]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/X86/X86FastISel.cpp
Move all sources from the llvm project into contrib/llvm-project.
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / X86 / X86FastISel.cpp
1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the X86-specific support for the FastISel class. Much
10 // of the target-specific code is generated by tablegen in the file
11 // X86GenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "X86.h"
16 #include "X86CallingConv.h"
17 #include "X86InstrBuilder.h"
18 #include "X86InstrInfo.h"
19 #include "X86MachineFunctionInfo.h"
20 #include "X86RegisterInfo.h"
21 #include "X86Subtarget.h"
22 #include "X86TargetMachine.h"
23 #include "llvm/Analysis/BranchProbabilityInfo.h"
24 #include "llvm/CodeGen/FastISel.h"
25 #include "llvm/CodeGen/FunctionLoweringInfo.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/GetElementPtrTypeIterator.h"
34 #include "llvm/IR/GlobalAlias.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCSymbol.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Target/TargetOptions.h"
43 using namespace llvm;
44
45 namespace {
46
47 class X86FastISel final : public FastISel {
48   /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
49   /// make the right decision when generating code for different targets.
50   const X86Subtarget *Subtarget;
51
52   /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
53   /// floating point ops.
54   /// When SSE is available, use it for f32 operations.
55   /// When SSE2 is available, use it for f64 operations.
56   bool X86ScalarSSEf64;
57   bool X86ScalarSSEf32;
58
59 public:
60   explicit X86FastISel(FunctionLoweringInfo &funcInfo,
61                        const TargetLibraryInfo *libInfo)
62       : FastISel(funcInfo, libInfo) {
63     Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
64     X86ScalarSSEf64 = Subtarget->hasSSE2();
65     X86ScalarSSEf32 = Subtarget->hasSSE1();
66   }
67
68   bool fastSelectInstruction(const Instruction *I) override;
69
70   /// The specified machine instr operand is a vreg, and that
71   /// vreg is being provided by the specified load instruction.  If possible,
72   /// try to fold the load as an operand to the instruction, returning true if
73   /// possible.
74   bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
75                            const LoadInst *LI) override;
76
77   bool fastLowerArguments() override;
78   bool fastLowerCall(CallLoweringInfo &CLI) override;
79   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
80
81 #include "X86GenFastISel.inc"
82
83 private:
84   bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
85                           const DebugLoc &DL);
86
87   bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
88                        unsigned &ResultReg, unsigned Alignment = 1);
89
90   bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
91                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
92   bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
93                         X86AddressMode &AM,
94                         MachineMemOperand *MMO = nullptr, bool Aligned = false);
95
96   bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
97                          unsigned &ResultReg);
98
99   bool X86SelectAddress(const Value *V, X86AddressMode &AM);
100   bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
101
102   bool X86SelectLoad(const Instruction *I);
103
104   bool X86SelectStore(const Instruction *I);
105
106   bool X86SelectRet(const Instruction *I);
107
108   bool X86SelectCmp(const Instruction *I);
109
110   bool X86SelectZExt(const Instruction *I);
111
112   bool X86SelectSExt(const Instruction *I);
113
114   bool X86SelectBranch(const Instruction *I);
115
116   bool X86SelectShift(const Instruction *I);
117
118   bool X86SelectDivRem(const Instruction *I);
119
120   bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
121
122   bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
123
124   bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
125
126   bool X86SelectSelect(const Instruction *I);
127
128   bool X86SelectTrunc(const Instruction *I);
129
130   bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
131                                const TargetRegisterClass *RC);
132
133   bool X86SelectFPExt(const Instruction *I);
134   bool X86SelectFPTrunc(const Instruction *I);
135   bool X86SelectSIToFP(const Instruction *I);
136   bool X86SelectUIToFP(const Instruction *I);
137   bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
138
139   const X86InstrInfo *getInstrInfo() const {
140     return Subtarget->getInstrInfo();
141   }
142   const X86TargetMachine *getTargetMachine() const {
143     return static_cast<const X86TargetMachine *>(&TM);
144   }
145
146   bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
147
148   unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
149   unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
150   unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
151   unsigned fastMaterializeConstant(const Constant *C) override;
152
153   unsigned fastMaterializeAlloca(const AllocaInst *C) override;
154
155   unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
156
157   /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
158   /// computed in an SSE register, not on the X87 floating point stack.
159   bool isScalarFPTypeInSSEReg(EVT VT) const {
160     return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
161       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
162   }
163
164   bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
165
166   bool IsMemcpySmall(uint64_t Len);
167
168   bool TryEmitSmallMemcpy(X86AddressMode DestAM,
169                           X86AddressMode SrcAM, uint64_t Len);
170
171   bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
172                             const Value *Cond);
173
174   const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
175                                             X86AddressMode &AM);
176
177   unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
178                              const TargetRegisterClass *RC, unsigned Op0,
179                              bool Op0IsKill, unsigned Op1, bool Op1IsKill,
180                              unsigned Op2, bool Op2IsKill, unsigned Op3,
181                              bool Op3IsKill);
182 };
183
184 } // end anonymous namespace.
185
186 static std::pair<unsigned, bool>
187 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
188   unsigned CC;
189   bool NeedSwap = false;
190
191   // SSE Condition code mapping:
192   //  0 - EQ
193   //  1 - LT
194   //  2 - LE
195   //  3 - UNORD
196   //  4 - NEQ
197   //  5 - NLT
198   //  6 - NLE
199   //  7 - ORD
200   switch (Predicate) {
201   default: llvm_unreachable("Unexpected predicate");
202   case CmpInst::FCMP_OEQ: CC = 0;          break;
203   case CmpInst::FCMP_OGT: NeedSwap = true; LLVM_FALLTHROUGH;
204   case CmpInst::FCMP_OLT: CC = 1;          break;
205   case CmpInst::FCMP_OGE: NeedSwap = true; LLVM_FALLTHROUGH;
206   case CmpInst::FCMP_OLE: CC = 2;          break;
207   case CmpInst::FCMP_UNO: CC = 3;          break;
208   case CmpInst::FCMP_UNE: CC = 4;          break;
209   case CmpInst::FCMP_ULE: NeedSwap = true; LLVM_FALLTHROUGH;
210   case CmpInst::FCMP_UGE: CC = 5;          break;
211   case CmpInst::FCMP_ULT: NeedSwap = true; LLVM_FALLTHROUGH;
212   case CmpInst::FCMP_UGT: CC = 6;          break;
213   case CmpInst::FCMP_ORD: CC = 7;          break;
214   case CmpInst::FCMP_UEQ: CC = 8;          break;
215   case CmpInst::FCMP_ONE: CC = 12;         break;
216   }
217
218   return std::make_pair(CC, NeedSwap);
219 }
220
221 /// Adds a complex addressing mode to the given machine instr builder.
222 /// Note, this will constrain the index register.  If its not possible to
223 /// constrain the given index register, then a new one will be created.  The
224 /// IndexReg field of the addressing mode will be updated to match in this case.
225 const MachineInstrBuilder &
226 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
227                             X86AddressMode &AM) {
228   // First constrain the index register.  It needs to be a GR64_NOSP.
229   AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
230                                          MIB->getNumOperands() +
231                                          X86::AddrIndexReg);
232   return ::addFullAddress(MIB, AM);
233 }
234
235 /// Check if it is possible to fold the condition from the XALU intrinsic
236 /// into the user. The condition code will only be updated on success.
237 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
238                                        const Value *Cond) {
239   if (!isa<ExtractValueInst>(Cond))
240     return false;
241
242   const auto *EV = cast<ExtractValueInst>(Cond);
243   if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
244     return false;
245
246   const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
247   MVT RetVT;
248   const Function *Callee = II->getCalledFunction();
249   Type *RetTy =
250     cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
251   if (!isTypeLegal(RetTy, RetVT))
252     return false;
253
254   if (RetVT != MVT::i32 && RetVT != MVT::i64)
255     return false;
256
257   X86::CondCode TmpCC;
258   switch (II->getIntrinsicID()) {
259   default: return false;
260   case Intrinsic::sadd_with_overflow:
261   case Intrinsic::ssub_with_overflow:
262   case Intrinsic::smul_with_overflow:
263   case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
264   case Intrinsic::uadd_with_overflow:
265   case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
266   }
267
268   // Check if both instructions are in the same basic block.
269   if (II->getParent() != I->getParent())
270     return false;
271
272   // Make sure nothing is in the way
273   BasicBlock::const_iterator Start(I);
274   BasicBlock::const_iterator End(II);
275   for (auto Itr = std::prev(Start); Itr != End; --Itr) {
276     // We only expect extractvalue instructions between the intrinsic and the
277     // instruction to be selected.
278     if (!isa<ExtractValueInst>(Itr))
279       return false;
280
281     // Check that the extractvalue operand comes from the intrinsic.
282     const auto *EVI = cast<ExtractValueInst>(Itr);
283     if (EVI->getAggregateOperand() != II)
284       return false;
285   }
286
287   CC = TmpCC;
288   return true;
289 }
290
291 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
292   EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
293   if (evt == MVT::Other || !evt.isSimple())
294     // Unhandled type. Halt "fast" selection and bail.
295     return false;
296
297   VT = evt.getSimpleVT();
298   // For now, require SSE/SSE2 for performing floating-point operations,
299   // since x87 requires additional work.
300   if (VT == MVT::f64 && !X86ScalarSSEf64)
301     return false;
302   if (VT == MVT::f32 && !X86ScalarSSEf32)
303     return false;
304   // Similarly, no f80 support yet.
305   if (VT == MVT::f80)
306     return false;
307   // We only handle legal types. For example, on x86-32 the instruction
308   // selector contains all of the 64-bit instructions from x86-64,
309   // under the assumption that i64 won't be used if the target doesn't
310   // support it.
311   return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
312 }
313
314 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
315 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
316 /// Return true and the result register by reference if it is possible.
317 bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
318                                   MachineMemOperand *MMO, unsigned &ResultReg,
319                                   unsigned Alignment) {
320   bool HasSSE41 = Subtarget->hasSSE41();
321   bool HasAVX = Subtarget->hasAVX();
322   bool HasAVX2 = Subtarget->hasAVX2();
323   bool HasAVX512 = Subtarget->hasAVX512();
324   bool HasVLX = Subtarget->hasVLX();
325   bool IsNonTemporal = MMO && MMO->isNonTemporal();
326
327   // Treat i1 loads the same as i8 loads. Masking will be done when storing.
328   if (VT == MVT::i1)
329     VT = MVT::i8;
330
331   // Get opcode and regclass of the output for the given load instruction.
332   unsigned Opc = 0;
333   switch (VT.SimpleTy) {
334   default: return false;
335   case MVT::i8:
336     Opc = X86::MOV8rm;
337     break;
338   case MVT::i16:
339     Opc = X86::MOV16rm;
340     break;
341   case MVT::i32:
342     Opc = X86::MOV32rm;
343     break;
344   case MVT::i64:
345     // Must be in x86-64 mode.
346     Opc = X86::MOV64rm;
347     break;
348   case MVT::f32:
349     if (X86ScalarSSEf32)
350       Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
351             HasAVX    ? X86::VMOVSSrm_alt :
352                         X86::MOVSSrm_alt;
353     else
354       Opc = X86::LD_Fp32m;
355     break;
356   case MVT::f64:
357     if (X86ScalarSSEf64)
358       Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
359             HasAVX    ? X86::VMOVSDrm_alt :
360                         X86::MOVSDrm_alt;
361     else
362       Opc = X86::LD_Fp64m;
363     break;
364   case MVT::f80:
365     // No f80 support yet.
