]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/X86/X86AvoidStoreForwardingBlocks.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / X86 / X86AvoidStoreForwardingBlocks.cpp
1 //===- X86AvoidStoreForwardingBlockis.cpp - Avoid HW Store Forward Block --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // If a load follows a store and reloads data that the store has written to
10 // memory, Intel microarchitectures can in many cases forward the data directly
11 // from the store to the load, This "store forwarding" saves cycles by enabling
12 // the load to directly obtain the data instead of accessing the data from
13 // cache or memory.
14 // A "store forward block" occurs in cases that a store cannot be forwarded to
15 // the load. The most typical case of store forward block on Intel Core
16 // microarchitecture that a small store cannot be forwarded to a large load.
17 // The estimated penalty for a store forward block is ~13 cycles.
18 //
19 // This pass tries to recognize and handle cases where "store forward block"
20 // is created by the compiler when lowering memcpy calls to a sequence
21 // of a load and a store.
22 //
23 // The pass currently only handles cases where memcpy is lowered to
24 // XMM/YMM registers, it tries to break the memcpy into smaller copies.
25 // breaking the memcpy should be possible since there is no atomicity
26 // guarantee for loads and stores to XMM/YMM.
27 //
28 // It could be better for performance to solve the problem by loading
29 // to XMM/YMM then inserting the partial store before storing back from XMM/YMM
30 // to memory, but this will result in a more conservative optimization since it
31 // requires we prove that all memory accesses between the blocking store and the
32 // load must alias/don't alias before we can move the store, whereas the
33 // transformation done here is correct regardless to other memory accesses.
34 //===----------------------------------------------------------------------===//
35
36 #include "X86InstrInfo.h"
37 #include "X86Subtarget.h"
38 #include "llvm/Analysis/AliasAnalysis.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/MC/MCInstrDesc.h"
51
52 using namespace llvm;
53
54 #define DEBUG_TYPE "x86-avoid-SFB"
55
56 static cl::opt<bool> DisableX86AvoidStoreForwardBlocks(
57     "x86-disable-avoid-SFB", cl::Hidden,
58     cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false));
59
60 static cl::opt<unsigned> X86AvoidSFBInspectionLimit(
61     "x86-sfb-inspection-limit",
62     cl::desc("X86: Number of instructions backward to "
63              "inspect for store forwarding blocks."),
64     cl::init(20), cl::Hidden);
65
66 namespace {
67
68 using DisplacementSizeMap = std::map<int64_t, unsigned>;
69
70 class X86AvoidSFBPass : public MachineFunctionPass {
71 public:
72   static char ID;
73   X86AvoidSFBPass() : MachineFunctionPass(ID) { }
74
75   StringRef getPassName() const override {
76     return "X86 Avoid Store Forwarding Blocks";
77   }
78
79   bool runOnMachineFunction(MachineFunction &MF) override;
80
81   void getAnalysisUsage(AnalysisUsage &AU) const override {
82     MachineFunctionPass::getAnalysisUsage(AU);
83     AU.addRequired<AAResultsWrapperPass>();
84   }
85
86 private:
87   MachineRegisterInfo *MRI = nullptr;
88   const X86InstrInfo *TII = nullptr;
89   const X86RegisterInfo *TRI = nullptr;
90   SmallVector<std::pair<MachineInstr *, MachineInstr *>, 2>
91       BlockedLoadsStoresPairs;
92   SmallVector<MachineInstr *, 2> ForRemoval;
93   AliasAnalysis *AA = nullptr;
94
95   /// Returns couples of Load then Store to memory which look
96   ///  like a memcpy.
97   void findPotentiallylBlockedCopies(MachineFunction &MF);
98   /// Break the memcpy's load and store into smaller copies
99   /// such that each memory load that was blocked by a smaller store
100   /// would now be copied separately.
101   void breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst,
102                           const DisplacementSizeMap &BlockingStoresDispSizeMap);
103   /// Break a copy of size Size to smaller copies.
