
2095         // No instruction exists for this combination.
2096         return;
2097       C.ICmpType = SystemZICMP::UnsignedOnly;
2098     }
2099   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2100     if (Value > Mask)
2101       return;
2102     // If the constant is in range, we can use any comparison.
2103     C.ICmpType = SystemZICMP::Any;
2104   } else
2105     return;
2106
2107   // Make sure that the first operand is an i32 of the right extension type.
2108   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2109                               ISD::SEXTLOAD :
2110                               ISD::ZEXTLOAD);
2111   if (C.Op0.getValueType() != MVT::i32 ||
2112       Load->getExtensionType() != ExtType) {
2113     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2114                            Load->getBasePtr(), Load->getPointerInfo(),
2115                            Load->getMemoryVT(), Load->getAlignment(),
2116                            Load->getMemOperand()->getFlags());
2117     // Update the chain uses.
2118     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2119   }
2120
2121   // Make sure that the second operand is an i32 with the right value.
2122   if (C.Op1.getValueType() != MVT::i32 ||
2123       Value != ConstOp1->getZExtValue())
2124     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2125 }
2126
2127 // Return true if Op is either an unextended load, or a load suitable
2128 // for integer register-memory comparisons of type ICmpType.
2129 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2130   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2131   if (Load) {
2132     // There are no instructions to compare a register with a memory byte.
2133     if (Load->getMemoryVT() == MVT::i8)
2134       return false;
2135     // Otherwise decide on extension type.
2136     switch (Load->getExtensionType()) {
2137     case ISD::NON_EXTLOAD:
2138       return true;
2139     case ISD::SEXTLOAD:
2140       return ICmpType != SystemZICMP::UnsignedOnly;
2141     case ISD::ZEXTLOAD:
2142       return ICmpType != SystemZICMP::SignedOnly;
2143     default:
2144       break;
2145     }
2146   }
2147   return false;
2148 }
2149
2150 // Return true if it is better to swap the operands of C.
2151 static bool shouldSwapCmpOperands(const Comparison &C) {
2152   // Leave f128 comparisons alone, since they have no memory forms.
2153   if (C.Op0.getValueType() == MVT::f128)
2154     return false;
2155
2156   // Always keep a floating-point constant second, since comparisons with
2157   // zero can use LOAD TEST and comparisons with other constants make a
2158   // natural memory operand.
2159   if (isa<ConstantFPSDNode>(C.Op1))
2160     return false;
2161
2162   // Never swap comparisons with zero since there are many ways to optimize
2163   // those later.
2164   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2165   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2166     return false;
2167
2168   // Also keep natural memory operands second if the loaded value is
2169   // only used here.  Several comparisons have memory forms.
2170   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2171     return false;
2172
2173   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2174   // In that case we generally prefer the memory to be second.
2175   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2176     // The only exceptions are when the second operand is a constant and
2177     // we can use things like CHHSI.
2178     if (!ConstOp1)
2179       return true;
2180     // The unsigned memory-immediate instructions can handle 16-bit
2181     // unsigned integers.
2182     if (C.ICmpType != SystemZICMP::SignedOnly &&
2183         isUInt<16>(ConstOp1->getZExtValue()))
2184       return false;
2185     // The signed memory-immediate instructions can handle 16-bit
2186     // signed integers.
2187     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2188         isInt<16>(ConstOp1->getSExtValue()))
2189       return false;
2190     return true;
2191   }
2192
2193   // Try to promote the use of CGFR and CLGFR.
2194   unsigned Opcode0 = C.Op0.getOpcode();
2195   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2196     return true;
2197   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2198     return true;
2199   if (C.ICmpType != SystemZICMP::SignedOnly &&
2200       Opcode0 == ISD::AND &&
2201       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2202       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2203     return true;
2204
2205   return false;
2206 }
2207
2208 // Check whether C tests for equality between X and Y and whether X - Y
2209 // or Y - X is also computed.  In that case it's better to compare the
2210 // result of the subtraction against zero.
2211 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2212                                  Comparison &C) {
2213   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2214       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2215     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2216       SDNode *N = *I;
2217       if (N->getOpcode() == ISD::SUB &&
2218           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2219            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2220         C.Op0 = SDValue(N, 0);
2221         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2222         return;
2223       }
2224     }
2225   }
2226 }
2227
2228 // Check whether C compares a floating-point value with zero and if that
2229 // floating-point value is also negated.  In this case we can use the
2230 // negation to set CC, so avoiding separate LOAD AND TEST and
2231 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2232 static void adjustForFNeg(Comparison &C) {
2233   // This optimization is invalid for strict comparisons, since FNEG
2234   // does not raise any exceptions.
2235   if (C.Chain)
2236     return;
2237   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2238   if (C1 && C1->isZero()) {
2239     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2240       SDNode *N = *I;
2241       if (N->getOpcode() == ISD::FNEG) {
2242         C.Op0 = SDValue(N, 0);
2243         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2244         return;
2245       }
2246     }
2247   }
2248 }
2249
2250 // Check whether C compares (shl X, 32) with 0 and whether X is
2251 // also sign-extended.  In that case it is better to test the result
2252 // of the sign extension using LTGFR.
2253 //
2254 // This case is important because InstCombine transforms a comparison
2255 // with (sext (trunc X)) into a comparison with (shl X, 32).
2256 static void adjustForLTGFR(Comparison &C) {
2257   // Check for a comparison between (shl X, 32) and 0.
2258   if (C.Op0.getOpcode() == ISD::SHL &&
2259       C.Op0.getValueType() == MVT::i64 &&
2260       C.Op1.getOpcode() == ISD::Constant &&
2261       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2262     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2263     if (C1 && C1->getZExtValue() == 32) {
2264       SDValue ShlOp0 = C.Op0.getOperand(0);
2265       // See whether X has any SIGN_EXTEND_INREG uses.
2266       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2267         SDNode *N = *I;
2268         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2269             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2270           C.Op0 = SDValue(N, 0);
2271           return;
2272         }
2273       }
2274     }
2275   }
2276 }
2277
2278 // If C compares the truncation of an extending load, try to compare
2279 // the untruncated value instead.  This exposes more opportunities to
2280 // reuse CC.
2281 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2282                                Comparison &C) {
2283   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2284       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2285       C.Op1.getOpcode() == ISD::Constant &&
2286       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2287     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2288     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2289       unsigned Type = L->getExtensionType();
2290       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2291           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2292         C.Op0 = C.Op0.getOperand(0);
2293         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2294       }
2295     }
2296   }
2297 }
2298
2299 // Return true if shift operation N has an in-range constant shift value.
2300 // Store it in ShiftVal if so.
2301 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2302   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2303   if (!Shift)
2304     return false;
2305
2306   uint64_t Amount = Shift->getZExtValue();
2307   if (Amount >= N.getValueSizeInBits())
2308     return false;
2309
2310   ShiftVal = Amount;
2311   return true;
2312 }
2313
2314 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2315 // instruction and whether the CC value is descriptive enough to handle
2316 // a comparison of type Opcode between the AND result and CmpVal.
2317 // CCMask says which comparison result is being tested and BitSize is
2318 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2319 // return the corresponding CC mask, otherwise return 0.
2320 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2321                                      uint64_t Mask, uint64_t CmpVal,
2322                                      unsigned ICmpType) {
2323   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2324
2325   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2326   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2327       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2328     return 0;
2329
2330   // Work out the masks for the lowest and highest bits.
2331   unsigned HighShift = 63 - countLeadingZeros(Mask);
2332   uint64_t High = uint64_t(1) << HighShift;
2333   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2334
2335   // Signed ordered comparisons are effectively unsigned if the sign
2336   // bit is dropped.
2337   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2338
2339   // Check for equality comparisons with 0, or the equivalent.
2340   if (CmpVal == 0) {
2341     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2342       return SystemZ::CCMASK_TM_ALL_0;
2343     if (CCMask == SystemZ::CCMASK_CMP_NE)
2344       return SystemZ::CCMASK_TM_SOME_1;
2345   }
2346   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2347     if (CCMask == SystemZ::CCMASK_CMP_LT)
2348       return SystemZ::CCMASK_TM_ALL_0;
2349     if (CCMask == SystemZ::CCMASK_CMP_GE)
2350       return SystemZ::CCMASK_TM_SOME_1;
2351   }
2352   if (EffectivelyUnsigned && CmpVal < Low) {
2353     if (CCMask == SystemZ::CCMASK_CMP_LE)
2354       return SystemZ::CCMASK_TM_ALL_0;
2355     if (CCMask == SystemZ::CCMASK_CMP_GT)
2356       return SystemZ::CCMASK_TM_SOME_1;
2357   }
2358
2359   // Check for equality comparisons with the mask, or the equivalent.
2360   if (CmpVal == Mask) {
2361     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2362       return SystemZ::CCMASK_TM_ALL_1;
2363     if (CCMask == SystemZ::CCMASK_CMP_NE)
2364       return SystemZ::CCMASK_TM_SOME_0;
2365   }
2366   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2367     if (CCMask == SystemZ::CCMASK_CMP_GT)
2368       return SystemZ::CCMASK_TM_ALL_1;
2369     if (CCMask == SystemZ::CCMASK_CMP_LE)
2370       return SystemZ::CCMASK_TM_SOME_0;
2371   }
2372   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2373     if (CCMask == SystemZ::CCMASK_CMP_GE)
2374       return SystemZ::CCMASK_TM_ALL_1;
2375     if (CCMask == SystemZ::CCMASK_CMP_LT)
2376       return SystemZ::CCMASK_TM_SOME_0;
2377   }
2378
2379   // Check for ordered comparisons with the top bit.
2380   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2381     if (CCMask == SystemZ::CCMASK_CMP_LE)
2382       return SystemZ::CCMASK_TM_MSB_0;
2383     if (CCMask == SystemZ::CCMASK_CMP_GT)
2384       return SystemZ::CCMASK_TM_MSB_1;
2385   }
2386   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2387     if (CCMask == SystemZ::CCMASK_CMP_LT)
2388       return SystemZ::CCMASK_TM_MSB_0;
2389     if (CCMask == SystemZ::CCMASK_CMP_GE)
2390       return SystemZ::CCMASK_TM_MSB_1;
2391   }
2392
2393   // If there are just two bits, we can do equality checks for Low and High
2394   // as well.
2395   if (Mask == Low + High) {
2396     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2397       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2398     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2399       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2400     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2401       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2402     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2403       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2404   }
2405
2406   // Looks like we've exhausted our options.
2407   return 0;
2408 }
2409
2410 // See whether C can be implemented as a TEST UNDER MASK instruction.
2411 // Update the arguments with the TM version if so.
2412 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2413                                    Comparison &C) {
2414   // Check that we have a comparison with a constant.
2415   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2416   if (!ConstOp1)
2417     return;
2418   uint64_t CmpVal = ConstOp1->getZExtValue();
2419
2420   // Check whether the nonconstant input is an AND with a constant mask.
2421   Comparison NewC(C);
2422   uint64_t MaskVal;
2423   ConstantSDNode *Mask = nullptr;
2424   if (C.Op0.getOpcode() == ISD::AND) {
2425     NewC.Op0 = C.Op0.getOperand(0);
2426     NewC.Op1 = C.Op0.getOperand(1);
2427     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2428     if (!Mask)
2429       return;
2430     MaskVal = Mask->getZExtValue();
2431   } else {
2432     // There is no instruction to compare with a 64-bit immediate
2433     // so use TMHH instead if possible.  We need an unsigned ordered
2434     // comparison with an i64 immediate.
2435     if (NewC.Op0.getValueType() != MVT::i64 ||
2436         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2437         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2438         NewC.ICmpType == SystemZICMP::SignedOnly)
2439       return;
2440     // Convert LE and GT comparisons into LT and GE.
2441     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2442         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2443       if (CmpVal == uint64_t(-1))
2444         return;
2445       CmpVal += 1;
2446       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2447     }
2448     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2449     // be masked off without changing the result.
2450     MaskVal = -(CmpVal & -CmpVal);
2451     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2452   }
2453   if (!MaskVal)
2454     return;
2455
2456   // Check whether the combination of mask, comparison value and comparison
2457   // type are suitable.
2458   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2459   unsigned NewCCMask, ShiftVal;
2460   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2461       NewC.Op0.getOpcode() == ISD::SHL &&
2462       isSimpleShift(NewC.Op0, ShiftVal) &&
2463       (MaskVal >> ShiftVal != 0) &&
2464       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2465       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2466                                         MaskVal >> ShiftVal,
2467                                         CmpVal >> ShiftVal,
2468                                         SystemZICMP::Any))) {
2469     NewC.Op0 = NewC.Op0.getOperand(0);
2470     MaskVal >>= ShiftVal;
2471   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2472              NewC.Op0.getOpcode() == ISD::SRL &&
2473              isSimpleShift(NewC.Op0, ShiftVal) &&
2474              (MaskVal << ShiftVal != 0) &&
2475              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2476              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2477                                                MaskVal << ShiftVal,
2478                                                CmpVal << ShiftVal,
2479                                                SystemZICMP::UnsignedOnly))) {
2480     NewC.Op0 = NewC.Op0.getOperand(0);
2481     MaskVal <<= ShiftVal;
2482   } else {
2483     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2484                                      NewC.ICmpType);
2485     if (!NewCCMask)
2486       return;
2487   }
2488
2489   // Go ahead and make the change.
2490   C.Opcode = SystemZISD::TM;
2491   C.Op0 = NewC.Op0;
2492   if (Mask && Mask->getZExtValue() == MaskVal)
2493     C.Op1 = SDValue(Mask, 0);
2494   else
2495     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2496   C.CCValid = SystemZ::CCMASK_TM;
2497   C.CCMask = NewCCMask;
2498 }
2499
2500 // See whether the comparison argument contains a redundant AND
2501 // and remove it if so.  This sometimes happens due to the generic
2502 // BRCOND expansion.
2503 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2504                                   Comparison &C) {
2505   if (C.Op0.getOpcode() != ISD::AND)
2506     return;
2507   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2508   if (!Mask)
2509     return;
2510   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2511   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2512     return;
2513
2514   C.Op0 = C.Op0.getOperand(0);
2515 }
2516
2517 // Return a Comparison that tests the condition-code result of intrinsic
2518 // node Call against constant integer CC using comparison code Cond.
2519 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2520 // and CCValid is the set of possible condition-code results.
2521 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2522                                   SDValue Call, unsigned CCValid, uint64_t CC,
2523                                   ISD::CondCode Cond) {
2524   Comparison C(Call, SDValue(), SDValue());
2525   C.Opcode = Opcode;
2526   C.CCValid = CCValid;
2527   if (Cond == ISD::SETEQ)
2528     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2529     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2530   else if (Cond == ISD::SETNE)
2531     // ...and the inverse of that.
2532     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2533   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2534     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2535     // always true for CC>3.
2536     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2537   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2538     // ...and the inverse of that.
2539     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2540   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2541     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2542     // always true for CC>3.
2543     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2544   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2545     // ...and the inverse of that.
2546     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2547   else
2548     llvm_unreachable("Unexpected integer comparison type");
2549   C.CCMask &= CCValid;
2550   return C;
2551 }
2552
2553 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2554 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2555                          ISD::CondCode Cond, const SDLoc &DL,
2556                          SDValue Chain = SDValue(),
2557                          bool IsSignaling = false) {
2558   if (CmpOp1.getOpcode() == ISD::Constant) {
2559     assert(!Chain);
2560     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2561     unsigned Opcode, CCValid;
2562     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2563         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2564         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2565       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2566     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2567         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2568         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2569       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2570   }
2571   Comparison C(CmpOp0, CmpOp1, Chain);
2572   C.CCMask = CCMaskForCondCode(Cond);
2573   if (C.Op0.getValueType().isFloatingPoint()) {
2574     C.CCValid = SystemZ::CCMASK_FCMP;
2575     if (!C.Chain)
2576       C.Opcode = SystemZISD::FCMP;
2577     else if (!IsSignaling)
2578       C.Opcode = SystemZISD::STRICT_FCMP;
2579     else
2580       C.Opcode = SystemZISD::STRICT_FCMPS;
2581     adjustForFNeg(C);
2582   } else {
2583     assert(!C.Chain);
2584     C.CCValid = SystemZ::CCMASK_ICMP;
2585     C.Opcode = SystemZISD::ICMP;
2586     // Choose the type of comparison.  Equality and inequality tests can
2587     // use either signed or unsigned comparisons.  The choice also doesn't
2588     // matter if both sign bits are known to be clear.  In those cases we
2589     // want to give the main isel code the freedom to choose whichever
2590     // form fits best.
2591     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2592         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2593         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2594       C.ICmpType = SystemZICMP::Any;
2595     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2596       C.ICmpType = SystemZICMP::UnsignedOnly;
2597     else
2598       C.ICmpType = SystemZICMP::SignedOnly;
2599     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2600     adjustForRedundantAnd(DAG, DL, C);
2601     adjustZeroCmp(DAG, DL, C);
2602     adjustSubwordCmp(DAG, DL, C);
2603     adjustForSubtraction(DAG, DL, C);
2604     adjustForLTGFR(C);
2605     adjustICmpTruncate(DAG, DL, C);
2606   }
2607
2608   if (shouldSwapCmpOperands(C)) {
2609     std::swap(C.Op0, C.Op1);
2610     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2611   }
2612
2613   adjustForTestUnderMask(DAG, DL, C);
2614   return C;
2615 }
2616
2617 // Emit the comparison instruction described by C.
2618 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2619   if (!C.Op1.getNode()) {
2620     SDNode *Node;
2621     switch (C.Op0.getOpcode()) {
2622     case ISD::INTRINSIC_W_CHAIN:
2623       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2624       return SDValue(Node, 0);
2625     case ISD::INTRINSIC_WO_CHAIN:
2626       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2627       return SDValue(Node, Node->getNumValues() - 1);
2628     default:
2629       llvm_unreachable("Invalid comparison operands");
2630     }
2631   }
2632   if (C.Opcode == SystemZISD::ICMP)
2633     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2634                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2635   if (C.Opcode == SystemZISD::TM) {
2636     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2637                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2638     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2639                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2640   }
2641   if (C.Chain) {
2642     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2643     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2644   }
2645   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2646 }
2647
2648 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2649 // 64 bits.  Extend is the extension type to use.  Store the high part
2650 // in Hi and the low part in Lo.
2651 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2652                             SDValue Op0, SDValue Op1, SDValue &Hi,
2653                             SDValue &Lo) {
2654   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2655   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2656   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2657   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2658                    DAG.getConstant(32, DL, MVT::i64));
2659   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2660   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2661 }
2662
2663 // Lower a binary operation that produces two VT results, one in each
2664 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2665 // and Opcode performs the GR128 operation.  Store the even register result
2666 // in Even and the odd register result in Odd.
2667 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2668                              unsigned Opcode, SDValue Op0, SDValue Op1,
2669                              SDValue &Even, SDValue &Odd) {
2670   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2671   bool Is32Bit = is32Bit(VT);
2672   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2673   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2674 }
2675
2676 // Return an i32 value that is 1 if the CC value produced by CCReg is
2677 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2678 // in CCValid, so other values can be ignored.
2679 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2680                          unsigned CCValid, unsigned CCMask) {
2681   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2682                    DAG.getConstant(0, DL, MVT::i32),
2683                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2684                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2685   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2686 }
2687
2688 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2689 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2690 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2691 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2692 // floating-point comparisons.
2693 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2694 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2695   switch (CC) {
2696   case ISD::SETOEQ:
2697   case ISD::SETEQ:
2698     switch (Mode) {
2699     case CmpMode::Int:         return SystemZISD::VICMPE;
2700     case CmpMode::FP:          return SystemZISD::VFCMPE;
2701     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2702     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2703     }
2704     llvm_unreachable("Bad mode");
2705
2706   case ISD::SETOGE:
2707   case ISD::SETGE:
2708     switch (Mode) {
2709     case CmpMode::Int:         return 0;
2710     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2711     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2712     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2713     }
2714     llvm_unreachable("Bad mode");
2715
2716   case ISD::SETOGT:
2717   case ISD::SETGT:
2718     switch (Mode) {
2719     case CmpMode::Int:         return SystemZISD::VICMPH;
2720     case CmpMode::FP:          return SystemZISD::VFCMPH;
2721     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2722     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2723     }
2724     llvm_unreachable("Bad mode");
2725
2726   case ISD::SETUGT:
2727     switch (Mode) {
2728     case CmpMode::Int:         return SystemZISD::VICMPHL;
2729     case CmpMode::FP:          return 0;
2730     case CmpMode::StrictFP:    return 0;
2731     case CmpMode::SignalingFP: return 0;
2732     }
2733     llvm_unreachable("Bad mode");
2734
2735   default:
2736     return 0;
2737   }
2738 }
2739
2740 // Return the SystemZISD vector comparison operation for CC or its inverse,
2741 // or 0 if neither can be done directly.  Indicate in Invert whether the
2742 // result is for the inverse of CC.  Mode is as above.
2743 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2744                                             bool &Invert) {
2745   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2746     Invert = false;
2747     return Opcode;
2748   }
2749
2750   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2751   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2752     Invert = true;
2753     return Opcode;
2754   }
2755
2756   return 0;
2757 }
2758
2759 // Return a v2f64 that contains the extended form of elements Start and Start+1
2760 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2761 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2762                                   SDValue Op, SDValue Chain) {
2763   int Mask[] = { Start, -1, Start + 1, -1 };
2764   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2765   if (Chain) {
2766     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2767     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2768   }
2769   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2770 }
2771
2772 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2773 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2774 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2775                                             const SDLoc &DL, EVT VT,
2776                                             SDValue CmpOp0,
2777                                             SDValue CmpOp1,
2778                                             SDValue Chain) const {
2779   // There is no hardware support for v4f32 (unless we have the vector
2780   // enhancements facility 1), so extend the vector into two v2f64s
2781   // and compare those.
2782   if (CmpOp0.getValueType() == MVT::v4f32 &&
2783       !Subtarget.hasVectorEnhancements1()) {
2784     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2785     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2786     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2787     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2788     if (Chain) {
2789       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2790       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2791       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2792       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2793       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2794                             H1.getValue(1), L1.getValue(1),
2795                             HRes.getValue(1), LRes.getValue(1) };
2796       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2797       SDValue Ops[2] = { Res, NewChain };
2798       return DAG.getMergeValues(Ops, DL);
2799     }
2800     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2801     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2802     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2803   }
2804   if (Chain) {
2805     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2806     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2807   }
2808   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2809 }
2810
2811 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2812 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2813 // floating-point comparison.  If in addition IsSignaling is true, we have
2814 // a strict signaling floating-point comparison.
2815 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2816                                                 const SDLoc &DL, EVT VT,
2817                                                 ISD::CondCode CC,
2818                                                 SDValue CmpOp0,
2819                                                 SDValue CmpOp1,
2820                                                 SDValue Chain,
2821                                                 bool IsSignaling) const {
2822   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2823   assert (!Chain || IsFP);
2824   assert (!IsSignaling || Chain);
2825   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2826                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2827   bool Invert = false;
2828   SDValue Cmp;
2829   switch (CC) {
2830     // Handle tests for order using (or (ogt y x) (oge x y)).
2831   case ISD::SETUO:
2832     Invert = true;
2833     LLVM_FALLTHROUGH;
2834   case ISD::SETO: {
2835     assert(IsFP && "Unexpected integer comparison");
2836     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2837                               DL, VT, CmpOp1, CmpOp0, Chain);
2838     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2839                               DL, VT, CmpOp0, CmpOp1, Chain);
2840     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2841     if (Chain)
2842       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2843                           LT.getValue(1), GE.getValue(1));
2844     break;
2845   }
2846
2847     // Handle <> tests using (or (ogt y x) (ogt x y)).
2848   case ISD::SETUEQ:
2849     Invert = true;
2850     LLVM_FALLTHROUGH;
2851   case ISD::SETONE: {
2852     assert(IsFP && "Unexpected integer comparison");
2853     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2854                               DL, VT, CmpOp1, CmpOp0, Chain);
2855     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2856                               DL, VT, CmpOp0, CmpOp1, Chain);
2857     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2858     if (Chain)
2859       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2860                           LT.getValue(1), GT.getValue(1));
2861     break;
2862   }
2863
2864     // Otherwise a single comparison is enough.  It doesn't really
2865     // matter whether we try the inversion or the swap first, since
2866     // there are no cases where both work.