366     return false;
367   case MVT::v4f32:
368     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
369       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
370             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
371     else if (Alignment >= 16)
372       Opc = HasVLX ? X86::VMOVAPSZ128rm :
373             HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
374     else
375       Opc = HasVLX ? X86::VMOVUPSZ128rm :
376             HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
377     break;
378   case MVT::v2f64:
379     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
380       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
381             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
382     else if (Alignment >= 16)
383       Opc = HasVLX ? X86::VMOVAPDZ128rm :
384             HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
385     else
386       Opc = HasVLX ? X86::VMOVUPDZ128rm :
387             HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
388     break;
389   case MVT::v4i32:
390   case MVT::v2i64:
391   case MVT::v8i16:
392   case MVT::v16i8:
393     if (IsNonTemporal && Alignment >= 16 && HasSSE41)
394       Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
395             HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
396     else if (Alignment >= 16)
397       Opc = HasVLX ? X86::VMOVDQA64Z128rm :
398             HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
399     else
400       Opc = HasVLX ? X86::VMOVDQU64Z128rm :
401             HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
402     break;
403   case MVT::v8f32:
404     assert(HasAVX);
405     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
406       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
407     else if (IsNonTemporal && Alignment >= 16)
408       return false; // Force split for X86::VMOVNTDQArm
409     else if (Alignment >= 32)
410       Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
411     else
412       Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
413     break;
414   case MVT::v4f64:
415     assert(HasAVX);
416     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
417       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
418     else if (IsNonTemporal && Alignment >= 16)
419       return false; // Force split for X86::VMOVNTDQArm
420     else if (Alignment >= 32)
421       Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
422     else
423       Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
424     break;
425   case MVT::v8i32:
426   case MVT::v4i64:
427   case MVT::v16i16:
428   case MVT::v32i8:
429     assert(HasAVX);
430     if (IsNonTemporal && Alignment >= 32 && HasAVX2)
431       Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
432     else if (IsNonTemporal && Alignment >= 16)
433       return false; // Force split for X86::VMOVNTDQArm
434     else if (Alignment >= 32)
435       Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
436     else
437       Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
438     break;
439   case MVT::v16f32:
440     assert(HasAVX512);
441     if (IsNonTemporal && Alignment >= 64)
442       Opc = X86::VMOVNTDQAZrm;
443     else
444       Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
445     break;
446   case MVT::v8f64:
447     assert(HasAVX512);
448     if (IsNonTemporal && Alignment >= 64)
449       Opc = X86::VMOVNTDQAZrm;
450     else
451       Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
452     break;
453   case MVT::v8i64:
454   case MVT::v16i32:
455   case MVT::v32i16:
456   case MVT::v64i8:
457     assert(HasAVX512);
458     // Note: There are a lot more choices based on type with AVX-512, but
459     // there's really no advantage when the load isn't masked.
460     if (IsNonTemporal && Alignment >= 64)
461       Opc = X86::VMOVNTDQAZrm;
462     else
463       Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
464     break;
465   }
466
467   const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
468
469   ResultReg = createResultReg(RC);
470   MachineInstrBuilder MIB =
471     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
472   addFullAddress(MIB, AM);
473   if (MMO)
474     MIB->addMemOperand(*FuncInfo.MF, MMO);
475   return true;
476 }
477
478 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
479 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
480 /// and a displacement offset, or a GlobalAddress,
481 /// i.e. V. Return true if it is possible.
482 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
483                                    X86AddressMode &AM,
484                                    MachineMemOperand *MMO, bool Aligned) {
485   bool HasSSE1 = Subtarget->hasSSE1();
486   bool HasSSE2 = Subtarget->hasSSE2();
487   bool HasSSE4A = Subtarget->hasSSE4A();
488   bool HasAVX = Subtarget->hasAVX();
489   bool HasAVX512 = Subtarget->hasAVX512();
490   bool HasVLX = Subtarget->hasVLX();
491   bool IsNonTemporal = MMO && MMO->isNonTemporal();
492
493   // Get opcode and regclass of the output for the given store instruction.
494   unsigned Opc = 0;
495   switch (VT.getSimpleVT().SimpleTy) {
496   case MVT::f80: // No f80 support yet.
497   default: return false;
498   case MVT::i1: {
499     // Mask out all but lowest bit.
500     unsigned AndResult = createResultReg(&X86::GR8RegClass);
501     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
502             TII.get(X86::AND8ri), AndResult)
503       .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
504     ValReg = AndResult;
505     LLVM_FALLTHROUGH; // handle i1 as i8.
506   }
507   case MVT::i8:  Opc = X86::MOV8mr;  break;
508   case MVT::i16: Opc = X86::MOV16mr; break;
509   case MVT::i32:
510     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
511     break;
512   case MVT::i64:
513     // Must be in x86-64 mode.
514     Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
515     break;
516   case MVT::f32:
517     if (X86ScalarSSEf32) {
518       if (IsNonTemporal && HasSSE4A)
519         Opc = X86::MOVNTSS;
520       else
521         Opc = HasAVX512 ? X86::VMOVSSZmr :
522               HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
523     } else
524       Opc = X86::ST_Fp32m;
525     break;
526   case MVT::f64:
527     if (X86ScalarSSEf32) {
528       if (IsNonTemporal && HasSSE4A)
529         Opc = X86::MOVNTSD;
530       else
531         Opc = HasAVX512 ? X86::VMOVSDZmr :
532               HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
533     } else
534       Opc = X86::ST_Fp64m;
535     break;
536   case MVT::x86mmx:
537     Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
538     break;
539   case MVT::v4f32:
540     if (Aligned) {
541       if (IsNonTemporal)
542         Opc = HasVLX ? X86::VMOVNTPSZ128mr :
543               HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
544       else
545         Opc = HasVLX ? X86::VMOVAPSZ128mr :
546               HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
547     } else
548       Opc = HasVLX ? X86::VMOVUPSZ128mr :
549             HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
550     break;
551   case MVT::v2f64:
552     if (Aligned) {
553       if (IsNonTemporal)
554         Opc = HasVLX ? X86::VMOVNTPDZ128mr :
555               HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
556       else
557         Opc = HasVLX ? X86::VMOVAPDZ128mr :
558               HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
559     } else
560       Opc = HasVLX ? X86::VMOVUPDZ128mr :
561             HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
562     break;
563   case MVT::v4i32:
564   case MVT::v2i64:
565   case MVT::v8i16:
566   case MVT::v16i8:
567     if (Aligned) {
568       if (IsNonTemporal)
569         Opc = HasVLX ? X86::VMOVNTDQZ128mr :
570               HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
571       else
572         Opc = HasVLX ? X86::VMOVDQA64Z128mr :
573               HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
574     } else
575       Opc = HasVLX ? X86::VMOVDQU64Z128mr :
576             HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
577     break;
578   case MVT::v8f32:
579     assert(HasAVX);
580     if (Aligned) {
581       if (IsNonTemporal)
582         Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
583       else
584         Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
585     } else
586       Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
587     break;
588   case MVT::v4f64:
589     assert(HasAVX);
590     if (Aligned) {
591       if (IsNonTemporal)
592         Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
593       else
594         Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
595     } else
596       Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
597     break;
598   case MVT::v8i32:
599   case MVT::v4i64:
600   case MVT::v16i16:
601   case MVT::v32i8:
602     assert(HasAVX);
603     if (Aligned) {
604       if (IsNonTemporal)
605         Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
606       else
607         Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
608     } else
609       Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
610     break;
611   case MVT::v16f32:
612     assert(HasAVX512);
613     if (Aligned)
614       Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
615     else
616       Opc = X86::VMOVUPSZmr;
617     break;
618   case MVT::v8f64:
619     assert(HasAVX512);
620     if (Aligned) {
621       Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
622     } else
623       Opc = X86::VMOVUPDZmr;
624     break;
625   case MVT::v8i64:
626   case MVT::v16i32:
627   case MVT::v32i16:
628   case MVT::v64i8:
629     assert(HasAVX512);
630     // Note: There are a lot more choices based on type with AVX-512, but
631     // there's really no advantage when the store isn't masked.
632     if (Aligned)
633       Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
634     else
635       Opc = X86::VMOVDQU64Zmr;
636     break;
637   }
638
639   const MCInstrDesc &Desc = TII.get(Opc);
640   // Some of the instructions in the previous switch use FR128 instead
641   // of FR32 for ValReg. Make sure the register we feed the instruction
642   // matches its register class constraints.
643   // Note: This is fine to do a copy from FR32 to FR128, this is the
644   // same registers behind the scene and actually why it did not trigger
645   // any bugs before.
646   ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
647   MachineInstrBuilder MIB =
648       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
649   addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
650   if (MMO)
651     MIB->addMemOperand(*FuncInfo.MF, MMO);
652
653   return true;
654 }
655
656 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
657                                    X86AddressMode &AM,
658                                    MachineMemOperand *MMO, bool Aligned) {
659   // Handle 'null' like i32/i64 0.
660   if (isa<ConstantPointerNull>(Val))
661     Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
662
663   // If this is a store of a simple constant, fold the constant into the store.
664   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
665     unsigned Opc = 0;
666     bool Signed = true;
667     switch (VT.getSimpleVT().SimpleTy) {
668     default: break;
669     case MVT::i1:
670       Signed = false;
671       LLVM_FALLTHROUGH; // Handle as i8.
672     case MVT::i8:  Opc = X86::MOV8mi;  break;
673     case MVT::i16: Opc = X86::MOV16mi; break;
674     case MVT::i32: Opc = X86::MOV32mi; break;
675     case MVT::i64:
676       // Must be a 32-bit sign extended value.
677       if (isInt<32>(CI->getSExtValue()))
678         Opc = X86::MOV64mi32;
679       break;
680     }
681
682     if (Opc) {
683       MachineInstrBuilder MIB =
684         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
685       addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
686                                             : CI->getZExtValue());
687       if (MMO)
688         MIB->addMemOperand(*FuncInfo.MF, MMO);
689       return true;
690     }
691   }
692
693   unsigned ValReg = getRegForValue(Val);
694   if (ValReg == 0)
695     return false;
696
697   bool ValKill = hasTrivialKill(Val);
698   return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
699 }
700
701 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
702 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
703 /// ISD::SIGN_EXTEND).
704 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
705                                     unsigned Src, EVT SrcVT,
706                                     unsigned &ResultReg) {
707   unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
708                            Src, /*TODO: Kill=*/false);
709   if (RR == 0)
710     return false;
711
712   ResultReg = RR;
713   return true;
714 }
715
716 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
717   // Handle constant address.
718   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
719     // Can't handle alternate code models yet.
720     if (TM.getCodeModel() != CodeModel::Small)
721       return false;
722
723     // Can't handle TLS yet.
724     if (GV->isThreadLocal())
725       return false;
726
727     // Can't handle !absolute_symbol references yet.
728     if (GV->isAbsoluteSymbolRef())
729       return false;
730
731     // RIP-relative addresses can't have additional register operands, so if
732     // we've already folded stuff into the addressing mode, just force the
733     // global value into its own register, which we can use as the basereg.
734     if (!Subtarget->isPICStyleRIPRel() ||
735         (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
736       // Okay, we've committed to selecting this global. Set up the address.
737       AM.GV = GV;
738
739       // Allow the subtarget to classify the global.
740       unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
741
742       // If this reference is relative to the pic base, set it now.
743       if (isGlobalRelativeToPICBase(GVFlags)) {
744         // FIXME: How do we know Base.Reg is free??
745         AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
746       }
747
748       // Unless the ABI requires an extra load, return a direct reference to
749       // the global.
750       if (!isGlobalStubReference(GVFlags)) {
751         if (Subtarget->isPICStyleRIPRel()) {
752           // Use rip-relative addressing if we can.  Above we verified that the
753           // base and index registers are unused.
754           assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
755           AM.Base.Reg = X86::RIP;
756         }
757         AM.GVOpFlags = GVFlags;
758         return true;
759       }
760
761       // Ok, we need to do a load from a stub.  If we've already loaded from
762       // this stub, reuse the loaded pointer, otherwise emit the load now.
763       DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
764       unsigned LoadReg;
765       if (I != LocalValueMap.end() && I->second != 0) {
766         LoadReg = I->second;
767       } else {
768         // Issue load from stub.