104   void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm,
105                    MachineInstr *StoreInst, int64_t StDispImm,
106                    int64_t LMMOffset, int64_t SMMOffset);
107
108   void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp,
109                  MachineInstr *StoreInst, unsigned NStoreOpcode,
110                  int64_t StoreDisp, unsigned Size, int64_t LMMOffset,
111                  int64_t SMMOffset);
112
113   bool alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const;
114
115   unsigned getRegSizeInBytes(MachineInstr *Inst);
116 };
117
118 } // end anonymous namespace
119
120 char X86AvoidSFBPass::ID = 0;
121
122 INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking",
123                       false, false)
124 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
125 INITIALIZE_PASS_END(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking", false,
126                     false)
127
128 FunctionPass *llvm::createX86AvoidStoreForwardingBlocks() {
129   return new X86AvoidSFBPass();
130 }
131
132 static bool isXMMLoadOpcode(unsigned Opcode) {
133   return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm ||
134          Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm ||
135          Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm ||
136          Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm ||
137          Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm ||
138          Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm ||
139          Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm ||
140          Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm;
141 }
142 static bool isYMMLoadOpcode(unsigned Opcode) {
143   return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm ||
144          Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm ||
145          Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm ||
146          Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm ||
147          Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm ||
148          Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm ||
149          Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm;
150 }
151
152 static bool isPotentialBlockedMemCpyLd(unsigned Opcode) {
153   return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode);
154 }
155
156 static bool isPotentialBlockedMemCpyPair(int LdOpcode, int StOpcode) {
157   switch (LdOpcode) {
158   case X86::MOVUPSrm:
159   case X86::MOVAPSrm:
160     return StOpcode == X86::MOVUPSmr || StOpcode == X86::MOVAPSmr;
161   case X86::VMOVUPSrm:
162   case X86::VMOVAPSrm:
163     return StOpcode == X86::VMOVUPSmr || StOpcode == X86::VMOVAPSmr;
164   case X86::VMOVUPDrm:
165   case X86::VMOVAPDrm:
166     return StOpcode == X86::VMOVUPDmr || StOpcode == X86::VMOVAPDmr;
167   case X86::VMOVDQUrm:
168   case X86::VMOVDQArm:
169     return StOpcode == X86::VMOVDQUmr || StOpcode == X86::VMOVDQAmr;
170   case X86::VMOVUPSZ128rm:
171   case X86::VMOVAPSZ128rm:
172     return StOpcode == X86::VMOVUPSZ128mr || StOpcode == X86::VMOVAPSZ128mr;
173   case X86::VMOVUPDZ128rm:
174   case X86::VMOVAPDZ128rm:
175     return StOpcode == X86::VMOVUPDZ128mr || StOpcode == X86::VMOVAPDZ128mr;
176   case X86::VMOVUPSYrm:
177   case X86::VMOVAPSYrm:
178     return StOpcode == X86::VMOVUPSYmr || StOpcode == X86::VMOVAPSYmr;
179   case X86::VMOVUPDYrm:
180   case X86::VMOVAPDYrm:
181     return StOpcode == X86::VMOVUPDYmr || StOpcode == X86::VMOVAPDYmr;
182   case X86::VMOVDQUYrm:
183   case X86::VMOVDQAYrm:
184     return StOpcode == X86::VMOVDQUYmr || StOpcode == X86::VMOVDQAYmr;
185   case X86::VMOVUPSZ256rm:
186   case X86::VMOVAPSZ256rm:
187     return StOpcode == X86::VMOVUPSZ256mr || StOpcode == X86::VMOVAPSZ256mr;
188   case X86::VMOVUPDZ256rm:
189   case X86::VMOVAPDZ256rm:
190     return StOpcode == X86::VMOVUPDZ256mr || StOpcode == X86::VMOVAPDZ256mr;
191   case X86::VMOVDQU64Z128rm:
192   case X86::VMOVDQA64Z128rm:
193     return StOpcode == X86::VMOVDQU64Z128mr || StOpcode == X86::VMOVDQA64Z128mr;
194   case X86::VMOVDQU32Z128rm:
195   case X86::VMOVDQA32Z128rm:
196     return StOpcode == X86::VMOVDQU32Z128mr || StOpcode == X86::VMOVDQA32Z128mr;
197   case X86::VMOVDQU64Z256rm:
198   case X86::VMOVDQA64Z256rm:
199     return StOpcode == X86::VMOVDQU64Z256mr || StOpcode == X86::VMOVDQA64Z256mr;
200   case X86::VMOVDQU32Z256rm:
201   case X86::VMOVDQA32Z256rm:
202     return StOpcode == X86::VMOVDQU32Z256mr || StOpcode == X86::VMOVDQA32Z256mr;
203   default:
204     return false;
205   }
206 }
207
208 static bool isPotentialBlockingStoreInst(int Opcode, int LoadOpcode) {
209   bool PBlock = false;
210   PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 ||
211             Opcode == X86::MOV32mr || Opcode == X86::MOV32mi ||
212             Opcode == X86::MOV16mr || Opcode == X86::MOV16mi ||
213             Opcode == X86::MOV8mr || Opcode == X86::MOV8mi;
214   if (isYMMLoadOpcode(LoadOpcode))
215     PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr ||
216               Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr ||
217               Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr ||
218               Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr ||
219               Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr ||
220               Opcode == X86::VMOVDQU64Z128mr ||
221               Opcode == X86::VMOVDQA64Z128mr ||
222               Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr;
223   return PBlock;
224 }
225
226 static const int MOV128SZ = 16;
227 static const int MOV64SZ = 8;
228 static const int MOV32SZ = 4;
229 static const int MOV16SZ = 2;
230 static const int MOV8SZ = 1;
231
232 static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode) {
233   switch (LoadOpcode) {
234   case X86::VMOVUPSYrm:
235   case X86::VMOVAPSYrm:
236     return X86::VMOVUPSrm;
237   case X86::VMOVUPDYrm:
238   case X86::VMOVAPDYrm:
239     return X86::VMOVUPDrm;
240   case X86::VMOVDQUYrm:
241   case X86::VMOVDQAYrm:
242     return X86::VMOVDQUrm;
243   case X86::VMOVUPSZ256rm:
244   case X86::VMOVAPSZ256rm:
245     return X86::VMOVUPSZ128rm;
246   case X86::VMOVUPDZ256rm:
247   case X86::VMOVAPDZ256rm:
248     return X86::VMOVUPDZ128rm;
249   case X86::VMOVDQU64Z256rm:
250   case X86::VMOVDQA64Z256rm:
251     return X86::VMOVDQU64Z128rm;
252   case X86::VMOVDQU32Z256rm:
253   case X86::VMOVDQA32Z256rm:
254     return X86::VMOVDQU32Z128rm;
255   default:
256     llvm_unreachable("Unexpected Load Instruction Opcode");
257   }
258   return 0;
259 }
260
261 static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode) {
262   switch (StoreOpcode) {
263   case X86::VMOVUPSYmr:
264   case X86::VMOVAPSYmr:
265     return X86::VMOVUPSmr;
266   case X86::VMOVUPDYmr:
267   case X86::VMOVAPDYmr:
268     return X86::VMOVUPDmr;
269   case X86::VMOVDQUYmr:
270   case X86::VMOVDQAYmr:
271     return X86::VMOVDQUmr;
272   case X86::VMOVUPSZ256mr:
273   case X86::VMOVAPSZ256mr:
274     return X86::VMOVUPSZ128mr;
275   case X86::VMOVUPDZ256mr:
276   case X86::VMOVAPDZ256mr:
277     return X86::VMOVUPDZ128mr;
278   case X86::VMOVDQU64Z256mr:
279   case X86::VMOVDQA64Z256mr:
280     return X86::VMOVDQU64Z128mr;
281   case X86::VMOVDQU32Z256mr:
282   case X86::VMOVDQA32Z256mr:
283     return X86::VMOVDQU32Z128mr;
284   default:
285     llvm_unreachable("Unexpected Load Instruction Opcode");
286   }
287   return 0;
288 }
289
290 static int getAddrOffset(MachineInstr *MI) {
291   const MCInstrDesc &Descl = MI->getDesc();
292   int AddrOffset = X86II::getMemoryOperandNo(Descl.TSFlags);
293   assert(AddrOffset != -1 && "Expected Memory Operand");
294   AddrOffset += X86II::getOperandBias(Descl);
295   return AddrOffset;
296 }
297
298 static MachineOperand &getBaseOperand(MachineInstr *MI) {
299   int AddrOffset = getAddrOffset(MI);
300   return MI->getOperand(AddrOffset + X86::AddrBaseReg);
301 }
302
303 static MachineOperand &getDispOperand(MachineInstr *MI) {
304   int AddrOffset = getAddrOffset(MI);
305   return MI->getOperand(AddrOffset + X86::AddrDisp);
306 }
307
308 // Relevant addressing modes contain only base register and immediate
309 // displacement or frameindex and immediate displacement.