2867   default:
2868     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2869       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2870     else {
2871       CC = ISD::getSetCCSwappedOperands(CC);
2872       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2873         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2874       else
2875         llvm_unreachable("Unhandled comparison");
2876     }
2877     if (Chain)
2878       Chain = Cmp.getValue(1);
2879     break;
2880   }
2881   if (Invert) {
2882     SDValue Mask =
2883       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2884     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2885   }
2886   if (Chain && Chain.getNode() != Cmp.getNode()) {
2887     SDValue Ops[2] = { Cmp, Chain };
2888     Cmp = DAG.getMergeValues(Ops, DL);
2889   }
2890   return Cmp;
2891 }
2892
2893 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2894                                           SelectionDAG &DAG) const {
2895   SDValue CmpOp0   = Op.getOperand(0);
2896   SDValue CmpOp1   = Op.getOperand(1);
2897   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2898   SDLoc DL(Op);
2899   EVT VT = Op.getValueType();
2900   if (VT.isVector())
2901     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2902
2903   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2904   SDValue CCReg = emitCmp(DAG, DL, C);
2905   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2906 }
2907
2908 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2909                                                   SelectionDAG &DAG,
2910                                                   bool IsSignaling) const {
2911   SDValue Chain    = Op.getOperand(0);
2912   SDValue CmpOp0   = Op.getOperand(1);
2913   SDValue CmpOp1   = Op.getOperand(2);
2914   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2915   SDLoc DL(Op);
2916   EVT VT = Op.getNode()->getValueType(0);
2917   if (VT.isVector()) {
2918     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2919                                    Chain, IsSignaling);
2920     return Res.getValue(Op.getResNo());
2921   }
2922
2923   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2924   SDValue CCReg = emitCmp(DAG, DL, C);
2925   CCReg->setFlags(Op->getFlags());
2926   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2927   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2928   return DAG.getMergeValues(Ops, DL);
2929 }
2930
2931 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2932   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2933   SDValue CmpOp0   = Op.getOperand(2);
2934   SDValue CmpOp1   = Op.getOperand(3);
2935   SDValue Dest     = Op.getOperand(4);
2936   SDLoc DL(Op);
2937
2938   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2939   SDValue CCReg = emitCmp(DAG, DL, C);
2940   return DAG.getNode(
2941       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2942       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2943       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2944 }
2945
2946 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2947 // allowing Pos and Neg to be wider than CmpOp.
2948 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2949   return (Neg.getOpcode() == ISD::SUB &&
2950           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2951           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2952           Neg.getOperand(1) == Pos &&
2953           (Pos == CmpOp ||
2954            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2955             Pos.getOperand(0) == CmpOp)));
2956 }
2957
2958 // Return the absolute or negative absolute of Op; IsNegative decides which.
2959 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2960                            bool IsNegative) {
2961   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2962   if (IsNegative)
2963     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2964                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2965   return Op;
2966 }
2967
2968 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2969                                               SelectionDAG &DAG) const {
2970   SDValue CmpOp0   = Op.getOperand(0);
2971   SDValue CmpOp1   = Op.getOperand(1);
2972   SDValue TrueOp   = Op.getOperand(2);
2973   SDValue FalseOp  = Op.getOperand(3);
2974   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2975   SDLoc DL(Op);
2976
2977   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2978
2979   // Check for absolute and negative-absolute selections, including those
2980   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2981   // This check supplements the one in DAGCombiner.
2982   if (C.Opcode == SystemZISD::ICMP &&
2983       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2984       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2985       C.Op1.getOpcode() == ISD::Constant &&
2986       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2987     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2988       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2989     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2990       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2991   }
2992
2993   SDValue CCReg = emitCmp(DAG, DL, C);
2994   SDValue Ops[] = {TrueOp, FalseOp,
2995                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2996                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
2997
2998   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2999 }
3000
3001 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3002                                                   SelectionDAG &DAG) const {
3003   SDLoc DL(Node);
3004   const GlobalValue *GV = Node->getGlobal();
3005   int64_t Offset = Node->getOffset();
3006   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3007   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3008
3009   SDValue Result;
3010   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3011     if (isInt<32>(Offset)) {
3012       // Assign anchors at 1<<12 byte boundaries.
3013       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3014       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3015       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3016
3017       // The offset can be folded into the address if it is aligned to a
3018       // halfword.
3019       Offset -= Anchor;
3020       if (Offset != 0 && (Offset & 1) == 0) {
3021         SDValue Full =
3022           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3023         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3024         Offset = 0;
3025       }
3026     } else {
3027       // Conservatively load a constant offset greater than 32 bits into a
3028       // register below.
3029       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3030       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3031     }
3032   } else {
3033     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3034     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3035     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3036                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3037   }
3038
3039   // If there was a non-zero offset that we didn't fold, create an explicit
3040   // addition for it.
3041   if (Offset != 0)
3042     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3043                          DAG.getConstant(Offset, DL, PtrVT));
3044
3045   return Result;
3046 }
3047
3048 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3049                                                  SelectionDAG &DAG,
3050                                                  unsigned Opcode,
3051                                                  SDValue GOTOffset) const {
3052   SDLoc DL(Node);
3053   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3054   SDValue Chain = DAG.getEntryNode();
3055   SDValue Glue;
3056
3057   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3058       CallingConv::GHC)
3059     report_fatal_error("In GHC calling convention TLS is not supported");
3060
3061   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3062   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3063   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3064   Glue = Chain.getValue(1);
3065   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3066   Glue = Chain.getValue(1);
3067
3068   // The first call operand is the chain and the second is the TLS symbol.
3069   SmallVector<SDValue, 8> Ops;
3070   Ops.push_back(Chain);
3071   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3072                                            Node->getValueType(0),
3073                                            0, 0));
3074
3075   // Add argument registers to the end of the list so that they are
3076   // known live into the call.
3077   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3078   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3079
3080   // Add a register mask operand representing the call-preserved registers.
3081   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3082   const uint32_t *Mask =
3083       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3084   assert(Mask && "Missing call preserved mask for calling convention");
3085   Ops.push_back(DAG.getRegisterMask(Mask));
3086
3087   // Glue the call to the argument copies.
3088   Ops.push_back(Glue);
3089
3090   // Emit the call.
3091   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3092   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3093   Glue = Chain.getValue(1);
3094
3095   // Copy the return value from %r2.
3096   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3097 }
3098
3099 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3100                                                   SelectionDAG &DAG) const {
3101   SDValue Chain = DAG.getEntryNode();
3102   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3103
3104   // The high part of the thread pointer is in access register 0.
3105   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3106   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3107
3108   // The low part of the thread pointer is in access register 1.
3109   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3110   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3111
3112   // Merge them into a single 64-bit address.
3113   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3114                                     DAG.getConstant(32, DL, PtrVT));
3115   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3116 }
3117
3118 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3119                                                      SelectionDAG &DAG) const {
3120   if (DAG.getTarget().useEmulatedTLS())
3121     return LowerToTLSEmulatedModel(Node, DAG);
3122   SDLoc DL(Node);
3123   const GlobalValue *GV = Node->getGlobal();
3124   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3125   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3126
3127   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3128       CallingConv::GHC)
3129     report_fatal_error("In GHC calling convention TLS is not supported");
3130
3131   SDValue TP = lowerThreadPointer(DL, DAG);
3132
3133   // Get the offset of GA from the thread pointer, based on the TLS model.
3134   SDValue Offset;
3135   switch (model) {
3136     case TLSModel::GeneralDynamic: {
3137       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3138       SystemZConstantPoolValue *CPV =
3139         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3140
3141       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3142       Offset = DAG.getLoad(
3143           PtrVT, DL, DAG.getEntryNode(), Offset,
3144           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3145
3146       // Call __tls_get_offset to retrieve the offset.
3147       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3148       break;
3149     }
3150
3151     case TLSModel::LocalDynamic: {
3152       // Load the GOT offset of the module ID.
3153       SystemZConstantPoolValue *CPV =
3154         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3155
3156       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3157       Offset = DAG.getLoad(
3158           PtrVT, DL, DAG.getEntryNode(), Offset,
3159           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3160
3161       // Call __tls_get_offset to retrieve the module base offset.
3162       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3163
3164       // Note: The SystemZLDCleanupPass will remove redundant computations
3165       // of the module base offset.  Count total number of local-dynamic
3166       // accesses to trigger execution of that pass.
3167       SystemZMachineFunctionInfo* MFI =
3168         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3169       MFI->incNumLocalDynamicTLSAccesses();
3170
3171       // Add the per-symbol offset.
3172       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3173
3174       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3175       DTPOffset = DAG.getLoad(
3176           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3177           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3178
3179       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3180       break;
3181     }
3182
3183     case TLSModel::InitialExec: {
3184       // Load the offset from the GOT.
3185       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3186                                           SystemZII::MO_INDNTPOFF);
3187       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3188       Offset =
3189           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3190                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3191       break;
3192     }
3193
3194     case TLSModel::LocalExec: {
3195       // Force the offset into the constant pool and load it from there.
3196       SystemZConstantPoolValue *CPV =
3197         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3198
3199       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3200       Offset = DAG.getLoad(
3201           PtrVT, DL, DAG.getEntryNode(), Offset,
3202           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3203       break;
3204     }
3205   }
3206
3207   // Add the base and offset together.
3208   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3209 }
3210
3211 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3212                                                  SelectionDAG &DAG) const {
3213   SDLoc DL(Node);
3214   const BlockAddress *BA = Node->getBlockAddress();
3215   int64_t Offset = Node->getOffset();
3216   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3217
3218   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3219   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3220   return Result;
3221 }
3222
3223 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3224                                               SelectionDAG &DAG) const {
3225   SDLoc DL(JT);
3226   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3227   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3228
3229   // Use LARL to load the address of the table.
3230   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3231 }
3232
3233 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3234                                                  SelectionDAG &DAG) const {
3235   SDLoc DL(CP);
3236   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3237
3238   SDValue Result;
3239   if (CP->isMachineConstantPoolEntry())
3240     Result =
3241         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3242   else
3243     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3244                                        CP->getOffset());
3245
3246   // Use LARL to load the address of the constant pool entry.
3247   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3248 }
3249
3250 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3251                                               SelectionDAG &DAG) const {
3252   auto *TFL =
3253       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3254   MachineFunction &MF = DAG.getMachineFunction();
3255   MachineFrameInfo &MFI = MF.getFrameInfo();
3256   MFI.setFrameAddressIsTaken(true);
3257
3258   SDLoc DL(Op);
3259   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3260   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3261
3262   // Return null if the back chain is not present.
3263   bool HasBackChain = MF.getFunction().hasFnAttribute("backchain");
3264   if (TFL->usePackedStack(MF) && !HasBackChain)
3265     return DAG.getConstant(0, DL, PtrVT);
3266
3267   // By definition, the frame address is the address of the back chain.
3268   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3269   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3270
3271   // FIXME The frontend should detect this case.
3272   if (Depth > 0) {
3273     report_fatal_error("Unsupported stack frame traversal count");
3274   }
3275
3276   return BackChain;
3277 }
3278
3279 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3280                                                SelectionDAG &DAG) const {
3281   MachineFunction &MF = DAG.getMachineFunction();
3282   MachineFrameInfo &MFI = MF.getFrameInfo();
3283   MFI.setReturnAddressIsTaken(true);
3284
3285   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3286     return SDValue();
3287
3288   SDLoc DL(Op);
3289   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3290   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3291
3292   // FIXME The frontend should detect this case.
3293   if (Depth > 0) {
3294     report_fatal_error("Unsupported stack frame traversal count");
3295   }
3296
3297   // Return R14D, which has the return address. Mark it an implicit live-in.
3298   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3299   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3300 }
3301
3302 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3303                                             SelectionDAG &DAG) const {
3304   SDLoc DL(Op);
3305   SDValue In = Op.getOperand(0);
3306   EVT InVT = In.getValueType();
3307   EVT ResVT = Op.getValueType();
3308
3309   // Convert loads directly.  This is normally done by DAGCombiner,
3310   // but we need this case for bitcasts that are created during lowering
3311   // and which are then lowered themselves.
3312   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3313     if (ISD::isNormalLoad(LoadN)) {
3314       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3315                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3316       // Update the chain uses.
3317       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3318       return NewLoad;
3319     }
3320
3321   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3322     SDValue In64;
3323     if (Subtarget.hasHighWord()) {
3324       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3325                                        MVT::i64);
3326       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3327                                        MVT::i64, SDValue(U64, 0), In);
3328     } else {
3329       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3330       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3331                          DAG.getConstant(32, DL, MVT::i64));
3332     }
3333     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3334     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3335                                       DL, MVT::f32, Out64);
3336   }
3337   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3338     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3339     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3340                                              MVT::f64, SDValue(U64, 0), In);
3341     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3342     if (Subtarget.hasHighWord())
3343       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3344                                         MVT::i32, Out64);
3345     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3346                                 DAG.getConstant(32, DL, MVT::i64));
3347     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3348   }
3349   llvm_unreachable("Unexpected bitcast combination");
3350 }
3351
3352 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3353                                             SelectionDAG &DAG) const {
3354   MachineFunction &MF = DAG.getMachineFunction();
3355   SystemZMachineFunctionInfo *FuncInfo =
3356     MF.getInfo<SystemZMachineFunctionInfo>();
3357   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3358
3359   SDValue Chain   = Op.getOperand(0);
3360   SDValue Addr    = Op.getOperand(1);
3361   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3362   SDLoc DL(Op);
3363
3364   // The initial values of each field.
3365   const unsigned NumFields = 4;
3366   SDValue Fields[NumFields] = {
3367     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3368     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3369     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3370     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3371   };
3372
3373   // Store each field into its respective slot.
3374   SDValue MemOps[NumFields];
3375   unsigned Offset = 0;
3376   for (unsigned I = 0; I < NumFields; ++I) {
3377     SDValue FieldAddr = Addr;
3378     if (Offset != 0)
3379       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3380                               DAG.getIntPtrConstant(Offset, DL));
3381     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3382                              MachinePointerInfo(SV, Offset));
3383     Offset += 8;
3384   }
3385   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3386 }
3387
3388 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3389                                            SelectionDAG &DAG) const {
3390   SDValue Chain      = Op.getOperand(0);
3391   SDValue DstPtr     = Op.getOperand(1);
3392   SDValue SrcPtr     = Op.getOperand(2);
3393   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3394   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3395   SDLoc DL(Op);
3396
3397   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3398                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3399                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3400                        MachinePointerInfo(SrcSV));
3401 }
3402
3403 SDValue SystemZTargetLowering::
3404 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3405   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3406   MachineFunction &MF = DAG.getMachineFunction();
3407   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3408   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3409
3410   SDValue Chain = Op.getOperand(0);
3411   SDValue Size  = Op.getOperand(1);
3412   SDValue Align = Op.getOperand(2);
3413   SDLoc DL(Op);
3414
3415   // If user has set the no alignment function attribute, ignore
3416   // alloca alignments.
3417   uint64_t AlignVal = (RealignOpt ?
3418                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3419
3420   uint64_t StackAlign = TFI->getStackAlignment();
3421   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3422   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3423
3424   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3425   SDValue NeededSpace = Size;
3426
3427   // Get a reference to the stack pointer.
3428   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3429
3430   // If we need a backchain, save it now.
3431   SDValue Backchain;
3432   if (StoreBackchain)
3433     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3434
3435   // Add extra space for alignment if needed.
3436   if (ExtraAlignSpace)
3437     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3438                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3439
3440   // Get the new stack pointer value.
3441   SDValue NewSP;
3442   if (hasInlineStackProbe(MF)) {
3443     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3444                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3445     Chain = NewSP.getValue(1);
3446   }
3447   else {
3448     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3449     // Copy the new stack pointer back.
3450     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3451   }
3452
3453   // The allocated data lives above the 160 bytes allocated for the standard
3454   // frame, plus any outgoing stack arguments.  We don't know how much that
3455   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3456   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3457   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3458
3459   // Dynamically realign if needed.
3460   if (RequiredAlign > StackAlign) {
3461     Result =
3462       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3463                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3464     Result =
3465       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3466                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3467   }
3468
3469   if (StoreBackchain)
3470     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3471
3472   SDValue Ops[2] = { Result, Chain };
3473   return DAG.getMergeValues(Ops, DL);
3474 }
3475
3476 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3477     SDValue Op, SelectionDAG &DAG) const {
3478   SDLoc DL(Op);
3479
3480   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3481 }
3482
3483 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3484                                               SelectionDAG &DAG) const {
3485   EVT VT = Op.getValueType();
3486   SDLoc DL(Op);
3487   SDValue Ops[2];
3488   if (is32Bit(VT))
3489     // Just do a normal 64-bit multiplication and extract the results.
3490     // We define this so that it can be used for constant division.
3491     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3492                     Op.getOperand(1), Ops[1], Ops[0]);
3493   else if (Subtarget.hasMiscellaneousExtensions2())
3494     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3495     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3496     // return the low half first, so the results are in reverse order.
3497     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3498                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3499   else {
3500     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3501     //
3502     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3503     //
3504     // but using the fact that the upper halves are either all zeros
3505     // or all ones:
3506     //
3507     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3508     //
3509     // and grouping the right terms together since they are quicker than the
3510     // multiplication:
3511     //
3512     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3513     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3514     SDValue LL = Op.getOperand(0);
3515     SDValue RL = Op.getOperand(1);
3516     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3517     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3518     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3519     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3520     // return the low half first, so the results are in reverse order.
3521     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3522                      LL, RL, Ops[1], Ops[0]);
3523     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3524     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3525     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3526     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3527   }
3528   return DAG.getMergeValues(Ops, DL);
3529 }
3530
3531 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3532                                               SelectionDAG &DAG) const {
3533   EVT VT = Op.getValueType();
3534   SDLoc DL(Op);
3535   SDValue Ops[2];
3536   if (is32Bit(VT))
3537     // Just do a normal 64-bit multiplication and extract the results.
3538     // We define this so that it can be used for constant division.
3539     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3540                     Op.getOperand(1), Ops[1], Ops[0]);
3541   else
3542     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3543     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3544     // return the low half first, so the results are in reverse order.
3545     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3546                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3547   return DAG.getMergeValues(Ops, DL);
3548 }
3549
3550 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3551                                             SelectionDAG &DAG) const {
3552   SDValue Op0 = Op.getOperand(0);
3553   SDValue Op1 = Op.getOperand(1);
3554   EVT VT = Op.getValueType();
3555   SDLoc DL(Op);
3556
3557   // We use DSGF for 32-bit division.  This means the first operand must
3558   // always be 64-bit, and the second operand should be 32-bit whenever
3559   // that is possible, to improve performance.
3560   if (is32Bit(VT))
3561     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3562   else if (DAG.ComputeNumSignBits(Op1) > 32)
3563     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3564
3565   // DSG(F) returns the remainder in the even register and the
3566   // quotient in the odd register.
3567   SDValue Ops[2];
3568   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3569   return DAG.getMergeValues(Ops, DL);
3570 }
3571
3572 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3573                                             SelectionDAG &DAG) const {
3574   EVT VT = Op.getValueType();
3575   SDLoc DL(Op);
3576
3577   // DL(G) returns the remainder in the even register and the
3578   // quotient in the odd register.
3579   SDValue Ops[2];
3580   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3581                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3582   return DAG.getMergeValues(Ops, DL);
3583 }
3584
3585 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3586   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3587
3588   // Get the known-zero masks for each operand.
3589   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3590   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3591                         DAG.computeKnownBits(Ops[1])};
3592
3593   // See if the upper 32 bits of one operand and the lower 32 bits of the
3594   // other are known zero.  They are the low and high operands respectively.
3595   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3596                        Known[1].Zero.getZExtValue() };
3597   unsigned High, Low;
3598   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3599     High = 1, Low = 0;
3600   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3601     High = 0, Low = 1;
3602   else
3603     return Op;
3604
3605   SDValue LowOp = Ops[Low];
3606   SDValue HighOp = Ops[High];
3607
3608   // If the high part is a constant, we're better off using IILH.
3609   if (HighOp.getOpcode() == ISD::Constant)
3610     return Op;
3611
3612   // If the low part is a constant that is outside the range of LHI,
3613   // then we're better off using IILF.
3614   if (LowOp.getOpcode() == ISD::Constant) {
3615     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3616     if (!isInt<16>(Value))
3617       return Op;
3618   }
3619
3620   // Check whether the high part is an AND that doesn't change the
3621   // high 32 bits and just masks out low bits.  We can skip it if so.
3622   if (HighOp.getOpcode() == ISD::AND &&
3623       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3624     SDValue HighOp0 = HighOp.getOperand(0);
3625     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3626     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3627       HighOp = HighOp0;
3628   }
3629
3630   // Take advantage of the fact that all GR32 operations only change the
3631   // low 32 bits by truncating Low to an i32 and inserting it directly
3632   // using a subreg.  The interesting cases are those where the truncation
3633   // can be folded.
3634   SDLoc DL(Op);
3635   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3636   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3637                                    MVT::i64, HighOp, Low32);
3638 }
3639
3640 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3641 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3642                                           SelectionDAG &DAG) const {
3643   SDNode *N = Op.getNode();
3644   SDValue LHS = N->getOperand(0);
3645   SDValue RHS = N->getOperand(1);
3646   SDLoc DL(N);
3647   unsigned BaseOp = 0;
3648   unsigned CCValid = 0;
3649   unsigned CCMask = 0;
3650
3651   switch (Op.getOpcode()) {
3652   default: llvm_unreachable("Unknown instruction!");
3653   case ISD::SADDO:
3654     BaseOp = SystemZISD::SADDO;
3655     CCValid = SystemZ::CCMASK_ARITH;
3656     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3657     break;
3658   case ISD::SSUBO:
3659     BaseOp = SystemZISD::SSUBO;
3660     CCValid = SystemZ::CCMASK_ARITH;
3661     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3662     break;
3663   case ISD::UADDO:
3664     BaseOp = SystemZISD::UADDO;
3665     CCValid = SystemZ::CCMASK_LOGICAL;
3666     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3667     break;
3668   case ISD::USUBO:
3669     BaseOp = SystemZISD::USUBO;
3670     CCValid = SystemZ::CCMASK_LOGICAL;
3671     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3672     break;
3673   }
3674
3675   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3676   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3677
3678   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3679   if (N->getValueType(1) == MVT::i1)
3680     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3681
3682   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3683 }
3684
3685 static bool isAddCarryChain(SDValue Carry) {
3686   while (Carry.getOpcode() == ISD::ADDCARRY)
3687     Carry = Carry.getOperand(2);
3688   return Carry.getOpcode() == ISD::UADDO;
3689 }
3690
3691 static bool isSubBorrowChain(SDValue Carry) {
3692   while (Carry.getOpcode() == ISD::SUBCARRY)
3693     Carry = Carry.getOperand(2);
3694   return Carry.getOpcode() == ISD::USUBO;
3695 }
3696
3697 // Lower ADDCARRY/SUBCARRY nodes.
3698 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3699                                                 SelectionDAG &DAG) const {
3700
3701   SDNode *N = Op.getNode();
3702   MVT VT = N->getSimpleValueType(0);
3703
3704   // Let legalize expand this if it isn't a legal type yet.
3705   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3706     return SDValue();
3707
3708   SDValue LHS = N->getOperand(0);
3709   SDValue RHS = N->getOperand(1);
3710   SDValue Carry = Op.getOperand(2);
3711   SDLoc DL(N);
3712   unsigned BaseOp = 0;
3713   unsigned CCValid = 0;
3714   unsigned CCMask = 0;
3715
3716   switch (Op.getOpcode()) {
3717   default: llvm_unreachable("Unknown instruction!");
3718   case ISD::ADDCARRY:
3719     if (!isAddCarryChain(Carry))
3720       return SDValue();
3721
3722     BaseOp = SystemZISD::ADDCARRY;
3723     CCValid = SystemZ::CCMASK_LOGICAL;
3724     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3725     break;
3726   case ISD::SUBCARRY:
3727     if (!isSubBorrowChain(Carry))
3728       return SDValue();
3729
3730     BaseOp = SystemZISD::SUBCARRY;
3731     CCValid = SystemZ::CCMASK_LOGICAL;
3732     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3733     break;
3734   }
3735
3736   // Set the condition code from the carry flag.
3737   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3738                       DAG.getConstant(CCValid, DL, MVT::i32),
3739                       DAG.getConstant(CCMask, DL, MVT::i32));
3740
3741   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3742   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3743
3744   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3745   if (N->getValueType(1) == MVT::i1)
3746     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3747
3748   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3749 }
3750
3751 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3752                                           SelectionDAG &DAG) const {
3753   EVT VT = Op.getValueType();
3754   SDLoc DL(Op);
3755   Op = Op.getOperand(0);
3756
3757   // Handle vector types via VPOPCT.
3758   if (VT.isVector()) {
3759     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3760     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3761     switch (VT.getScalarSizeInBits()) {
3762     case 8:
3763       break;
3764     case 16: {
3765       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3766       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3767       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3768       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3769       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3770       break;
3771     }
3772     case 32: {
3773       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3774                                             DAG.getConstant(0, DL, MVT::i32));
3775       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3776       break;
3777     }
3778     case 64: {
3779       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3780                                             DAG.getConstant(0, DL, MVT::i32));
3781       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3782       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3783       break;
3784     }
3785     default:
3786       llvm_unreachable("Unexpected type");
3787     }
3788     return Op;
3789   }
3790
3791   // Get the known-zero mask for the operand.
