]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/X86/X86CmovConversion.cpp
Merge ^/head r358263 through r358268.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / X86 / X86CmovConversion.cpp
1 //====- X86CmovConversion.cpp - Convert Cmov to Branch --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements a pass that converts X86 cmov instructions into
11 /// branches when profitable. This pass is conservative. It transforms if and
12 /// only if it can guarantee a gain with high confidence.
13 ///
14 /// Thus, the optimization applies under the following conditions:
15 ///   1. Consider as candidates only CMOVs in innermost loops (assume that
16 ///      most hotspots are represented by these loops).
17 ///   2. Given a group of CMOV instructions that are using the same EFLAGS def
18 ///      instruction:
19 ///      a. Consider them as candidates only if all have the same code condition
20 ///         or the opposite one to prevent generating more than one conditional
21 ///         jump per EFLAGS def instruction.
22 ///      b. Consider them as candidates only if all are profitable to be
23 ///         converted (assume that one bad conversion may cause a degradation).
24 ///   3. Apply conversion only for loops that are found profitable and only for
25 ///      CMOV candidates that were found profitable.
26 ///      a. A loop is considered profitable only if conversion will reduce its
27 ///         depth cost by some threshold.
28 ///      b. CMOV is considered profitable if the cost of its condition is higher
29 ///         than the average cost of its true-value and false-value by 25% of
30 ///         branch-misprediction-penalty. This assures no degradation even with
31 ///         25% branch misprediction.
32 ///
33 /// Note: This pass is assumed to run on SSA machine code.
34 //
35 //===----------------------------------------------------------------------===//
36 //
37 //  External interfaces:
38 //      FunctionPass *llvm::createX86CmovConverterPass();
39 //      bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF);
40 //
41 //===----------------------------------------------------------------------===//
42
43 #include "X86.h"
44 #include "X86InstrInfo.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/STLExtras.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/CodeGen/MachineBasicBlock.h"
52 #include "llvm/CodeGen/MachineFunction.h"
53 #include "llvm/CodeGen/MachineFunctionPass.h"
54 #include "llvm/CodeGen/MachineInstr.h"
55 #include "llvm/CodeGen/MachineInstrBuilder.h"
56 #include "llvm/CodeGen/MachineLoopInfo.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachineRegisterInfo.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSchedule.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/MC/MCSchedule.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <iterator>
73 #include <utility>
74
75 using namespace llvm;
76
77 #define DEBUG_TYPE "x86-cmov-conversion"
78
79 STATISTIC(NumOfSkippedCmovGroups, "Number of unsupported CMOV-groups");
80 STATISTIC(NumOfCmovGroupCandidate, "Number of CMOV-group candidates");
81 STATISTIC(NumOfLoopCandidate, "Number of CMOV-conversion profitable loops");
82 STATISTIC(NumOfOptimizedCmovGroups, "Number of optimized CMOV-groups");
83
84 // This internal switch can be used to turn off the cmov/branch optimization.
85 static cl::opt<bool>
86     EnableCmovConverter("x86-cmov-converter",
87                         cl::desc("Enable the X86 cmov-to-branch optimization."),
88                         cl::init(true), cl::Hidden);
89
90 static cl::opt<unsigned>
91     GainCycleThreshold("x86-cmov-converter-threshold",
92                        cl::desc("Minimum gain per loop (in cycles) threshold."),
93                        cl::init(4), cl::Hidden);
94
95 static cl::opt<bool> ForceMemOperand(
96     "x86-cmov-converter-force-mem-operand",
97     cl::desc("Convert cmovs to branches whenever they have memory operands."),
98     cl::init(true), cl::Hidden);
99
100 namespace {
101
102 /// Converts X86 cmov instructions into branches when profitable.
103 class X86CmovConverterPass : public MachineFunctionPass {
104 public:
105   X86CmovConverterPass() : MachineFunctionPass(ID) { }
106
107   StringRef getPassName() const override { return "X86 cmov Conversion"; }
108   bool runOnMachineFunction(MachineFunction &MF) override;
109   void getAnalysisUsage(AnalysisUsage &AU) const override;
110
111   /// Pass identification, replacement for typeid.
112   static char ID;
113
114 private:
115   MachineRegisterInfo *MRI = nullptr;
116   const TargetInstrInfo *TII = nullptr;
117   const TargetRegisterInfo *TRI = nullptr;
118   TargetSchedModel TSchedModel;
119
120   /// List of consecutive CMOV instructions.
121   using CmovGroup = SmallVector<MachineInstr *, 2>;
122   using CmovGroups = SmallVector<CmovGroup, 2>;
123
124   /// Collect all CMOV-group-candidates in \p CurrLoop and update \p
125   /// CmovInstGroups accordingly.