310 // TODO: Consider expanding to other addressing modes in the future
311 static bool isRelevantAddressingMode(MachineInstr *MI) {
312   int AddrOffset = getAddrOffset(MI);
313   MachineOperand &Base = getBaseOperand(MI);
314   MachineOperand &Disp = getDispOperand(MI);
315   MachineOperand &Scale = MI->getOperand(AddrOffset + X86::AddrScaleAmt);
316   MachineOperand &Index = MI->getOperand(AddrOffset + X86::AddrIndexReg);
317   MachineOperand &Segment = MI->getOperand(AddrOffset + X86::AddrSegmentReg);
318
319   if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI()))
320     return false;
321   if (!Disp.isImm())
322     return false;
323   if (Scale.getImm() != 1)
324     return false;
325   if (!(Index.isReg() && Index.getReg() == X86::NoRegister))
326     return false;
327   if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister))
328     return false;
329   return true;
330 }
331
332 // Collect potentially blocking stores.
333 // Limit the number of instructions backwards we want to inspect
334 // since the effect of store block won't be visible if the store
335 // and load instructions have enough instructions in between to
336 // keep the core busy.
337 static SmallVector<MachineInstr *, 2>
338 findPotentialBlockers(MachineInstr *LoadInst) {
339   SmallVector<MachineInstr *, 2> PotentialBlockers;
340   unsigned BlockCount = 0;
341   const unsigned InspectionLimit = X86AvoidSFBInspectionLimit;
342   for (auto PBInst = std::next(MachineBasicBlock::reverse_iterator(LoadInst)),
343             E = LoadInst->getParent()->rend();
344        PBInst != E; ++PBInst) {
345     if (PBInst->isMetaInstruction())
346       continue;
347     BlockCount++;
348     if (BlockCount >= InspectionLimit)
349       break;
350     MachineInstr &MI = *PBInst;
351     if (MI.getDesc().isCall())
352       return PotentialBlockers;
353     PotentialBlockers.push_back(&MI);
354   }
355   // If we didn't get to the instructions limit try predecessing blocks.
356   // Ideally we should traverse the predecessor blocks in depth with some
357   // coloring algorithm, but for now let's just look at the first order
358   // predecessors.
359   if (BlockCount < InspectionLimit) {
360     MachineBasicBlock *MBB = LoadInst->getParent();
361     int LimitLeft = InspectionLimit - BlockCount;
362     for (MachineBasicBlock::pred_iterator PB = MBB->pred_begin(),
363                                           PE = MBB->pred_end();
364          PB != PE; ++PB) {
365       MachineBasicBlock *PMBB = *PB;
366       int PredCount = 0;
367       for (MachineBasicBlock::reverse_iterator PBInst = PMBB->rbegin(),
368                                                PME = PMBB->rend();
369            PBInst != PME; ++PBInst) {
370         if (PBInst->isMetaInstruction())
371           continue;
372         PredCount++;
373         if (PredCount >= LimitLeft)
374           break;
375         if (PBInst->getDesc().isCall())
376           break;
377         PotentialBlockers.push_back(&*PBInst);
378       }
379     }
380   }
381   return PotentialBlockers;
382 }
383
384 void X86AvoidSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode,
385                                 int64_t LoadDisp, MachineInstr *StoreInst,
386                                 unsigned NStoreOpcode, int64_t StoreDisp,
387                                 unsigned Size, int64_t LMMOffset,
388                                 int64_t SMMOffset) {
389   MachineOperand &LoadBase = getBaseOperand(LoadInst);
390   MachineOperand &StoreBase = getBaseOperand(StoreInst);
391   MachineBasicBlock *MBB = LoadInst->getParent();
392   MachineMemOperand *LMMO = *LoadInst->memoperands_begin();
393   MachineMemOperand *SMMO = *StoreInst->memoperands_begin();
394
395   Register Reg1 = MRI->createVirtualRegister(
396       TII->getRegClass(TII->get(NLoadOpcode), 0, TRI, *(MBB->getParent())));
397   MachineInstr *NewLoad =
398       BuildMI(*MBB, LoadInst, LoadInst->getDebugLoc(), TII->get(NLoadOpcode),
399               Reg1)
400           .add(LoadBase)
401           .addImm(1)
402           .addReg(X86::NoRegister)
403           .addImm(LoadDisp)
404           .addReg(X86::NoRegister)
405           .addMemOperand(
406               MBB->getParent()->getMachineMemOperand(LMMO, LMMOffset, Size));
407   if (LoadBase.isReg())
408     getBaseOperand(NewLoad).setIsKill(false);
409   LLVM_DEBUG(NewLoad->dump());
410   // If the load and store are consecutive, use the loadInst location to
411   // reduce register pressure.