3792   KnownBits Known = DAG.computeKnownBits(Op);
3793   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3794   if (NumSignificantBits == 0)
3795     return DAG.getConstant(0, DL, VT);
3796
3797   // Skip known-zero high parts of the operand.
3798   int64_t OrigBitSize = VT.getSizeInBits();
3799   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3800   BitSize = std::min(BitSize, OrigBitSize);
3801
3802   // The POPCNT instruction counts the number of bits in each byte.
3803   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3804   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3805   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3806
3807   // Add up per-byte counts in a binary tree.  All bits of Op at
3808   // position larger than BitSize remain zero throughout.
3809   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3810     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3811     if (BitSize != OrigBitSize)
3812       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3813                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3814     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3815   }
3816
3817   // Extract overall result from high byte.
3818   if (BitSize > 8)
3819     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3820                      DAG.getConstant(BitSize - 8, DL, VT));
3821
3822   return Op;
3823 }
3824
3825 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3826                                                  SelectionDAG &DAG) const {
3827   SDLoc DL(Op);
3828   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3829     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3830   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3831     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3832
3833   // The only fence that needs an instruction is a sequentially-consistent
3834   // cross-thread fence.
3835   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3836       FenceSSID == SyncScope::System) {
3837     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3838                                       Op.getOperand(0)),
3839                    0);
3840   }
3841
3842   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3843   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3844 }
3845
3846 // Op is an atomic load.  Lower it into a normal volatile load.
3847 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3848                                                 SelectionDAG &DAG) const {
3849   auto *Node = cast<AtomicSDNode>(Op.getNode());
3850   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3851                         Node->getChain(), Node->getBasePtr(),
3852                         Node->getMemoryVT(), Node->getMemOperand());
3853 }
3854
3855 // Op is an atomic store.  Lower it into a normal volatile store.
3856 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3857                                                  SelectionDAG &DAG) const {
3858   auto *Node = cast<AtomicSDNode>(Op.getNode());
3859   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3860                                     Node->getBasePtr(), Node->getMemoryVT(),
3861                                     Node->getMemOperand());
3862   // We have to enforce sequential consistency by performing a
3863   // serialization operation after the store.
3864   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3865     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3866                                        MVT::Other, Chain), 0);
3867   return Chain;
3868 }
3869
3870 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3871 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3872 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3873                                                    SelectionDAG &DAG,
3874                                                    unsigned Opcode) const {
3875   auto *Node = cast<AtomicSDNode>(Op.getNode());
3876
3877   // 32-bit operations need no code outside the main loop.
3878   EVT NarrowVT = Node->getMemoryVT();
3879   EVT WideVT = MVT::i32;
3880   if (NarrowVT == WideVT)
3881     return Op;
3882
3883   int64_t BitSize = NarrowVT.getSizeInBits();
3884   SDValue ChainIn = Node->getChain();
3885   SDValue Addr = Node->getBasePtr();
3886   SDValue Src2 = Node->getVal();
3887   MachineMemOperand *MMO = Node->getMemOperand();
3888   SDLoc DL(Node);
3889   EVT PtrVT = Addr.getValueType();
3890
3891   // Convert atomic subtracts of constants into additions.
3892   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3893     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3894       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3895       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3896     }
3897
3898   // Get the address of the containing word.
3899   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3900                                     DAG.getConstant(-4, DL, PtrVT));
3901
3902   // Get the number of bits that the word must be rotated left in order
3903   // to bring the field to the top bits of a GR32.
3904   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3905                                  DAG.getConstant(3, DL, PtrVT));
3906   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3907
3908   // Get the complementing shift amount, for rotating a field in the top
3909   // bits back to its proper position.
3910   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3911                                     DAG.getConstant(0, DL, WideVT), BitShift);
3912
3913   // Extend the source operand to 32 bits and prepare it for the inner loop.
3914   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3915   // operations require the source to be shifted in advance.  (This shift
3916   // can be folded if the source is constant.)  For AND and NAND, the lower
3917   // bits must be set, while for other opcodes they should be left clear.
3918   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3919     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3920                        DAG.getConstant(32 - BitSize, DL, WideVT));
3921   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3922       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3923     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3924                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3925
3926   // Construct the ATOMIC_LOADW_* node.
3927   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3928   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3929                     DAG.getConstant(BitSize, DL, WideVT) };
3930   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3931                                              NarrowVT, MMO);
3932
3933   // Rotate the result of the final CS so that the field is in the lower
3934   // bits of a GR32, then truncate it.
3935   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3936                                     DAG.getConstant(BitSize, DL, WideVT));
3937   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3938
3939   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3940   return DAG.getMergeValues(RetOps, DL);
3941 }
3942
3943 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3944 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3945 // operations into additions.
3946 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3947                                                     SelectionDAG &DAG) const {
3948   auto *Node = cast<AtomicSDNode>(Op.getNode());
3949   EVT MemVT = Node->getMemoryVT();
3950   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3951     // A full-width operation.
3952     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3953     SDValue Src2 = Node->getVal();
3954     SDValue NegSrc2;
3955     SDLoc DL(Src2);
3956
3957     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3958       // Use an addition if the operand is constant and either LAA(G) is
3959       // available or the negative value is in the range of A(G)FHI.
3960       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3961       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3962         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3963     } else if (Subtarget.hasInterlockedAccess1())
3964       // Use LAA(G) if available.
3965       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3966                             Src2);
3967
3968     if (NegSrc2.getNode())
3969       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3970                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3971                            Node->getMemOperand());
3972
3973     // Use the node as-is.
3974     return Op;
3975   }
3976
3977   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3978 }
3979
3980 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3981 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3982                                                     SelectionDAG &DAG) const {
3983   auto *Node = cast<AtomicSDNode>(Op.getNode());
3984   SDValue ChainIn = Node->getOperand(0);
3985   SDValue Addr = Node->getOperand(1);
3986   SDValue CmpVal = Node->getOperand(2);
3987   SDValue SwapVal = Node->getOperand(3);
3988   MachineMemOperand *MMO = Node->getMemOperand();
3989   SDLoc DL(Node);
3990
3991   // We have native support for 32-bit and 64-bit compare and swap, but we
3992   // still need to expand extracting the "success" result from the CC.
3993   EVT NarrowVT = Node->getMemoryVT();
3994   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3995   if (NarrowVT == WideVT) {
3996     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3997     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3998     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3999                                                DL, Tys, Ops, NarrowVT, MMO);
4000     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4001                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4002
4003     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4004     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4005     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4006     return SDValue();
4007   }
4008
4009   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4010   // via a fullword ATOMIC_CMP_SWAPW operation.
4011   int64_t BitSize = NarrowVT.getSizeInBits();
4012   EVT PtrVT = Addr.getValueType();
4013
4014   // Get the address of the containing word.
4015   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4016                                     DAG.getConstant(-4, DL, PtrVT));
4017
4018   // Get the number of bits that the word must be rotated left in order
4019   // to bring the field to the top bits of a GR32.
4020   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4021                                  DAG.getConstant(3, DL, PtrVT));
4022   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4023
4024   // Get the complementing shift amount, for rotating a field in the top
4025   // bits back to its proper position.
4026   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4027                                     DAG.getConstant(0, DL, WideVT), BitShift);
4028
4029   // Construct the ATOMIC_CMP_SWAPW node.
4030   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4031   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4032                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4033   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4034                                              VTList, Ops, NarrowVT, MMO);
4035   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4036                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4037
4038   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4039   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4040   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4041   return SDValue();
4042 }
4043
4044 MachineMemOperand::Flags
4045 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4046   // Because of how we convert atomic_load and atomic_store to normal loads and
4047   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4048   // since DAGCombine hasn't been updated to account for atomic, but non
4049   // volatile loads.  (See D57601)
4050   if (auto *SI = dyn_cast<StoreInst>(&I))
4051     if (SI->isAtomic())
4052       return MachineMemOperand::MOVolatile;
4053   if (auto *LI = dyn_cast<LoadInst>(&I))
4054     if (LI->isAtomic())
4055       return MachineMemOperand::MOVolatile;
4056   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4057     if (AI->isAtomic())
4058       return MachineMemOperand::MOVolatile;
4059   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4060     if (AI->isAtomic())
4061       return MachineMemOperand::MOVolatile;
4062   return MachineMemOperand::MONone;
4063 }
4064
4065 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4066                                               SelectionDAG &DAG) const {
4067   MachineFunction &MF = DAG.getMachineFunction();
4068   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4069   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4070     report_fatal_error("Variable-sized stack allocations are not supported "
4071                        "in GHC calling convention");
4072   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4073                             SystemZ::R15D, Op.getValueType());
4074 }
4075
4076 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4077                                                  SelectionDAG &DAG) const {
4078   MachineFunction &MF = DAG.getMachineFunction();
4079   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4080   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4081
4082   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4083     report_fatal_error("Variable-sized stack allocations are not supported "
4084                        "in GHC calling convention");
4085
4086   SDValue Chain = Op.getOperand(0);
4087   SDValue NewSP = Op.getOperand(1);
4088   SDValue Backchain;
4089   SDLoc DL(Op);
4090
4091   if (StoreBackchain) {
4092     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4093     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
4094   }
4095
4096   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4097
4098   if (StoreBackchain)
4099     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
4100
4101   return Chain;
4102 }
4103
4104 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4105                                              SelectionDAG &DAG) const {
4106   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4107   if (!IsData)
4108     // Just preserve the chain.
4109     return Op.getOperand(0);
4110
4111   SDLoc DL(Op);
4112   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4113   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4114   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4115   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4116                    Op.getOperand(1)};
4117   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4118                                  Node->getVTList(), Ops,
4119                                  Node->getMemoryVT(), Node->getMemOperand());
4120 }
4121
4122 // Convert condition code in CCReg to an i32 value.
4123 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4124   SDLoc DL(CCReg);
4125   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4126   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4127                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4128 }
4129
4130 SDValue
4131 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4132                                               SelectionDAG &DAG) const {
4133   unsigned Opcode, CCValid;
4134   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4135     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4136     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4137     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4138     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4139     return SDValue();
4140   }
4141
4142   return SDValue();
4143 }
4144
4145 SDValue
4146 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4147                                                SelectionDAG &DAG) const {
4148   unsigned Opcode, CCValid;
4149   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4150     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4151     if (Op->getNumValues() == 1)
4152       return getCCResult(DAG, SDValue(Node, 0));
4153     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4154     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4155                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4156   }
4157
4158   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4159   switch (Id) {
4160   case Intrinsic::thread_pointer:
4161     return lowerThreadPointer(SDLoc(Op), DAG);
4162
4163   case Intrinsic::s390_vpdi:
4164     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4165                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4166
4167   case Intrinsic::s390_vperm:
4168     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4169                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4170
4171   case Intrinsic::s390_vuphb:
4172   case Intrinsic::s390_vuphh:
4173   case Intrinsic::s390_vuphf:
4174     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4175                        Op.getOperand(1));
4176
4177   case Intrinsic::s390_vuplhb:
4178   case Intrinsic::s390_vuplhh:
4179   case Intrinsic::s390_vuplhf:
4180     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4181                        Op.getOperand(1));
4182
4183   case Intrinsic::s390_vuplb:
4184   case Intrinsic::s390_vuplhw:
4185   case Intrinsic::s390_vuplf:
4186     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4187                        Op.getOperand(1));
4188
4189   case Intrinsic::s390_vupllb:
4190   case Intrinsic::s390_vupllh:
4191   case Intrinsic::s390_vupllf:
4192     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4193                        Op.getOperand(1));
4194
4195   case Intrinsic::s390_vsumb:
4196   case Intrinsic::s390_vsumh:
4197   case Intrinsic::s390_vsumgh:
4198   case Intrinsic::s390_vsumgf:
4199   case Intrinsic::s390_vsumqf:
4200   case Intrinsic::s390_vsumqg:
4201     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4202                        Op.getOperand(1), Op.getOperand(2));
4203   }
4204
4205   return SDValue();
4206 }
4207
4208 namespace {
4209 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4210 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4211 // Operand is the constant third operand, otherwise it is the number of
4212 // bytes in each element of the result.
4213 struct Permute {
4214   unsigned Opcode;
4215   unsigned Operand;
4216   unsigned char Bytes[SystemZ::VectorBytes];
4217 };
4218 }
4219
4220 static const Permute PermuteForms[] = {
4221   // VMRHG
4222   { SystemZISD::MERGE_HIGH, 8,
4223     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4224   // VMRHF
4225   { SystemZISD::MERGE_HIGH, 4,
4226     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4227   // VMRHH
4228   { SystemZISD::MERGE_HIGH, 2,
4229     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4230   // VMRHB
4231   { SystemZISD::MERGE_HIGH, 1,
4232     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4233   // VMRLG
4234   { SystemZISD::MERGE_LOW, 8,
4235     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4236   // VMRLF
4237   { SystemZISD::MERGE_LOW, 4,
4238     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4239   // VMRLH
4240   { SystemZISD::MERGE_LOW, 2,
4241     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4242   // VMRLB
4243   { SystemZISD::MERGE_LOW, 1,
4244     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4245   // VPKG
4246   { SystemZISD::PACK, 4,
4247     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4248   // VPKF
4249   { SystemZISD::PACK, 2,
4250     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4251   // VPKH
4252   { SystemZISD::PACK, 1,
4253     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4254   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4255   { SystemZISD::PERMUTE_DWORDS, 4,
4256     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4257   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4258   { SystemZISD::PERMUTE_DWORDS, 1,
4259     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4260 };
4261
4262 // Called after matching a vector shuffle against a particular pattern.
4263 // Both the original shuffle and the pattern have two vector operands.
4264 // OpNos[0] is the operand of the original shuffle that should be used for
4265 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4266 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4267 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4268 // for operands 0 and 1 of the pattern.
4269 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4270   if (OpNos[0] < 0) {
4271     if (OpNos[1] < 0)
4272       return false;
4273     OpNo0 = OpNo1 = OpNos[1];
4274   } else if (OpNos[1] < 0) {
4275     OpNo0 = OpNo1 = OpNos[0];
4276   } else {
4277     OpNo0 = OpNos[0];
4278     OpNo1 = OpNos[1];
4279   }
4280   return true;
4281 }
4282
4283 // Bytes is a VPERM-like permute vector, except that -1 is used for
4284 // undefined bytes.  Return true if the VPERM can be implemented using P.
4285 // When returning true set OpNo0 to the VPERM operand that should be
4286 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4287 //
4288 // For example, if swapping the VPERM operands allows P to match, OpNo0
4289 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4290 // operand, but rewriting it to use two duplicated operands allows it to
4291 // match P, then OpNo0 and OpNo1 will be the same.
4292 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4293                          unsigned &OpNo0, unsigned &OpNo1) {
4294   int OpNos[] = { -1, -1 };
4295   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4296     int Elt = Bytes[I];
4297     if (Elt >= 0) {
4298       // Make sure that the two permute vectors use the same suboperand
4299       // byte number.  Only the operand numbers (the high bits) are
4300       // allowed to differ.
4301       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4302         return false;
4303       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4304       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4305       // Make sure that the operand mappings are consistent with previous
4306       // elements.
4307       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4308         return false;
4309       OpNos[ModelOpNo] = RealOpNo;
4310     }
4311   }
4312   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4313 }
4314
4315 // As above, but search for a matching permute.
4316 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4317                                    unsigned &OpNo0, unsigned &OpNo1) {
4318   for (auto &P : PermuteForms)
4319     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4320       return &P;
4321   return nullptr;
4322 }
4323
4324 // Bytes is a VPERM-like permute vector, except that -1 is used for
4325 // undefined bytes.  This permute is an operand of an outer permute.
4326 // See whether redistributing the -1 bytes gives a shuffle that can be
4327 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4328 // that, when applied to the result of P, gives the original permute in Bytes.
4329 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4330                                const Permute &P,
4331                                SmallVectorImpl<int> &Transform) {
4332   unsigned To = 0;
4333   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4334     int Elt = Bytes[From];
4335     if (Elt < 0)
4336       // Byte number From of the result is undefined.
4337       Transform[From] = -1;
4338     else {
4339       while (P.Bytes[To] != Elt) {
4340         To += 1;
4341         if (To == SystemZ::VectorBytes)
4342           return false;
4343       }
4344       Transform[From] = To;
4345     }
4346   }
4347   return true;
4348 }
4349
4350 // As above, but search for a matching permute.
4351 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4352                                          SmallVectorImpl<int> &Transform) {
4353   for (auto &P : PermuteForms)
4354     if (matchDoublePermute(Bytes, P, Transform))
4355       return &P;
4356   return nullptr;
4357 }
4358
4359 // Convert the mask of the given shuffle op into a byte-level mask,
4360 // as if it had type vNi8.
4361 static bool getVPermMask(SDValue ShuffleOp,
4362                          SmallVectorImpl<int> &Bytes) {
4363   EVT VT = ShuffleOp.getValueType();
4364   unsigned NumElements = VT.getVectorNumElements();
4365   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4366
4367   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4368     Bytes.resize(NumElements * BytesPerElement, -1);
4369     for (unsigned I = 0; I < NumElements; ++I) {
4370       int Index = VSN->getMaskElt(I);
4371       if (Index >= 0)
4372         for (unsigned J = 0; J < BytesPerElement; ++J)
4373           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4374     }
4375     return true;
4376   }
4377   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4378       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4379     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4380     Bytes.resize(NumElements * BytesPerElement, -1);
4381     for (unsigned I = 0; I < NumElements; ++I)
4382       for (unsigned J = 0; J < BytesPerElement; ++J)
4383         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4384     return true;
4385   }
4386   return false;
4387 }
4388
4389 // Bytes is a VPERM-like permute vector, except that -1 is used for
4390 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4391 // the result come from a contiguous sequence of bytes from one input.
4392 // Set Base to the selector for the first byte if so.
4393 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4394                             unsigned BytesPerElement, int &Base) {
4395   Base = -1;
4396   for (unsigned I = 0; I < BytesPerElement; ++I) {
4397     if (Bytes[Start + I] >= 0) {
4398       unsigned Elem = Bytes[Start + I];
4399       if (Base < 0) {
4400         Base = Elem - I;
4401         // Make sure the bytes would come from one input operand.
4402         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4403           return false;
4404       } else if (unsigned(Base) != Elem - I)
4405         return false;
4406     }
4407   }
4408   return true;
4409 }
4410
4411 // Bytes is a VPERM-like permute vector, except that -1 is used for
4412 // undefined bytes.  Return true if it can be performed using VSLDB.
4413 // When returning true, set StartIndex to the shift amount and OpNo0
4414 // and OpNo1 to the VPERM operands that should be used as the first
4415 // and second shift operand respectively.
4416 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4417                                unsigned &StartIndex, unsigned &OpNo0,
4418                                unsigned &OpNo1) {
4419   int OpNos[] = { -1, -1 };
4420   int Shift = -1;
4421   for (unsigned I = 0; I < 16; ++I) {
4422     int Index = Bytes[I];
4423     if (Index >= 0) {
4424       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4425       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4426       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4427       if (Shift < 0)
4428         Shift = ExpectedShift;
4429       else if (Shift != ExpectedShift)
4430         return false;
4431       // Make sure that the operand mappings are consistent with previous
4432       // elements.
4433       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4434         return false;
4435       OpNos[ModelOpNo] = RealOpNo;
4436     }
4437   }
4438   StartIndex = Shift;
4439   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4440 }
4441
4442 // Create a node that performs P on operands Op0 and Op1, casting the
4443 // operands to the appropriate type.  The type of the result is determined by P.
4444 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4445                               const Permute &P, SDValue Op0, SDValue Op1) {
4446   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4447   // elements of a PACK are twice as wide as the outputs.
4448   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4449                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4450                       P.Operand);
4451   // Cast both operands to the appropriate type.
4452   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4453                               SystemZ::VectorBytes / InBytes);
4454   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4455   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4456   SDValue Op;
4457   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4458     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4459     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4460   } else if (P.Opcode == SystemZISD::PACK) {
4461     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4462                                  SystemZ::VectorBytes / P.Operand);
4463     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4464   } else {
4465     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4466   }
4467   return Op;
4468 }
4469
4470 static bool isZeroVector(SDValue N) {
4471   if (N->getOpcode() == ISD::BITCAST)
4472     N = N->getOperand(0);
4473   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4474     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4475       return Op->getZExtValue() == 0;
4476   return ISD::isBuildVectorAllZeros(N.getNode());
4477 }
4478
4479 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4480 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4481   for (unsigned I = 0; I < Num ; I++)
4482     if (isZeroVector(Ops[I]))
4483       return I;
4484   return UINT32_MAX;
4485 }
4486
4487 // Bytes is a VPERM-like permute vector, except that -1 is used for
4488 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4489 // VSLDB or VPERM.
4490 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4491                                      SDValue *Ops,
4492                                      const SmallVectorImpl<int> &Bytes) {
4493   for (unsigned I = 0; I < 2; ++I)
4494     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4495
4496   // First see whether VSLDB can be used.
4497   unsigned StartIndex, OpNo0, OpNo1;
4498   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4499     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4500                        Ops[OpNo1],
4501                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4502
4503   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4504   // eliminate a zero vector by reusing any zero index in the permute vector.
4505   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4506   if (ZeroVecIdx != UINT32_MAX) {
4507     bool MaskFirst = true;
4508     int ZeroIdx = -1;
4509     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4510       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4511       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4512       if (OpNo == ZeroVecIdx && I == 0) {
4513         // If the first byte is zero, use mask as first operand.
4514         ZeroIdx = 0;
4515         break;
4516       }
4517       if (OpNo != ZeroVecIdx && Byte == 0) {
4518         // If mask contains a zero, use it by placing that vector first.
4519         ZeroIdx = I + SystemZ::VectorBytes;
4520         MaskFirst = false;
4521         break;
4522       }
4523     }
4524     if (ZeroIdx != -1) {
4525       SDValue IndexNodes[SystemZ::VectorBytes];
4526       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4527         if (Bytes[I] >= 0) {
4528           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4529           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4530           if (OpNo == ZeroVecIdx)
4531             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4532           else {
4533             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4534             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4535           }
4536         } else
4537           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4538       }
4539       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4540       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4541       if (MaskFirst)
4542         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4543                            Mask);
4544       else
4545         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4546                            Mask);
4547     }
4548   }
4549
4550   SDValue IndexNodes[SystemZ::VectorBytes];
4551   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4552     if (Bytes[I] >= 0)
4553       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4554     else
4555       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4556   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4557   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4558                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4559 }
4560
4561 namespace {
4562 // Describes a general N-operand vector shuffle.
4563 struct GeneralShuffle {
4564   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4565   void addUndef();
4566   bool add(SDValue, unsigned);
4567   SDValue getNode(SelectionDAG &, const SDLoc &);
4568   void tryPrepareForUnpack();
4569   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4570   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4571
4572   // The operands of the shuffle.
4573   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4574
4575   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4576   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4577   // Bytes[I] / SystemZ::VectorBytes.
4578   SmallVector<int, SystemZ::VectorBytes> Bytes;
4579
4580   // The type of the shuffle result.
4581   EVT VT;
4582
4583   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4584   unsigned UnpackFromEltSize;
4585 };
4586 }
4587
4588 // Add an extra undefined element to the shuffle.
4589 void GeneralShuffle::addUndef() {
4590   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4591   for (unsigned I = 0; I < BytesPerElement; ++I)
4592     Bytes.push_back(-1);
4593 }
4594
4595 // Add an extra element to the shuffle, taking it from element Elem of Op.
4596 // A null Op indicates a vector input whose value will be calculated later;
4597 // there is at most one such input per shuffle and it always has the same
4598 // type as the result. Aborts and returns false if the source vector elements
4599 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4600 // LLVM they become implicitly extended, but this is rare and not optimized.
4601 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4602   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4603
4604   // The source vector can have wider elements than the result,
4605   // either through an explicit TRUNCATE or because of type legalization.
4606   // We want the least significant part.
4607   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4608   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4609
4610   // Return false if the source elements are smaller than their destination
4611   // elements.
4612   if (FromBytesPerElement < BytesPerElement)
4613     return false;
4614
4615   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4616                    (FromBytesPerElement - BytesPerElement));
4617
4618   // Look through things like shuffles and bitcasts.
4619   while (Op.getNode()) {
4620     if (Op.getOpcode() == ISD::BITCAST)
4621       Op = Op.getOperand(0);
4622     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4623       // See whether the bytes we need come from a contiguous part of one
4624       // operand.
4625       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4626       if (!getVPermMask(Op, OpBytes))
4627         break;
4628       int NewByte;
4629       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4630         break;
4631       if (NewByte < 0) {
4632         addUndef();
4633         return true;
4634       }
4635       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4636       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4637     } else if (Op.isUndef()) {
4638       addUndef();
4639       return true;
4640     } else
4641       break;
4642   }
4643
4644   // Make sure that the source of the extraction is in Ops.