126   ///
127   /// \param Blocks List of blocks to process.
128   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
129   /// \returns true iff it found any CMOV-group-candidate.
130   bool collectCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
131                              CmovGroups &CmovInstGroups,
132                              bool IncludeLoads = false);
133
134   /// Check if it is profitable to transform each CMOV-group-candidates into
135   /// branch. Remove all groups that are not profitable from \p CmovInstGroups.
136   ///
137   /// \param Blocks List of blocks to process.
138   /// \param CmovInstGroups List of consecutive CMOV instructions in CurrLoop.
139   /// \returns true iff any CMOV-group-candidate remain.
140   bool checkForProfitableCmovCandidates(ArrayRef<MachineBasicBlock *> Blocks,
141                                         CmovGroups &CmovInstGroups);
142
143   /// Convert the given list of consecutive CMOV instructions into a branch.
144   ///
145   /// \param Group Consecutive CMOV instructions to be converted into branch.
146   void convertCmovInstsToBranches(SmallVectorImpl<MachineInstr *> &Group) const;
147 };
148
149 } // end anonymous namespace
150
151 char X86CmovConverterPass::ID = 0;
152
153 void X86CmovConverterPass::getAnalysisUsage(AnalysisUsage &AU) const {
154   MachineFunctionPass::getAnalysisUsage(AU);
155   AU.addRequired<MachineLoopInfo>();
156 }
157
158 bool X86CmovConverterPass::runOnMachineFunction(MachineFunction &MF) {
159   if (skipFunction(MF.getFunction()))
160     return false;
161   if (!EnableCmovConverter)
162     return false;
163
164   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
165                     << "**********\n");
166
167   bool Changed = false;
168   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
169   const TargetSubtargetInfo &STI = MF.getSubtarget();
170   MRI = &MF.getRegInfo();
171   TII = STI.getInstrInfo();
172   TRI = STI.getRegisterInfo();
173   TSchedModel.init(&STI);
174
175   // Before we handle the more subtle cases of register-register CMOVs inside
176   // of potentially hot loops, we want to quickly remove all CMOVs with
177   // a memory operand. The CMOV will risk a stall waiting for the load to
178   // complete that speculative execution behind a branch is better suited to
179   // handle on modern x86 chips.
180   if (ForceMemOperand) {
181     CmovGroups AllCmovGroups;
182     SmallVector<MachineBasicBlock *, 4> Blocks;
183     for (auto &MBB : MF)
184       Blocks.push_back(&MBB);
185     if (collectCmovCandidates(Blocks, AllCmovGroups, /*IncludeLoads*/ true)) {
186       for (auto &Group : AllCmovGroups) {
187         // Skip any group that doesn't do at least one memory operand cmov.
188         if (!llvm::any_of(Group, [&](MachineInstr *I) { return I->mayLoad(); }))
189           continue;
190
191         // For CMOV groups which we can rewrite and which contain a memory load,
192         // always rewrite them. On x86, a CMOV will dramatically amplify any
193         // memory latency by blocking speculative execution.
194         Changed = true;
195         convertCmovInstsToBranches(Group);
196       }
197     }
198   }
199
200   //===--------------------------------------------------------------------===//
201   // Register-operand Conversion Algorithm
202   // ---------
203   //   For each inner most loop
204   //     collectCmovCandidates() {
205   //       Find all CMOV-group-candidates.
206   //     }
207   //
208   //     checkForProfitableCmovCandidates() {
209   //       * Calculate both loop-depth and optimized-loop-depth.
210   //       * Use these depth to check for loop transformation profitability.
211   //       * Check for CMOV-group-candidate transformation profitability.
212   //     }
213   //
214   //     For each profitable CMOV-group-candidate
215   //       convertCmovInstsToBranches() {
216   //           * Create FalseBB, SinkBB, Conditional branch to SinkBB.
217   //           * Replace each CMOV instruction with a PHI instruction in SinkBB.
218   //       }
219   //
220   // Note: For more details, see each function description.
221   //===--------------------------------------------------------------------===//
222
223   // Build up the loops in pre-order.
224   SmallVector<MachineLoop *, 4> Loops(MLI.begin(), MLI.end());
225   // Note that we need to check size on each iteration as we accumulate child
226   // loops.
227   for (int i = 0; i < (int)Loops.size(); ++i)
228     for (MachineLoop *Child : Loops[i]->getSubLoops())
229       Loops.push_back(Child);
230
231   for (MachineLoop *CurrLoop : Loops) {
232     // Optimize only inner most loops.
233     if (!CurrLoop->getSubLoops().empty())
234       continue;
235
236     // List of consecutive CMOV instructions to be processed.