412   MachineInstr *StInst = StoreInst;
413   auto PrevInstrIt = skipDebugInstructionsBackward(
414       std::prev(MachineBasicBlock::instr_iterator(StoreInst)),
415       MBB->instr_begin());
416   if (PrevInstrIt.getNodePtr() == LoadInst)
417     StInst = LoadInst;
418   MachineInstr *NewStore =
419       BuildMI(*MBB, StInst, StInst->getDebugLoc(), TII->get(NStoreOpcode))
420           .add(StoreBase)
421           .addImm(1)
422           .addReg(X86::NoRegister)
423           .addImm(StoreDisp)
424           .addReg(X86::NoRegister)
425           .addReg(Reg1)
426           .addMemOperand(
427               MBB->getParent()->getMachineMemOperand(SMMO, SMMOffset, Size));
428   if (StoreBase.isReg())
429     getBaseOperand(NewStore).setIsKill(false);
430   MachineOperand &StoreSrcVReg = StoreInst->getOperand(X86::AddrNumOperands);
431   assert(StoreSrcVReg.isReg() && "Expected virtual register");
432   NewStore->getOperand(X86::AddrNumOperands).setIsKill(StoreSrcVReg.isKill());
433   LLVM_DEBUG(NewStore->dump());
434 }
435
436 void X86AvoidSFBPass::buildCopies(int Size, MachineInstr *LoadInst,
437                                   int64_t LdDispImm, MachineInstr *StoreInst,
438                                   int64_t StDispImm, int64_t LMMOffset,
439                                   int64_t SMMOffset) {
440   int LdDisp = LdDispImm;
441   int StDisp = StDispImm;
442   while (Size > 0) {
443     if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(LoadInst->getOpcode())) {
444       Size = Size - MOV128SZ;
445       buildCopy(LoadInst, getYMMtoXMMLoadOpcode(LoadInst->getOpcode()), LdDisp,
446                 StoreInst, getYMMtoXMMStoreOpcode(StoreInst->getOpcode()),
447                 StDisp, MOV128SZ, LMMOffset, SMMOffset);
448       LdDisp += MOV128SZ;
449       StDisp += MOV128SZ;
450       LMMOffset += MOV128SZ;
451       SMMOffset += MOV128SZ;
452       continue;
453     }
454     if (Size - MOV64SZ >= 0) {
455       Size = Size - MOV64SZ;
456       buildCopy(LoadInst, X86::MOV64rm, LdDisp, StoreInst, X86::MOV64mr, StDisp,
457                 MOV64SZ, LMMOffset, SMMOffset);
458       LdDisp += MOV64SZ;
459       StDisp += MOV64SZ;
460       LMMOffset += MOV64SZ;
461       SMMOffset += MOV64SZ;
462       continue;
463     }
464     if (Size - MOV32SZ >= 0) {
465       Size = Size - MOV32SZ;
466       buildCopy(LoadInst, X86::MOV32rm, LdDisp, StoreInst, X86::MOV32mr, StDisp,
467                 MOV32SZ, LMMOffset, SMMOffset);
468       LdDisp += MOV32SZ;
469       StDisp += MOV32SZ;
470       LMMOffset += MOV32SZ;
471       SMMOffset += MOV32SZ;
472       continue;
473     }
474     if (Size - MOV16SZ >= 0) {
475       Size = Size - MOV16SZ;
476       buildCopy(LoadInst, X86::MOV16rm, LdDisp, StoreInst, X86::MOV16mr, StDisp,
477                 MOV16SZ, LMMOffset, SMMOffset);
478       LdDisp += MOV16SZ;
479       StDisp += MOV16SZ;