4645   unsigned OpNo = 0;
4646   for (; OpNo < Ops.size(); ++OpNo)
4647     if (Ops[OpNo] == Op)
4648       break;
4649   if (OpNo == Ops.size())
4650     Ops.push_back(Op);
4651
4652   // Add the element to Bytes.
4653   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4654   for (unsigned I = 0; I < BytesPerElement; ++I)
4655     Bytes.push_back(Base + I);
4656
4657   return true;
4658 }
4659
4660 // Return SDNodes for the completed shuffle.
4661 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4662   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4663
4664   if (Ops.size() == 0)
4665     return DAG.getUNDEF(VT);
4666
4667   // Use a single unpack if possible as the last operation.
4668   tryPrepareForUnpack();
4669
4670   // Make sure that there are at least two shuffle operands.
4671   if (Ops.size() == 1)
4672     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4673
4674   // Create a tree of shuffles, deferring root node until after the loop.
4675   // Try to redistribute the undefined elements of non-root nodes so that
4676   // the non-root shuffles match something like a pack or merge, then adjust
4677   // the parent node's permute vector to compensate for the new order.
4678   // Among other things, this copes with vectors like <2 x i16> that were
4679   // padded with undefined elements during type legalization.
4680   //
4681   // In the best case this redistribution will lead to the whole tree
4682   // using packs and merges.  It should rarely be a loss in other cases.
4683   unsigned Stride = 1;
4684   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4685     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4686       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4687
4688       // Create a mask for just these two operands.
4689       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4690       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4691         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4692         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4693         if (OpNo == I)
4694           NewBytes[J] = Byte;
4695         else if (OpNo == I + Stride)
4696           NewBytes[J] = SystemZ::VectorBytes + Byte;
4697         else
4698           NewBytes[J] = -1;
4699       }
4700       // See if it would be better to reorganize NewMask to avoid using VPERM.
4701       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4702       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4703         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4704         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4705         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4706           if (NewBytes[J] >= 0) {
4707             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4708                    "Invalid double permute");
4709             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4710           } else
4711             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4712         }
4713       } else {
4714         // Just use NewBytes on the operands.
4715         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4716         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4717           if (NewBytes[J] >= 0)
4718             Bytes[J] = I * SystemZ::VectorBytes + J;
4719       }
4720     }
4721   }
4722
4723   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4724   if (Stride > 1) {
4725     Ops[1] = Ops[Stride];
4726     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4727       if (Bytes[I] >= int(SystemZ::VectorBytes))
4728         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4729   }
4730
4731   // Look for an instruction that can do the permute without resorting
4732   // to VPERM.
4733   unsigned OpNo0, OpNo1;
4734   SDValue Op;
4735   if (unpackWasPrepared() && Ops[1].isUndef())
4736     Op = Ops[0];
4737   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4738     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4739   else
4740     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4741
4742   Op = insertUnpackIfPrepared(DAG, DL, Op);
4743
4744   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4745 }
4746
4747 #ifndef NDEBUG
4748 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4749   dbgs() << Msg.c_str() << " { ";
4750   for (unsigned i = 0; i < Bytes.size(); i++)
4751     dbgs() << Bytes[i] << " ";
4752   dbgs() << "}\n";
4753 }
4754 #endif
4755
4756 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4757 // after all else by removing the zero vector and the effect of the unpack on
4758 // Bytes.
4759 void GeneralShuffle::tryPrepareForUnpack() {
4760   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4761   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4762     return;
4763
4764   // Only do this if removing the zero vector reduces the depth, otherwise
4765   // the critical path will increase with the final unpack.
4766   if (Ops.size() > 2 &&
4767       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4768     return;
4769
4770   // Find an unpack that would allow removing the zero vector from Ops.
4771   UnpackFromEltSize = 1;
4772   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4773     bool MatchUnpack = true;
4774     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4775     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4776       unsigned ToEltSize = UnpackFromEltSize * 2;
4777       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4778       if (!IsZextByte)
4779         SrcBytes.push_back(Bytes[Elt]);
4780       if (Bytes[Elt] != -1) {
4781         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4782         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4783           MatchUnpack = false;
4784           break;
4785         }
4786       }
4787     }
4788     if (MatchUnpack) {
4789       if (Ops.size() == 2) {
4790         // Don't use unpack if a single source operand needs rearrangement.
4791         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4792           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4793             UnpackFromEltSize = UINT_MAX;
4794             return;
4795           }
4796       }
4797       break;
4798     }
4799   }
4800   if (UnpackFromEltSize > 4)
4801     return;
4802
4803   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4804              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4805              << ".\n";
4806              dumpBytes(Bytes, "Original Bytes vector:"););
4807
4808   // Apply the unpack in reverse to the Bytes array.
4809   unsigned B = 0;
4810   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4811     Elt += UnpackFromEltSize;
4812     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4813       Bytes[B] = Bytes[Elt];
4814   }
4815   while (B < SystemZ::VectorBytes)
4816     Bytes[B++] = -1;
4817
4818   // Remove the zero vector from Ops
4819   Ops.erase(&Ops[ZeroVecOpNo]);
4820   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4821     if (Bytes[I] >= 0) {
4822       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4823       if (OpNo > ZeroVecOpNo)
4824         Bytes[I] -= SystemZ::VectorBytes;
4825     }
4826
4827   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4828              dbgs() << "\n";);
4829 }
4830
4831 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4832                                                const SDLoc &DL,
4833                                                SDValue Op) {
4834   if (!unpackWasPrepared())
4835     return Op;
4836   unsigned InBits = UnpackFromEltSize * 8;
4837   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4838                                 SystemZ::VectorBits / InBits);
4839   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4840   unsigned OutBits = InBits * 2;
4841   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4842                                SystemZ::VectorBits / OutBits);
4843   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4844 }
4845
4846 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4847 static bool isScalarToVector(SDValue Op) {
4848   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4849     if (!Op.getOperand(I).isUndef())
4850       return false;
4851   return true;
4852 }
4853
4854 // Return a vector of type VT that contains Value in the first element.
4855 // The other elements don't matter.
4856 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4857                                    SDValue Value) {
4858   // If we have a constant, replicate it to all elements and let the
4859   // BUILD_VECTOR lowering take care of it.
4860   if (Value.getOpcode() == ISD::Constant ||
4861       Value.getOpcode() == ISD::ConstantFP) {
4862     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4863     return DAG.getBuildVector(VT, DL, Ops);
4864   }
4865   if (Value.isUndef())
4866     return DAG.getUNDEF(VT);
4867   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4868 }
4869
4870 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4871 // element 1.  Used for cases in which replication is cheap.
4872 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4873                                  SDValue Op0, SDValue Op1) {
4874   if (Op0.isUndef()) {
4875     if (Op1.isUndef())
4876       return DAG.getUNDEF(VT);
4877     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4878   }
4879   if (Op1.isUndef())
4880     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4881   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4882                      buildScalarToVector(DAG, DL, VT, Op0),
4883                      buildScalarToVector(DAG, DL, VT, Op1));
4884 }
4885
4886 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4887 // vector for them.
4888 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4889                           SDValue Op1) {
4890   if (Op0.isUndef() && Op1.isUndef())
4891     return DAG.getUNDEF(MVT::v2i64);
4892   // If one of the two inputs is undefined then replicate the other one,
4893   // in order to avoid using another register unnecessarily.
4894   if (Op0.isUndef())
4895     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4896   else if (Op1.isUndef())
4897     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4898   else {
4899     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4900     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4901   }
4902   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4903 }
4904
4905 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4906 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4907 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4908 // would benefit from this representation and return it if so.
4909 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4910                                      BuildVectorSDNode *BVN) {
4911   EVT VT = BVN->getValueType(0);
4912   unsigned NumElements = VT.getVectorNumElements();
4913
4914   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4915   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4916   // need a BUILD_VECTOR, add an additional placeholder operand for that
4917   // BUILD_VECTOR and store its operands in ResidueOps.
4918   GeneralShuffle GS(VT);
4919   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4920   bool FoundOne = false;
4921   for (unsigned I = 0; I < NumElements; ++I) {
4922     SDValue Op = BVN->getOperand(I);
4923     if (Op.getOpcode() == ISD::TRUNCATE)
4924       Op = Op.getOperand(0);
4925     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4926         Op.getOperand(1).getOpcode() == ISD::Constant) {
4927       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4928       if (!GS.add(Op.getOperand(0), Elem))
4929         return SDValue();
4930       FoundOne = true;
4931     } else if (Op.isUndef()) {
4932       GS.addUndef();
4933     } else {
4934       if (!GS.add(SDValue(), ResidueOps.size()))
4935         return SDValue();
4936       ResidueOps.push_back(BVN->getOperand(I));
4937     }
4938   }
4939
4940   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4941   if (!FoundOne)
4942     return SDValue();
4943
4944   // Create the BUILD_VECTOR for the remaining elements, if any.
4945   if (!ResidueOps.empty()) {
4946     while (ResidueOps.size() < NumElements)
4947       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4948     for (auto &Op : GS.Ops) {
4949       if (!Op.getNode()) {
4950         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4951         break;
4952       }
4953     }
4954   }
4955   return GS.getNode(DAG, SDLoc(BVN));
4956 }
4957
4958 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4959   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4960     return true;
4961   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4962     return true;
4963   return false;
4964 }
4965
4966 // Combine GPR scalar values Elems into a vector of type VT.
4967 SDValue
4968 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4969                                    SmallVectorImpl<SDValue> &Elems) const {
4970   // See whether there is a single replicated value.
4971   SDValue Single;
4972   unsigned int NumElements = Elems.size();
4973   unsigned int Count = 0;
4974   for (auto Elem : Elems) {
4975     if (!Elem.isUndef()) {
4976       if (!Single.getNode())
4977         Single = Elem;
4978       else if (Elem != Single) {
4979         Single = SDValue();
4980         break;
4981       }
4982       Count += 1;
4983     }
4984   }
4985   // There are three cases here:
4986   //
4987   // - if the only defined element is a loaded one, the best sequence
4988   //   is a replicating load.
4989   //
4990   // - otherwise, if the only defined element is an i64 value, we will
4991   //   end up with the same VLVGP sequence regardless of whether we short-cut
4992   //   for replication or fall through to the later code.
4993   //
4994   // - otherwise, if the only defined element is an i32 or smaller value,
4995   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4996   //   This is only a win if the single defined element is used more than once.
4997   //   In other cases we're better off using a single VLVGx.
4998   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
4999     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5000
5001   // If all elements are loads, use VLREP/VLEs (below).
5002   bool AllLoads = true;
5003   for (auto Elem : Elems)
5004     if (!isVectorElementLoad(Elem)) {
5005       AllLoads = false;
5006       break;
5007     }
5008
5009   // The best way of building a v2i64 from two i64s is to use VLVGP.
5010   if (VT == MVT::v2i64 && !AllLoads)
5011     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5012
5013   // Use a 64-bit merge high to combine two doubles.
5014   if (VT == MVT::v2f64 && !AllLoads)
5015     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5016
5017   // Build v4f32 values directly from the FPRs:
5018   //
5019   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5020   //         V              V         VMRHF
5021   //      <ABxx>         <CDxx>
5022   //                V                 VMRHG
5023   //              <ABCD>
5024   if (VT == MVT::v4f32 && !AllLoads) {
5025     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5026     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5027     // Avoid unnecessary undefs by reusing the other operand.
5028     if (Op01.isUndef())
5029       Op01 = Op23;
5030     else if (Op23.isUndef())
5031       Op23 = Op01;
5032     // Merging identical replications is a no-op.
5033     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5034       return Op01;
5035     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5036     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5037     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5038                              DL, MVT::v2i64, Op01, Op23);
5039     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5040   }
5041
5042   // Collect the constant terms.
5043   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5044   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5045
5046   unsigned NumConstants = 0;
5047   for (unsigned I = 0; I < NumElements; ++I) {
5048     SDValue Elem = Elems[I];
5049     if (Elem.getOpcode() == ISD::Constant ||
5050         Elem.getOpcode() == ISD::ConstantFP) {
5051       NumConstants += 1;
5052       Constants[I] = Elem;
5053       Done[I] = true;
5054     }
5055   }
5056   // If there was at least one constant, fill in the other elements of
5057   // Constants with undefs to get a full vector constant and use that
5058   // as the starting point.
5059   SDValue Result;
5060   SDValue ReplicatedVal;
5061   if (NumConstants > 0) {
5062     for (unsigned I = 0; I < NumElements; ++I)
5063       if (!Constants[I].getNode())
5064         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5065     Result = DAG.getBuildVector(VT, DL, Constants);
5066   } else {
5067     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5068     // avoid a false dependency on any previous contents of the vector
5069     // register.
5070
5071     // Use a VLREP if at least one element is a load. Make sure to replicate
5072     // the load with the most elements having its value.
5073     std::map<const SDNode*, unsigned> UseCounts;
5074     SDNode *LoadMaxUses = nullptr;
5075     for (unsigned I = 0; I < NumElements; ++I)
5076       if (isVectorElementLoad(Elems[I])) {
5077         SDNode *Ld = Elems[I].getNode();
5078         UseCounts[Ld]++;
5079         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5080           LoadMaxUses = Ld;
5081       }
5082     if (LoadMaxUses != nullptr) {
5083       ReplicatedVal = SDValue(LoadMaxUses, 0);
5084       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5085     } else {
5086       // Try to use VLVGP.
5087       unsigned I1 = NumElements / 2 - 1;
5088       unsigned I2 = NumElements - 1;
5089       bool Def1 = !Elems[I1].isUndef();
5090       bool Def2 = !Elems[I2].isUndef();
5091       if (Def1 || Def2) {
5092         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5093         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5094         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5095                              joinDwords(DAG, DL, Elem1, Elem2));
5096         Done[I1] = true;
5097         Done[I2] = true;
5098       } else
5099         Result = DAG.getUNDEF(VT);
5100     }
5101   }
5102
5103   // Use VLVGx to insert the other elements.
5104   for (unsigned I = 0; I < NumElements; ++I)
5105     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5106       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5107                            DAG.getConstant(I, DL, MVT::i32));
5108   return Result;
5109 }
5110
5111 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5112                                                  SelectionDAG &DAG) const {
5113   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5114   SDLoc DL(Op);
5115   EVT VT = Op.getValueType();
5116
5117   if (BVN->isConstant()) {
5118     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5119       return Op;
5120
5121     // Fall back to loading it from memory.
5122     return SDValue();
5123   }
5124
5125   // See if we should use shuffles to construct the vector from other vectors.
5126   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5127     return Res;
5128
5129   // Detect SCALAR_TO_VECTOR conversions.
5130   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5131     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5132
5133   // Otherwise use buildVector to build the vector up from GPRs.
5134   unsigned NumElements = Op.getNumOperands();
5135   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5136   for (unsigned I = 0; I < NumElements; ++I)
5137     Ops[I] = Op.getOperand(I);
5138   return buildVector(DAG, DL, VT, Ops);
5139 }
5140
5141 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5142                                                    SelectionDAG &DAG) const {
5143   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5144   SDLoc DL(Op);
5145   EVT VT = Op.getValueType();
5146   unsigned NumElements = VT.getVectorNumElements();
5147
5148   if (VSN->isSplat()) {
5149     SDValue Op0 = Op.getOperand(0);
5150     unsigned Index = VSN->getSplatIndex();
5151     assert(Index < VT.getVectorNumElements() &&
5152            "Splat index should be defined and in first operand");
5153     // See whether the value we're splatting is directly available as a scalar.
5154     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5155         Op0.getOpcode() == ISD::BUILD_VECTOR)
5156       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5157     // Otherwise keep it as a vector-to-vector operation.
5158     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5159                        DAG.getTargetConstant(Index, DL, MVT::i32));
5160   }
5161
5162   GeneralShuffle GS(VT);
5163   for (unsigned I = 0; I < NumElements; ++I) {
5164     int Elt = VSN->getMaskElt(I);
5165     if (Elt < 0)
5166       GS.addUndef();
5167     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5168                      unsigned(Elt) % NumElements))
5169       return SDValue();
5170   }
5171   return GS.getNode(DAG, SDLoc(VSN));
5172 }
5173
5174 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5175                                                      SelectionDAG &DAG) const {
5176   SDLoc DL(Op);
5177   // Just insert the scalar into element 0 of an undefined vector.
5178   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5179                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5180                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5181 }
5182
5183 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5184                                                       SelectionDAG &DAG) const {
5185   // Handle insertions of floating-point values.
5186   SDLoc DL(Op);
5187   SDValue Op0 = Op.getOperand(0);
5188   SDValue Op1 = Op.getOperand(1);
5189   SDValue Op2 = Op.getOperand(2);
5190   EVT VT = Op.getValueType();
5191
5192   // Insertions into constant indices of a v2f64 can be done using VPDI.
5193   // However, if the inserted value is a bitcast or a constant then it's
5194   // better to use GPRs, as below.
5195   if (VT == MVT::v2f64 &&
5196       Op1.getOpcode() != ISD::BITCAST &&
5197       Op1.getOpcode() != ISD::ConstantFP &&
5198       Op2.getOpcode() == ISD::Constant) {
5199     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5200     unsigned Mask = VT.getVectorNumElements() - 1;
5201     if (Index <= Mask)
5202       return Op;
5203   }
5204
5205   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5206   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5207   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5208   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5209                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5210                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5211   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5212 }
5213
5214 SDValue
5215 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5216                                                SelectionDAG &DAG) const {
5217   // Handle extractions of floating-point values.
5218   SDLoc DL(Op);
5219   SDValue Op0 = Op.getOperand(0);
5220   SDValue Op1 = Op.getOperand(1);
5221   EVT VT = Op.getValueType();
5222   EVT VecVT = Op0.getValueType();
5223
5224   // Extractions of constant indices can be done directly.
5225   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5226     uint64_t Index = CIndexN->getZExtValue();
5227     unsigned Mask = VecVT.getVectorNumElements() - 1;
5228     if (Index <= Mask)
5229       return Op;
5230   }
5231
5232   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5233   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5234   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5235   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5236                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5237   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5238 }
5239
5240 SDValue SystemZTargetLowering::
5241 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5242   SDValue PackedOp = Op.getOperand(0);
5243   EVT OutVT = Op.getValueType();
5244   EVT InVT = PackedOp.getValueType();
5245   unsigned ToBits = OutVT.getScalarSizeInBits();
5246   unsigned FromBits = InVT.getScalarSizeInBits();
5247   do {
5248     FromBits *= 2;
5249     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5250                                  SystemZ::VectorBits / FromBits);
5251     PackedOp =
5252       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5253   } while (FromBits != ToBits);
5254   return PackedOp;
5255 }
5256
5257 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5258 SDValue SystemZTargetLowering::
5259 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5260   SDValue PackedOp = Op.getOperand(0);
5261   SDLoc DL(Op);
5262   EVT OutVT = Op.getValueType();
5263   EVT InVT = PackedOp.getValueType();
5264   unsigned InNumElts = InVT.getVectorNumElements();
5265   unsigned OutNumElts = OutVT.getVectorNumElements();
5266   unsigned NumInPerOut = InNumElts / OutNumElts;
5267
5268   SDValue ZeroVec =
5269     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5270
5271   SmallVector<int, 16> Mask(InNumElts);
5272   unsigned ZeroVecElt = InNumElts;
5273   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5274     unsigned MaskElt = PackedElt * NumInPerOut;
5275     unsigned End = MaskElt + NumInPerOut - 1;
5276     for (; MaskElt < End; MaskElt++)
5277       Mask[MaskElt] = ZeroVecElt++;
5278     Mask[MaskElt] = PackedElt;
5279   }
5280   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5281   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5282 }
5283
5284 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5285                                           unsigned ByScalar) const {
5286   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5287   SDValue Op0 = Op.getOperand(0);
5288   SDValue Op1 = Op.getOperand(1);
5289   SDLoc DL(Op);
5290   EVT VT = Op.getValueType();
5291   unsigned ElemBitSize = VT.getScalarSizeInBits();
5292
5293   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5294   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5295     APInt SplatBits, SplatUndef;
5296     unsigned SplatBitSize;
5297     bool HasAnyUndefs;
5298     // Check for constant splats.  Use ElemBitSize as the minimum element
5299     // width and reject splats that need wider elements.
5300     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5301                              ElemBitSize, true) &&
5302         SplatBitSize == ElemBitSize) {
5303       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5304                                       DL, MVT::i32);
5305       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5306     }
5307     // Check for variable splats.
5308     BitVector UndefElements;
5309     SDValue Splat = BVN->getSplatValue(&UndefElements);
5310     if (Splat) {
5311       // Since i32 is the smallest legal type, we either need a no-op
5312       // or a truncation.
5313       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5314       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5315     }
5316   }
5317
5318   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5319   // and the shift amount is directly available in a GPR.
5320   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5321     if (VSN->isSplat()) {
5322       SDValue VSNOp0 = VSN->getOperand(0);
5323       unsigned Index = VSN->getSplatIndex();
5324       assert(Index < VT.getVectorNumElements() &&
5325              "Splat index should be defined and in first operand");
5326       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5327           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5328         // Since i32 is the smallest legal type, we either need a no-op
5329         // or a truncation.
5330         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5331                                     VSNOp0.getOperand(Index));
5332         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5333       }
5334     }
5335   }
5336
5337   // Otherwise just treat the current form as legal.
5338   return Op;
5339 }
5340
5341 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5342                                               SelectionDAG &DAG) const {
5343   switch (Op.getOpcode()) {
5344   case ISD::FRAMEADDR:
5345     return lowerFRAMEADDR(Op, DAG);
5346   case ISD::RETURNADDR:
5347     return lowerRETURNADDR(Op, DAG);
5348   case ISD::BR_CC:
5349     return lowerBR_CC(Op, DAG);
5350   case ISD::SELECT_CC:
5351     return lowerSELECT_CC(Op, DAG);
5352   case ISD::SETCC:
5353     return lowerSETCC(Op, DAG);
5354   case ISD::STRICT_FSETCC:
5355     return lowerSTRICT_FSETCC(Op, DAG, false);
5356   case ISD::STRICT_FSETCCS:
5357     return lowerSTRICT_FSETCC(Op, DAG, true);
5358   case ISD::GlobalAddress:
5359     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5360   case ISD::GlobalTLSAddress:
5361     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5362   case ISD::BlockAddress:
5363     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5364   case ISD::JumpTable:
5365     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5366   case ISD::ConstantPool:
5367     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5368   case ISD::BITCAST:
5369     return lowerBITCAST(Op, DAG);
5370   case ISD::VASTART:
5371     return lowerVASTART(Op, DAG);
5372   case ISD::VACOPY:
5373     return lowerVACOPY(Op, DAG);
5374   case ISD::DYNAMIC_STACKALLOC:
5375     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5376   case ISD::GET_DYNAMIC_AREA_OFFSET:
5377     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5378   case ISD::SMUL_LOHI:
5379     return lowerSMUL_LOHI(Op, DAG);
5380   case ISD::UMUL_LOHI:
5381     return lowerUMUL_LOHI(Op, DAG);
5382   case ISD::SDIVREM:
5383     return lowerSDIVREM(Op, DAG);
5384   case ISD::UDIVREM:
5385     return lowerUDIVREM(Op, DAG);
5386   case ISD::SADDO:
5387   case ISD::SSUBO:
5388   case ISD::UADDO:
5389   case ISD::USUBO:
5390     return lowerXALUO(Op, DAG);
5391   case ISD::ADDCARRY:
5392   case ISD::SUBCARRY:
5393     return lowerADDSUBCARRY(Op, DAG);
5394   case ISD::OR:
5395     return lowerOR(Op, DAG);
5396   case ISD::CTPOP:
5397     return lowerCTPOP(Op, DAG);
5398   case ISD::ATOMIC_FENCE:
5399     return lowerATOMIC_FENCE(Op, DAG);
5400   case ISD::ATOMIC_SWAP:
5401     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5402   case ISD::ATOMIC_STORE:
5403     return lowerATOMIC_STORE(Op, DAG);
5404   case ISD::ATOMIC_LOAD:
5405     return lowerATOMIC_LOAD(Op, DAG);
5406   case ISD::ATOMIC_LOAD_ADD:
5407     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5408   case ISD::ATOMIC_LOAD_SUB:
5409     return lowerATOMIC_LOAD_SUB(Op, DAG);
5410   case ISD::ATOMIC_LOAD_AND:
5411     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5412   case ISD::ATOMIC_LOAD_OR:
5413     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5414   case ISD::ATOMIC_LOAD_XOR:
5415     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5416   case ISD::ATOMIC_LOAD_NAND:
5417     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5418   case ISD::ATOMIC_LOAD_MIN:
5419     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5420   case ISD::ATOMIC_LOAD_MAX:
5421     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5422   case ISD::ATOMIC_LOAD_UMIN:
5423     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5424   case ISD::ATOMIC_LOAD_UMAX:
5425     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5426   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5427     return lowerATOMIC_CMP_SWAP(Op, DAG);
5428   case ISD::STACKSAVE:
5429     return lowerSTACKSAVE(Op, DAG);
5430   case ISD::STACKRESTORE:
5431     return lowerSTACKRESTORE(Op, DAG);
5432   case ISD::PREFETCH:
5433     return lowerPREFETCH(Op, DAG);
5434   case ISD::INTRINSIC_W_CHAIN:
5435     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5436   case ISD::INTRINSIC_WO_CHAIN:
5437     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5438   case ISD::BUILD_VECTOR:
5439     return lowerBUILD_VECTOR(Op, DAG);
5440   case ISD::VECTOR_SHUFFLE:
5441     return lowerVECTOR_SHUFFLE(Op, DAG);
5442   case ISD::SCALAR_TO_VECTOR:
5443     return lowerSCALAR_TO_VECTOR(Op, DAG);
5444   case ISD::INSERT_VECTOR_ELT:
5445     return lowerINSERT_VECTOR_ELT(Op, DAG);
5446   case ISD::EXTRACT_VECTOR_ELT:
5447     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5448   case ISD::SIGN_EXTEND_VECTOR_INREG:
5449     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5450   case ISD::ZERO_EXTEND_VECTOR_INREG:
5451     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5452   case ISD::SHL:
5453     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5454   case ISD::SRL:
5455     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5456   case ISD::SRA:
5457     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5458   default:
5459     llvm_unreachable("Unexpected node to lower");
5460   }
5461 }
5462
5463 // Lower operations with invalid operand or result types (currently used
5464 // only for 128-bit integer types).