769         unsigned Opc = 0;
770         const TargetRegisterClass *RC = nullptr;
771         X86AddressMode StubAM;
772         StubAM.Base.Reg = AM.Base.Reg;
773         StubAM.GV = GV;
774         StubAM.GVOpFlags = GVFlags;
775
776         // Prepare for inserting code in the local-value area.
777         SavePoint SaveInsertPt = enterLocalValueArea();
778
779         if (TLI.getPointerTy(DL) == MVT::i64) {
780           Opc = X86::MOV64rm;
781           RC  = &X86::GR64RegClass;
782
783           if (Subtarget->isPICStyleRIPRel())
784             StubAM.Base.Reg = X86::RIP;
785         } else {
786           Opc = X86::MOV32rm;
787           RC  = &X86::GR32RegClass;
788         }
789
790         LoadReg = createResultReg(RC);
791         MachineInstrBuilder LoadMI =
792           BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
793         addFullAddress(LoadMI, StubAM);
794
795         // Ok, back to normal mode.
796         leaveLocalValueArea(SaveInsertPt);
797
798         // Prevent loading GV stub multiple times in same MBB.
799         LocalValueMap[V] = LoadReg;
800       }
801
802       // Now construct the final address. Note that the Disp, Scale,
803       // and Index values may already be set here.
804       AM.Base.Reg = LoadReg;
805       AM.GV = nullptr;
806       return true;
807     }
808   }
809
810   // If all else fails, try to materialize the value in a register.
811   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
812     if (AM.Base.Reg == 0) {
813       AM.Base.Reg = getRegForValue(V);
814       return AM.Base.Reg != 0;
815     }
816     if (AM.IndexReg == 0) {
817       assert(AM.Scale == 1 && "Scale with no index!");
818       AM.IndexReg = getRegForValue(V);
819       return AM.IndexReg != 0;
820     }
821   }
822
823   return false;
824 }
825
826 /// X86SelectAddress - Attempt to fill in an address from the given value.
827 ///
828 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
829   SmallVector<const Value *, 32> GEPs;
830 redo_gep:
831   const User *U = nullptr;
832   unsigned Opcode = Instruction::UserOp1;
833   if (const Instruction *I = dyn_cast<Instruction>(V)) {
834     // Don't walk into other basic blocks; it's possible we haven't
835     // visited them yet, so the instructions may not yet be assigned
836     // virtual registers.
837     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
838         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
839       Opcode = I->getOpcode();
840       U = I;
841     }
842   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
843     Opcode = C->getOpcode();
844     U = C;
845   }
846
847   if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
848     if (Ty->getAddressSpace() > 255)
849       // Fast instruction selection doesn't support the special
850       // address spaces.
851       return false;
852
853   switch (Opcode) {
854   default: break;
855   case Instruction::BitCast:
856     // Look past bitcasts.
857     return X86SelectAddress(U->getOperand(0), AM);
858
859   case Instruction::IntToPtr:
860     // Look past no-op inttoptrs.
861     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
862         TLI.getPointerTy(DL))
863       return X86SelectAddress(U->getOperand(0), AM);
864     break;
865
866   case Instruction::PtrToInt:
867     // Look past no-op ptrtoints.
868     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
869       return X86SelectAddress(U->getOperand(0), AM);
870     break;
871
872   case Instruction::Alloca: {
873     // Do static allocas.
874     const AllocaInst *A = cast<AllocaInst>(V);
875     DenseMap<const AllocaInst *, int>::iterator SI =
876       FuncInfo.StaticAllocaMap.find(A);
877     if (SI != FuncInfo.StaticAllocaMap.end()) {
878       AM.BaseType = X86AddressMode::FrameIndexBase;
879       AM.Base.FrameIndex = SI->second;
880       return true;
881     }
882     break;
883   }
884
885   case Instruction::Add: {
886     // Adds of constants are common and easy enough.
887     if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
888       uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
889       // They have to fit in the 32-bit signed displacement field though.
890       if (isInt<32>(Disp)) {
891         AM.Disp = (uint32_t)Disp;
892         return X86SelectAddress(U->getOperand(0), AM);
893       }
894     }
895     break;
896   }
897
898   case Instruction::GetElementPtr: {
899     X86AddressMode SavedAM = AM;
900
901     // Pattern-match simple GEPs.
902     uint64_t Disp = (int32_t)AM.Disp;
903     unsigned IndexReg = AM.IndexReg;
904     unsigned Scale = AM.Scale;
905     gep_type_iterator GTI = gep_type_begin(U);
906     // Iterate through the indices, folding what we can. Constants can be
907     // folded, and one dynamic index can be handled, if the scale is supported.
908     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
909          i != e; ++i, ++GTI) {
910       const Value *Op = *i;
911       if (StructType *STy = GTI.getStructTypeOrNull()) {
912         const StructLayout *SL = DL.getStructLayout(STy);
913         Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
914         continue;
915       }
916
917       // A array/variable index is always of the form i*S where S is the
918       // constant scale size.  See if we can push the scale into immediates.
919       uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
920       for (;;) {
921         if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
922           // Constant-offset addressing.
923           Disp += CI->getSExtValue() * S;
924           break;
925         }
926         if (canFoldAddIntoGEP(U, Op)) {
927           // A compatible add with a constant operand. Fold the constant.
928           ConstantInt *CI =
929             cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
930           Disp += CI->getSExtValue() * S;
931           // Iterate on the other operand.
932           Op = cast<AddOperator>(Op)->getOperand(0);
933           continue;
934         }
935         if (IndexReg == 0 &&
936             (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
937             (S == 1 || S == 2 || S == 4 || S == 8)) {
938           // Scaled-index addressing.
939           Scale = S;
940           IndexReg = getRegForGEPIndex(Op).first;
941           if (IndexReg == 0)
942             return false;
943           break;
944         }
945         // Unsupported.
946         goto unsupported_gep;
947       }
948     }
949
950     // Check for displacement overflow.
951     if (!isInt<32>(Disp))
952       break;
953
954     AM.IndexReg = IndexReg;
955     AM.Scale = Scale;
956     AM.Disp = (uint32_t)Disp;
957     GEPs.push_back(V);
958
959     if (const GetElementPtrInst *GEP =
960           dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
961       // Ok, the GEP indices were covered by constant-offset and scaled-index
962       // addressing. Update the address state and move on to examining the base.
963       V = GEP;
964       goto redo_gep;
965     } else if (X86SelectAddress(U->getOperand(0), AM)) {
966       return true;
967     }
968
969     // If we couldn't merge the gep value into this addr mode, revert back to
970     // our address and just match the value instead of completely failing.
971     AM = SavedAM;
972
973     for (const Value *I : reverse(GEPs))
974       if (handleConstantAddresses(I, AM))
975         return true;
976
977     return false;
978   unsupported_gep:
979     // Ok, the GEP indices weren't all covered.
980     break;
981   }
982   }
983
984   return handleConstantAddresses(V, AM);
985 }
986
987 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
988 ///
989 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
990   const User *U = nullptr;
991   unsigned Opcode = Instruction::UserOp1;
992   const Instruction *I = dyn_cast<Instruction>(V);
993   // Record if the value is defined in the same basic block.
994   //
995   // This information is crucial to know whether or not folding an
996   // operand is valid.
997   // Indeed, FastISel generates or reuses a virtual register for all
998   // operands of all instructions it selects. Obviously, the definition and
999   // its uses must use the same virtual register otherwise the produced
1000   // code is incorrect.
1001   // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1002   // registers for values that are alive across basic blocks. This ensures
1003   // that the values are consistently set between across basic block, even
1004   // if different instruction selection mechanisms are used (e.g., a mix of
1005   // SDISel and FastISel).
1006   // For values local to a basic block, the instruction selection process
1007   // generates these virtual registers with whatever method is appropriate
1008   // for its needs. In particular, FastISel and SDISel do not share the way
1009   // local virtual registers are set.
1010   // Therefore, this is impossible (or at least unsafe) to share values
1011   // between basic blocks unless they use the same instruction selection
1012   // method, which is not guarantee for X86.
1013   // Moreover, things like hasOneUse could not be used accurately, if we
1014   // allow to reference values across basic blocks whereas they are not
1015   // alive across basic blocks initially.
1016   bool InMBB = true;
1017   if (I) {
1018     Opcode = I->getOpcode();
1019     U = I;
1020     InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1021   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1022     Opcode = C->getOpcode();
1023     U = C;
1024   }
1025
1026   switch (Opcode) {
1027   default: break;
1028   case Instruction::BitCast:
1029     // Look past bitcasts if its operand is in the same BB.
1030     if (InMBB)
1031       return X86SelectCallAddress(U->getOperand(0), AM);
1032     break;
1033
1034   case Instruction::IntToPtr:
1035     // Look past no-op inttoptrs if its operand is in the same BB.
1036     if (InMBB &&
1037         TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1038             TLI.getPointerTy(DL))
1039       return X86SelectCallAddress(U->getOperand(0), AM);
1040     break;
1041
1042   case Instruction::PtrToInt:
1043     // Look past no-op ptrtoints if its operand is in the same BB.
1044     if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1045       return X86SelectCallAddress(U->getOperand(0), AM);
1046     break;
1047   }
1048
1049   // Handle constant address.
1050   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1051     // Can't handle alternate code models yet.
1052     if (TM.getCodeModel() != CodeModel::Small)
1053       return false;
1054
1055     // RIP-relative addresses can't have additional register operands.
1056     if (Subtarget->isPICStyleRIPRel() &&
1057         (AM.Base.Reg != 0 || AM.IndexReg != 0))
1058       return false;
1059
1060     // Can't handle TLS.
1061     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1062       if (GVar->isThreadLocal())
1063         return false;
1064
1065     // Okay, we've committed to selecting this global. Set up the basic address.
1066     AM.GV = GV;
1067
1068     // Return a direct reference to the global. Fastisel can handle calls to
1069     // functions that require loads, such as dllimport and nonlazybind
1070     // functions.
1071     if (Subtarget->isPICStyleRIPRel()) {
1072       // Use rip-relative addressing if we can.  Above we verified that the
1073       // base and index registers are unused.
1074       assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1075       AM.Base.Reg = X86::RIP;
1076     } else {
1077       AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1078     }
1079
1080     return true;
1081   }
1082
1083   // If all else fails, try to materialize the value in a register.
1084   if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1085     if (AM.Base.Reg == 0) {
1086       AM.Base.Reg = getRegForValue(V);
1087       return AM.Base.Reg != 0;
1088     }
1089     if (AM.IndexReg == 0) {
1090       assert(AM.Scale == 1 && "Scale with no index!");
1091       AM.IndexReg = getRegForValue(V);
1092       return AM.IndexReg != 0;
1093     }
1094   }
1095
1096   return false;
1097 }
1098
1099
1100 /// X86SelectStore - Select and emit code to implement store instructions.
1101 bool X86FastISel::X86SelectStore(const Instruction *I) {
1102   // Atomic stores need special handling.
1103   const StoreInst *S = cast<StoreInst>(I);
1104
1105   if (S->isAtomic())
1106     return false;
1107
1108   const Value *PtrV = I->getOperand(1);
1109   if (TLI.supportSwiftError()) {
1110     // Swifterror values can come from either a function parameter with
1111     // swifterror attribute or an alloca with swifterror attribute.
1112     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1113       if (Arg->hasSwiftErrorAttr())
1114         return false;
1115     }
1116
1117     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1118       if (Alloca->isSwiftError())
1119         return false;
1120     }
1121   }
1122
1123   const Value *Val = S->getValueOperand();
1124   const Value *Ptr = S->getPointerOperand();
1125
1126   MVT VT;
1127   if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1128     return false;
1129
1130   unsigned Alignment = S->getAlignment();
1131   unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1132   if (Alignment == 0) // Ensure that codegen never sees alignment 0
1133     Alignment = ABIAlignment;
1134   bool Aligned = Alignment >= ABIAlignment;
1135
1136   X86AddressMode AM;
1137   if (!X86SelectAddress(Ptr, AM))
1138     return false;
1139
1140   return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1141 }
1142
1143 /// X86SelectRet - Select and emit code to implement ret instructions.