480       LMMOffset += MOV16SZ;
481       SMMOffset += MOV16SZ;
482       continue;
483     }
484     if (Size - MOV8SZ >= 0) {
485       Size = Size - MOV8SZ;
486       buildCopy(LoadInst, X86::MOV8rm, LdDisp, StoreInst, X86::MOV8mr, StDisp,
487                 MOV8SZ, LMMOffset, SMMOffset);
488       LdDisp += MOV8SZ;
489       StDisp += MOV8SZ;
490       LMMOffset += MOV8SZ;
491       SMMOffset += MOV8SZ;
492       continue;
493     }
494   }
495   assert(Size == 0 && "Wrong size division");
496 }
497
498 static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) {
499   MachineOperand &LoadBase = getBaseOperand(LoadInst);
500   MachineOperand &StoreBase = getBaseOperand(StoreInst);
501   auto StorePrevNonDbgInstr = skipDebugInstructionsBackward(
502           std::prev(MachineBasicBlock::instr_iterator(StoreInst)),
503           LoadInst->getParent()->instr_begin()).getNodePtr();
504   if (LoadBase.isReg()) {
505     MachineInstr *LastLoad = LoadInst->getPrevNode();
506     // If the original load and store to xmm/ymm were consecutive
507     // then the partial copies were also created in
508     // a consecutive order to reduce register pressure,
509     // and the location of the last load is before the last store.
510     if (StorePrevNonDbgInstr == LoadInst)
511       LastLoad = LoadInst->getPrevNode()->getPrevNode();
512     getBaseOperand(LastLoad).setIsKill(LoadBase.isKill());
513   }
514   if (StoreBase.isReg()) {
515     MachineInstr *StInst = StoreInst;
516     if (StorePrevNonDbgInstr == LoadInst)
517       StInst = LoadInst;
518     getBaseOperand(StInst->getPrevNode()).setIsKill(StoreBase.isKill());
519   }
520 }
521
522 bool X86AvoidSFBPass::alias(const MachineMemOperand &Op1,
523                             const MachineMemOperand &Op2) const {
524   if (!Op1.getValue() || !Op2.getValue())
525     return true;
526
527   int64_t MinOffset = std::min(Op1.getOffset(), Op2.getOffset());
528   int64_t Overlapa = Op1.getSize() + Op1.getOffset() - MinOffset;
529   int64_t Overlapb = Op2.getSize() + Op2.getOffset() - MinOffset;
530
531   AliasResult AAResult =
532       AA->alias(MemoryLocation(Op1.getValue(), Overlapa, Op1.getAAInfo()),
533                 MemoryLocation(Op2.getValue(), Overlapb, Op2.getAAInfo()));
534   return AAResult != NoAlias;
535 }
536
537 void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) {
538   for (auto &MBB : MF)
539     for (auto &MI : MBB) {
540       if (!isPotentialBlockedMemCpyLd(MI.getOpcode()))
541         continue;
542       int DefVR = MI.getOperand(0).getReg();
543       if (!MRI->hasOneNonDBGUse(DefVR))
544         continue;
545       for (auto UI = MRI->use_nodbg_begin(DefVR), UE = MRI->use_nodbg_end();
546            UI != UE;) {
547         MachineOperand &StoreMO = *UI++;
548         MachineInstr &StoreMI = *StoreMO.getParent();
549         // Skip cases where the memcpy may overlap.