5465
5466 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5467   SDLoc DL(In);
5468   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5469                            DAG.getIntPtrConstant(0, DL));
5470   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5471                            DAG.getIntPtrConstant(1, DL));
5472   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5473                                     MVT::Untyped, Hi, Lo);
5474   return SDValue(Pair, 0);
5475 }
5476
5477 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5478   SDLoc DL(In);
5479   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5480                                           DL, MVT::i64, In);
5481   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5482                                           DL, MVT::i64, In);
5483   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5484 }
5485
5486 void
5487 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5488                                              SmallVectorImpl<SDValue> &Results,
5489                                              SelectionDAG &DAG) const {
5490   switch (N->getOpcode()) {
5491   case ISD::ATOMIC_LOAD: {
5492     SDLoc DL(N);
5493     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5494     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5495     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5496     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5497                                           DL, Tys, Ops, MVT::i128, MMO);
5498     Results.push_back(lowerGR128ToI128(DAG, Res));
5499     Results.push_back(Res.getValue(1));
5500     break;
5501   }
5502   case ISD::ATOMIC_STORE: {
5503     SDLoc DL(N);
5504     SDVTList Tys = DAG.getVTList(MVT::Other);
5505     SDValue Ops[] = { N->getOperand(0),
5506                       lowerI128ToGR128(DAG, N->getOperand(2)),
5507                       N->getOperand(1) };
5508     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5509     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5510                                           DL, Tys, Ops, MVT::i128, MMO);
5511     // We have to enforce sequential consistency by performing a
5512     // serialization operation after the store.
5513     if (cast<AtomicSDNode>(N)->getOrdering() ==
5514         AtomicOrdering::SequentiallyConsistent)
5515       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5516                                        MVT::Other, Res), 0);
5517     Results.push_back(Res);
5518     break;
5519   }
5520   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5521     SDLoc DL(N);
5522     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5523     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5524                       lowerI128ToGR128(DAG, N->getOperand(2)),
5525                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5526     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5527     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5528                                           DL, Tys, Ops, MVT::i128, MMO);
5529     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5530                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5531     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5532     Results.push_back(lowerGR128ToI128(DAG, Res));
5533     Results.push_back(Success);
5534     Results.push_back(Res.getValue(2));
5535     break;
5536   }
5537   default:
5538     llvm_unreachable("Unexpected node to lower");
5539   }
5540 }
5541
5542 void
5543 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5544                                           SmallVectorImpl<SDValue> &Results,
5545                                           SelectionDAG &DAG) const {
5546   return LowerOperationWrapper(N, Results, DAG);
5547 }
5548
5549 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5550 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5551   switch ((SystemZISD::NodeType)Opcode) {
5552     case SystemZISD::FIRST_NUMBER: break;
5553     OPCODE(RET_FLAG);
5554     OPCODE(CALL);
5555     OPCODE(SIBCALL);
5556     OPCODE(TLS_GDCALL);
5557     OPCODE(TLS_LDCALL);
5558     OPCODE(PCREL_WRAPPER);
5559     OPCODE(PCREL_OFFSET);
5560     OPCODE(IABS);
5561     OPCODE(ICMP);
5562     OPCODE(FCMP);
5563     OPCODE(STRICT_FCMP);
5564     OPCODE(STRICT_FCMPS);
5565     OPCODE(TM);
5566     OPCODE(BR_CCMASK);
5567     OPCODE(SELECT_CCMASK);
5568     OPCODE(ADJDYNALLOC);
5569     OPCODE(PROBED_ALLOCA);
5570     OPCODE(POPCNT);
5571     OPCODE(SMUL_LOHI);
5572     OPCODE(UMUL_LOHI);
5573     OPCODE(SDIVREM);
5574     OPCODE(UDIVREM);
5575     OPCODE(SADDO);
5576     OPCODE(SSUBO);
5577     OPCODE(UADDO);
5578     OPCODE(USUBO);
5579     OPCODE(ADDCARRY);
5580     OPCODE(SUBCARRY);
5581     OPCODE(GET_CCMASK);
5582     OPCODE(MVC);
5583     OPCODE(MVC_LOOP);
5584     OPCODE(NC);
5585     OPCODE(NC_LOOP);
5586     OPCODE(OC);
5587     OPCODE(OC_LOOP);
5588     OPCODE(XC);
5589     OPCODE(XC_LOOP);
5590     OPCODE(CLC);
5591     OPCODE(CLC_LOOP);
5592     OPCODE(STPCPY);
5593     OPCODE(STRCMP);
5594     OPCODE(SEARCH_STRING);
5595     OPCODE(IPM);
5596     OPCODE(MEMBARRIER);
5597     OPCODE(TBEGIN);
5598     OPCODE(TBEGIN_NOFLOAT);
5599     OPCODE(TEND);
5600     OPCODE(BYTE_MASK);
5601     OPCODE(ROTATE_MASK);
5602     OPCODE(REPLICATE);
5603     OPCODE(JOIN_DWORDS);
5604     OPCODE(SPLAT);
5605     OPCODE(MERGE_HIGH);
5606     OPCODE(MERGE_LOW);
5607     OPCODE(SHL_DOUBLE);
5608     OPCODE(PERMUTE_DWORDS);
5609     OPCODE(PERMUTE);
5610     OPCODE(PACK);
5611     OPCODE(PACKS_CC);
5612     OPCODE(PACKLS_CC);
5613     OPCODE(UNPACK_HIGH);
5614     OPCODE(UNPACKL_HIGH);
5615     OPCODE(UNPACK_LOW);
5616     OPCODE(UNPACKL_LOW);
5617     OPCODE(VSHL_BY_SCALAR);
5618     OPCODE(VSRL_BY_SCALAR);
5619     OPCODE(VSRA_BY_SCALAR);
5620     OPCODE(VSUM);
5621     OPCODE(VICMPE);
5622     OPCODE(VICMPH);
5623     OPCODE(VICMPHL);
5624     OPCODE(VICMPES);
5625     OPCODE(VICMPHS);
5626     OPCODE(VICMPHLS);
5627     OPCODE(VFCMPE);
5628     OPCODE(STRICT_VFCMPE);
5629     OPCODE(STRICT_VFCMPES);
5630     OPCODE(VFCMPH);
5631     OPCODE(STRICT_VFCMPH);
5632     OPCODE(STRICT_VFCMPHS);
5633     OPCODE(VFCMPHE);
5634     OPCODE(STRICT_VFCMPHE);
5635     OPCODE(STRICT_VFCMPHES);
5636     OPCODE(VFCMPES);
5637     OPCODE(VFCMPHS);
5638     OPCODE(VFCMPHES);
5639     OPCODE(VFTCI);
5640     OPCODE(VEXTEND);
5641     OPCODE(STRICT_VEXTEND);
5642     OPCODE(VROUND);
5643     OPCODE(STRICT_VROUND);
5644     OPCODE(VTM);
5645     OPCODE(VFAE_CC);
5646     OPCODE(VFAEZ_CC);
5647     OPCODE(VFEE_CC);
5648     OPCODE(VFEEZ_CC);
5649     OPCODE(VFENE_CC);
5650     OPCODE(VFENEZ_CC);
5651     OPCODE(VISTR_CC);
5652     OPCODE(VSTRC_CC);
5653     OPCODE(VSTRCZ_CC);
5654     OPCODE(VSTRS_CC);
5655     OPCODE(VSTRSZ_CC);
5656     OPCODE(TDC);
5657     OPCODE(ATOMIC_SWAPW);
5658     OPCODE(ATOMIC_LOADW_ADD);
5659     OPCODE(ATOMIC_LOADW_SUB);
5660     OPCODE(ATOMIC_LOADW_AND);
5661     OPCODE(ATOMIC_LOADW_OR);
5662     OPCODE(ATOMIC_LOADW_XOR);
5663     OPCODE(ATOMIC_LOADW_NAND);
5664     OPCODE(ATOMIC_LOADW_MIN);
5665     OPCODE(ATOMIC_LOADW_MAX);
5666     OPCODE(ATOMIC_LOADW_UMIN);
5667     OPCODE(ATOMIC_LOADW_UMAX);
5668     OPCODE(ATOMIC_CMP_SWAPW);
5669     OPCODE(ATOMIC_CMP_SWAP);
5670     OPCODE(ATOMIC_LOAD_128);
5671     OPCODE(ATOMIC_STORE_128);
5672     OPCODE(ATOMIC_CMP_SWAP_128);
5673     OPCODE(LRV);
5674     OPCODE(STRV);
5675     OPCODE(VLER);
5676     OPCODE(VSTER);
5677     OPCODE(PREFETCH);
5678   }
5679   return nullptr;
5680 #undef OPCODE
5681 }
5682
5683 // Return true if VT is a vector whose elements are a whole number of bytes
5684 // in width. Also check for presence of vector support.
5685 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5686   if (!Subtarget.hasVector())
5687     return false;
5688
5689   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5690 }
5691
5692 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5693 // producing a result of type ResVT.  Op is a possibly bitcast version
5694 // of the input vector and Index is the index (based on type VecVT) that
5695 // should be extracted.  Return the new extraction if a simplification
5696 // was possible or if Force is true.
5697 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5698                                               EVT VecVT, SDValue Op,
5699                                               unsigned Index,
5700                                               DAGCombinerInfo &DCI,
5701                                               bool Force) const {
5702   SelectionDAG &DAG = DCI.DAG;
5703
5704   // The number of bytes being extracted.
5705   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5706
5707   for (;;) {
5708     unsigned Opcode = Op.getOpcode();
5709     if (Opcode == ISD::BITCAST)
5710       // Look through bitcasts.
5711       Op = Op.getOperand(0);
5712     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5713              canTreatAsByteVector(Op.getValueType())) {
5714       // Get a VPERM-like permute mask and see whether the bytes covered
5715       // by the extracted element are a contiguous sequence from one
5716       // source operand.
5717       SmallVector<int, SystemZ::VectorBytes> Bytes;
5718       if (!getVPermMask(Op, Bytes))
5719         break;
5720       int First;
5721       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5722                            BytesPerElement, First))
5723         break;
5724       if (First < 0)
5725         return DAG.getUNDEF(ResVT);
5726       // Make sure the contiguous sequence starts at a multiple of the
5727       // original element size.
5728       unsigned Byte = unsigned(First) % Bytes.size();
5729       if (Byte % BytesPerElement != 0)
5730         break;
5731       // We can get the extracted value directly from an input.
5732       Index = Byte / BytesPerElement;
5733       Op = Op.getOperand(unsigned(First) / Bytes.size());
5734       Force = true;
5735     } else if (Opcode == ISD::BUILD_VECTOR &&
5736                canTreatAsByteVector(Op.getValueType())) {
5737       // We can only optimize this case if the BUILD_VECTOR elements are
5738       // at least as wide as the extracted value.
5739       EVT OpVT = Op.getValueType();
5740       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5741       if (OpBytesPerElement < BytesPerElement)
5742         break;
5743       // Make sure that the least-significant bit of the extracted value
5744       // is the least significant bit of an input.
5745       unsigned End = (Index + 1) * BytesPerElement;
5746       if (End % OpBytesPerElement != 0)
5747         break;
5748       // We're extracting the low part of one operand of the BUILD_VECTOR.
5749       Op = Op.getOperand(End / OpBytesPerElement - 1);
5750       if (!Op.getValueType().isInteger()) {
5751         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5752         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5753         DCI.AddToWorklist(Op.getNode());
5754       }
5755       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5756       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5757       if (VT != ResVT) {
5758         DCI.AddToWorklist(Op.getNode());
5759         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5760       }
5761       return Op;
5762     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5763                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5764                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5765                canTreatAsByteVector(Op.getValueType()) &&
5766                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5767       // Make sure that only the unextended bits are significant.
5768       EVT ExtVT = Op.getValueType();
5769       EVT OpVT = Op.getOperand(0).getValueType();
5770       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5771       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5772       unsigned Byte = Index * BytesPerElement;
5773       unsigned SubByte = Byte % ExtBytesPerElement;
5774       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5775       if (SubByte < MinSubByte ||
5776           SubByte + BytesPerElement > ExtBytesPerElement)
5777         break;
5778       // Get the byte offset of the unextended element
5779       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5780       // ...then add the byte offset relative to that element.
5781       Byte += SubByte - MinSubByte;
5782       if (Byte % BytesPerElement != 0)
5783         break;
5784       Op = Op.getOperand(0);
5785       Index = Byte / BytesPerElement;
5786       Force = true;
5787     } else
5788       break;
5789   }
5790   if (Force) {
5791     if (Op.getValueType() != VecVT) {
5792       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5793       DCI.AddToWorklist(Op.getNode());
5794     }
5795     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5796                        DAG.getConstant(Index, DL, MVT::i32));
5797   }
5798   return SDValue();
5799 }
5800
5801 // Optimize vector operations in scalar value Op on the basis that Op
5802 // is truncated to TruncVT.
5803 SDValue SystemZTargetLowering::combineTruncateExtract(
5804     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5805   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5806   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5807   // of type TruncVT.
5808   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5809       TruncVT.getSizeInBits() % 8 == 0) {
5810     SDValue Vec = Op.getOperand(0);
5811     EVT VecVT = Vec.getValueType();
5812     if (canTreatAsByteVector(VecVT)) {
5813       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5814         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5815         unsigned TruncBytes = TruncVT.getStoreSize();
5816         if (BytesPerElement % TruncBytes == 0) {
5817           // Calculate the value of Y' in the above description.  We are
5818           // splitting the original elements into Scale equal-sized pieces
5819           // and for truncation purposes want the last (least-significant)
5820           // of these pieces for IndexN.  This is easiest to do by calculating
5821           // the start index of the following element and then subtracting 1.
5822           unsigned Scale = BytesPerElement / TruncBytes;
5823           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5824
5825           // Defer the creation of the bitcast from X to combineExtract,
5826           // which might be able to optimize the extraction.
5827           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5828                                    VecVT.getStoreSize() / TruncBytes);
5829           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5830           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5831         }
5832       }
5833     }
5834   }
5835   return SDValue();
5836 }
5837
5838 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5839     SDNode *N, DAGCombinerInfo &DCI) const {
5840   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5841   SelectionDAG &DAG = DCI.DAG;
5842   SDValue N0 = N->getOperand(0);
5843   EVT VT = N->getValueType(0);
5844   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5845     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5846     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5847     if (TrueOp && FalseOp) {
5848       SDLoc DL(N0);
5849       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5850                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5851                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5852       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5853       // If N0 has multiple uses, change other uses as well.
5854       if (!N0.hasOneUse()) {
5855         SDValue TruncSelect =
5856           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5857         DCI.CombineTo(N0.getNode(), TruncSelect);
5858       }
5859       return NewSelect;
5860     }
5861   }
5862   return SDValue();
5863 }
5864
5865 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5866     SDNode *N, DAGCombinerInfo &DCI) const {
5867   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5868   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5869   // into (select_cc LHS, RHS, -1, 0, COND)
5870   SelectionDAG &DAG = DCI.DAG;
5871   SDValue N0 = N->getOperand(0);
5872   EVT VT = N->getValueType(0);
5873   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5874   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5875     N0 = N0.getOperand(0);
5876   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5877     SDLoc DL(N0);
5878     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5879                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5880                       N0.getOperand(2) };
5881     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5882   }
5883   return SDValue();
5884 }
5885
5886 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5887     SDNode *N, DAGCombinerInfo &DCI) const {
5888   // Convert (sext (ashr (shl X, C1), C2)) to
5889   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5890   // cheap as narrower ones.
5891   SelectionDAG &DAG = DCI.DAG;
5892   SDValue N0 = N->getOperand(0);
5893   EVT VT = N->getValueType(0);
5894   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5895     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5896     SDValue Inner = N0.getOperand(0);
5897     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5898       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5899         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5900         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5901         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5902         EVT ShiftVT = N0.getOperand(1).getValueType();
5903         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5904                                   Inner.getOperand(0));
5905         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5906                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5907                                                   ShiftVT));
5908         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5909                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5910       }
5911     }
5912   }
5913   return SDValue();
5914 }
5915
5916 SDValue SystemZTargetLowering::combineMERGE(
5917     SDNode *N, DAGCombinerInfo &DCI) const {
5918   SelectionDAG &DAG = DCI.DAG;
5919   unsigned Opcode = N->getOpcode();
5920   SDValue Op0 = N->getOperand(0);
5921   SDValue Op1 = N->getOperand(1);
5922   if (Op0.getOpcode() == ISD::BITCAST)
5923     Op0 = Op0.getOperand(0);
5924   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5925     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5926     // for v4f32.
5927     if (Op1 == N->getOperand(0))
5928       return Op1;
5929     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5930     EVT VT = Op1.getValueType();
5931     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5932     if (ElemBytes <= 4) {
5933       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5934                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5935       EVT InVT = VT.changeVectorElementTypeToInteger();
5936       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5937                                    SystemZ::VectorBytes / ElemBytes / 2);
5938       if (VT != InVT) {
5939         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5940         DCI.AddToWorklist(Op1.getNode());
5941       }
5942       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5943       DCI.AddToWorklist(Op.getNode());
5944       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5945     }
5946   }
5947   return SDValue();
5948 }
5949
5950 SDValue SystemZTargetLowering::combineLOAD(
5951     SDNode *N, DAGCombinerInfo &DCI) const {
5952   SelectionDAG &DAG = DCI.DAG;
5953   EVT LdVT = N->getValueType(0);
5954   if (LdVT.isVector() || LdVT.isInteger())
5955     return SDValue();
5956   // Transform a scalar load that is REPLICATEd as well as having other
5957   // use(s) to the form where the other use(s) use the first element of the
5958   // REPLICATE instead of the load. Otherwise instruction selection will not
5959   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5960   // point loads.
5961
5962   SDValue Replicate;
5963   SmallVector<SDNode*, 8> OtherUses;
5964   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5965        UI != UE; ++UI) {
5966     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5967       if (Replicate)
5968         return SDValue(); // Should never happen
5969       Replicate = SDValue(*UI, 0);
5970     }
5971     else if (UI.getUse().getResNo() == 0)
5972       OtherUses.push_back(*UI);
5973   }
5974   if (!Replicate || OtherUses.empty())
5975     return SDValue();
5976
5977   SDLoc DL(N);
5978   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5979                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5980   // Update uses of the loaded Value while preserving old chains.
5981   for (SDNode *U : OtherUses) {
5982     SmallVector<SDValue, 8> Ops;
5983     for (SDValue Op : U->ops())
5984       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5985     DAG.UpdateNodeOperands(U, Ops);
5986   }
5987   return SDValue(N, 0);
5988 }
5989
5990 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5991   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5992     return true;
5993   if (Subtarget.hasVectorEnhancements2())
5994     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5995       return true;
5996   return false;
5997 }
5998
5999 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6000   if (!VT.isVector() || !VT.isSimple() ||
6001       VT.getSizeInBits() != 128 ||
6002       VT.getScalarSizeInBits() % 8 != 0)
6003     return false;
6004
6005   unsigned NumElts = VT.getVectorNumElements();
6006   for (unsigned i = 0; i < NumElts; ++i) {
6007     if (M[i] < 0) continue; // ignore UNDEF indices
6008     if ((unsigned) M[i] != NumElts - 1 - i)
6009       return false;
6010   }
6011
6012   return true;
6013 }
6014
6015 SDValue SystemZTargetLowering::combineSTORE(
6016     SDNode *N, DAGCombinerInfo &DCI) const {
6017   SelectionDAG &DAG = DCI.DAG;
6018   auto *SN = cast<StoreSDNode>(N);
6019   auto &Op1 = N->getOperand(1);
6020   EVT MemVT = SN->getMemoryVT();
6021   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6022   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6023   // If X has wider elements then convert it to:
6024   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6025   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6026     if (SDValue Value =
6027             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6028       DCI.AddToWorklist(Value.getNode());
6029
6030       // Rewrite the store with the new form of stored value.
6031       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6032                                SN->getBasePtr(), SN->getMemoryVT(),
6033                                SN->getMemOperand());
6034     }
6035   }
6036   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6037   if (!SN->isTruncatingStore() &&
6038       Op1.getOpcode() == ISD::BSWAP &&
6039       Op1.getNode()->hasOneUse() &&
6040       canLoadStoreByteSwapped(Op1.getValueType())) {
6041
6042       SDValue BSwapOp = Op1.getOperand(0);
6043
6044       if (BSwapOp.getValueType() == MVT::i16)
6045         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6046
6047       SDValue Ops[] = {
6048         N->getOperand(0), BSwapOp, N->getOperand(2)
6049       };
6050
6051       return
6052         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6053                                 Ops, MemVT, SN->getMemOperand());
6054     }
6055   // Combine STORE (element-swap) into VSTER
6056   if (!SN->isTruncatingStore() &&
6057       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6058       Op1.getNode()->hasOneUse() &&
6059       Subtarget.hasVectorEnhancements2()) {
6060     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6061     ArrayRef<int> ShuffleMask = SVN->getMask();
6062     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6063       SDValue Ops[] = {
6064         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6065       };
6066
6067       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6068                                      DAG.getVTList(MVT::Other),
6069                                      Ops, MemVT, SN->getMemOperand());
6070     }
6071   }
6072
6073   return SDValue();
6074 }
6075
6076 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6077     SDNode *N, DAGCombinerInfo &DCI) const {
6078   SelectionDAG &DAG = DCI.DAG;
6079   // Combine element-swap (LOAD) into VLER
6080   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6081       N->getOperand(0).hasOneUse() &&
6082       Subtarget.hasVectorEnhancements2()) {
6083     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6084     ArrayRef<int> ShuffleMask = SVN->getMask();
6085     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6086       SDValue Load = N->getOperand(0);
6087       LoadSDNode *LD = cast<LoadSDNode>(Load);
6088
6089       // Create the element-swapping load.
6090       SDValue Ops[] = {
6091         LD->getChain(),    // Chain
6092         LD->getBasePtr()   // Ptr
6093       };
6094       SDValue ESLoad =
6095         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6096                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6097                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6098
6099       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6100       // by the load dead.
6101       DCI.CombineTo(N, ESLoad);
6102
6103       // Next, combine the load away, we give it a bogus result value but a real
6104       // chain result.  The result value is dead because the shuffle is dead.
6105       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6106
6107       // Return N so it doesn't get rechecked!
6108       return SDValue(N, 0);
6109     }
6110   }
6111
6112   return SDValue();
6113 }
6114
6115 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6116     SDNode *N, DAGCombinerInfo &DCI) const {
6117   SelectionDAG &DAG = DCI.DAG;
6118
6119   if (!Subtarget.hasVector())
6120     return SDValue();
6121
6122   // Look through bitcasts that retain the number of vector elements.
6123   SDValue Op = N->getOperand(0);
6124   if (Op.getOpcode() == ISD::BITCAST &&
6125       Op.getValueType().isVector() &&
6126       Op.getOperand(0).getValueType().isVector() &&
6127       Op.getValueType().getVectorNumElements() ==
6128       Op.getOperand(0).getValueType().getVectorNumElements())
6129     Op = Op.getOperand(0);
6130
6131   // Pull BSWAP out of a vector extraction.