237     CmovGroups CmovInstGroups;
238
239     if (!collectCmovCandidates(CurrLoop->getBlocks(), CmovInstGroups))
240       continue;
241
242     if (!checkForProfitableCmovCandidates(CurrLoop->getBlocks(),
243                                           CmovInstGroups))
244       continue;
245
246     Changed = true;
247     for (auto &Group : CmovInstGroups)
248       convertCmovInstsToBranches(Group);
249   }
250
251   return Changed;
252 }
253
254 bool X86CmovConverterPass::collectCmovCandidates(
255     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups,
256     bool IncludeLoads) {
257   //===--------------------------------------------------------------------===//
258   // Collect all CMOV-group-candidates and add them into CmovInstGroups.
259   //
260   // CMOV-group:
261   //   CMOV instructions, in same MBB, that uses same EFLAGS def instruction.
262   //
263   // CMOV-group-candidate:
264   //   CMOV-group where all the CMOV instructions are
265   //     1. consecutive.
266   //     2. have same condition code or opposite one.
267   //     3. have only operand registers (X86::CMOVrr).
268   //===--------------------------------------------------------------------===//
269   // List of possible improvement (TODO's):
270   // --------------------------------------
271   //   TODO: Add support for X86::CMOVrm instructions.
272   //   TODO: Add support for X86::SETcc instructions.
273   //   TODO: Add support for CMOV-groups with non consecutive CMOV instructions.
274   //===--------------------------------------------------------------------===//
275
276   // Current processed CMOV-Group.
277   CmovGroup Group;
278   for (auto *MBB : Blocks) {
279     Group.clear();
280     // Condition code of first CMOV instruction current processed range and its
281     // opposite condition code.
282     X86::CondCode FirstCC = X86::COND_INVALID, FirstOppCC = X86::COND_INVALID,
283                   MemOpCC = X86::COND_INVALID;
284     // Indicator of a non CMOVrr instruction in the current processed range.
285     bool FoundNonCMOVInst = false;
286     // Indicator for current processed CMOV-group if it should be skipped.
287     bool SkipGroup = false;
288
289     for (auto &I : *MBB) {
290       // Skip debug instructions.
291       if (I.isDebugInstr())
292         continue;
293       X86::CondCode CC = X86::getCondFromCMov(I);
294       // Check if we found a X86::CMOVrr instruction.
295       if (CC != X86::COND_INVALID && (IncludeLoads || !I.mayLoad())) {
296         if (Group.empty()) {
297           // We found first CMOV in the range, reset flags.
298           FirstCC = CC;
299           FirstOppCC = X86::GetOppositeBranchCondition(CC);
300           // Clear out the prior group's memory operand CC.
301           MemOpCC = X86::COND_INVALID;
302           FoundNonCMOVInst = false;
303           SkipGroup = false;
304         }
305         Group.push_back(&I);
306         // Check if it is a non-consecutive CMOV instruction or it has different
307         // condition code than FirstCC or FirstOppCC.
308         if (FoundNonCMOVInst || (CC != FirstCC && CC != FirstOppCC))
309           // Mark the SKipGroup indicator to skip current processed CMOV-Group.
310           SkipGroup = true;
311         if (I.mayLoad()) {
312           if (MemOpCC == X86::COND_INVALID)
313             // The first memory operand CMOV.
314             MemOpCC = CC;
315           else if (CC != MemOpCC)
316             // Can't handle mixed conditions with memory operands.
317             SkipGroup = true;
318         }
319         // Check if we were relying on zero-extending behavior of the CMOV.
320         if (!SkipGroup &&
321             llvm::any_of(
322                 MRI->use_nodbg_instructions(I.defs().begin()->getReg()),
323                 [&](MachineInstr &UseI) {
324                   return UseI.getOpcode() == X86::SUBREG_TO_REG;
325                 }))
326           // FIXME: We should model the cost of using an explicit MOV to handle
327           // the zero-extension rather than just refusing to handle this.
328           SkipGroup = true;
329         continue;
330       }
331       // If Group is empty, keep looking for first CMOV in the range.
332       if (Group.empty())
333         continue;
334
335       // We found a non X86::CMOVrr instruction.
336       FoundNonCMOVInst = true;
337       // Check if this instruction define EFLAGS, to determine end of processed
338       // range, as there would be no more instructions using current EFLAGS def.
339       if (I.definesRegister(X86::EFLAGS)) {
340         // Check if current processed CMOV-group should not be skipped and add
341         // it as a CMOV-group-candidate.