550         if (StoreMI.getParent() == MI.getParent() &&
551             isPotentialBlockedMemCpyPair(MI.getOpcode(), StoreMI.getOpcode()) &&
552             isRelevantAddressingMode(&MI) &&
553             isRelevantAddressingMode(&StoreMI)) {
554           assert(MI.hasOneMemOperand() &&
555                  "Expected one memory operand for load instruction");
556           assert(StoreMI.hasOneMemOperand() &&
557                  "Expected one memory operand for store instruction");
558           if (!alias(**MI.memoperands_begin(), **StoreMI.memoperands_begin()))
559             BlockedLoadsStoresPairs.push_back(std::make_pair(&MI, &StoreMI));
560         }
561       }
562     }
563 }
564
565 unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) {
566   auto TRC = TII->getRegClass(TII->get(LoadInst->getOpcode()), 0, TRI,
567                               *LoadInst->getParent()->getParent());
568   return TRI->getRegSizeInBits(*TRC) / 8;
569 }
570
571 void X86AvoidSFBPass::breakBlockedCopies(
572     MachineInstr *LoadInst, MachineInstr *StoreInst,
573     const DisplacementSizeMap &BlockingStoresDispSizeMap) {
574   int64_t LdDispImm = getDispOperand(LoadInst).getImm();
575   int64_t StDispImm = getDispOperand(StoreInst).getImm();
576   int64_t LMMOffset = 0;
577   int64_t SMMOffset = 0;
578
579   int64_t LdDisp1 = LdDispImm;
580   int64_t LdDisp2 = 0;
581   int64_t StDisp1 = StDispImm;
582   int64_t StDisp2 = 0;
583   unsigned Size1 = 0;
584   unsigned Size2 = 0;
585   int64_t LdStDelta = StDispImm - LdDispImm;
586
587   for (auto DispSizePair : BlockingStoresDispSizeMap) {
588     LdDisp2 = DispSizePair.first;
589     StDisp2 = DispSizePair.first + LdStDelta;
590     Size2 = DispSizePair.second;
591     // Avoid copying overlapping areas.
592     if (LdDisp2 < LdDisp1) {
593       int OverlapDelta = LdDisp1 - LdDisp2;
594       LdDisp2 += OverlapDelta;
595       StDisp2 += OverlapDelta;
596       Size2 -= OverlapDelta;
597     }
598     Size1 = LdDisp2 - LdDisp1;
599
600     // Build a copy for the point until the current blocking store's
601     // displacement.
602     buildCopies(Size1, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
603                 SMMOffset);
604     // Build a copy for the current blocking store.
605     buildCopies(Size2, LoadInst, LdDisp2, StoreInst, StDisp2, LMMOffset + Size1,
606                 SMMOffset + Size1);
607     LdDisp1 = LdDisp2 + Size2;
608     StDisp1 = StDisp2 + Size2;
609     LMMOffset += Size1 + Size2;
610     SMMOffset += Size1 + Size2;
611   }
612   unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1;
613   buildCopies(Size3, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
614               LMMOffset);
615 }
616
617 static bool hasSameBaseOpValue(MachineInstr *LoadInst,
618                                MachineInstr *StoreInst) {
619   MachineOperand &LoadBase = getBaseOperand(LoadInst);
620   MachineOperand &StoreBase = getBaseOperand(StoreInst);
621   if (LoadBase.isReg() != StoreBase.isReg())
622     return false;
623   if (LoadBase.isReg())
624     return LoadBase.getReg() == StoreBase.getReg();
625   return LoadBase.getIndex() == StoreBase.getIndex();
626 }
627
628 static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize,
629                             int64_t StoreDispImm, unsigned StoreSize) {
630   return ((StoreDispImm >= LoadDispImm) &&
631           (StoreDispImm <= LoadDispImm + (LoadSize - StoreSize)));
632 }
633
634 // Keep track of all stores blocking a load
635 static void
636 updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap,
637                                 int64_t DispImm, unsigned Size) {
638   if (BlockingStoresDispSizeMap.count(DispImm)) {
639     // Choose the smallest blocking store starting at this displacement.