6132   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6133     EVT VecVT = Op.getValueType();
6134     EVT EltVT = VecVT.getVectorElementType();
6135     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6136                      Op.getOperand(0), N->getOperand(1));
6137     DCI.AddToWorklist(Op.getNode());
6138     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6139     if (EltVT != N->getValueType(0)) {
6140       DCI.AddToWorklist(Op.getNode());
6141       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6142     }
6143     return Op;
6144   }
6145
6146   // Try to simplify a vector extraction.
6147   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6148     SDValue Op0 = N->getOperand(0);
6149     EVT VecVT = Op0.getValueType();
6150     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6151                           IndexN->getZExtValue(), DCI, false);
6152   }
6153   return SDValue();
6154 }
6155
6156 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6157     SDNode *N, DAGCombinerInfo &DCI) const {
6158   SelectionDAG &DAG = DCI.DAG;
6159   // (join_dwords X, X) == (replicate X)
6160   if (N->getOperand(0) == N->getOperand(1))
6161     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6162                        N->getOperand(0));
6163   return SDValue();
6164 }
6165
6166 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6167   SDValue Chain1 = N1->getOperand(0);
6168   SDValue Chain2 = N2->getOperand(0);
6169
6170   // Trivial case: both nodes take the same chain.
6171   if (Chain1 == Chain2)
6172     return Chain1;
6173
6174   // FIXME - we could handle more complex cases via TokenFactor,
6175   // assuming we can verify that this would not create a cycle.
6176   return SDValue();
6177 }
6178
6179 SDValue SystemZTargetLowering::combineFP_ROUND(
6180     SDNode *N, DAGCombinerInfo &DCI) const {
6181
6182   if (!Subtarget.hasVector())
6183     return SDValue();
6184
6185   // (fpround (extract_vector_elt X 0))
6186   // (fpround (extract_vector_elt X 1)) ->
6187   // (extract_vector_elt (VROUND X) 0)
6188   // (extract_vector_elt (VROUND X) 2)
6189   //
6190   // This is a special case since the target doesn't really support v2f32s.
6191   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6192   SelectionDAG &DAG = DCI.DAG;
6193   SDValue Op0 = N->getOperand(OpNo);
6194   if (N->getValueType(0) == MVT::f32 &&
6195       Op0.hasOneUse() &&
6196       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6197       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6198       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6199       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6200     SDValue Vec = Op0.getOperand(0);
6201     for (auto *U : Vec->uses()) {
6202       if (U != Op0.getNode() &&
6203           U->hasOneUse() &&
6204           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6205           U->getOperand(0) == Vec &&
6206           U->getOperand(1).getOpcode() == ISD::Constant &&
6207           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6208         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6209         if (OtherRound.getOpcode() == N->getOpcode() &&
6210             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6211             OtherRound.getValueType() == MVT::f32) {
6212           SDValue VRound, Chain;
6213           if (N->isStrictFPOpcode()) {
6214             Chain = MergeInputChains(N, OtherRound.getNode());
6215             if (!Chain)
6216               continue;
6217             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6218                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6219             Chain = VRound.getValue(1);
6220           } else
6221             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6222                                  MVT::v4f32, Vec);
6223           DCI.AddToWorklist(VRound.getNode());
6224           SDValue Extract1 =
6225             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6226                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6227           DCI.AddToWorklist(Extract1.getNode());
6228           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6229           if (Chain)
6230             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6231           SDValue Extract0 =
6232             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6233                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6234           if (Chain)
6235             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6236                                N->getVTList(), Extract0, Chain);
6237           return Extract0;
6238         }
6239       }
6240     }
6241   }
6242   return SDValue();
6243 }
6244
6245 SDValue SystemZTargetLowering::combineFP_EXTEND(
6246     SDNode *N, DAGCombinerInfo &DCI) const {
6247
6248   if (!Subtarget.hasVector())
6249     return SDValue();
6250
6251   // (fpextend (extract_vector_elt X 0))
6252   // (fpextend (extract_vector_elt X 2)) ->
6253   // (extract_vector_elt (VEXTEND X) 0)
6254   // (extract_vector_elt (VEXTEND X) 1)
6255   //
6256   // This is a special case since the target doesn't really support v2f32s.
6257   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6258   SelectionDAG &DAG = DCI.DAG;
6259   SDValue Op0 = N->getOperand(OpNo);
6260   if (N->getValueType(0) == MVT::f64 &&
6261       Op0.hasOneUse() &&
6262       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6263       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6264       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6265       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6266     SDValue Vec = Op0.getOperand(0);
6267     for (auto *U : Vec->uses()) {
6268       if (U != Op0.getNode() &&
6269           U->hasOneUse() &&
6270           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6271           U->getOperand(0) == Vec &&
6272           U->getOperand(1).getOpcode() == ISD::Constant &&
6273           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6274         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6275         if (OtherExtend.getOpcode() == N->getOpcode() &&
6276             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6277             OtherExtend.getValueType() == MVT::f64) {
6278           SDValue VExtend, Chain;
6279           if (N->isStrictFPOpcode()) {
6280             Chain = MergeInputChains(N, OtherExtend.getNode());
6281             if (!Chain)
6282               continue;
6283             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6284                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6285             Chain = VExtend.getValue(1);
6286           } else
6287             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6288                                   MVT::v2f64, Vec);
6289           DCI.AddToWorklist(VExtend.getNode());
6290           SDValue Extract1 =
6291             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6292                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6293           DCI.AddToWorklist(Extract1.getNode());
6294           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6295           if (Chain)
6296             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6297           SDValue Extract0 =
6298             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6299                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6300           if (Chain)
6301             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6302                                N->getVTList(), Extract0, Chain);
6303           return Extract0;
6304         }
6305       }
6306     }
6307   }
6308   return SDValue();
6309 }
6310
6311 SDValue SystemZTargetLowering::combineINT_TO_FP(
6312     SDNode *N, DAGCombinerInfo &DCI) const {
6313   if (DCI.Level != BeforeLegalizeTypes)
6314     return SDValue();
6315   unsigned Opcode = N->getOpcode();
6316   EVT OutVT = N->getValueType(0);
6317   SelectionDAG &DAG = DCI.DAG;
6318   SDValue Op = N->getOperand(0);
6319   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6320   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6321
6322   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6323   // v2f64 = uint_to_fp v2i16
6324   // =>
6325   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6326   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6327     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6328                                  OutVT.getVectorNumElements());
6329     unsigned ExtOpcode =
6330       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6331     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6332     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6333   }
6334   return SDValue();
6335 }
6336
6337 SDValue SystemZTargetLowering::combineBSWAP(
6338     SDNode *N, DAGCombinerInfo &DCI) const {
6339   SelectionDAG &DAG = DCI.DAG;
6340   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6341   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6342       N->getOperand(0).hasOneUse() &&
6343       canLoadStoreByteSwapped(N->getValueType(0))) {
6344       SDValue Load = N->getOperand(0);
6345       LoadSDNode *LD = cast<LoadSDNode>(Load);
6346
6347       // Create the byte-swapping load.
6348       SDValue Ops[] = {
6349         LD->getChain(),    // Chain
6350         LD->getBasePtr()   // Ptr
6351       };
6352       EVT LoadVT = N->getValueType(0);
6353       if (LoadVT == MVT::i16)
6354         LoadVT = MVT::i32;
6355       SDValue BSLoad =
6356         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6357                                 DAG.getVTList(LoadVT, MVT::Other),
6358                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6359
6360       // If this is an i16 load, insert the truncate.
6361       SDValue ResVal = BSLoad;
6362       if (N->getValueType(0) == MVT::i16)
6363         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6364
6365       // First, combine the bswap away.  This makes the value produced by the
6366       // load dead.
6367       DCI.CombineTo(N, ResVal);
6368
6369       // Next, combine the load away, we give it a bogus result value but a real
6370       // chain result.  The result value is dead because the bswap is dead.
6371       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6372
6373       // Return N so it doesn't get rechecked!
6374       return SDValue(N, 0);
6375     }
6376
6377   // Look through bitcasts that retain the number of vector elements.
6378   SDValue Op = N->getOperand(0);
6379   if (Op.getOpcode() == ISD::BITCAST &&
6380       Op.getValueType().isVector() &&
6381       Op.getOperand(0).getValueType().isVector() &&
6382       Op.getValueType().getVectorNumElements() ==
6383       Op.getOperand(0).getValueType().getVectorNumElements())
6384     Op = Op.getOperand(0);
6385
6386   // Push BSWAP into a vector insertion if at least one side then simplifies.
6387   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6388     SDValue Vec = Op.getOperand(0);
6389     SDValue Elt = Op.getOperand(1);
6390     SDValue Idx = Op.getOperand(2);
6391
6392     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6393         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6394         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6395         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6396         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6397          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6398       EVT VecVT = N->getValueType(0);
6399       EVT EltVT = N->getValueType(0).getVectorElementType();
6400       if (VecVT != Vec.getValueType()) {
6401         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6402         DCI.AddToWorklist(Vec.getNode());
6403       }
6404       if (EltVT != Elt.getValueType()) {
6405         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6406         DCI.AddToWorklist(Elt.getNode());
6407       }
6408       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6409       DCI.AddToWorklist(Vec.getNode());
6410       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6411       DCI.AddToWorklist(Elt.getNode());
6412       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6413                          Vec, Elt, Idx);
6414     }
6415   }
6416
6417   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6418   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6419   if (SV && Op.hasOneUse()) {
6420     SDValue Op0 = Op.getOperand(0);
6421     SDValue Op1 = Op.getOperand(1);
6422
6423     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6424         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6425         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6426         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6427       EVT VecVT = N->getValueType(0);
6428       if (VecVT != Op0.getValueType()) {
6429         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6430         DCI.AddToWorklist(Op0.getNode());
6431       }
6432       if (VecVT != Op1.getValueType()) {
6433         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6434         DCI.AddToWorklist(Op1.getNode());
6435       }
6436       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6437       DCI.AddToWorklist(Op0.getNode());
6438       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6439       DCI.AddToWorklist(Op1.getNode());
6440       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6441     }
6442   }
6443
6444   return SDValue();
6445 }
6446
6447 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6448   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6449   // set by the CCReg instruction using the CCValid / CCMask masks,
6450   // If the CCReg instruction is itself a ICMP testing the condition
6451   // code set by some other instruction, see whether we can directly
6452   // use that condition code.
6453
6454   // Verify that we have an ICMP against some constant.
6455   if (CCValid != SystemZ::CCMASK_ICMP)
6456     return false;
6457   auto *ICmp = CCReg.getNode();
6458   if (ICmp->getOpcode() != SystemZISD::ICMP)
6459     return false;
6460   auto *CompareLHS = ICmp->getOperand(0).getNode();
6461   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6462   if (!CompareRHS)
6463     return false;
6464
6465   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6466   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6467     // Verify that we have an appropriate mask for a EQ or NE comparison.
6468     bool Invert = false;
6469     if (CCMask == SystemZ::CCMASK_CMP_NE)
6470       Invert = !Invert;
6471     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6472       return false;
6473
6474     // Verify that the ICMP compares against one of select values.
6475     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6476     if (!TrueVal)
6477       return false;
6478     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6479     if (!FalseVal)
6480       return false;
6481     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6482       Invert = !Invert;
6483     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6484       return false;
6485
6486     // Compute the effective CC mask for the new branch or select.
6487     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6488     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6489     if (!NewCCValid || !NewCCMask)
6490       return false;
6491     CCValid = NewCCValid->getZExtValue();
6492     CCMask = NewCCMask->getZExtValue();
6493     if (Invert)
6494       CCMask ^= CCValid;
6495
6496     // Return the updated CCReg link.
6497     CCReg = CompareLHS->getOperand(4);
6498     return true;
6499   }
6500
6501   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6502   if (CompareLHS->getOpcode() == ISD::SRA) {
6503     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6504     if (!SRACount || SRACount->getZExtValue() != 30)
6505       return false;
6506     auto *SHL = CompareLHS->getOperand(0).getNode();
6507     if (SHL->getOpcode() != ISD::SHL)
6508       return false;
6509     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6510     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6511       return false;
6512     auto *IPM = SHL->getOperand(0).getNode();
6513     if (IPM->getOpcode() != SystemZISD::IPM)
6514       return false;
6515
6516     // Avoid introducing CC spills (because SRA would clobber CC).
6517     if (!CompareLHS->hasOneUse())
6518       return false;
6519     // Verify that the ICMP compares against zero.
6520     if (CompareRHS->getZExtValue() != 0)
6521       return false;
6522
6523     // Compute the effective CC mask for the new branch or select.
6524     CCMask = SystemZ::reverseCCMask(CCMask);
6525
6526     // Return the updated CCReg link.
6527     CCReg = IPM->getOperand(0);
6528     return true;
6529   }
6530
6531   return false;
6532 }
6533
6534 SDValue SystemZTargetLowering::combineBR_CCMASK(
6535     SDNode *N, DAGCombinerInfo &DCI) const {
6536   SelectionDAG &DAG = DCI.DAG;
6537
6538   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6539   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6540   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6541   if (!CCValid || !CCMask)
6542     return SDValue();
6543
6544   int CCValidVal = CCValid->getZExtValue();
6545   int CCMaskVal = CCMask->getZExtValue();
6546   SDValue Chain = N->getOperand(0);
6547   SDValue CCReg = N->getOperand(4);
6548
6549   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6550     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6551                        Chain,
6552                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6553                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6554                        N->getOperand(3), CCReg);
6555   return SDValue();
6556 }
6557
6558 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6559     SDNode *N, DAGCombinerInfo &DCI) const {
6560   SelectionDAG &DAG = DCI.DAG;
6561
6562   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6563   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6564   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6565   if (!CCValid || !CCMask)
6566     return SDValue();
6567
6568   int CCValidVal = CCValid->getZExtValue();
6569   int CCMaskVal = CCMask->getZExtValue();
6570   SDValue CCReg = N->getOperand(4);
6571
6572   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6573     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6574                        N->getOperand(0), N->getOperand(1),
6575                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6576                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6577                        CCReg);
6578   return SDValue();
6579 }
6580
6581
6582 SDValue SystemZTargetLowering::combineGET_CCMASK(
6583     SDNode *N, DAGCombinerInfo &DCI) const {
6584
6585   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6586   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6587   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6588   if (!CCValid || !CCMask)
6589     return SDValue();
6590   int CCValidVal = CCValid->getZExtValue();
6591   int CCMaskVal = CCMask->getZExtValue();
6592
6593   SDValue Select = N->getOperand(0);
6594   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6595     return SDValue();
6596
6597   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6598   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6599   if (!SelectCCValid || !SelectCCMask)
6600     return SDValue();
6601   int SelectCCValidVal = SelectCCValid->getZExtValue();
6602   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6603
6604   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6605   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6606   if (!TrueVal || !FalseVal)
6607     return SDValue();
6608   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6609     ;
6610   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6611     SelectCCMaskVal ^= SelectCCValidVal;
6612   else
6613     return SDValue();
6614
6615   if (SelectCCValidVal & ~CCValidVal)
6616     return SDValue();
6617   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6618     return SDValue();
6619
6620   return Select->getOperand(4);
6621 }
6622
6623 SDValue SystemZTargetLowering::combineIntDIVREM(
6624     SDNode *N, DAGCombinerInfo &DCI) const {
6625   SelectionDAG &DAG = DCI.DAG;
6626   EVT VT = N->getValueType(0);
6627   // In the case where the divisor is a vector of constants a cheaper
6628   // sequence of instructions can replace the divide. BuildSDIV is called to
6629   // do this during DAG combining, but it only succeeds when it can build a
6630   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6631   // since it is not Legal but Custom it can only happen before
6632   // legalization. Therefore we must scalarize this early before Combine
6633   // 1. For widened vectors, this is already the result of type legalization.
6634   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6635       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6636     return DAG.UnrollVectorOp(N);
6637   return SDValue();
6638 }
6639
6640 SDValue SystemZTargetLowering::combineINTRINSIC(
6641     SDNode *N, DAGCombinerInfo &DCI) const {
6642   SelectionDAG &DAG = DCI.DAG;
6643
6644   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6645   switch (Id) {
6646   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6647   // or larger is simply a vector load.
6648   case Intrinsic::s390_vll:
6649   case Intrinsic::s390_vlrl:
6650     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6651       if (C->getZExtValue() >= 15)
6652         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6653                            N->getOperand(3), MachinePointerInfo());
6654     break;
6655   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6656   case Intrinsic::s390_vstl:
6657   case Intrinsic::s390_vstrl:
6658     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6659       if (C->getZExtValue() >= 15)
6660         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6661                             N->getOperand(4), MachinePointerInfo());
6662     break;
6663   }
6664
6665   return SDValue();
6666 }
6667
6668 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6669   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6670     return N->getOperand(0);
6671   return N;
6672 }
6673
6674 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6675                                                  DAGCombinerInfo &DCI) const {
6676   switch(N->getOpcode()) {
6677   default: break;
6678   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6679   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6680   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6681   case SystemZISD::MERGE_HIGH:
6682   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6683   case ISD::LOAD:               return combineLOAD(N, DCI);
6684   case ISD::STORE:              return combineSTORE(N, DCI);
6685   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6686   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6687   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6688   case ISD::STRICT_FP_ROUND:
6689   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6690   case ISD::STRICT_FP_EXTEND:
6691   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6692   case ISD::SINT_TO_FP:
6693   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6694   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6695   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6696   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6697   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6698   case ISD::SDIV:
6699   case ISD::UDIV:
6700   case ISD::SREM:
6701   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6702   case ISD::INTRINSIC_W_CHAIN:
6703   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6704   }
6705
6706   return SDValue();
6707 }
6708
6709 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6710 // are for Op.
6711 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6712                                     unsigned OpNo) {
6713   EVT VT = Op.getValueType();
6714   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6715   APInt SrcDemE;
6716   unsigned Opcode = Op.getOpcode();
6717   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6718     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6719     switch (Id) {
6720     case Intrinsic::s390_vpksh:   // PACKS
6721     case Intrinsic::s390_vpksf:
6722     case Intrinsic::s390_vpksg:
6723     case Intrinsic::s390_vpkshs:  // PACKS_CC
6724     case Intrinsic::s390_vpksfs:
6725     case Intrinsic::s390_vpksgs:
6726     case Intrinsic::s390_vpklsh:  // PACKLS
6727     case Intrinsic::s390_vpklsf:
6728     case Intrinsic::s390_vpklsg:
6729     case Intrinsic::s390_vpklshs: // PACKLS_CC
6730     case Intrinsic::s390_vpklsfs:
6731     case Intrinsic::s390_vpklsgs:
6732       // VECTOR PACK truncates the elements of two source vectors into one.
6733       SrcDemE = DemandedElts;
6734       if (OpNo == 2)
6735         SrcDemE.lshrInPlace(NumElts / 2);
6736       SrcDemE = SrcDemE.trunc(NumElts / 2);
6737       break;
6738       // VECTOR UNPACK extends half the elements of the source vector.
6739     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6740     case Intrinsic::s390_vuphh:
6741     case Intrinsic::s390_vuphf:
6742     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6743     case Intrinsic::s390_vuplhh:
6744     case Intrinsic::s390_vuplhf:
6745       SrcDemE = APInt(NumElts * 2, 0);
6746       SrcDemE.insertBits(DemandedElts, 0);
6747       break;
6748     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6749     case Intrinsic::s390_vuplhw:
6750     case Intrinsic::s390_vuplf:
6751     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6752     case Intrinsic::s390_vupllh:
6753     case Intrinsic::s390_vupllf:
6754       SrcDemE = APInt(NumElts * 2, 0);
6755       SrcDemE.insertBits(DemandedElts, NumElts);
6756       break;
6757     case Intrinsic::s390_vpdi: {
6758       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6759       SrcDemE = APInt(NumElts, 0);
6760       if (!DemandedElts[OpNo - 1])
6761         break;
6762       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6763       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6764       // Demand input element 0 or 1, given by the mask bit value.
6765       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6766       break;
6767     }
6768     case Intrinsic::s390_vsldb: {
6769       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6770       assert(VT == MVT::v16i8 && "Unexpected type.");
6771       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6772       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6773       unsigned NumSrc0Els = 16 - FirstIdx;
6774       SrcDemE = APInt(NumElts, 0);
6775       if (OpNo == 1) {
6776         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6777         SrcDemE.insertBits(DemEls, FirstIdx);
6778       } else {
6779         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6780         SrcDemE.insertBits(DemEls, 0);
6781       }
6782       break;
6783     }
6784     case Intrinsic::s390_vperm:
6785       SrcDemE = APInt(NumElts, 1);
6786       break;
6787     default:
6788       llvm_unreachable("Unhandled intrinsic.");
6789       break;
6790     }
6791   } else {
6792     switch (Opcode) {
6793     case SystemZISD::JOIN_DWORDS:
6794       // Scalar operand.
6795       SrcDemE = APInt(1, 1);
6796       break;
6797     case SystemZISD::SELECT_CCMASK:
6798       SrcDemE = DemandedElts;
6799       break;
6800     default:
6801       llvm_unreachable("Unhandled opcode.");
6802       break;
6803     }
6804   }
6805   return SrcDemE;
6806 }
6807
6808 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6809                                   const APInt &DemandedElts,
6810                                   const SelectionDAG &DAG, unsigned Depth,
6811                                   unsigned OpNo) {
6812   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6813   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6814   KnownBits LHSKnown =
6815       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6816   KnownBits RHSKnown =
6817       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6818   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6819   Known.One = LHSKnown.One & RHSKnown.One;
6820 }
6821
6822 void
6823 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6824                                                      KnownBits &Known,
6825                                                      const APInt &DemandedElts,
6826                                                      const SelectionDAG &DAG,
6827                                                      unsigned Depth) const {
6828   Known.resetAll();
6829
6830   // Intrinsic CC result is returned in the two low bits.
6831   unsigned tmp0, tmp1; // not used
6832   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6833     Known.Zero.setBitsFrom(2);
6834     return;
6835   }
6836   EVT VT = Op.getValueType();
6837   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6838     return;
6839   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6840           "KnownBits does not match VT in bitwidth");
6841   assert ((!VT.isVector() ||
6842            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6843           "DemandedElts does not match VT number of elements");
6844   unsigned BitWidth = Known.getBitWidth();
6845   unsigned Opcode = Op.getOpcode();
6846   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6847     bool IsLogical = false;
6848     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6849     switch (Id) {
6850     case Intrinsic::s390_vpksh:   // PACKS
6851     case Intrinsic::s390_vpksf:
6852     case Intrinsic::s390_vpksg:
6853     case Intrinsic::s390_vpkshs:  // PACKS_CC
6854     case Intrinsic::s390_vpksfs:
6855     case Intrinsic::s390_vpksgs:
6856     case Intrinsic::s390_vpklsh:  // PACKLS
6857     case Intrinsic::s390_vpklsf:
6858     case Intrinsic::s390_vpklsg:
6859     case Intrinsic::s390_vpklshs: // PACKLS_CC
6860     case Intrinsic::s390_vpklsfs:
6861     case Intrinsic::s390_vpklsgs:
6862     case Intrinsic::s390_vpdi:
6863     case Intrinsic::s390_vsldb:
6864     case Intrinsic::s390_vperm:
6865       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6866       break;
6867     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6868     case Intrinsic::s390_vuplhh:
6869     case Intrinsic::s390_vuplhf:
6870     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6871     case Intrinsic::s390_vupllh:
6872     case Intrinsic::s390_vupllf:
6873       IsLogical = true;
6874       LLVM_FALLTHROUGH;
6875     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6876     case Intrinsic::s390_vuphh:
6877     case Intrinsic::s390_vuphf:
6878     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6879     case Intrinsic::s390_vuplhw:
6880     case Intrinsic::s390_vuplf: {
6881       SDValue SrcOp = Op.getOperand(1);
6882       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6883       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6884       if (IsLogical) {
6885         Known = Known.zext(BitWidth);
6886       } else
6887         Known = Known.sext(BitWidth);
6888       break;
6889     }
6890     default:
6891       break;
6892     }
6893   } else {
6894     switch (Opcode) {
6895     case SystemZISD::JOIN_DWORDS:
6896     case SystemZISD::SELECT_CCMASK:
6897       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6898       break;
6899     case SystemZISD::REPLICATE: {
6900       SDValue SrcOp = Op.getOperand(0);
6901       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6902       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6903         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6904       break;
6905     }
6906     default:
6907       break;
6908     }
6909   }
6910
6911   // Known has the width of the source operand(s). Adjust if needed to match
6912   // the passed bitwidth.
6913   if (Known.getBitWidth() != BitWidth)
6914     Known = Known.anyextOrTrunc(BitWidth);
6915 }
6916
6917 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6918                                         const SelectionDAG &DAG, unsigned Depth,
6919                                         unsigned OpNo) {
6920   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6921   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6922   if (LHS == 1) return 1; // Early out.