1144 bool X86FastISel::X86SelectRet(const Instruction *I) {
1145   const ReturnInst *Ret = cast<ReturnInst>(I);
1146   const Function &F = *I->getParent()->getParent();
1147   const X86MachineFunctionInfo *X86MFInfo =
1148       FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1149
1150   if (!FuncInfo.CanLowerReturn)
1151     return false;
1152
1153   if (TLI.supportSwiftError() &&
1154       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1155     return false;
1156
1157   if (TLI.supportSplitCSR(FuncInfo.MF))
1158     return false;
1159
1160   CallingConv::ID CC = F.getCallingConv();
1161   if (CC != CallingConv::C &&
1162       CC != CallingConv::Fast &&
1163       CC != CallingConv::X86_FastCall &&
1164       CC != CallingConv::X86_StdCall &&
1165       CC != CallingConv::X86_ThisCall &&
1166       CC != CallingConv::X86_64_SysV &&
1167       CC != CallingConv::Win64)
1168     return false;
1169
1170   // Don't handle popping bytes if they don't fit the ret's immediate.
1171   if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1172     return false;
1173
1174   // fastcc with -tailcallopt is intended to provide a guaranteed
1175   // tail call optimization. Fastisel doesn't know how to do that.
1176   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1177     return false;
1178
1179   // Let SDISel handle vararg functions.
1180   if (F.isVarArg())
1181     return false;
1182
1183   // Build a list of return value registers.
1184   SmallVector<unsigned, 4> RetRegs;
1185
1186   if (Ret->getNumOperands() > 0) {
1187     SmallVector<ISD::OutputArg, 4> Outs;
1188     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1189
1190     // Analyze operands of the call, assigning locations to each operand.
1191     SmallVector<CCValAssign, 16> ValLocs;
1192     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1193     CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1194
1195     const Value *RV = Ret->getOperand(0);
1196     unsigned Reg = getRegForValue(RV);
1197     if (Reg == 0)
1198       return false;
1199
1200     // Only handle a single return value for now.
1201     if (ValLocs.size() != 1)
1202       return false;
1203
1204     CCValAssign &VA = ValLocs[0];
1205
1206     // Don't bother handling odd stuff for now.
1207     if (VA.getLocInfo() != CCValAssign::Full)
1208       return false;
1209     // Only handle register returns for now.
1210     if (!VA.isRegLoc())
1211       return false;
1212
1213     // The calling-convention tables for x87 returns don't tell
1214     // the whole story.
1215     if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1216       return false;
1217
1218     unsigned SrcReg = Reg + VA.getValNo();
1219     EVT SrcVT = TLI.getValueType(DL, RV->getType());
1220     EVT DstVT = VA.getValVT();
1221     // Special handling for extended integers.
1222     if (SrcVT != DstVT) {
1223       if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1224         return false;
1225
1226       if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1227         return false;
1228
1229       assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1230
1231       if (SrcVT == MVT::i1) {
1232         if (Outs[0].Flags.isSExt())
1233           return false;
1234         SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1235         SrcVT = MVT::i8;
1236       }
1237       unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1238                                              ISD::SIGN_EXTEND;
1239       SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1240                           SrcReg, /*TODO: Kill=*/false);
1241     }
1242
1243     // Make the copy.
1244     unsigned DstReg = VA.getLocReg();
1245     const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1246     // Avoid a cross-class copy. This is very unlikely.
1247     if (!SrcRC->contains(DstReg))
1248       return false;
1249     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1250             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1251
1252     // Add register to return instruction.
1253     RetRegs.push_back(VA.getLocReg());
1254   }
1255
1256   // Swift calling convention does not require we copy the sret argument
1257   // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1258
1259   // All x86 ABIs require that for returning structs by value we copy
1260   // the sret argument into %rax/%eax (depending on ABI) for the return.
1261   // We saved the argument into a virtual register in the entry block,
1262   // so now we copy the value out and into %rax/%eax.
1263   if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
1264     unsigned Reg = X86MFInfo->getSRetReturnReg();
1265     assert(Reg &&
1266            "SRetReturnReg should have been set in LowerFormalArguments()!");
1267     unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1268     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1269             TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1270     RetRegs.push_back(RetReg);
1271   }
1272
1273   // Now emit the RET.
1274   MachineInstrBuilder MIB;
1275   if (X86MFInfo->getBytesToPopOnReturn()) {
1276     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1277                   TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
1278               .addImm(X86MFInfo->getBytesToPopOnReturn());
1279   } else {
1280     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1281                   TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1282   }
1283   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1284     MIB.addReg(RetRegs[i], RegState::Implicit);
1285   return true;
1286 }
1287
1288 /// X86SelectLoad - Select and emit code to implement load instructions.
1289 ///
1290 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1291   const LoadInst *LI = cast<LoadInst>(I);
1292
1293   // Atomic loads need special handling.
1294   if (LI->isAtomic())
1295     return false;
1296
1297   const Value *SV = I->getOperand(0);
1298   if (TLI.supportSwiftError()) {
1299     // Swifterror values can come from either a function parameter with
1300     // swifterror attribute or an alloca with swifterror attribute.
1301     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1302       if (Arg->hasSwiftErrorAttr())
1303         return false;
1304     }
1305
1306     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1307       if (Alloca->isSwiftError())
1308         return false;
1309     }
1310   }
1311
1312   MVT VT;
1313   if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1314     return false;
1315
1316   const Value *Ptr = LI->getPointerOperand();
1317
1318   X86AddressMode AM;
1319   if (!X86SelectAddress(Ptr, AM))
1320     return false;
1321
1322   unsigned Alignment = LI->getAlignment();
1323   unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1324   if (Alignment == 0) // Ensure that codegen never sees alignment 0
1325     Alignment = ABIAlignment;
1326
1327   unsigned ResultReg = 0;
1328   if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1329                        Alignment))
1330     return false;
1331
1332   updateValueMap(I, ResultReg);
1333   return true;
1334 }
1335
1336 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1337   bool HasAVX512 = Subtarget->hasAVX512();
1338   bool HasAVX = Subtarget->hasAVX();
1339   bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1340   bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1341
1342   switch (VT.getSimpleVT().SimpleTy) {
1343   default:       return 0;
1344   case MVT::i8:  return X86::CMP8rr;
1345   case MVT::i16: return X86::CMP16rr;
1346   case MVT::i32: return X86::CMP32rr;
1347   case MVT::i64: return X86::CMP64rr;
1348   case MVT::f32:
1349     return X86ScalarSSEf32
1350                ? (HasAVX512 ? X86::VUCOMISSZrr
1351                             : HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr)
1352                : 0;
1353   case MVT::f64:
1354     return X86ScalarSSEf64
1355                ? (HasAVX512 ? X86::VUCOMISDZrr
1356                             : HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr)
1357                : 0;
1358   }
1359 }
1360
1361 /// If we have a comparison with RHS as the RHS  of the comparison, return an
1362 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1363 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1364   int64_t Val = RHSC->getSExtValue();
1365   switch (VT.getSimpleVT().SimpleTy) {
1366   // Otherwise, we can't fold the immediate into this comparison.
1367   default:
1368     return 0;
1369   case MVT::i8:
1370     return X86::CMP8ri;
1371   case MVT::i16:
1372     if (isInt<8>(Val))
1373       return X86::CMP16ri8;
1374     return X86::CMP16ri;
1375   case MVT::i32:
1376     if (isInt<8>(Val))
1377       return X86::CMP32ri8;
1378     return X86::CMP32ri;
1379   case MVT::i64:
1380     if (isInt<8>(Val))
1381       return X86::CMP64ri8;
1382     // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1383     // field.
1384     if (isInt<32>(Val))
1385       return X86::CMP64ri32;
1386     return 0;
1387   }
1388 }
1389
1390 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1391                                      const DebugLoc &CurDbgLoc) {
1392   unsigned Op0Reg = getRegForValue(Op0);
1393   if (Op0Reg == 0) return false;
1394
1395   // Handle 'null' like i32/i64 0.
1396   if (isa<ConstantPointerNull>(Op1))
1397     Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1398
1399   // We have two options: compare with register or immediate.  If the RHS of
1400   // the compare is an immediate that we can fold into this compare, use
1401   // CMPri, otherwise use CMPrr.
1402   if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1403     if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1404       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1405         .addReg(Op0Reg)
1406         .addImm(Op1C->getSExtValue());
1407       return true;
1408     }
1409   }
1410
1411   unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1412   if (CompareOpc == 0) return false;
1413
1414   unsigned Op1Reg = getRegForValue(Op1);
1415   if (Op1Reg == 0) return false;
1416   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1417     .addReg(Op0Reg)
1418     .addReg(Op1Reg);
1419
1420   return true;
1421 }
1422
1423 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1424   const CmpInst *CI = cast<CmpInst>(I);
1425
1426   MVT VT;
1427   if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1428     return false;
1429
1430   // Try to optimize or fold the cmp.
1431   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1432   unsigned ResultReg = 0;
1433   switch (Predicate) {
1434   default: break;
1435   case CmpInst::FCMP_FALSE: {
1436     ResultReg = createResultReg(&X86::GR32RegClass);
1437     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1438             ResultReg);
1439     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1440                                            X86::sub_8bit);
1441     if (!ResultReg)
1442       return false;
1443     break;
1444   }
1445   case CmpInst::FCMP_TRUE: {
1446     ResultReg = createResultReg(&X86::GR8RegClass);
1447     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1448             ResultReg).addImm(1);
1449     break;
1450   }
1451   }
1452
1453   if (ResultReg) {
1454     updateValueMap(I, ResultReg);
1455     return true;
1456   }
1457
1458   const Value *LHS = CI->getOperand(0);
1459   const Value *RHS = CI->getOperand(1);
1460
1461   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1462   // We don't have to materialize a zero constant for this case and can just use
1463   // %x again on the RHS.
1464   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1465     const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1466     if (RHSC && RHSC->isNullValue())
1467       RHS = LHS;
1468   }
1469
1470   // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1471   static const uint16_t SETFOpcTable[2][3] = {
1472     { X86::COND_E,  X86::COND_NP, X86::AND8rr },
1473     { X86::COND_NE, X86::COND_P,  X86::OR8rr  }
1474   };
1475   const uint16_t *SETFOpc = nullptr;
1476   switch (Predicate) {
1477   default: break;
1478   case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1479   case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1480   }
1481
1482   ResultReg = createResultReg(&X86::GR8RegClass);
1483   if (SETFOpc) {
1484     if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1485       return false;
1486
1487     unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1488     unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1489     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1490             FlagReg1).addImm(SETFOpc[0]);
1491     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1492             FlagReg2).addImm(SETFOpc[1]);
1493     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1494             ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1495     updateValueMap(I, ResultReg);
1496     return true;
1497   }
1498
1499   X86::CondCode CC;
1500   bool SwapArgs;
1501   std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1502   assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1503
1504   if (SwapArgs)
1505     std::swap(LHS, RHS);
1506
1507   // Emit a compare of LHS/RHS.
1508   if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1509     return false;
1510
1511   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
1512           ResultReg).addImm(CC);
1513   updateValueMap(I, ResultReg);
1514   return true;
1515 }
1516
1517 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1518   EVT DstVT = TLI.getValueType(DL, I->getType());
1519   if (!TLI.isTypeLegal(DstVT))
1520     return false;
1521
1522   unsigned ResultReg = getRegForValue(I->getOperand(0));
1523   if (ResultReg == 0)
1524     return false;
1525
1526   // Handle zero-extension from i1 to i8, which is common.
1527   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1528   if (SrcVT == MVT::i1) {
1529     // Set the high bits to zero.
1530     ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1531     SrcVT = MVT::i8;
1532
1533     if (ResultReg == 0)
1534       return false;
1535   }
1536
1537   if (DstVT == MVT::i64) {
1538     // Handle extension to 64-bits via sub-register shenanigans.