342         if (!SkipGroup)
343           CmovInstGroups.push_back(Group);
344         else
345           ++NumOfSkippedCmovGroups;
346         Group.clear();
347       }
348     }
349     // End of basic block is considered end of range, check if current processed
350     // CMOV-group should not be skipped and add it as a CMOV-group-candidate.
351     if (Group.empty())
352       continue;
353     if (!SkipGroup)
354       CmovInstGroups.push_back(Group);
355     else
356       ++NumOfSkippedCmovGroups;
357   }
358
359   NumOfCmovGroupCandidate += CmovInstGroups.size();
360   return !CmovInstGroups.empty();
361 }
362
363 /// \returns Depth of CMOV instruction as if it was converted into branch.
364 /// \param TrueOpDepth depth cost of CMOV true value operand.
365 /// \param FalseOpDepth depth cost of CMOV false value operand.
366 static unsigned getDepthOfOptCmov(unsigned TrueOpDepth, unsigned FalseOpDepth) {
367   //===--------------------------------------------------------------------===//
368   // With no info about branch weight, we assume 50% for each value operand.
369   // Thus, depth of optimized CMOV instruction is the rounded up average of
370   // its True-Operand-Value-Depth and False-Operand-Value-Depth.
371   //===--------------------------------------------------------------------===//
372   return (TrueOpDepth + FalseOpDepth + 1) / 2;
373 }
374
375 bool X86CmovConverterPass::checkForProfitableCmovCandidates(
376     ArrayRef<MachineBasicBlock *> Blocks, CmovGroups &CmovInstGroups) {
377   struct DepthInfo {
378     /// Depth of original loop.
379     unsigned Depth;
380     /// Depth of optimized loop.
381     unsigned OptDepth;
382   };
383   /// Number of loop iterations to calculate depth for ?!
384   static const unsigned LoopIterations = 2;
385   DenseMap<MachineInstr *, DepthInfo> DepthMap;
386   DepthInfo LoopDepth[LoopIterations] = {{0, 0}, {0, 0}};
387   enum { PhyRegType = 0, VirRegType = 1, RegTypeNum = 2 };
388   /// For each register type maps the register to its last def instruction.
389   DenseMap<unsigned, MachineInstr *> RegDefMaps[RegTypeNum];
390   /// Maps register operand to its def instruction, which can be nullptr if it
391   /// is unknown (e.g., operand is defined outside the loop).
392   DenseMap<MachineOperand *, MachineInstr *> OperandToDefMap;
393
394   // Set depth of unknown instruction (i.e., nullptr) to zero.
395   DepthMap[nullptr] = {0, 0};
396
397   SmallPtrSet<MachineInstr *, 4> CmovInstructions;
398   for (auto &Group : CmovInstGroups)
399     CmovInstructions.insert(Group.begin(), Group.end());
400
401   //===--------------------------------------------------------------------===//
402   // Step 1: Calculate instruction depth and loop depth.
403   // Optimized-Loop:
404   //   loop with CMOV-group-candidates converted into branches.
405   //
406   // Instruction-Depth:
407   //   instruction latency + max operand depth.
408   //     * For CMOV instruction in optimized loop the depth is calculated as:
409   //       CMOV latency + getDepthOfOptCmov(True-Op-Depth, False-Op-depth)
410   // TODO: Find a better way to estimate the latency of the branch instruction
411   //       rather than using the CMOV latency.
412   //
413   // Loop-Depth:
414   //   max instruction depth of all instructions in the loop.
415   // Note: instruction with max depth represents the critical-path in the loop.
416   //
417   // Loop-Depth[i]:
418   //   Loop-Depth calculated for first `i` iterations.
419   //   Note: it is enough to calculate depth for up to two iterations.
420   //
421   // Depth-Diff[i]:
422   //   Number of cycles saved in first 'i` iterations by optimizing the loop.
423   //===--------------------------------------------------------------------===//
424   for (unsigned I = 0; I < LoopIterations; ++I) {
425     DepthInfo &MaxDepth = LoopDepth[I];
426     for (auto *MBB : Blocks) {
427       // Clear physical registers Def map.
428       RegDefMaps[PhyRegType].clear();
429       for (MachineInstr &MI : *MBB) {
430         // Skip debug instructions.
431         if (MI.isDebugInstr())
432           continue;
433         unsigned MIDepth = 0;
434         unsigned MIDepthOpt = 0;
435         bool IsCMOV = CmovInstructions.count(&MI);
436         for (auto &MO : MI.uses()) {
437           // Checks for "isUse()" as "uses()" returns also implicit definitions.