640     if (BlockingStoresDispSizeMap[DispImm] > Size)
641       BlockingStoresDispSizeMap[DispImm] = Size;
642
643   } else
644     BlockingStoresDispSizeMap[DispImm] = Size;
645 }
646
647 // Remove blocking stores contained in each other.
648 static void
649 removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap) {
650   if (BlockingStoresDispSizeMap.size() <= 1)
651     return;
652
653   SmallVector<std::pair<int64_t, unsigned>, 0> DispSizeStack;
654   for (auto DispSizePair : BlockingStoresDispSizeMap) {
655     int64_t CurrDisp = DispSizePair.first;
656     unsigned CurrSize = DispSizePair.second;
657     while (DispSizeStack.size()) {
658       int64_t PrevDisp = DispSizeStack.back().first;
659       unsigned PrevSize = DispSizeStack.back().second;
660       if (CurrDisp + CurrSize > PrevDisp + PrevSize)
661         break;
662       DispSizeStack.pop_back();
663     }
664     DispSizeStack.push_back(DispSizePair);
665   }
666   BlockingStoresDispSizeMap.clear();
667   for (auto Disp : DispSizeStack)
668     BlockingStoresDispSizeMap.insert(Disp);
669 }
670
671 bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction &MF) {
672   bool Changed = false;
673
674   if (DisableX86AvoidStoreForwardBlocks || skipFunction(MF.getFunction()) ||
675       !MF.getSubtarget<X86Subtarget>().is64Bit())
676     return false;
677
678   MRI = &MF.getRegInfo();
679   assert(MRI->isSSA() && "Expected MIR to be in SSA form");
680   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
681   TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
682   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
683   LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n";);
684   // Look for a load then a store to XMM/YMM which look like a memcpy
685   findPotentiallylBlockedCopies(MF);
686
687   for (auto LoadStoreInstPair : BlockedLoadsStoresPairs) {
688     MachineInstr *LoadInst = LoadStoreInstPair.first;
689     int64_t LdDispImm = getDispOperand(LoadInst).getImm();
690     DisplacementSizeMap BlockingStoresDispSizeMap;
691
692     SmallVector<MachineInstr *, 2> PotentialBlockers =
693         findPotentialBlockers(LoadInst);
694     for (auto PBInst : PotentialBlockers) {
695       if (!isPotentialBlockingStoreInst(PBInst->getOpcode(),
696                                         LoadInst->getOpcode()) ||
697           !isRelevantAddressingMode(PBInst))
698         continue;
699       int64_t PBstDispImm = getDispOperand(PBInst).getImm();
700       assert(PBInst->hasOneMemOperand() && "Expected One Memory Operand");
701       unsigned PBstSize = (*PBInst->memoperands_begin())->getSize();
702       // This check doesn't cover all cases, but it will suffice for now.
703       // TODO: take branch probability into consideration, if the blocking
704       // store is in an unreached block, breaking the memcopy could lose
705       // performance.
706       if (hasSameBaseOpValue(LoadInst, PBInst) &&
707           isBlockingStore(LdDispImm, getRegSizeInBytes(LoadInst), PBstDispImm,
708                           PBstSize))
709         updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap, PBstDispImm,
710                                         PBstSize);
711     }
712
713     if (BlockingStoresDispSizeMap.empty())
714       continue;
715
716     // We found a store forward block, break the memcpy's load and store
717     // into smaller copies such that each smaller store that was causing
718     // a store block would now be copied separately.
719     MachineInstr *StoreInst = LoadStoreInstPair.second;
720     LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n");
721     LLVM_DEBUG(LoadInst->dump());
722     LLVM_DEBUG(StoreInst->dump());
723     LLVM_DEBUG(dbgs() << "Replaced with:\n");
724     removeRedundantBlockingStores(BlockingStoresDispSizeMap);
725     breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDispSizeMap);
726     updateKillStatus(LoadInst, StoreInst);
727     ForRemoval.push_back(LoadInst);
728     ForRemoval.push_back(StoreInst);
729   }
730   for (auto RemovedInst : ForRemoval) {
731     RemovedInst->eraseFromParent();
732   }
733   ForRemoval.clear();
734   BlockedLoadsStoresPairs.clear();
735   LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n";);
736
737   return Changed;
738 }