1539     unsigned MovInst;
1540
1541     switch (SrcVT.SimpleTy) {
1542     case MVT::i8:  MovInst = X86::MOVZX32rr8;  break;
1543     case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1544     case MVT::i32: MovInst = X86::MOV32rr;     break;
1545     default: llvm_unreachable("Unexpected zext to i64 source type");
1546     }
1547
1548     unsigned Result32 = createResultReg(&X86::GR32RegClass);
1549     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1550       .addReg(ResultReg);
1551
1552     ResultReg = createResultReg(&X86::GR64RegClass);
1553     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1554             ResultReg)
1555       .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1556   } else if (DstVT == MVT::i16) {
1557     // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1558     // extend to 32-bits and then extract down to 16-bits.
1559     unsigned Result32 = createResultReg(&X86::GR32RegClass);
1560     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVZX32rr8),
1561             Result32).addReg(ResultReg);
1562
1563     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1564                                            X86::sub_16bit);
1565   } else if (DstVT != MVT::i8) {
1566     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1567                            ResultReg, /*Kill=*/true);
1568     if (ResultReg == 0)
1569       return false;
1570   }
1571
1572   updateValueMap(I, ResultReg);
1573   return true;
1574 }
1575
1576 bool X86FastISel::X86SelectSExt(const Instruction *I) {
1577   EVT DstVT = TLI.getValueType(DL, I->getType());
1578   if (!TLI.isTypeLegal(DstVT))
1579     return false;
1580
1581   unsigned ResultReg = getRegForValue(I->getOperand(0));
1582   if (ResultReg == 0)
1583     return false;
1584
1585   // Handle sign-extension from i1 to i8.
1586   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1587   if (SrcVT == MVT::i1) {
1588     // Set the high bits to zero.
1589     unsigned ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg,
1590                                           /*TODO: Kill=*/false);
1591     if (ZExtReg == 0)
1592       return false;
1593
1594     // Negate the result to make an 8-bit sign extended value.
1595     ResultReg = createResultReg(&X86::GR8RegClass);
1596     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::NEG8r),
1597             ResultReg).addReg(ZExtReg);
1598
1599     SrcVT = MVT::i8;
1600   }
1601
1602   if (DstVT == MVT::i16) {
1603     // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1604     // extend to 32-bits and then extract down to 16-bits.
1605     unsigned Result32 = createResultReg(&X86::GR32RegClass);
1606     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOVSX32rr8),
1607             Result32).addReg(ResultReg);
1608
1609     ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, /*Kill=*/true,
1610                                            X86::sub_16bit);
1611   } else if (DstVT != MVT::i8) {
1612     ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1613                            ResultReg, /*Kill=*/true);
1614     if (ResultReg == 0)
1615       return false;
1616   }
1617
1618   updateValueMap(I, ResultReg);
1619   return true;
1620 }
1621
1622 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1623   // Unconditional branches are selected by tablegen-generated code.
1624   // Handle a conditional branch.
1625   const BranchInst *BI = cast<BranchInst>(I);
1626   MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1627   MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1628
1629   // Fold the common case of a conditional branch with a comparison
1630   // in the same block (values defined on other blocks may not have
1631   // initialized registers).
1632   X86::CondCode CC;
1633   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1634     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1635       EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1636
1637       // Try to optimize or fold the cmp.
1638       CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1639       switch (Predicate) {
1640       default: break;
1641       case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1642       case CmpInst::FCMP_TRUE:  fastEmitBranch(TrueMBB, DbgLoc); return true;
1643       }
1644
1645       const Value *CmpLHS = CI->getOperand(0);
1646       const Value *CmpRHS = CI->getOperand(1);
1647
1648       // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1649       // 0.0.
1650       // We don't have to materialize a zero constant for this case and can just
1651       // use %x again on the RHS.
1652       if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1653         const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1654         if (CmpRHSC && CmpRHSC->isNullValue())
1655           CmpRHS = CmpLHS;
1656       }
1657
1658       // Try to take advantage of fallthrough opportunities.
1659       if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1660         std::swap(TrueMBB, FalseMBB);
1661         Predicate = CmpInst::getInversePredicate(Predicate);
1662       }
1663
1664       // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1665       // code check. Instead two branch instructions are required to check all
1666       // the flags. First we change the predicate to a supported condition code,
1667       // which will be the first branch. Later one we will emit the second
1668       // branch.
1669       bool NeedExtraBranch = false;
1670       switch (Predicate) {
1671       default: break;
1672       case CmpInst::FCMP_OEQ:
1673         std::swap(TrueMBB, FalseMBB);
1674         LLVM_FALLTHROUGH;
1675       case CmpInst::FCMP_UNE:
1676         NeedExtraBranch = true;
1677         Predicate = CmpInst::FCMP_ONE;
1678         break;
1679       }
1680
1681       bool SwapArgs;
1682       std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1683       assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1684
1685       if (SwapArgs)
1686         std::swap(CmpLHS, CmpRHS);
1687
1688       // Emit a compare of the LHS and RHS, setting the flags.
1689       if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1690         return false;
1691
1692       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1693         .addMBB(TrueMBB).addImm(CC);
1694
1695       // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1696       // to UNE above).
1697       if (NeedExtraBranch) {
1698         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1699           .addMBB(TrueMBB).addImm(X86::COND_P);
1700       }
1701
1702       finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1703       return true;
1704     }
1705   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1706     // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1707     // typically happen for _Bool and C++ bools.
1708     MVT SourceVT;
1709     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1710         isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1711       unsigned TestOpc = 0;
1712       switch (SourceVT.SimpleTy) {
1713       default: break;
1714       case MVT::i8:  TestOpc = X86::TEST8ri; break;
1715       case MVT::i16: TestOpc = X86::TEST16ri; break;
1716       case MVT::i32: TestOpc = X86::TEST32ri; break;
1717       case MVT::i64: TestOpc = X86::TEST64ri32; break;
1718       }
1719       if (TestOpc) {
1720         unsigned OpReg = getRegForValue(TI->getOperand(0));
1721         if (OpReg == 0) return false;
1722
1723         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1724           .addReg(OpReg).addImm(1);
1725
1726         unsigned JmpCond = X86::COND_NE;
1727         if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1728           std::swap(TrueMBB, FalseMBB);
1729           JmpCond = X86::COND_E;
1730         }
1731
1732         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1733           .addMBB(TrueMBB).addImm(JmpCond);
1734
1735         finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1736         return true;
1737       }
1738     }
1739   } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1740     // Fake request the condition, otherwise the intrinsic might be completely
1741     // optimized away.
1742     unsigned TmpReg = getRegForValue(BI->getCondition());
1743     if (TmpReg == 0)
1744       return false;
1745
1746     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1747       .addMBB(TrueMBB).addImm(CC);
1748     finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1749     return true;
1750   }
1751
1752   // Otherwise do a clumsy setcc and re-test it.
1753   // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1754   // in an explicit cast, so make sure to handle that correctly.
1755   unsigned OpReg = getRegForValue(BI->getCondition());
1756   if (OpReg == 0) return false;
1757
1758   // In case OpReg is a K register, COPY to a GPR
1759   if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1760     unsigned KOpReg = OpReg;
1761     OpReg = createResultReg(&X86::GR32RegClass);
1762     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1763             TII.get(TargetOpcode::COPY), OpReg)
1764         .addReg(KOpReg);
1765     OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, /*Kill=*/true,
1766                                        X86::sub_8bit);
1767   }
1768   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1769       .addReg(OpReg)
1770       .addImm(1);
1771   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JCC_1))
1772     .addMBB(TrueMBB).addImm(X86::COND_NE);
1773   finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1774   return true;
1775 }
1776
1777 bool X86FastISel::X86SelectShift(const Instruction *I) {
1778   unsigned CReg = 0, OpReg = 0;
1779   const TargetRegisterClass *RC = nullptr;
1780   if (I->getType()->isIntegerTy(8)) {
1781     CReg = X86::CL;
1782     RC = &X86::GR8RegClass;
1783     switch (I->getOpcode()) {
1784     case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1785     case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1786     case Instruction::Shl:  OpReg = X86::SHL8rCL; break;
1787     default: return false;
1788     }
1789   } else if (I->getType()->isIntegerTy(16)) {
1790     CReg = X86::CX;
1791     RC = &X86::GR16RegClass;
1792     switch (I->getOpcode()) {
1793     default: llvm_unreachable("Unexpected shift opcode");
1794     case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1795     case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1796     case Instruction::Shl:  OpReg = X86::SHL16rCL; break;
1797     }
1798   } else if (I->getType()->isIntegerTy(32)) {
1799     CReg = X86::ECX;
1800     RC = &X86::GR32RegClass;
1801     switch (I->getOpcode()) {
1802     default: llvm_unreachable("Unexpected shift opcode");
1803     case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1804     case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1805     case Instruction::Shl:  OpReg = X86::SHL32rCL; break;
1806     }
1807   } else if (I->getType()->isIntegerTy(64)) {
1808     CReg = X86::RCX;
1809     RC = &X86::GR64RegClass;
1810     switch (I->getOpcode()) {
1811     default: llvm_unreachable("Unexpected shift opcode");
1812     case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1813     case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1814     case Instruction::Shl:  OpReg = X86::SHL64rCL; break;
1815     }
1816   } else {
1817     return false;
1818   }
1819
1820   MVT VT;
1821   if (!isTypeLegal(I->getType(), VT))
1822     return false;
1823
1824   unsigned Op0Reg = getRegForValue(I->getOperand(0));
1825   if (Op0Reg == 0) return false;
1826
1827   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1828   if (Op1Reg == 0) return false;
1829   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1830           CReg).addReg(Op1Reg);
1831
1832   // The shift instruction uses X86::CL. If we defined a super-register
1833   // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1834   if (CReg != X86::CL)
1835     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1836             TII.get(TargetOpcode::KILL), X86::CL)
1837       .addReg(CReg, RegState::Kill);
1838
1839   unsigned ResultReg = createResultReg(RC);
1840   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1841     .addReg(Op0Reg);
1842   updateValueMap(I, ResultReg);
1843   return true;
1844 }
1845
1846 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1847   const static unsigned NumTypes = 4; // i8, i16, i32, i64
1848   const static unsigned NumOps   = 4; // SDiv, SRem, UDiv, URem
1849   const static bool S = true;  // IsSigned
1850   const static bool U = false; // !IsSigned
1851   const static unsigned Copy = TargetOpcode::COPY;
1852   // For the X86 DIV/IDIV instruction, in most cases the dividend
1853   // (numerator) must be in a specific register pair highreg:lowreg,
1854   // producing the quotient in lowreg and the remainder in highreg.
1855   // For most data types, to set up the instruction, the dividend is
1856   // copied into lowreg, and lowreg is sign-extended or zero-extended
1857   // into highreg.  The exception is i8, where the dividend is defined
1858   // as a single register rather than a register pair, and we
1859   // therefore directly sign-extend or zero-extend the dividend into
1860   // lowreg, instead of copying, and ignore the highreg.
1861   const static struct DivRemEntry {
1862     // The following portion depends only on the data type.
1863     const TargetRegisterClass *RC;
1864     unsigned LowInReg;  // low part of the register pair
1865     unsigned HighInReg; // high part of the register pair
1866     // The following portion depends on both the data type and the operation.
1867     struct DivRemResult {
1868     unsigned OpDivRem;        // The specific DIV/IDIV opcode to use.
1869     unsigned OpSignExtend;    // Opcode for sign-extending lowreg into
1870                               // highreg, or copying a zero into highreg.
1871     unsigned OpCopy;          // Opcode for copying dividend into lowreg, or
1872                               // zero/sign-extending into lowreg for i8.
1873     unsigned DivRemResultReg; // Register containing the desired result.
1874     bool IsOpSigned;          // Whether to use signed or unsigned form.