438           if (!MO.isReg() || !MO.isUse())
439             continue;
440           Register Reg = MO.getReg();
441           auto &RDM = RegDefMaps[Register::isVirtualRegister(Reg)];
442           if (MachineInstr *DefMI = RDM.lookup(Reg)) {
443             OperandToDefMap[&MO] = DefMI;
444             DepthInfo Info = DepthMap.lookup(DefMI);
445             MIDepth = std::max(MIDepth, Info.Depth);
446             if (!IsCMOV)
447               MIDepthOpt = std::max(MIDepthOpt, Info.OptDepth);
448           }
449         }
450
451         if (IsCMOV)
452           MIDepthOpt = getDepthOfOptCmov(
453               DepthMap[OperandToDefMap.lookup(&MI.getOperand(1))].OptDepth,
454               DepthMap[OperandToDefMap.lookup(&MI.getOperand(2))].OptDepth);
455
456         // Iterates over all operands to handle implicit definitions as well.
457         for (auto &MO : MI.operands()) {
458           if (!MO.isReg() || !MO.isDef())
459             continue;
460           Register Reg = MO.getReg();
461           RegDefMaps[Register::isVirtualRegister(Reg)][Reg] = &MI;
462         }
463
464         unsigned Latency = TSchedModel.computeInstrLatency(&MI);
465         DepthMap[&MI] = {MIDepth += Latency, MIDepthOpt += Latency};
466         MaxDepth.Depth = std::max(MaxDepth.Depth, MIDepth);
467         MaxDepth.OptDepth = std::max(MaxDepth.OptDepth, MIDepthOpt);
468       }
469     }
470   }
471
472   unsigned Diff[LoopIterations] = {LoopDepth[0].Depth - LoopDepth[0].OptDepth,
473                                    LoopDepth[1].Depth - LoopDepth[1].OptDepth};
474
475   //===--------------------------------------------------------------------===//
476   // Step 2: Check if Loop worth to be optimized.
477   // Worth-Optimize-Loop:
478   //   case 1: Diff[1] == Diff[0]
479   //           Critical-path is iteration independent - there is no dependency
480   //           of critical-path instructions on critical-path instructions of
481   //           previous iteration.
482   //           Thus, it is enough to check gain percent of 1st iteration -
483   //           To be conservative, the optimized loop need to have a depth of
484   //           12.5% cycles less than original loop, per iteration.
485   //
486   //   case 2: Diff[1] > Diff[0]
487   //           Critical-path is iteration dependent - there is dependency of
488   //           critical-path instructions on critical-path instructions of
489   //           previous iteration.
490   //           Thus, check the gain percent of the 2nd iteration (similar to the
491   //           previous case), but it is also required to check the gradient of
492   //           the gain - the change in Depth-Diff compared to the change in
493   //           Loop-Depth between 1st and 2nd iterations.
494   //           To be conservative, the gradient need to be at least 50%.
495   //
496   //   In addition, In order not to optimize loops with very small gain, the
497   //   gain (in cycles) after 2nd iteration should not be less than a given
498   //   threshold. Thus, the check (Diff[1] >= GainCycleThreshold) must apply.
499   //
500   // If loop is not worth optimizing, remove all CMOV-group-candidates.
501   //===--------------------------------------------------------------------===//
502   if (Diff[1] < GainCycleThreshold)
503     return false;
504
505   bool WorthOptLoop = false;
506   if (Diff[1] == Diff[0])
507     WorthOptLoop = Diff[0] * 8 >= LoopDepth[0].Depth;
508   else if (Diff[1] > Diff[0])
509     WorthOptLoop =
510         (Diff[1] - Diff[0]) * 2 >= (LoopDepth[1].Depth - LoopDepth[0].Depth) &&
511         (Diff[1] * 8 >= LoopDepth[1].Depth);
512
513   if (!WorthOptLoop)
514     return false;
515
516   ++NumOfLoopCandidate;
517
518   //===--------------------------------------------------------------------===//
519   // Step 3: Check for each CMOV-group-candidate if it worth to be optimized.
520   // Worth-Optimize-Group:
521   //   Iff it worths to optimize all CMOV instructions in the group.
522   //
523   // Worth-Optimize-CMOV:
524   //   Predicted branch is faster than CMOV by the difference between depth of
525   //   condition operand and depth of taken (predicted) value operand.
526   //   To be conservative, the gain of such CMOV transformation should cover at
527   //   at least 25% of branch-misprediction-penalty.
528   //===--------------------------------------------------------------------===//
529   unsigned MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
530   CmovGroups TempGroups;
531   std::swap(TempGroups, CmovInstGroups);
532   for (auto &Group : TempGroups) {
533     bool WorthOpGroup = true;
534     for (auto *MI : Group) {
535       // Avoid CMOV instruction which value is used as a pointer to load from.
536       // This is another conservative check to avoid converting CMOV instruction
537       // used with tree-search like algorithm, where the branch is unpredicted.