6923   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6924   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6925   if (RHS == 1) return 1; // Early out.
6926   unsigned Common = std::min(LHS, RHS);
6927   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6928   EVT VT = Op.getValueType();
6929   unsigned VTBits = VT.getScalarSizeInBits();
6930   if (SrcBitWidth > VTBits) { // PACK
6931     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6932     if (Common > SrcExtraBits)
6933       return (Common - SrcExtraBits);
6934     return 1;
6935   }
6936   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6937   return Common;
6938 }
6939
6940 unsigned
6941 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6942     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6943     unsigned Depth) const {
6944   if (Op.getResNo() != 0)
6945     return 1;
6946   unsigned Opcode = Op.getOpcode();
6947   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6948     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6949     switch (Id) {
6950     case Intrinsic::s390_vpksh:   // PACKS
6951     case Intrinsic::s390_vpksf:
6952     case Intrinsic::s390_vpksg:
6953     case Intrinsic::s390_vpkshs:  // PACKS_CC
6954     case Intrinsic::s390_vpksfs:
6955     case Intrinsic::s390_vpksgs:
6956     case Intrinsic::s390_vpklsh:  // PACKLS
6957     case Intrinsic::s390_vpklsf:
6958     case Intrinsic::s390_vpklsg:
6959     case Intrinsic::s390_vpklshs: // PACKLS_CC
6960     case Intrinsic::s390_vpklsfs:
6961     case Intrinsic::s390_vpklsgs:
6962     case Intrinsic::s390_vpdi:
6963     case Intrinsic::s390_vsldb:
6964     case Intrinsic::s390_vperm:
6965       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6966     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6967     case Intrinsic::s390_vuphh:
6968     case Intrinsic::s390_vuphf:
6969     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6970     case Intrinsic::s390_vuplhw:
6971     case Intrinsic::s390_vuplf: {
6972       SDValue PackedOp = Op.getOperand(1);
6973       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6974       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6975       EVT VT = Op.getValueType();
6976       unsigned VTBits = VT.getScalarSizeInBits();
6977       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6978       return Tmp;
6979     }
6980     default:
6981       break;
6982     }
6983   } else {
6984     switch (Opcode) {
6985     case SystemZISD::SELECT_CCMASK:
6986       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6987     default:
6988       break;
6989     }
6990   }
6991
6992   return 1;
6993 }
6994
6995 unsigned
6996 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
6997   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
6998   unsigned StackAlign = TFI->getStackAlignment();
6999   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7000          "Unexpected stack alignment");
7001   // The default stack probe size is 4096 if the function has no
7002   // stack-probe-size attribute.
7003   unsigned StackProbeSize = 4096;
7004   const Function &Fn = MF.getFunction();
7005   if (Fn.hasFnAttribute("stack-probe-size"))
7006     Fn.getFnAttribute("stack-probe-size")
7007         .getValueAsString()
7008         .getAsInteger(0, StackProbeSize);
7009   // Round down to the stack alignment.
7010   StackProbeSize &= ~(StackAlign - 1);
7011   return StackProbeSize ? StackProbeSize : StackAlign;
7012 }
7013
7014 //===----------------------------------------------------------------------===//
7015 // Custom insertion
7016 //===----------------------------------------------------------------------===//
7017
7018 // Force base value Base into a register before MI.  Return the register.
7019 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7020                          const SystemZInstrInfo *TII) {
7021   if (Base.isReg())
7022     return Base.getReg();
7023
7024   MachineBasicBlock *MBB = MI.getParent();
7025   MachineFunction &MF = *MBB->getParent();
7026   MachineRegisterInfo &MRI = MF.getRegInfo();
7027
7028   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7029   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7030       .add(Base)
7031       .addImm(0)
7032       .addReg(0);
7033   return Reg;
7034 }
7035
7036 // The CC operand of MI might be missing a kill marker because there
7037 // were multiple uses of CC, and ISel didn't know which to mark.
7038 // Figure out whether MI should have had a kill marker.
7039 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7040   // Scan forward through BB for a use/def of CC.
7041   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7042   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7043     const MachineInstr& mi = *miI;
7044     if (mi.readsRegister(SystemZ::CC))
7045       return false;
7046     if (mi.definesRegister(SystemZ::CC))
7047       break; // Should have kill-flag - update below.
7048   }
7049
7050   // If we hit the end of the block, check whether CC is live into a
7051   // successor.
7052   if (miI == MBB->end()) {
7053     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
7054       if ((*SI)->isLiveIn(SystemZ::CC))
7055         return false;
7056   }
7057
7058   return true;
7059 }
7060
7061 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7062 // together with other Select pseudo-opcodes into a single basic-block with
7063 // a conditional jump around it.
7064 static bool isSelectPseudo(MachineInstr &MI) {
7065   switch (MI.getOpcode()) {
7066   case SystemZ::Select32:
7067   case SystemZ::Select64:
7068   case SystemZ::SelectF32:
7069   case SystemZ::SelectF64:
7070   case SystemZ::SelectF128:
7071   case SystemZ::SelectVR32:
7072   case SystemZ::SelectVR64:
7073   case SystemZ::SelectVR128:
7074     return true;
7075
7076   default:
7077     return false;
7078   }
7079 }
7080
7081 // Helper function, which inserts PHI functions into SinkMBB:
7082 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7083 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7084 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7085                                  MachineBasicBlock *TrueMBB,
7086                                  MachineBasicBlock *FalseMBB,
7087                                  MachineBasicBlock *SinkMBB) {
7088   MachineFunction *MF = TrueMBB->getParent();
7089   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7090
7091   MachineInstr *FirstMI = Selects.front();
7092   unsigned CCValid = FirstMI->getOperand(3).getImm();
7093   unsigned CCMask = FirstMI->getOperand(4).getImm();
7094
7095   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7096
7097   // As we are creating the PHIs, we have to be careful if there is more than
7098   // one.  Later Selects may reference the results of earlier Selects, but later
7099   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7100   // That also means that PHI construction must work forward from earlier to
7101   // later, and that the code must maintain a mapping from earlier PHI's
7102   // destination registers, and the registers that went into the PHI.
7103   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7104
7105   for (auto MI : Selects) {
7106     Register DestReg = MI->getOperand(0).getReg();
7107     Register TrueReg = MI->getOperand(1).getReg();
7108     Register FalseReg = MI->getOperand(2).getReg();
7109
7110     // If this Select we are generating is the opposite condition from
7111     // the jump we generated, then we have to swap the operands for the
7112     // PHI that is going to be generated.
7113     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7114       std::swap(TrueReg, FalseReg);
7115
7116     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7117       TrueReg = RegRewriteTable[TrueReg].first;
7118
7119     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7120       FalseReg = RegRewriteTable[FalseReg].second;
7121
7122     DebugLoc DL = MI->getDebugLoc();
7123     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7124       .addReg(TrueReg).addMBB(TrueMBB)
7125       .addReg(FalseReg).addMBB(FalseMBB);
7126
7127     // Add this PHI to the rewrite table.
7128     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7129   }
7130
7131   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7132 }
7133
7134 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7135 MachineBasicBlock *
7136 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7137                                   MachineBasicBlock *MBB) const {
7138   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7139   const SystemZInstrInfo *TII =
7140       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7141
7142   unsigned CCValid = MI.getOperand(3).getImm();
7143   unsigned CCMask = MI.getOperand(4).getImm();
7144
7145   // If we have a sequence of Select* pseudo instructions using the
7146   // same condition code value, we want to expand all of them into
7147   // a single pair of basic blocks using the same condition.
7148   SmallVector<MachineInstr*, 8> Selects;
7149   SmallVector<MachineInstr*, 8> DbgValues;
7150   Selects.push_back(&MI);
7151   unsigned Count = 0;
7152   for (MachineBasicBlock::iterator NextMIIt =
7153          std::next(MachineBasicBlock::iterator(MI));
7154        NextMIIt != MBB->end(); ++NextMIIt) {
7155     if (isSelectPseudo(*NextMIIt)) {
7156       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7157              "Bad CCValid operands since CC was not redefined.");
7158       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7159           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7160         Selects.push_back(&*NextMIIt);
7161         continue;
7162       }
7163       break;
7164     }
7165     if (NextMIIt->definesRegister(SystemZ::CC) ||
7166         NextMIIt->usesCustomInsertionHook())
7167       break;
7168     bool User = false;
7169     for (auto SelMI : Selects)
7170       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7171         User = true;
7172         break;
7173       }
7174     if (NextMIIt->isDebugInstr()) {
7175       if (User) {
7176         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7177         DbgValues.push_back(&*NextMIIt);
7178       }
7179     }
7180     else if (User || ++Count > 20)
7181       break;
7182   }
7183
7184   MachineInstr *LastMI = Selects.back();
7185   bool CCKilled =
7186       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7187   MachineBasicBlock *StartMBB = MBB;
7188   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7189   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7190
7191   // Unless CC was killed in the last Select instruction, mark it as
7192   // live-in to both FalseMBB and JoinMBB.
7193   if (!CCKilled) {
7194     FalseMBB->addLiveIn(SystemZ::CC);
7195     JoinMBB->addLiveIn(SystemZ::CC);
7196   }
7197
7198   //  StartMBB:
7199   //   BRC CCMask, JoinMBB
7200   //   # fallthrough to FalseMBB
7201   MBB = StartMBB;
7202   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7203     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7204   MBB->addSuccessor(JoinMBB);
7205   MBB->addSuccessor(FalseMBB);
7206
7207   //  FalseMBB:
7208   //   # fallthrough to JoinMBB
7209   MBB = FalseMBB;
7210   MBB->addSuccessor(JoinMBB);
7211
7212   //  JoinMBB:
7213   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7214   //  ...
7215   MBB = JoinMBB;
7216   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7217   for (auto SelMI : Selects)
7218     SelMI->eraseFromParent();
7219
7220   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7221   for (auto DbgMI : DbgValues)
7222     MBB->splice(InsertPos, StartMBB, DbgMI);
7223
7224   return JoinMBB;
7225 }
7226
7227 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7228 // StoreOpcode is the store to use and Invert says whether the store should
7229 // happen when the condition is false rather than true.  If a STORE ON
7230 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7231 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7232                                                         MachineBasicBlock *MBB,
7233                                                         unsigned StoreOpcode,
7234                                                         unsigned STOCOpcode,
7235                                                         bool Invert) const {
7236   const SystemZInstrInfo *TII =
7237       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7238
7239   Register SrcReg = MI.getOperand(0).getReg();
7240   MachineOperand Base = MI.getOperand(1);
7241   int64_t Disp = MI.getOperand(2).getImm();
7242   Register IndexReg = MI.getOperand(3).getReg();
7243   unsigned CCValid = MI.getOperand(4).getImm();
7244   unsigned CCMask = MI.getOperand(5).getImm();
7245   DebugLoc DL = MI.getDebugLoc();
7246
7247   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7248
7249   // Use STOCOpcode if possible.  We could use different store patterns in
7250   // order to avoid matching the index register, but the performance trade-offs
7251   // might be more complicated in that case.
7252   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7253     if (Invert)
7254       CCMask ^= CCValid;
7255
7256     // ISel pattern matching also adds a load memory operand of the same
7257     // address, so take special care to find the storing memory operand.
7258     MachineMemOperand *MMO = nullptr;
7259     for (auto *I : MI.memoperands())
7260       if (I->isStore()) {
7261           MMO = I;
7262           break;
7263         }
7264
7265     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7266       .addReg(SrcReg)
7267       .add(Base)
7268       .addImm(Disp)
7269       .addImm(CCValid)
7270       .addImm(CCMask)
7271       .addMemOperand(MMO);
7272
7273     MI.eraseFromParent();
7274     return MBB;
7275   }
7276
7277   // Get the condition needed to branch around the store.
7278   if (!Invert)
7279     CCMask ^= CCValid;
7280
7281   MachineBasicBlock *StartMBB = MBB;
7282   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7283   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7284
7285   // Unless CC was killed in the CondStore instruction, mark it as
7286   // live-in to both FalseMBB and JoinMBB.
7287   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7288     FalseMBB->addLiveIn(SystemZ::CC);
7289     JoinMBB->addLiveIn(SystemZ::CC);
7290   }
7291
7292   //  StartMBB:
7293   //   BRC CCMask, JoinMBB
7294   //   # fallthrough to FalseMBB
7295   MBB = StartMBB;
7296   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7297     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7298   MBB->addSuccessor(JoinMBB);
7299   MBB->addSuccessor(FalseMBB);
7300
7301   //  FalseMBB:
7302   //   store %SrcReg, %Disp(%Index,%Base)
7303   //   # fallthrough to JoinMBB
7304   MBB = FalseMBB;
7305   BuildMI(MBB, DL, TII->get(StoreOpcode))
7306       .addReg(SrcReg)
7307       .add(Base)
7308       .addImm(Disp)
7309       .addReg(IndexReg);
7310   MBB->addSuccessor(JoinMBB);
7311
7312   MI.eraseFromParent();
7313   return JoinMBB;
7314 }
7315
7316 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7317 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7318 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7319 // BitSize is the width of the field in bits, or 0 if this is a partword
7320 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7321 // is one of the operands.  Invert says whether the field should be
7322 // inverted after performing BinOpcode (e.g. for NAND).
7323 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7324     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7325     unsigned BitSize, bool Invert) const {
7326   MachineFunction &MF = *MBB->getParent();
7327   const SystemZInstrInfo *TII =
7328       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7329   MachineRegisterInfo &MRI = MF.getRegInfo();
7330   bool IsSubWord = (BitSize < 32);
7331
7332   // Extract the operands.  Base can be a register or a frame index.
7333   // Src2 can be a register or immediate.
7334   Register Dest = MI.getOperand(0).getReg();
7335   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7336   int64_t Disp = MI.getOperand(2).getImm();
7337   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7338   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7339   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7340   DebugLoc DL = MI.getDebugLoc();
7341   if (IsSubWord)
7342     BitSize = MI.getOperand(6).getImm();
7343
7344   // Subword operations use 32-bit registers.
7345   const TargetRegisterClass *RC = (BitSize <= 32 ?
7346                                    &SystemZ::GR32BitRegClass :
7347                                    &SystemZ::GR64BitRegClass);
7348   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7349   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7350
7351   // Get the right opcodes for the displacement.
7352   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7353   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7354   assert(LOpcode && CSOpcode && "Displacement out of range");
7355
7356   // Create virtual registers for temporary results.
7357   Register OrigVal       = MRI.createVirtualRegister(RC);
7358   Register OldVal        = MRI.createVirtualRegister(RC);
7359   Register NewVal        = (BinOpcode || IsSubWord ?
7360                             MRI.createVirtualRegister(RC) : Src2.getReg());
7361   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7362   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7363
7364   // Insert a basic block for the main loop.
7365   MachineBasicBlock *StartMBB = MBB;
7366   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7367   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7368
7369   //  StartMBB:
7370   //   ...
7371   //   %OrigVal = L Disp(%Base)
7372   //   # fall through to LoopMMB
7373   MBB = StartMBB;
7374   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7375   MBB->addSuccessor(LoopMBB);
7376
7377   //  LoopMBB:
7378   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7379   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7380   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7381   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7382   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7383   //   JNE LoopMBB
7384   //   # fall through to DoneMMB
7385   MBB = LoopMBB;
7386   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7387     .addReg(OrigVal).addMBB(StartMBB)
7388     .addReg(Dest).addMBB(LoopMBB);
7389   if (IsSubWord)
7390     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7391       .addReg(OldVal).addReg(BitShift).addImm(0);
7392   if (Invert) {
7393     // Perform the operation normally and then invert every bit of the field.
7394     Register Tmp = MRI.createVirtualRegister(RC);
7395     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7396     if (BitSize <= 32)
7397       // XILF with the upper BitSize bits set.
7398       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7399         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7400     else {
7401       // Use LCGR and add -1 to the result, which is more compact than
7402       // an XILF, XILH pair.
7403       Register Tmp2 = MRI.createVirtualRegister(RC);
7404       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7405       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7406         .addReg(Tmp2).addImm(-1);
7407     }
7408   } else if (BinOpcode)
7409     // A simply binary operation.
7410     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7411         .addReg(RotatedOldVal)
7412         .add(Src2);
7413   else if (IsSubWord)
7414     // Use RISBG to rotate Src2 into position and use it to replace the
7415     // field in RotatedOldVal.
7416     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7417       .addReg(RotatedOldVal).addReg(Src2.getReg())
7418       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7419   if (IsSubWord)
7420     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7421       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7422   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7423       .addReg(OldVal)
7424       .addReg(NewVal)
7425       .add(Base)
7426       .addImm(Disp);
7427   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7428     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7429   MBB->addSuccessor(LoopMBB);
7430   MBB->addSuccessor(DoneMBB);
7431
7432   MI.eraseFromParent();
7433   return DoneMBB;
7434 }
7435
7436 // Implement EmitInstrWithCustomInserter for pseudo
7437 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7438 // instruction that should be used to compare the current field with the
7439 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7440 // for when the current field should be kept.  BitSize is the width of
7441 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7442 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7443     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7444     unsigned KeepOldMask, unsigned BitSize) const {
7445   MachineFunction &MF = *MBB->getParent();
7446   const SystemZInstrInfo *TII =
7447       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7448   MachineRegisterInfo &MRI = MF.getRegInfo();
7449   bool IsSubWord = (BitSize < 32);
7450
7451   // Extract the operands.  Base can be a register or a frame index.
7452   Register Dest = MI.getOperand(0).getReg();
7453   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7454   int64_t Disp = MI.getOperand(2).getImm();
7455   Register Src2 = MI.getOperand(3).getReg();
7456   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7457   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7458   DebugLoc DL = MI.getDebugLoc();
7459   if (IsSubWord)
7460     BitSize = MI.getOperand(6).getImm();
7461
7462   // Subword operations use 32-bit registers.
7463   const TargetRegisterClass *RC = (BitSize <= 32 ?
7464                                    &SystemZ::GR32BitRegClass :
7465                                    &SystemZ::GR64BitRegClass);
7466   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7467   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7468
7469   // Get the right opcodes for the displacement.
7470   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7471   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7472   assert(LOpcode && CSOpcode && "Displacement out of range");
7473
7474   // Create virtual registers for temporary results.
7475   Register OrigVal       = MRI.createVirtualRegister(RC);
7476   Register OldVal        = MRI.createVirtualRegister(RC);
7477   Register NewVal        = MRI.createVirtualRegister(RC);
7478   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7479   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7480   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7481
7482   // Insert 3 basic blocks for the loop.
7483   MachineBasicBlock *StartMBB  = MBB;
7484   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7485   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7486   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7487   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7488
7489   //  StartMBB:
7490   //   ...
7491   //   %OrigVal     = L Disp(%Base)
7492   //   # fall through to LoopMMB
7493   MBB = StartMBB;
7494   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7495   MBB->addSuccessor(LoopMBB);
7496
7497   //  LoopMBB:
7498   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7499   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7500   //   CompareOpcode %RotatedOldVal, %Src2
7501   //   BRC KeepOldMask, UpdateMBB
7502   MBB = LoopMBB;
7503   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7504     .addReg(OrigVal).addMBB(StartMBB)
7505     .addReg(Dest).addMBB(UpdateMBB);
7506   if (IsSubWord)
7507     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7508       .addReg(OldVal).addReg(BitShift).addImm(0);
7509   BuildMI(MBB, DL, TII->get(CompareOpcode))
7510     .addReg(RotatedOldVal).addReg(Src2);
7511   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7512     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7513   MBB->addSuccessor(UpdateMBB);
7514   MBB->addSuccessor(UseAltMBB);
7515
7516   //  UseAltMBB:
7517   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7518   //   # fall through to UpdateMMB
7519   MBB = UseAltMBB;
7520   if (IsSubWord)
7521     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7522       .addReg(RotatedOldVal).addReg(Src2)
7523       .addImm(32).addImm(31 + BitSize).addImm(0);
7524   MBB->addSuccessor(UpdateMBB);
7525
7526   //  UpdateMBB:
7527   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7528   //                        [ %RotatedAltVal, UseAltMBB ]
7529   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7530   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7531   //   JNE LoopMBB
7532   //   # fall through to DoneMMB
7533   MBB = UpdateMBB;
7534   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7535     .addReg(RotatedOldVal).addMBB(LoopMBB)
7536     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7537   if (IsSubWord)
7538     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7539       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7540   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7541       .addReg(OldVal)
7542       .addReg(NewVal)
7543       .add(Base)
7544       .addImm(Disp);
7545   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7546     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7547   MBB->addSuccessor(LoopMBB);
7548   MBB->addSuccessor(DoneMBB);
7549
7550   MI.eraseFromParent();
7551   return DoneMBB;
7552 }
7553
7554 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7555 // instruction MI.
7556 MachineBasicBlock *
7557 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7558                                           MachineBasicBlock *MBB) const {
7559
7560   MachineFunction &MF = *MBB->getParent();
7561   const SystemZInstrInfo *TII =
7562       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7563   MachineRegisterInfo &MRI = MF.getRegInfo();
7564
7565   // Extract the operands.  Base can be a register or a frame index.
7566   Register Dest = MI.getOperand(0).getReg();
7567   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7568   int64_t Disp = MI.getOperand(2).getImm();
7569   Register OrigCmpVal = MI.getOperand(3).getReg();
7570   Register OrigSwapVal = MI.getOperand(4).getReg();
7571   Register BitShift = MI.getOperand(5).getReg();
7572   Register NegBitShift = MI.getOperand(6).getReg();
7573   int64_t BitSize = MI.getOperand(7).getImm();
7574   DebugLoc DL = MI.getDebugLoc();
7575
7576   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7577
7578   // Get the right opcodes for the displacement.
7579   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7580   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7581   assert(LOpcode && CSOpcode && "Displacement out of range");
7582
7583   // Create virtual registers for temporary results.
7584   Register OrigOldVal = MRI.createVirtualRegister(RC);
7585   Register OldVal = MRI.createVirtualRegister(RC);
7586   Register CmpVal = MRI.createVirtualRegister(RC);
7587   Register SwapVal = MRI.createVirtualRegister(RC);
7588   Register StoreVal = MRI.createVirtualRegister(RC);
7589   Register RetryOldVal = MRI.createVirtualRegister(RC);
7590   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7591   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7592
7593   // Insert 2 basic blocks for the loop.
7594   MachineBasicBlock *StartMBB = MBB;
7595   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7596   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7597   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7598
7599   //  StartMBB:
7600   //   ...
7601   //   %OrigOldVal     = L Disp(%Base)
7602   //   # fall through to LoopMMB
7603   MBB = StartMBB;
7604   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7605       .add(Base)
7606       .addImm(Disp)
7607       .addReg(0);
7608   MBB->addSuccessor(LoopMBB);
7609
7610   //  LoopMBB:
7611   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7612   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7613   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7614   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7615   //                      ^^ The low BitSize bits contain the field
7616   //                         of interest.
7617   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7618   //                      ^^ Replace the upper 32-BitSize bits of the
7619   //                         comparison value with those that we loaded,
7620   //                         so that we can use a full word comparison.
7621   //   CR %Dest, %RetryCmpVal
7622   //   JNE DoneMBB
7623   //   # Fall through to SetMBB
7624   MBB = LoopMBB;
7625   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7626     .addReg(OrigOldVal).addMBB(StartMBB)
7627     .addReg(RetryOldVal).addMBB(SetMBB);
7628   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7629     .addReg(OrigCmpVal).addMBB(StartMBB)
7630     .addReg(RetryCmpVal).addMBB(SetMBB);
7631   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7632     .addReg(OrigSwapVal).addMBB(StartMBB)
7633     .addReg(RetrySwapVal).addMBB(SetMBB);
7634   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7635     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7636   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7637     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7638   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7639     .addReg(Dest).addReg(RetryCmpVal);
7640   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7641     .addImm(SystemZ::CCMASK_ICMP)
7642     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7643   MBB->addSuccessor(DoneMBB);
7644   MBB->addSuccessor(SetMBB);
7645
7646   //  SetMBB:
7647   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7648   //                      ^^ Replace the upper 32-BitSize bits of the new
7649   //                         value with those that we loaded.
7650   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7651   //                      ^^ Rotate the new field to its proper position.
7652   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7653   //   JNE LoopMBB
7654   //   # fall through to ExitMMB
7655   MBB = SetMBB;
7656   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7657     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7658   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7659     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7660   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7661       .addReg(OldVal)
7662       .addReg(StoreVal)
7663       .add(Base)
7664       .addImm(Disp);
7665   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7666     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7667   MBB->addSuccessor(LoopMBB);
7668   MBB->addSuccessor(DoneMBB);
7669
7670   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7671   // to the block after the loop.  At this point, CC may have been defined
7672   // either by the CR in LoopMBB or by the CS in SetMBB.