1875     } ResultTable[NumOps];
1876   } OpTable[NumTypes] = {
1877     { &X86::GR8RegClass,  X86::AX,  0, {
1878         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AL,  S }, // SDiv
1879         { X86::IDIV8r,  0,            X86::MOVSX16rr8, X86::AH,  S }, // SRem
1880         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AL,  U }, // UDiv
1881         { X86::DIV8r,   0,            X86::MOVZX16rr8, X86::AH,  U }, // URem
1882       }
1883     }, // i8
1884     { &X86::GR16RegClass, X86::AX,  X86::DX, {
1885         { X86::IDIV16r, X86::CWD,     Copy,            X86::AX,  S }, // SDiv
1886         { X86::IDIV16r, X86::CWD,     Copy,            X86::DX,  S }, // SRem
1887         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::AX,  U }, // UDiv
1888         { X86::DIV16r,  X86::MOV32r0, Copy,            X86::DX,  U }, // URem
1889       }
1890     }, // i16
1891     { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1892         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EAX, S }, // SDiv
1893         { X86::IDIV32r, X86::CDQ,     Copy,            X86::EDX, S }, // SRem
1894         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EAX, U }, // UDiv
1895         { X86::DIV32r,  X86::MOV32r0, Copy,            X86::EDX, U }, // URem
1896       }
1897     }, // i32
1898     { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1899         { X86::IDIV64r, X86::CQO,     Copy,            X86::RAX, S }, // SDiv
1900         { X86::IDIV64r, X86::CQO,     Copy,            X86::RDX, S }, // SRem
1901         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RAX, U }, // UDiv
1902         { X86::DIV64r,  X86::MOV32r0, Copy,            X86::RDX, U }, // URem
1903       }
1904     }, // i64
1905   };
1906
1907   MVT VT;
1908   if (!isTypeLegal(I->getType(), VT))
1909     return false;
1910
1911   unsigned TypeIndex, OpIndex;
1912   switch (VT.SimpleTy) {
1913   default: return false;
1914   case MVT::i8:  TypeIndex = 0; break;
1915   case MVT::i16: TypeIndex = 1; break;
1916   case MVT::i32: TypeIndex = 2; break;
1917   case MVT::i64: TypeIndex = 3;
1918     if (!Subtarget->is64Bit())
1919       return false;
1920     break;
1921   }
1922
1923   switch (I->getOpcode()) {
1924   default: llvm_unreachable("Unexpected div/rem opcode");
1925   case Instruction::SDiv: OpIndex = 0; break;
1926   case Instruction::SRem: OpIndex = 1; break;
1927   case Instruction::UDiv: OpIndex = 2; break;
1928   case Instruction::URem: OpIndex = 3; break;
1929   }
1930
1931   const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1932   const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1933   unsigned Op0Reg = getRegForValue(I->getOperand(0));
1934   if (Op0Reg == 0)
1935     return false;
1936   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1937   if (Op1Reg == 0)
1938     return false;
1939
1940   // Move op0 into low-order input register.
1941   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1942           TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1943   // Zero-extend or sign-extend into high-order input register.
1944   if (OpEntry.OpSignExtend) {
1945     if (OpEntry.IsOpSigned)
1946       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1947               TII.get(OpEntry.OpSignExtend));
1948     else {
1949       unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1950       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1951               TII.get(X86::MOV32r0), Zero32);
1952
1953       // Copy the zero into the appropriate sub/super/identical physical
1954       // register. Unfortunately the operations needed are not uniform enough
1955       // to fit neatly into the table above.
1956       if (VT == MVT::i16) {
1957         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1958                 TII.get(Copy), TypeEntry.HighInReg)
1959           .addReg(Zero32, 0, X86::sub_16bit);
1960       } else if (VT == MVT::i32) {
1961         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1962                 TII.get(Copy), TypeEntry.HighInReg)
1963             .addReg(Zero32);
1964       } else if (VT == MVT::i64) {
1965         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1966                 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1967             .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1968       }
1969     }
1970   }
1971   // Generate the DIV/IDIV instruction.
1972   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1973           TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1974   // For i8 remainder, we can't reference ah directly, as we'll end
1975   // up with bogus copies like %r9b = COPY %ah. Reference ax
1976   // instead to prevent ah references in a rex instruction.
1977   //
1978   // The current assumption of the fast register allocator is that isel
1979   // won't generate explicit references to the GR8_NOREX registers. If
1980   // the allocator and/or the backend get enhanced to be more robust in
1981   // that regard, this can be, and should be, removed.
1982   unsigned ResultReg = 0;
1983   if ((I->getOpcode() == Instruction::SRem ||
1984        I->getOpcode() == Instruction::URem) &&
1985       OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1986     unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1987     unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1988     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1989             TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1990
1991     // Shift AX right by 8 bits instead of using AH.
1992     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1993             ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1994
1995     // Now reference the 8-bit subreg of the result.
1996     ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
1997                                            /*Kill=*/true, X86::sub_8bit);
1998   }
1999   // Copy the result out of the physreg if we haven't already.
2000   if (!ResultReg) {
2001     ResultReg = createResultReg(TypeEntry.RC);
2002     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
2003         .addReg(OpEntry.DivRemResultReg);
2004   }
2005   updateValueMap(I, ResultReg);
2006
2007   return true;
2008 }
2009
2010 /// Emit a conditional move instruction (if the are supported) to lower
2011 /// the select.
2012 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2013   // Check if the subtarget supports these instructions.
2014   if (!Subtarget->hasCMov())
2015     return false;
2016
2017   // FIXME: Add support for i8.
2018   if (RetVT < MVT::i16 || RetVT > MVT::i64)
2019     return false;
2020
2021   const Value *Cond = I->getOperand(0);
2022   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2023   bool NeedTest = true;
2024   X86::CondCode CC = X86::COND_NE;
2025
2026   // Optimize conditions coming from a compare if both instructions are in the
2027   // same basic block (values defined in other basic blocks may not have
2028   // initialized registers).
2029   const auto *CI = dyn_cast<CmpInst>(Cond);
2030   if (CI && (CI->getParent() == I->getParent())) {
2031     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2032
2033     // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2034     static const uint16_t SETFOpcTable[2][3] = {
2035       { X86::COND_NP, X86::COND_E,  X86::TEST8rr },
2036       { X86::COND_P,  X86::COND_NE, X86::OR8rr   }
2037     };
2038     const uint16_t *SETFOpc = nullptr;
2039     switch (Predicate) {
2040     default: break;
2041     case CmpInst::FCMP_OEQ:
2042       SETFOpc = &SETFOpcTable[0][0];
2043       Predicate = CmpInst::ICMP_NE;
2044       break;
2045     case CmpInst::FCMP_UNE:
2046       SETFOpc = &SETFOpcTable[1][0];
2047       Predicate = CmpInst::ICMP_NE;
2048       break;
2049     }
2050
2051     bool NeedSwap;
2052     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2053     assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2054
2055     const Value *CmpLHS = CI->getOperand(0);
2056     const Value *CmpRHS = CI->getOperand(1);
2057     if (NeedSwap)
2058       std::swap(CmpLHS, CmpRHS);
2059
2060     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2061     // Emit a compare of the LHS and RHS, setting the flags.
2062     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2063       return false;
2064
2065     if (SETFOpc) {
2066       unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
2067       unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
2068       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2069               FlagReg1).addImm(SETFOpc[0]);
2070       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2071               FlagReg2).addImm(SETFOpc[1]);
2072       auto const &II = TII.get(SETFOpc[2]);
2073       if (II.getNumDefs()) {
2074         unsigned TmpReg = createResultReg(&X86::GR8RegClass);
2075         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2076           .addReg(FlagReg2).addReg(FlagReg1);
2077       } else {
2078         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2079           .addReg(FlagReg2).addReg(FlagReg1);
2080       }
2081     }
2082     NeedTest = false;
2083   } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2084     // Fake request the condition, otherwise the intrinsic might be completely
2085     // optimized away.
2086     unsigned TmpReg = getRegForValue(Cond);
2087     if (TmpReg == 0)
2088       return false;
2089
2090     NeedTest = false;
2091   }
2092
2093   if (NeedTest) {
2094     // Selects operate on i1, however, CondReg is 8 bits width and may contain
2095     // garbage. Indeed, only the less significant bit is supposed to be
2096     // accurate. If we read more than the lsb, we may see non-zero values
2097     // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2098     // the select. This is achieved by performing TEST against 1.
2099     unsigned CondReg = getRegForValue(Cond);
2100     if (CondReg == 0)
2101       return false;
2102     bool CondIsKill = hasTrivialKill(Cond);
2103
2104     // In case OpReg is a K register, COPY to a GPR
2105     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2106       unsigned KCondReg = CondReg;
2107       CondReg = createResultReg(&X86::GR32RegClass);
2108       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2109               TII.get(TargetOpcode::COPY), CondReg)
2110           .addReg(KCondReg, getKillRegState(CondIsKill));
2111       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2112                                            X86::sub_8bit);
2113     }
2114     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2115         .addReg(CondReg, getKillRegState(CondIsKill))
2116         .addImm(1);
2117   }
2118
2119   const Value *LHS = I->getOperand(1);
2120   const Value *RHS = I->getOperand(2);
2121
2122   unsigned RHSReg = getRegForValue(RHS);
2123   bool RHSIsKill = hasTrivialKill(RHS);
2124
2125   unsigned LHSReg = getRegForValue(LHS);
2126   bool LHSIsKill = hasTrivialKill(LHS);
2127
2128   if (!LHSReg || !RHSReg)
2129     return false;
2130
2131   const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2132   unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
2133   unsigned ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill,
2134                                         LHSReg, LHSIsKill, CC);
2135   updateValueMap(I, ResultReg);
2136   return true;
2137 }
2138
2139 /// Emit SSE or AVX instructions to lower the select.
2140 ///
2141 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2142 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2143 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2144 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2145   // Optimize conditions coming from a compare if both instructions are in the
2146   // same basic block (values defined in other basic blocks may not have
2147   // initialized registers).
2148   const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2149   if (!CI || (CI->getParent() != I->getParent()))
2150     return false;
2151
2152   if (I->getType() != CI->getOperand(0)->getType() ||
2153       !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2154         (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2155     return false;
2156
2157   const Value *CmpLHS = CI->getOperand(0);
2158   const Value *CmpRHS = CI->getOperand(1);
2159   CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2160
2161   // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2162   // We don't have to materialize a zero constant for this case and can just use
2163   // %x again on the RHS.
2164   if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2165     const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2166     if (CmpRHSC && CmpRHSC->isNullValue())
2167       CmpRHS = CmpLHS;
2168   }
2169
2170   unsigned CC;
2171   bool NeedSwap;
2172   std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2173   if (CC > 7 && !Subtarget->hasAVX())
2174     return false;
2175
2176   if (NeedSwap)
2177     std::swap(CmpLHS, CmpRHS);
2178
2179   const Value *LHS = I->getOperand(1);
2180   const Value *RHS = I->getOperand(2);
2181
2182   unsigned LHSReg = getRegForValue(LHS);
2183   bool LHSIsKill = hasTrivialKill(LHS);
2184
2185   unsigned RHSReg = getRegForValue(RHS);
2186   bool RHSIsKill = hasTrivialKill(RHS);
2187
2188   unsigned CmpLHSReg = getRegForValue(CmpLHS);
2189   bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
2190
2191   unsigned CmpRHSReg = getRegForValue(CmpRHS);
2192   bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
2193
2194   if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
2195     return false;
2196
2197   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2198   unsigned ResultReg;
2199
2200   if (Subtarget->hasAVX512()) {
2201     // If we have AVX512 we can use a mask compare and masked movss/sd.
2202     const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2203     const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2204
2205     unsigned CmpOpcode =
2206       (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2207     unsigned CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpLHSIsKill,
2208                                        CmpRHSReg, CmpRHSIsKill, CC);
2209
2210     // Need an IMPLICIT_DEF for the input that is used to generate the upper
2211     // bits of the result register since its not based on any of the inputs.
2212     unsigned ImplicitDefReg = createResultReg(VR128X);
2213     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2214             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2215
2216     // Place RHSReg is the passthru of the masked movss/sd operation and put
2217     // LHS in the input. The mask input comes from the compare.