538       auto UIs = MRI->use_instructions(MI->defs().begin()->getReg());
539       if (UIs.begin() != UIs.end() && ++UIs.begin() == UIs.end()) {
540         unsigned Op = UIs.begin()->getOpcode();
541         if (Op == X86::MOV64rm || Op == X86::MOV32rm) {
542           WorthOpGroup = false;
543           break;
544         }
545       }
546
547       unsigned CondCost =
548           DepthMap[OperandToDefMap.lookup(&MI->getOperand(4))].Depth;
549       unsigned ValCost = getDepthOfOptCmov(
550           DepthMap[OperandToDefMap.lookup(&MI->getOperand(1))].Depth,
551           DepthMap[OperandToDefMap.lookup(&MI->getOperand(2))].Depth);
552       if (ValCost > CondCost || (CondCost - ValCost) * 4 < MispredictPenalty) {
553         WorthOpGroup = false;
554         break;
555       }
556     }
557
558     if (WorthOpGroup)
559       CmovInstGroups.push_back(Group);
560   }
561
562   return !CmovInstGroups.empty();
563 }
564
565 static bool checkEFLAGSLive(MachineInstr *MI) {
566   if (MI->killsRegister(X86::EFLAGS))
567     return false;
568
569   // The EFLAGS operand of MI might be missing a kill marker.
570   // Figure out whether EFLAGS operand should LIVE after MI instruction.
571   MachineBasicBlock *BB = MI->getParent();
572   MachineBasicBlock::iterator ItrMI = MI;
573
574   // Scan forward through BB for a use/def of EFLAGS.
575   for (auto I = std::next(ItrMI), E = BB->end(); I != E; ++I) {
576     if (I->readsRegister(X86::EFLAGS))
577       return true;
578     if (I->definesRegister(X86::EFLAGS))
579       return false;
580   }
581
582   // We hit the end of the block, check whether EFLAGS is live into a successor.
583   for (auto I = BB->succ_begin(), E = BB->succ_end(); I != E; ++I) {
584     if ((*I)->isLiveIn(X86::EFLAGS))
585       return true;
586   }
587
588   return false;
589 }
590
591 /// Given /p First CMOV instruction and /p Last CMOV instruction representing a
592 /// group of CMOV instructions, which may contain debug instructions in between,
593 /// move all debug instructions to after the last CMOV instruction, making the
594 /// CMOV group consecutive.
595 static void packCmovGroup(MachineInstr *First, MachineInstr *Last) {
596   assert(X86::getCondFromCMov(*Last) != X86::COND_INVALID &&
597          "Last instruction in a CMOV group must be a CMOV instruction");
598
599   SmallVector<MachineInstr *, 2> DBGInstructions;
600   for (auto I = First->getIterator(), E = Last->getIterator(); I != E; I++) {
601     if (I->isDebugInstr())
602       DBGInstructions.push_back(&*I);
603   }
604
605   // Splice the debug instruction after the cmov group.
606   MachineBasicBlock *MBB = First->getParent();
607   for (auto *MI : DBGInstructions)
608     MBB->insertAfter(Last, MI->removeFromParent());
609 }
610
611 void X86CmovConverterPass::convertCmovInstsToBranches(
612     SmallVectorImpl<MachineInstr *> &Group) const {
613   assert(!Group.empty() && "No CMOV instructions to convert");
614   ++NumOfOptimizedCmovGroups;
615
616   // If the CMOV group is not packed, e.g., there are debug instructions between
617   // first CMOV and last CMOV, then pack the group and make the CMOV instruction
618   // consecutive by moving the debug instructions to after the last CMOV.
619   packCmovGroup(Group.front(), Group.back());
620
621   // To convert a CMOVcc instruction, we actually have to insert the diamond
622   // control-flow pattern.  The incoming instruction knows the destination vreg
623   // to set, the condition code register to branch on, the true/false values to
624   // select between, and a branch opcode to use.
625
626   // Before
627   // -----
628   // MBB:
629   //   cond = cmp ...
630   //   v1 = CMOVge t1, f1, cond
631   //   v2 = CMOVlt t2, f2, cond
632   //   v3 = CMOVge v1, f3, cond
633   //
634   // After
635   // -----
636   // MBB:
637   //   cond = cmp ...