7673   if (!MI.registerDefIsDead(SystemZ::CC))
7674     DoneMBB->addLiveIn(SystemZ::CC);
7675
7676   MI.eraseFromParent();
7677   return DoneMBB;
7678 }
7679
7680 // Emit a move from two GR64s to a GR128.
7681 MachineBasicBlock *
7682 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7683                                    MachineBasicBlock *MBB) const {
7684   MachineFunction &MF = *MBB->getParent();
7685   const SystemZInstrInfo *TII =
7686       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7687   MachineRegisterInfo &MRI = MF.getRegInfo();
7688   DebugLoc DL = MI.getDebugLoc();
7689
7690   Register Dest = MI.getOperand(0).getReg();
7691   Register Hi = MI.getOperand(1).getReg();
7692   Register Lo = MI.getOperand(2).getReg();
7693   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7694   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7695
7696   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7697   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7698     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7699   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7700     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7701
7702   MI.eraseFromParent();
7703   return MBB;
7704 }
7705
7706 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7707 // if the high register of the GR128 value must be cleared or false if
7708 // it's "don't care".
7709 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7710                                                      MachineBasicBlock *MBB,
7711                                                      bool ClearEven) const {
7712   MachineFunction &MF = *MBB->getParent();
7713   const SystemZInstrInfo *TII =
7714       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7715   MachineRegisterInfo &MRI = MF.getRegInfo();
7716   DebugLoc DL = MI.getDebugLoc();
7717
7718   Register Dest = MI.getOperand(0).getReg();
7719   Register Src = MI.getOperand(1).getReg();
7720   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7721
7722   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7723   if (ClearEven) {
7724     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7725     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7726
7727     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7728       .addImm(0);
7729     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7730       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7731     In128 = NewIn128;
7732   }
7733   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7734     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7735
7736   MI.eraseFromParent();
7737   return MBB;
7738 }
7739
7740 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7741     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7742   MachineFunction &MF = *MBB->getParent();
7743   const SystemZInstrInfo *TII =
7744       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7745   MachineRegisterInfo &MRI = MF.getRegInfo();
7746   DebugLoc DL = MI.getDebugLoc();
7747
7748   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7749   uint64_t DestDisp = MI.getOperand(1).getImm();
7750   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7751   uint64_t SrcDisp = MI.getOperand(3).getImm();
7752   uint64_t Length = MI.getOperand(4).getImm();
7753
7754   // When generating more than one CLC, all but the last will need to
7755   // branch to the end when a difference is found.
7756   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7757                                SystemZ::splitBlockAfter(MI, MBB) : nullptr);
7758
7759   // Check for the loop form, in which operand 5 is the trip count.
7760   if (MI.getNumExplicitOperands() > 5) {
7761     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7762
7763     Register StartCountReg = MI.getOperand(5).getReg();
7764     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7765     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7766                               forceReg(MI, DestBase, TII));
7767
7768     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7769     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7770     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7771                             MRI.createVirtualRegister(RC));
7772     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7773     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7774                             MRI.createVirtualRegister(RC));
7775
7776     RC = &SystemZ::GR64BitRegClass;
7777     Register ThisCountReg = MRI.createVirtualRegister(RC);
7778     Register NextCountReg = MRI.createVirtualRegister(RC);
7779
7780     MachineBasicBlock *StartMBB = MBB;
7781     MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7782     MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7783     MachineBasicBlock *NextMBB =
7784         (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7785
7786     //  StartMBB:
7787     //   # fall through to LoopMMB
7788     MBB->addSuccessor(LoopMBB);
7789
7790     //  LoopMBB:
7791     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7792     //                      [ %NextDestReg, NextMBB ]
7793     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7794     //                     [ %NextSrcReg, NextMBB ]
7795     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7796     //                       [ %NextCountReg, NextMBB ]
7797     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7798     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7799     //   ( JLH EndMBB )
7800     //
7801     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7802     MBB = LoopMBB;
7803
7804     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7805       .addReg(StartDestReg).addMBB(StartMBB)
7806       .addReg(NextDestReg).addMBB(NextMBB);
7807     if (!HaveSingleBase)
7808       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7809         .addReg(StartSrcReg).addMBB(StartMBB)
7810         .addReg(NextSrcReg).addMBB(NextMBB);
7811     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7812       .addReg(StartCountReg).addMBB(StartMBB)
7813       .addReg(NextCountReg).addMBB(NextMBB);
7814     if (Opcode == SystemZ::MVC)
7815       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7816         .addImm(SystemZ::PFD_WRITE)
7817         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7818     BuildMI(MBB, DL, TII->get(Opcode))
7819       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7820       .addReg(ThisSrcReg).addImm(SrcDisp);
7821     if (EndMBB) {
7822       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7823         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7824         .addMBB(EndMBB);
7825       MBB->addSuccessor(EndMBB);
7826       MBB->addSuccessor(NextMBB);
7827     }
7828
7829     // NextMBB:
7830     //   %NextDestReg = LA 256(%ThisDestReg)
7831     //   %NextSrcReg = LA 256(%ThisSrcReg)
7832     //   %NextCountReg = AGHI %ThisCountReg, -1
7833     //   CGHI %NextCountReg, 0
7834     //   JLH LoopMBB
7835     //   # fall through to DoneMMB
7836     //
7837     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7838     MBB = NextMBB;
7839
7840     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7841       .addReg(ThisDestReg).addImm(256).addReg(0);
7842     if (!HaveSingleBase)
7843       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7844         .addReg(ThisSrcReg).addImm(256).addReg(0);
7845     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7846       .addReg(ThisCountReg).addImm(-1);
7847     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7848       .addReg(NextCountReg).addImm(0);
7849     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7850       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7851       .addMBB(LoopMBB);
7852     MBB->addSuccessor(LoopMBB);
7853     MBB->addSuccessor(DoneMBB);
7854
7855     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7856     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7857     Length &= 255;
7858     if (EndMBB && !Length)
7859       // If the loop handled the whole CLC range, DoneMBB will be empty with
7860       // CC live-through into EndMBB, so add it as live-in.
7861       DoneMBB->addLiveIn(SystemZ::CC);
7862     MBB = DoneMBB;
7863   }
7864   // Handle any remaining bytes with straight-line code.
7865   while (Length > 0) {
7866     uint64_t ThisLength = std::min(Length, uint64_t(256));
7867     // The previous iteration might have created out-of-range displacements.
7868     // Apply them using LAY if so.
7869     if (!isUInt<12>(DestDisp)) {
7870       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7871       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7872           .add(DestBase)
7873           .addImm(DestDisp)
7874           .addReg(0);
7875       DestBase = MachineOperand::CreateReg(Reg, false);
7876       DestDisp = 0;
7877     }
7878     if (!isUInt<12>(SrcDisp)) {
7879       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7880       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7881           .add(SrcBase)
7882           .addImm(SrcDisp)
7883           .addReg(0);
7884       SrcBase = MachineOperand::CreateReg(Reg, false);
7885       SrcDisp = 0;
7886     }
7887     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7888         .add(DestBase)
7889         .addImm(DestDisp)
7890         .addImm(ThisLength)
7891         .add(SrcBase)
7892         .addImm(SrcDisp)
7893         .setMemRefs(MI.memoperands());
7894     DestDisp += ThisLength;
7895     SrcDisp += ThisLength;
7896     Length -= ThisLength;
7897     // If there's another CLC to go, branch to the end if a difference
7898     // was found.
7899     if (EndMBB && Length > 0) {
7900       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
7901       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7902         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7903         .addMBB(EndMBB);
7904       MBB->addSuccessor(EndMBB);
7905       MBB->addSuccessor(NextMBB);
7906       MBB = NextMBB;
7907     }
7908   }
7909   if (EndMBB) {
7910     MBB->addSuccessor(EndMBB);
7911     MBB = EndMBB;
7912     MBB->addLiveIn(SystemZ::CC);
7913   }
7914
7915   MI.eraseFromParent();
7916   return MBB;
7917 }
7918
7919 // Decompose string pseudo-instruction MI into a loop that continually performs
7920 // Opcode until CC != 3.
7921 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7922     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7923   MachineFunction &MF = *MBB->getParent();
7924   const SystemZInstrInfo *TII =
7925       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7926   MachineRegisterInfo &MRI = MF.getRegInfo();
7927   DebugLoc DL = MI.getDebugLoc();
7928
7929   uint64_t End1Reg = MI.getOperand(0).getReg();
7930   uint64_t Start1Reg = MI.getOperand(1).getReg();
7931   uint64_t Start2Reg = MI.getOperand(2).getReg();
7932   uint64_t CharReg = MI.getOperand(3).getReg();
7933
7934   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7935   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7936   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7937   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7938
7939   MachineBasicBlock *StartMBB = MBB;
7940   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7941   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7942
7943   //  StartMBB:
7944   //   # fall through to LoopMMB
7945   MBB->addSuccessor(LoopMBB);
7946
7947   //  LoopMBB:
7948   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7949   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7950   //   R0L = %CharReg
7951   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7952   //   JO LoopMBB
7953   //   # fall through to DoneMMB
7954   //
7955   // The load of R0L can be hoisted by post-RA LICM.
7956   MBB = LoopMBB;
7957
7958   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7959     .addReg(Start1Reg).addMBB(StartMBB)
7960     .addReg(End1Reg).addMBB(LoopMBB);
7961   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7962     .addReg(Start2Reg).addMBB(StartMBB)
7963     .addReg(End2Reg).addMBB(LoopMBB);
7964   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7965   BuildMI(MBB, DL, TII->get(Opcode))
7966     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7967     .addReg(This1Reg).addReg(This2Reg);
7968   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7969     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7970   MBB->addSuccessor(LoopMBB);
7971   MBB->addSuccessor(DoneMBB);
7972
7973   DoneMBB->addLiveIn(SystemZ::CC);
7974
7975   MI.eraseFromParent();
7976   return DoneMBB;
7977 }
7978
7979 // Update TBEGIN instruction with final opcode and register clobbers.
7980 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7981     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7982     bool NoFloat) const {
7983   MachineFunction &MF = *MBB->getParent();
7984   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7985   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7986
7987   // Update opcode.
7988   MI.setDesc(TII->get(Opcode));
7989
7990   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7991   // Make sure to add the corresponding GRSM bits if they are missing.
7992   uint64_t Control = MI.getOperand(2).getImm();
7993   static const unsigned GPRControlBit[16] = {
7994     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7995     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7996   };
7997   Control |= GPRControlBit[15];
7998   if (TFI->hasFP(MF))
7999     Control |= GPRControlBit[11];
8000   MI.getOperand(2).setImm(Control);
8001
8002   // Add GPR clobbers.
8003   for (int I = 0; I < 16; I++) {
8004     if ((Control & GPRControlBit[I]) == 0) {
8005       unsigned Reg = SystemZMC::GR64Regs[I];
8006       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8007     }
8008   }
8009
8010   // Add FPR/VR clobbers.
8011   if (!NoFloat && (Control & 4) != 0) {
8012     if (Subtarget.hasVector()) {
8013       for (int I = 0; I < 32; I++) {
8014         unsigned Reg = SystemZMC::VR128Regs[I];
8015         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8016       }
8017     } else {
8018       for (int I = 0; I < 16; I++) {
8019         unsigned Reg = SystemZMC::FP64Regs[I];
8020         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8021       }
8022     }
8023   }
8024
8025   return MBB;
8026 }
8027
8028 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8029     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8030   MachineFunction &MF = *MBB->getParent();
8031   MachineRegisterInfo *MRI = &MF.getRegInfo();
8032   const SystemZInstrInfo *TII =
8033       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8034   DebugLoc DL = MI.getDebugLoc();
8035
8036   Register SrcReg = MI.getOperand(0).getReg();
8037
8038   // Create new virtual register of the same class as source.
8039   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8040   Register DstReg = MRI->createVirtualRegister(RC);
8041
8042   // Replace pseudo with a normal load-and-test that models the def as
8043   // well.
8044   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8045     .addReg(SrcReg)
8046     .setMIFlags(MI.getFlags());
8047   MI.eraseFromParent();
8048
8049   return MBB;
8050 }
8051
8052 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8053     MachineInstr &MI, MachineBasicBlock *MBB) const {
8054   MachineFunction &MF = *MBB->getParent();
8055   MachineRegisterInfo *MRI = &MF.getRegInfo();
8056   const SystemZInstrInfo *TII =
8057       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8058   DebugLoc DL = MI.getDebugLoc();
8059   const unsigned ProbeSize = getStackProbeSize(MF);
8060   Register DstReg = MI.getOperand(0).getReg();
8061   Register SizeReg = MI.getOperand(2).getReg();
8062
8063   MachineBasicBlock *StartMBB = MBB;
8064   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8065   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8066   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8067   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8068   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8069
8070   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8071     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8072
8073   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8074   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8075
8076   //  LoopTestMBB
8077   //  BRC TailTestMBB
8078   //  # fallthrough to LoopBodyMBB
8079   StartMBB->addSuccessor(LoopTestMBB);
8080   MBB = LoopTestMBB;
8081   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8082     .addReg(SizeReg)
8083     .addMBB(StartMBB)
8084     .addReg(IncReg)
8085     .addMBB(LoopBodyMBB);
8086   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8087     .addReg(PHIReg)
8088     .addImm(ProbeSize);
8089   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8090     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8091     .addMBB(TailTestMBB);
8092   MBB->addSuccessor(LoopBodyMBB);
8093   MBB->addSuccessor(TailTestMBB);
8094
8095   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8096   //  J LoopTestMBB
8097   MBB = LoopBodyMBB;
8098   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8099     .addReg(PHIReg)
8100     .addImm(ProbeSize);
8101   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8102     .addReg(SystemZ::R15D)
8103     .addImm(ProbeSize);
8104   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8105     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8106     .setMemRefs(VolLdMMO);
8107   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8108   MBB->addSuccessor(LoopTestMBB);
8109
8110   //  TailTestMBB
8111   //  BRC DoneMBB
8112   //  # fallthrough to TailMBB
8113   MBB = TailTestMBB;
8114   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8115     .addReg(PHIReg)
8116     .addImm(0);
8117   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8118     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8119     .addMBB(DoneMBB);
8120   MBB->addSuccessor(TailMBB);
8121   MBB->addSuccessor(DoneMBB);
8122
8123   //  TailMBB
8124   //  # fallthrough to DoneMBB
8125   MBB = TailMBB;
8126   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8127     .addReg(SystemZ::R15D)
8128     .addReg(PHIReg);
8129   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8130     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8131     .setMemRefs(VolLdMMO);
8132   MBB->addSuccessor(DoneMBB);
8133
8134   //  DoneMBB
8135   MBB = DoneMBB;
8136   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8137     .addReg(SystemZ::R15D);
8138
8139   MI.eraseFromParent();
8140   return DoneMBB;
8141 }
8142
8143 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8144     MachineInstr &MI, MachineBasicBlock *MBB) const {
8145   switch (MI.getOpcode()) {
8146   case SystemZ::Select32:
8147   case SystemZ::Select64:
8148   case SystemZ::SelectF32:
8149   case SystemZ::SelectF64:
8150   case SystemZ::SelectF128:
8151   case SystemZ::SelectVR32:
8152   case SystemZ::SelectVR64:
8153   case SystemZ::SelectVR128:
8154     return emitSelect(MI, MBB);
8155
8156   case SystemZ::CondStore8Mux:
8157     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8158   case SystemZ::CondStore8MuxInv:
8159     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8160   case SystemZ::CondStore16Mux:
8161     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8162   case SystemZ::CondStore16MuxInv:
8163     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8164   case SystemZ::CondStore32Mux:
8165     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8166   case SystemZ::CondStore32MuxInv:
8167     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8168   case SystemZ::CondStore8:
8169     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8170   case SystemZ::CondStore8Inv:
8171     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8172   case SystemZ::CondStore16:
8173     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8174   case SystemZ::CondStore16Inv:
8175     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8176   case SystemZ::CondStore32:
8177     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8178   case SystemZ::CondStore32Inv:
8179     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8180   case SystemZ::CondStore64:
8181     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8182   case SystemZ::CondStore64Inv:
8183     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8184   case SystemZ::CondStoreF32:
8185     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8186   case SystemZ::CondStoreF32Inv:
8187     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8188   case SystemZ::CondStoreF64:
8189     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8190   case SystemZ::CondStoreF64Inv:
8191     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8192
8193   case SystemZ::PAIR128:
8194     return emitPair128(MI, MBB);
8195   case SystemZ::AEXT128:
8196     return emitExt128(MI, MBB, false);
8197   case SystemZ::ZEXT128:
8198     return emitExt128(MI, MBB, true);
8199
8200   case SystemZ::ATOMIC_SWAPW:
8201     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8202   case SystemZ::ATOMIC_SWAP_32:
8203     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8204   case SystemZ::ATOMIC_SWAP_64:
8205     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8206
8207   case SystemZ::ATOMIC_LOADW_AR:
8208     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8209   case SystemZ::ATOMIC_LOADW_AFI:
8210     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8211   case SystemZ::ATOMIC_LOAD_AR:
8212     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8213   case SystemZ::ATOMIC_LOAD_AHI:
8214     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8215   case SystemZ::ATOMIC_LOAD_AFI:
8216     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8217   case SystemZ::ATOMIC_LOAD_AGR:
8218     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8219   case SystemZ::ATOMIC_LOAD_AGHI:
8220     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8221   case SystemZ::ATOMIC_LOAD_AGFI:
8222     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8223
8224   case SystemZ::ATOMIC_LOADW_SR:
8225     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8226   case SystemZ::ATOMIC_LOAD_SR:
8227     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8228   case SystemZ::ATOMIC_LOAD_SGR:
8229     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8230
8231   case SystemZ::ATOMIC_LOADW_NR:
8232     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8233   case SystemZ::ATOMIC_LOADW_NILH:
8234     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8235   case SystemZ::ATOMIC_LOAD_NR:
8236     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8237   case SystemZ::ATOMIC_LOAD_NILL:
8238     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8239   case SystemZ::ATOMIC_LOAD_NILH:
8240     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8241   case SystemZ::ATOMIC_LOAD_NILF:
8242     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8243   case SystemZ::ATOMIC_LOAD_NGR:
8244     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8245   case SystemZ::ATOMIC_LOAD_NILL64:
8246     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8247   case SystemZ::ATOMIC_LOAD_NILH64:
8248     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8249   case SystemZ::ATOMIC_LOAD_NIHL64:
8250     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8251   case SystemZ::ATOMIC_LOAD_NIHH64:
8252     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8253   case SystemZ::ATOMIC_LOAD_NILF64:
8254     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8255   case SystemZ::ATOMIC_LOAD_NIHF64:
8256     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8257
8258   case SystemZ::ATOMIC_LOADW_OR:
8259     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8260   case SystemZ::ATOMIC_LOADW_OILH:
8261     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8262   case SystemZ::ATOMIC_LOAD_OR:
8263     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8264   case SystemZ::ATOMIC_LOAD_OILL:
8265     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8266   case SystemZ::ATOMIC_LOAD_OILH:
8267     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8268   case SystemZ::ATOMIC_LOAD_OILF:
8269     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8270   case SystemZ::ATOMIC_LOAD_OGR:
8271     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8272   case SystemZ::ATOMIC_LOAD_OILL64:
8273     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8274   case SystemZ::ATOMIC_LOAD_OILH64:
8275     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8276   case SystemZ::ATOMIC_LOAD_OIHL64:
8277     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8278   case SystemZ::ATOMIC_LOAD_OIHH64:
8279     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8280   case SystemZ::ATOMIC_LOAD_OILF64:
8281     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8282   case SystemZ::ATOMIC_LOAD_OIHF64:
8283     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8284
8285   case SystemZ::ATOMIC_LOADW_XR:
8286     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8287   case SystemZ::ATOMIC_LOADW_XILF:
8288     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8289   case SystemZ::ATOMIC_LOAD_XR:
8290     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8291   case SystemZ::ATOMIC_LOAD_XILF:
8292     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8293   case SystemZ::ATOMIC_LOAD_XGR:
8294     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8295   case SystemZ::ATOMIC_LOAD_XILF64:
8296     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8297   case SystemZ::ATOMIC_LOAD_XIHF64:
8298     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8299
8300   case SystemZ::ATOMIC_LOADW_NRi:
8301     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8302   case SystemZ::ATOMIC_LOADW_NILHi:
8303     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8304   case SystemZ::ATOMIC_LOAD_NRi:
8305     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8306   case SystemZ::ATOMIC_LOAD_NILLi:
8307     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8308   case SystemZ::ATOMIC_LOAD_NILHi:
8309     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8310   case SystemZ::ATOMIC_LOAD_NILFi:
8311     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8312   case SystemZ::ATOMIC_LOAD_NGRi:
8313     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8314   case SystemZ::ATOMIC_LOAD_NILL64i:
8315     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8316   case SystemZ::ATOMIC_LOAD_NILH64i:
8317     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8318   case SystemZ::ATOMIC_LOAD_NIHL64i:
8319     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8320   case SystemZ::ATOMIC_LOAD_NIHH64i:
8321     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8322   case SystemZ::ATOMIC_LOAD_NILF64i:
8323     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8324   case SystemZ::ATOMIC_LOAD_NIHF64i:
8325     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8326
8327   case SystemZ::ATOMIC_LOADW_MIN:
8328     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8329                                 SystemZ::CCMASK_CMP_LE, 0);
8330   case SystemZ::ATOMIC_LOAD_MIN_32:
8331     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8332                                 SystemZ::CCMASK_CMP_LE, 32);
8333   case SystemZ::ATOMIC_LOAD_MIN_64:
8334     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8335                                 SystemZ::CCMASK_CMP_LE, 64);
8336
8337   case SystemZ::ATOMIC_LOADW_MAX:
8338     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8339                                 SystemZ::CCMASK_CMP_GE, 0);
8340   case SystemZ::ATOMIC_LOAD_MAX_32:
8341     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8342                                 SystemZ::CCMASK_CMP_GE, 32);
8343   case SystemZ::ATOMIC_LOAD_MAX_64:
8344     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8345                                 SystemZ::CCMASK_CMP_GE, 64);
8346
8347   case SystemZ::ATOMIC_LOADW_UMIN:
8348     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8349                                 SystemZ::CCMASK_CMP_LE, 0);
8350   case SystemZ::ATOMIC_LOAD_UMIN_32:
8351     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8352                                 SystemZ::CCMASK_CMP_LE, 32);
8353   case SystemZ::ATOMIC_LOAD_UMIN_64:
8354     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8355                                 SystemZ::CCMASK_CMP_LE, 64);
8356
8357   case SystemZ::ATOMIC_LOADW_UMAX:
8358     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8359                                 SystemZ::CCMASK_CMP_GE, 0);
8360   case SystemZ::ATOMIC_LOAD_UMAX_32:
8361     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8362                                 SystemZ::CCMASK_CMP_GE, 32);
8363   case SystemZ::ATOMIC_LOAD_UMAX_64:
8364     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8365                                 SystemZ::CCMASK_CMP_GE, 64);
8366
8367   case SystemZ::ATOMIC_CMP_SWAPW:
8368     return emitAtomicCmpSwapW(MI, MBB);
8369   case SystemZ::MVCSequence:
8370   case SystemZ::MVCLoop:
8371     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8372   case SystemZ::NCSequence:
8373   case SystemZ::NCLoop:
8374     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8375   case SystemZ::OCSequence:
8376   case SystemZ::OCLoop:
8377     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8378   case SystemZ::XCSequence:
8379   case SystemZ::XCLoop:
8380     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8381   case SystemZ::CLCSequence:
8382   case SystemZ::CLCLoop:
8383     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8384   case SystemZ::CLSTLoop:
8385     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8386   case SystemZ::MVSTLoop:
8387     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8388   case SystemZ::SRSTLoop:
8389     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8390   case SystemZ::TBEGIN:
8391     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8392   case SystemZ::TBEGIN_nofloat:
8393     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8394   case SystemZ::TBEGINC:
8395     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8396   case SystemZ::LTEBRCompare_VecPseudo:
8397     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8398   case SystemZ::LTDBRCompare_VecPseudo:
8399     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8400   case SystemZ::LTXBRCompare_VecPseudo:
8401     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8402
8403   case SystemZ::PROBED_ALLOCA:
8404     return emitProbedAlloca(MI, MBB);
8405
8406   case TargetOpcode::STACKMAP:
8407   case TargetOpcode::PATCHPOINT:
8408     return emitPatchPoint(MI, MBB);
8409
8410   default:
8411     llvm_unreachable("Unexpected instr type to insert");
8412   }
8413 }
8414
8415 // This is only used by the isel schedulers, and is needed only to prevent
8416 // compiler from crashing when list-ilp is used.
8417 const TargetRegisterClass *
8418 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8419   if (VT == MVT::Untyped)
8420     return &SystemZ::ADDR128BitRegClass;
8421   return TargetLowering::getRepRegClassFor(VT);
8422 }