2218     unsigned MovOpcode =
2219       (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2220     unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, RHSIsKill,
2221                                         CmpReg, true, ImplicitDefReg, true,
2222                                         LHSReg, LHSIsKill);
2223
2224     ResultReg = createResultReg(RC);
2225     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2226             TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2227
2228   } else if (Subtarget->hasAVX()) {
2229     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2230
2231     // If we have AVX, create 1 blendv instead of 3 logic instructions.
2232     // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2233     // uses XMM0 as the selection register. That may need just as many
2234     // instructions as the AND/ANDN/OR sequence due to register moves, so
2235     // don't bother.
2236     unsigned CmpOpcode =
2237       (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2238     unsigned BlendOpcode =
2239       (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2240
2241     unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
2242                                        CmpRHSReg, CmpRHSIsKill, CC);
2243     unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2244                                           LHSReg, LHSIsKill, CmpReg, true);
2245     ResultReg = createResultReg(RC);
2246     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2247             TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2248   } else {
2249     // Choose the SSE instruction sequence based on data type (float or double).
2250     static const uint16_t OpcTable[2][4] = {
2251       { X86::CMPSSrr,  X86::ANDPSrr,  X86::ANDNPSrr,  X86::ORPSrr  },
2252       { X86::CMPSDrr,  X86::ANDPDrr,  X86::ANDNPDrr,  X86::ORPDrr  }
2253     };
2254
2255     const uint16_t *Opc = nullptr;
2256     switch (RetVT.SimpleTy) {
2257     default: return false;
2258     case MVT::f32: Opc = &OpcTable[0][0]; break;
2259     case MVT::f64: Opc = &OpcTable[1][0]; break;
2260     }
2261
2262     const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2263     unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2264                                        CmpRHSReg, CmpRHSIsKill, CC);
2265     unsigned AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, /*IsKill=*/false,
2266                                       LHSReg, LHSIsKill);
2267     unsigned AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, /*IsKill=*/true,
2268                                        RHSReg, RHSIsKill);
2269     unsigned OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, /*IsKill=*/true,
2270                                      AndReg, /*IsKill=*/true);
2271     ResultReg = createResultReg(RC);
2272     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2273             TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2274   }
2275   updateValueMap(I, ResultReg);
2276   return true;
2277 }
2278
2279 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2280   // These are pseudo CMOV instructions and will be later expanded into control-
2281   // flow.
2282   unsigned Opc;
2283   switch (RetVT.SimpleTy) {
2284   default: return false;
2285   case MVT::i8:  Opc = X86::CMOV_GR8;  break;
2286   case MVT::i16: Opc = X86::CMOV_GR16; break;
2287   case MVT::i32: Opc = X86::CMOV_GR32; break;
2288   case MVT::f32: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X
2289                                               : X86::CMOV_FR32; break;
2290   case MVT::f64: Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X
2291                                               : X86::CMOV_FR64; break;
2292   }
2293
2294   const Value *Cond = I->getOperand(0);
2295   X86::CondCode CC = X86::COND_NE;
2296
2297   // Optimize conditions coming from a compare if both instructions are in the
2298   // same basic block (values defined in other basic blocks may not have
2299   // initialized registers).
2300   const auto *CI = dyn_cast<CmpInst>(Cond);
2301   if (CI && (CI->getParent() == I->getParent())) {
2302     bool NeedSwap;
2303     std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2304     if (CC > X86::LAST_VALID_COND)
2305       return false;
2306
2307     const Value *CmpLHS = CI->getOperand(0);
2308     const Value *CmpRHS = CI->getOperand(1);
2309
2310     if (NeedSwap)
2311       std::swap(CmpLHS, CmpRHS);
2312
2313     EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2314     if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2315       return false;
2316   } else {
2317     unsigned CondReg = getRegForValue(Cond);
2318     if (CondReg == 0)
2319       return false;
2320     bool CondIsKill = hasTrivialKill(Cond);
2321
2322     // In case OpReg is a K register, COPY to a GPR
2323     if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2324       unsigned KCondReg = CondReg;
2325       CondReg = createResultReg(&X86::GR32RegClass);
2326       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2327               TII.get(TargetOpcode::COPY), CondReg)
2328           .addReg(KCondReg, getKillRegState(CondIsKill));
2329       CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, /*Kill=*/true,
2330                                            X86::sub_8bit);
2331     }
2332     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2333         .addReg(CondReg, getKillRegState(CondIsKill))
2334         .addImm(1);
2335   }
2336
2337   const Value *LHS = I->getOperand(1);
2338   const Value *RHS = I->getOperand(2);
2339
2340   unsigned LHSReg = getRegForValue(LHS);
2341   bool LHSIsKill = hasTrivialKill(LHS);
2342
2343   unsigned RHSReg = getRegForValue(RHS);
2344   bool RHSIsKill = hasTrivialKill(RHS);
2345
2346   if (!LHSReg || !RHSReg)
2347     return false;
2348
2349   const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2350
2351   unsigned ResultReg =
2352     fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2353   updateValueMap(I, ResultReg);
2354   return true;
2355 }
2356
2357 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2358   MVT RetVT;
2359   if (!isTypeLegal(I->getType(), RetVT))
2360     return false;
2361
2362   // Check if we can fold the select.
2363   if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2364     CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2365     const Value *Opnd = nullptr;
2366     switch (Predicate) {
2367     default:                              break;
2368     case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2369     case CmpInst::FCMP_TRUE:  Opnd = I->getOperand(1); break;
2370     }
2371     // No need for a select anymore - this is an unconditional move.
2372     if (Opnd) {
2373       unsigned OpReg = getRegForValue(Opnd);
2374       if (OpReg == 0)
2375         return false;
2376       bool OpIsKill = hasTrivialKill(Opnd);
2377       const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2378       unsigned ResultReg = createResultReg(RC);
2379       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2380               TII.get(TargetOpcode::COPY), ResultReg)
2381         .addReg(OpReg, getKillRegState(OpIsKill));
2382       updateValueMap(I, ResultReg);
2383       return true;
2384     }
2385   }
2386
2387   // First try to use real conditional move instructions.
2388   if (X86FastEmitCMoveSelect(RetVT, I))
2389     return true;
2390
2391   // Try to use a sequence of SSE instructions to simulate a conditional move.
2392   if (X86FastEmitSSESelect(RetVT, I))
2393     return true;
2394
2395   // Fall-back to pseudo conditional move instructions, which will be later
2396   // converted to control-flow.
2397   if (X86FastEmitPseudoSelect(RetVT, I))
2398     return true;
2399
2400   return false;
2401 }
2402
2403 // Common code for X86SelectSIToFP and X86SelectUIToFP.
2404 bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2405   // The target-independent selection algorithm in FastISel already knows how
2406   // to select a SINT_TO_FP if the target is SSE but not AVX.
2407   // Early exit if the subtarget doesn't have AVX.
2408   // Unsigned conversion requires avx512.
2409   bool HasAVX512 = Subtarget->hasAVX512();
2410   if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2411     return false;
2412
2413   // TODO: We could sign extend narrower types.
2414   MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
2415   if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2416     return false;
2417
2418   // Select integer to float/double conversion.
2419   unsigned OpReg = getRegForValue(I->getOperand(0));
2420   if (OpReg == 0)
2421     return false;
2422
2423   unsigned Opcode;
2424
2425   static const uint16_t SCvtOpc[2][2][2] = {
2426     { { X86::VCVTSI2SSrr,  X86::VCVTSI642SSrr },
2427       { X86::VCVTSI2SDrr,  X86::VCVTSI642SDrr } },
2428     { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2429       { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2430   };
2431   static const uint16_t UCvtOpc[2][2] = {
2432     { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2433     { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2434   };
2435   bool Is64Bit = SrcVT == MVT::i64;
2436
2437   if (I->getType()->isDoubleTy()) {
2438     // s/uitofp int -> double
2439     Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2440   } else if (I->getType()->isFloatTy()) {
2441     // s/uitofp int -> float
2442     Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2443   } else
2444     return false;
2445
2446   MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2447   const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2448   unsigned ImplicitDefReg = createResultReg(RC);
2449   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2450           TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2451   unsigned ResultReg =
2452       fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
2453   updateValueMap(I, ResultReg);
2454   return true;
2455 }
2456
2457 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2458   return X86SelectIntToFP(I, /*IsSigned*/true);
2459 }
2460
2461 bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2462   return X86SelectIntToFP(I, /*IsSigned*/false);
2463 }
2464
2465 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2466 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2467                                           unsigned TargetOpc,
2468                                           const TargetRegisterClass *RC) {
2469   assert((I->getOpcode() == Instruction::FPExt ||
2470           I->getOpcode() == Instruction::FPTrunc) &&
2471          "Instruction must be an FPExt or FPTrunc!");
2472   bool HasAVX = Subtarget->hasAVX();
2473
2474   unsigned OpReg = getRegForValue(I->getOperand(0));
2475   if (OpReg == 0)
2476     return false;
2477
2478   unsigned ImplicitDefReg;
2479   if (HasAVX) {
2480     ImplicitDefReg = createResultReg(RC);
2481     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2482             TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2483
2484   }
2485
2486   unsigned ResultReg = createResultReg(RC);
2487   MachineInstrBuilder MIB;
2488   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2489                 ResultReg);
2490
2491   if (HasAVX)
2492     MIB.addReg(ImplicitDefReg);
2493
2494   MIB.addReg(OpReg);
2495   updateValueMap(I, ResultReg);
2496   return true;
2497 }
2498
2499 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2500   if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2501       I->getOperand(0)->getType()->isFloatTy()) {
2502     bool HasAVX512 = Subtarget->hasAVX512();
2503     // fpext from float to double.
2504     unsigned Opc =
2505         HasAVX512 ? X86::VCVTSS2SDZrr
2506                   : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2507     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2508   }
2509
2510   return false;
2511 }
2512
2513 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2514   if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2515       I->getOperand(0)->getType()->isDoubleTy()) {
2516     bool HasAVX512 = Subtarget->hasAVX512();
2517     // fptrunc from double to float.
2518     unsigned Opc =
2519         HasAVX512 ? X86::VCVTSD2SSZrr
2520                   : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2521     return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2522   }
2523
2524   return false;
2525 }
2526
2527 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2528   EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2529   EVT DstVT = TLI.getValueType(DL, I->getType());
2530
2531   // This code only handles truncation to byte.
2532   if (DstVT != MVT::i8 && DstVT != MVT::i1)
2533     return false;
2534   if (!TLI.isTypeLegal(SrcVT))
2535     return false;
2536
2537   unsigned InputReg = getRegForValue(I->getOperand(0));
2538   if (!InputReg)
2539     // Unhandled operand.  Halt "fast" selection and bail.
2540     return false;
2541
2542   if (SrcVT == MVT::i8) {
2543     // Truncate from i8 to i1; no code needed.
2544     updateValueMap(I, InputReg);
2545     return true;
2546   }
2547
2548   // Issue an extract_subreg.
2549   unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
2550                                                   InputReg, false,
2551                                                   X86::sub_8bit);
2552   if (!ResultReg)
2553     return false;
2554
2555   updateValueMap(I, ResultReg);
2556   return true;
2557 }
2558
2559 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2560   return Len <= (Subtarget->is64Bit() ? 32 : 16);
2561 }
2562
2563 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2564                                      X86AddressMode SrcAM, uint64_t Len) {
2565
2566   // Make sure we don't bloat code by inlining very large memcpy's.
2567   if (!IsMemcpySmall(Len))
2568     return false;
2569
2570   bool i64Legal = Subtarget->is64Bit();
2571
2572   // We don't care about alignment here since we just emit integer accesses.