638   //   jge %SinkMBB
639   //
640   // FalseMBB:
641   //   jmp %SinkMBB
642   //
643   // SinkMBB:
644   //   %v1 = phi[%f1, %FalseMBB], [%t1, %MBB]
645   //   %v2 = phi[%t2, %FalseMBB], [%f2, %MBB] ; For CMOV with OppCC switch
646   //                                          ; true-value with false-value
647   //   %v3 = phi[%f3, %FalseMBB], [%t1, %MBB] ; Phi instruction cannot use
648   //                                          ; previous Phi instruction result
649
650   MachineInstr &MI = *Group.front();
651   MachineInstr *LastCMOV = Group.back();
652   DebugLoc DL = MI.getDebugLoc();
653
654   X86::CondCode CC = X86::CondCode(X86::getCondFromCMov(MI));
655   X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
656   // Potentially swap the condition codes so that any memory operand to a CMOV
657   // is in the *false* position instead of the *true* position. We can invert
658   // any non-memory operand CMOV instructions to cope with this and we ensure
659   // memory operand CMOVs are only included with a single condition code.
660   if (llvm::any_of(Group, [&](MachineInstr *I) {
661         return I->mayLoad() && X86::getCondFromCMov(*I) == CC;
662       }))
663     std::swap(CC, OppCC);
664
665   MachineBasicBlock *MBB = MI.getParent();
666   MachineFunction::iterator It = ++MBB->getIterator();
667   MachineFunction *F = MBB->getParent();
668   const BasicBlock *BB = MBB->getBasicBlock();
669
670   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(BB);
671   MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(BB);
672   F->insert(It, FalseMBB);
673   F->insert(It, SinkMBB);
674
675   // If the EFLAGS register isn't dead in the terminator, then claim that it's
676   // live into the sink and copy blocks.
677   if (checkEFLAGSLive(LastCMOV)) {
678     FalseMBB->addLiveIn(X86::EFLAGS);
679     SinkMBB->addLiveIn(X86::EFLAGS);
680   }
681
682   // Transfer the remainder of BB and its successor edges to SinkMBB.
683   SinkMBB->splice(SinkMBB->begin(), MBB,
684                   std::next(MachineBasicBlock::iterator(LastCMOV)), MBB->end());
685   SinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
686
687   // Add the false and sink blocks as its successors.
688   MBB->addSuccessor(FalseMBB);
689   MBB->addSuccessor(SinkMBB);
690
691   // Create the conditional branch instruction.
692   BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC);
693
694   // Add the sink block to the false block successors.
695   FalseMBB->addSuccessor(SinkMBB);
696
697   MachineInstrBuilder MIB;
698   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
699   MachineBasicBlock::iterator MIItEnd =
700       std::next(MachineBasicBlock::iterator(LastCMOV));
701   MachineBasicBlock::iterator FalseInsertionPoint = FalseMBB->begin();
702   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
703
704   // First we need to insert an explicit load on the false path for any memory
705   // operand. We also need to potentially do register rewriting here, but it is
706   // simpler as the memory operands are always on the false path so we can
707   // simply take that input, whatever it is.
708   DenseMap<unsigned, unsigned> FalseBBRegRewriteTable;
709   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;) {
710     auto &MI = *MIIt++;
711     // Skip any CMOVs in this group which don't load from memory.
712     if (!MI.mayLoad()) {
713       // Remember the false-side register input.
714       Register FalseReg =
715           MI.getOperand(X86::getCondFromCMov(MI) == CC ? 1 : 2).getReg();
716       // Walk back through any intermediate cmovs referenced.
717       while (true) {
718         auto FRIt = FalseBBRegRewriteTable.find(FalseReg);
719         if (FRIt == FalseBBRegRewriteTable.end())
720           break;
721         FalseReg = FRIt->second;
722       }
723       FalseBBRegRewriteTable[MI.getOperand(0).getReg()] = FalseReg;
724       continue;
725     }
726
727     // The condition must be the *opposite* of the one we've decided to branch
728     // on as the branch will go *around* the load and the load should happen
729     // when the CMOV condition is false.
730     assert(X86::getCondFromCMov(MI) == OppCC &&
731            "Can only handle memory-operand cmov instructions with a condition "
732            "opposite to the selected branch direction.");
733
734     // The goal is to rewrite the cmov from:
735     //
736     //   MBB:
737     //     %A = CMOVcc %B (tied), (mem)
738     //
739     // to
740     //
741     //   MBB:
742     //     %A = CMOVcc %B (tied), %C
743     //   FalseMBB:
744     //     %C = MOV (mem)
745     //
746     // Which will allow the next loop to rewrite the CMOV in terms of a PHI:
747     //
748     //   MBB:
749     //     JMP!cc SinkMBB
750     //   FalseMBB:
751     //     %C = MOV (mem)
752     //   SinkMBB:
753     //     %A = PHI [ %C, FalseMBB ], [ %B, MBB]
754
755     // Get a fresh register to use as the destination of the MOV.
756     const TargetRegisterClass *RC = MRI->getRegClass(MI.getOperand(0).getReg());
757     Register TmpReg = MRI->createVirtualRegister(RC);
758
759     SmallVector<MachineInstr *, 4> NewMIs;
760     bool Unfolded = TII->unfoldMemoryOperand(*MBB->getParent(), MI, TmpReg,
761                                              /*UnfoldLoad*/ true,
762                                              /*UnfoldStore*/ false, NewMIs);
763     (void)Unfolded;
764     assert(Unfolded && "Should never fail to unfold a loading cmov!");
765
766     // Move the new CMOV to just before the old one and reset any impacted
767     // iterator.
768     auto *NewCMOV = NewMIs.pop_back_val();
769     assert(X86::getCondFromCMov(*NewCMOV) == OppCC &&
770            "Last new instruction isn't the expected CMOV!");
771     LLVM_DEBUG(dbgs() << "\tRewritten cmov: "; NewCMOV->dump());
772     MBB->insert(MachineBasicBlock::iterator(MI), NewCMOV);
773     if (&*MIItBegin == &MI)
774       MIItBegin = MachineBasicBlock::iterator(NewCMOV);
775
776     // Sink whatever instructions were needed to produce the unfolded operand
777     // into the false block.
778     for (auto *NewMI : NewMIs) {
779       LLVM_DEBUG(dbgs() << "\tRewritten load instr: "; NewMI->dump());
780       FalseMBB->insert(FalseInsertionPoint, NewMI);
781       // Re-map any operands that are from other cmovs to the inputs for this block.
782       for (auto &MOp : NewMI->uses()) {
783         if (!MOp.isReg())
784           continue;
785         auto It = FalseBBRegRewriteTable.find(MOp.getReg());
786         if (It == FalseBBRegRewriteTable.end())
787           continue;
788
789         MOp.setReg(It->second);
790         // This might have been a kill when it referenced the cmov result, but
791         // it won't necessarily be once rewritten.
792         // FIXME: We could potentially improve this by tracking whether the
793         // operand to the cmov was also a kill, and then skipping the PHI node
794         // construction below.
795         MOp.setIsKill(false);
796       }
797     }
798     MBB->erase(MachineBasicBlock::iterator(MI),
799                std::next(MachineBasicBlock::iterator(MI)));
800
801     // Add this PHI to the rewrite table.
802     FalseBBRegRewriteTable[NewCMOV->getOperand(0).getReg()] = TmpReg;
803   }
804
805   // As we are creating the PHIs, we have to be careful if there is more than
806   // one.  Later CMOVs may reference the results of earlier CMOVs, but later
807   // PHIs have to reference the individual true/false inputs from earlier PHIs.
808   // That also means that PHI construction must work forward from earlier to
809   // later, and that the code must maintain a mapping from earlier PHI's
810   // destination registers, and the registers that went into the PHI.
811   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
812
813   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
814     Register DestReg = MIIt->getOperand(0).getReg();
815     Register Op1Reg = MIIt->getOperand(1).getReg();
816     Register Op2Reg = MIIt->getOperand(2).getReg();
817
818     // If this CMOV we are processing is the opposite condition from the jump we
819     // generated, then we have to swap the operands for the PHI that is going to
820     // be generated.
821     if (X86::getCondFromCMov(*MIIt) == OppCC)
822       std::swap(Op1Reg, Op2Reg);
823
824     auto Op1Itr = RegRewriteTable.find(Op1Reg);
825     if (Op1Itr != RegRewriteTable.end())
826       Op1Reg = Op1Itr->second.first;
827
828     auto Op2Itr = RegRewriteTable.find(Op2Reg);
829     if (Op2Itr != RegRewriteTable.end())
830       Op2Reg = Op2Itr->second.second;
831
832     //  SinkMBB:
833     //   %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, MBB ]
834     //  ...
835     MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
836               .addReg(Op1Reg)
837               .addMBB(FalseMBB)
838               .addReg(Op2Reg)
839               .addMBB(MBB);
840     (void)MIB;
841     LLVM_DEBUG(dbgs() << "\tFrom: "; MIIt->dump());
842     LLVM_DEBUG(dbgs() << "\tTo: "; MIB->dump());
843
844     // Add this PHI to the rewrite table.
845     RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
846   }
847
848   // Now remove the CMOV(s).
849   MBB->erase(MIItBegin, MIItEnd);
850 }
851
852 INITIALIZE_PASS_BEGIN(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
853                       false, false)
854 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
855 INITIALIZE_PASS_END(X86CmovConverterPass, DEBUG_TYPE, "X86 cmov Conversion",
856                     false, false)
857
858 FunctionPass *llvm::createX86CmovConverterPass() {
859   return new X86CmovConverterPass();
860 }