2573   while (Len) {
2574     MVT VT;
2575     if (Len >= 8 && i64Legal)
2576       VT = MVT::i64;
2577     else if (Len >= 4)
2578       VT = MVT::i32;
2579     else if (Len >= 2)
2580       VT = MVT::i16;
2581     else
2582       VT = MVT::i8;
2583
2584     unsigned Reg;
2585     bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2586     RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2587     assert(RV && "Failed to emit load or store??");
2588
2589     unsigned Size = VT.getSizeInBits()/8;
2590     Len -= Size;
2591     DestAM.Disp += Size;
2592     SrcAM.Disp += Size;
2593   }
2594
2595   return true;
2596 }
2597
2598 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2599   // FIXME: Handle more intrinsics.
2600   switch (II->getIntrinsicID()) {
2601   default: return false;
2602   case Intrinsic::convert_from_fp16:
2603   case Intrinsic::convert_to_fp16: {
2604     if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2605       return false;
2606
2607     const Value *Op = II->getArgOperand(0);
2608     unsigned InputReg = getRegForValue(Op);
2609     if (InputReg == 0)
2610       return false;
2611
2612     // F16C only allows converting from float to half and from half to float.
2613     bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2614     if (IsFloatToHalf) {
2615       if (!Op->getType()->isFloatTy())
2616         return false;
2617     } else {
2618       if (!II->getType()->isFloatTy())
2619         return false;
2620     }
2621
2622     unsigned ResultReg = 0;
2623     const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2624     if (IsFloatToHalf) {
2625       // 'InputReg' is implicitly promoted from register class FR32 to
2626       // register class VR128 by method 'constrainOperandRegClass' which is
2627       // directly called by 'fastEmitInst_ri'.
2628       // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2629       // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2630       // It's consistent with the other FP instructions, which are usually
2631       // controlled by MXCSR.
2632       InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
2633
2634       // Move the lower 32-bits of ResultReg to another register of class GR32.
2635       ResultReg = createResultReg(&X86::GR32RegClass);
2636       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2637               TII.get(X86::VMOVPDI2DIrr), ResultReg)
2638           .addReg(InputReg, RegState::Kill);
2639
2640       // The result value is in the lower 16-bits of ResultReg.
2641       unsigned RegIdx = X86::sub_16bit;
2642       ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2643     } else {
2644       assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2645       // Explicitly sign-extend the input to 32-bit.
2646       InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2647                             /*Kill=*/false);
2648
2649       // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2650       InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2651                             InputReg, /*Kill=*/true);
2652
2653       InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2654
2655       // The result value is in the lower 32-bits of ResultReg.
2656       // Emit an explicit copy from register class VR128 to register class FR32.
2657       ResultReg = createResultReg(&X86::FR32RegClass);
2658       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2659               TII.get(TargetOpcode::COPY), ResultReg)
2660           .addReg(InputReg, RegState::Kill);
2661     }
2662
2663     updateValueMap(II, ResultReg);
2664     return true;
2665   }
2666   case Intrinsic::frameaddress: {
2667     MachineFunction *MF = FuncInfo.MF;
2668     if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2669       return false;
2670
2671     Type *RetTy = II->getCalledFunction()->getReturnType();
2672
2673     MVT VT;
2674     if (!isTypeLegal(RetTy, VT))
2675       return false;
2676
2677     unsigned Opc;
2678     const TargetRegisterClass *RC = nullptr;
2679
2680     switch (VT.SimpleTy) {
2681     default: llvm_unreachable("Invalid result type for frameaddress.");
2682     case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2683     case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2684     }
2685
2686     // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2687     // we get the wrong frame register.
2688     MachineFrameInfo &MFI = MF->getFrameInfo();
2689     MFI.setFrameAddressIsTaken(true);
2690
2691     const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2692     unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2693     assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2694             (FrameReg == X86::EBP && VT == MVT::i32)) &&
2695            "Invalid Frame Register!");
2696
2697     // Always make a copy of the frame register to a vreg first, so that we
2698     // never directly reference the frame register (the TwoAddressInstruction-
2699     // Pass doesn't like that).
2700     unsigned SrcReg = createResultReg(RC);
2701     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2702             TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2703
2704     // Now recursively load from the frame address.
2705     // movq (%rbp), %rax
2706     // movq (%rax), %rax
2707     // movq (%rax), %rax
2708     // ...
2709     unsigned DestReg;
2710     unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2711     while (Depth--) {
2712       DestReg = createResultReg(RC);
2713       addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2714                            TII.get(Opc), DestReg), SrcReg);
2715       SrcReg = DestReg;
2716     }
2717
2718     updateValueMap(II, SrcReg);
2719     return true;
2720   }
2721   case Intrinsic::memcpy: {
2722     const MemCpyInst *MCI = cast<MemCpyInst>(II);
2723     // Don't handle volatile or variable length memcpys.
2724     if (MCI->isVolatile())
2725       return false;
2726
2727     if (isa<ConstantInt>(MCI->getLength())) {
2728       // Small memcpy's are common enough that we want to do them
2729       // without a call if possible.
2730       uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2731       if (IsMemcpySmall(Len)) {
2732         X86AddressMode DestAM, SrcAM;
2733         if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2734             !X86SelectAddress(MCI->getRawSource(), SrcAM))
2735           return false;
2736         TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2737         return true;
2738       }
2739     }
2740
2741     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2742     if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2743       return false;
2744
2745     if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2746       return false;
2747
2748     return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 1);
2749   }
2750   case Intrinsic::memset: {
2751     const MemSetInst *MSI = cast<MemSetInst>(II);
2752
2753     if (MSI->isVolatile())
2754       return false;
2755
2756     unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2757     if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2758       return false;
2759
2760     if (MSI->getDestAddressSpace() > 255)
2761       return false;
2762
2763     return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
2764   }
2765   case Intrinsic::stackprotector: {
2766     // Emit code to store the stack guard onto the stack.
2767     EVT PtrTy = TLI.getPointerTy(DL);
2768
2769     const Value *Op1 = II->getArgOperand(0); // The guard's value.
2770     const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2771
2772     MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2773
2774     // Grab the frame index.
2775     X86AddressMode AM;
2776     if (!X86SelectAddress(Slot, AM)) return false;
2777     if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2778     return true;
2779   }
2780   case Intrinsic::dbg_declare: {
2781     const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2782     X86AddressMode AM;
2783     assert(DI->getAddress() && "Null address should be checked earlier!");
2784     if (!X86SelectAddress(DI->getAddress(), AM))
2785       return false;
2786     const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2787     // FIXME may need to add RegState::Debug to any registers produced,
2788     // although ESP/EBP should be the only ones at the moment.
2789     assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2790            "Expected inlined-at fields to agree");
2791     addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2792         .addImm(0)
2793         .addMetadata(DI->getVariable())
2794         .addMetadata(DI->getExpression());
2795     return true;
2796   }
2797   case Intrinsic::trap: {
2798     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2799     return true;
2800   }
2801   case Intrinsic::sqrt: {
2802     if (!Subtarget->hasSSE1())
2803       return false;
2804
2805     Type *RetTy = II->getCalledFunction()->getReturnType();
2806
2807     MVT VT;
2808     if (!isTypeLegal(RetTy, VT))
2809       return false;
2810
2811     // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2812     // is not generated by FastISel yet.
2813     // FIXME: Update this code once tablegen can handle it.
2814     static const uint16_t SqrtOpc[3][2] = {
2815       { X86::SQRTSSr,   X86::SQRTSDr },
2816       { X86::VSQRTSSr,  X86::VSQRTSDr },
2817       { X86::VSQRTSSZr, X86::VSQRTSDZr },
2818     };
2819     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2820                         Subtarget->hasAVX()    ? 1 :
2821                                                  0;
2822     unsigned Opc;
2823     switch (VT.SimpleTy) {
2824     default: return false;
2825     case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2826     case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2827     }
2828
2829     const Value *SrcVal = II->getArgOperand(0);
2830     unsigned SrcReg = getRegForValue(SrcVal);
2831
2832     if (SrcReg == 0)
2833       return false;
2834
2835     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2836     unsigned ImplicitDefReg = 0;
2837     if (AVXLevel > 0) {
2838       ImplicitDefReg = createResultReg(RC);
2839       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2840               TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2841     }
2842
2843     unsigned ResultReg = createResultReg(RC);
2844     MachineInstrBuilder MIB;
2845     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2846                   ResultReg);
2847
2848     if (ImplicitDefReg)
2849       MIB.addReg(ImplicitDefReg);
2850
2851     MIB.addReg(SrcReg);
2852
2853     updateValueMap(II, ResultReg);
2854     return true;
2855   }
2856   case Intrinsic::sadd_with_overflow:
2857   case Intrinsic::uadd_with_overflow:
2858   case Intrinsic::ssub_with_overflow:
2859   case Intrinsic::usub_with_overflow:
2860   case Intrinsic::smul_with_overflow:
2861   case Intrinsic::umul_with_overflow: {
2862     // This implements the basic lowering of the xalu with overflow intrinsics
2863     // into add/sub/mul followed by either seto or setb.
2864     const Function *Callee = II->getCalledFunction();
2865     auto *Ty = cast<StructType>(Callee->getReturnType());
2866     Type *RetTy = Ty->getTypeAtIndex(0U);
2867     assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2868            Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2869            "Overflow value expected to be an i1");
2870
2871     MVT VT;
2872     if (!isTypeLegal(RetTy, VT))
2873       return false;
2874
2875     if (VT < MVT::i8 || VT > MVT::i64)
2876       return false;
2877
2878     const Value *LHS = II->getArgOperand(0);
2879     const Value *RHS = II->getArgOperand(1);
2880
2881     // Canonicalize immediate to the RHS.
2882     if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2883         isCommutativeIntrinsic(II))
2884       std::swap(LHS, RHS);
2885
2886     unsigned BaseOpc, CondCode;
2887     switch (II->getIntrinsicID()) {
2888     default: llvm_unreachable("Unexpected intrinsic!");
2889     case Intrinsic::sadd_with_overflow:
2890       BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2891     case Intrinsic::uadd_with_overflow:
2892       BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2893     case Intrinsic::ssub_with_overflow:
2894       BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2895     case Intrinsic::usub_with_overflow:
2896       BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2897     case Intrinsic::smul_with_overflow:
2898       BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2899     case Intrinsic::umul_with_overflow:
2900       BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2901     }
2902
2903     unsigned LHSReg = getRegForValue(LHS);
2904     if (LHSReg == 0)
2905       return false;
2906     bool LHSIsKill = hasTrivialKill(LHS);
2907
2908     unsigned ResultReg = 0;
2909     // Check if we have an immediate version.
2910     if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2911       static const uint16_t Opc[2][4] = {
2912         { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2913         { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2914       };
2915
2916       if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2917           CondCode == X86::COND_O) {
2918         // We can use INC/DEC.
2919         ResultReg = createResultReg(TLI.getRegClassFor(VT));
2920         bool IsDec = BaseOpc == ISD::SUB;
2921         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2922                 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2923           .addReg(LHSReg, getKillRegState(LHSIsKill));
2924       } else
2925         ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2926                                 CI->getZExtValue());
2927     }
2928
2929     unsigned RHSReg;
2930     bool RHSIsKill;
2931     if (!ResultReg) {
2932       RHSReg = getRegForValue(RHS);
2933       if (RHSReg == 0)
2934         return false;
2935       RHSIsKill = hasTrivialKill(RHS);
2936       ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2937                               RHSIsKill);
2938     }
2939
2940     // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2941     // it manually.
2942     if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2943       static const uint16_t MULOpc[] =
2944         { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2945       static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2946       // First copy the first operand into RAX, which is an implicit input to
2947       // the X86::MUL*r instruction.
2948       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2949               TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2950         .addReg(LHSReg, getKillRegState(LHSIsKill));
2951       ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2952                                  TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2953     } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2954       static const uint16_t MULOpc[] =
2955         { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2956       if (VT == MVT::i8) {
2957         // Copy the first operand into AL, which is an implicit input to the
2958         // X86::IMUL8r instruction.
2959         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2960                TII.get(TargetOpcode::COPY), X86::AL)
2961           .addReg(LHSReg, getKillRegState(LHSIsKill));
2962         ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2963                                    RHSIsKill);
2964       } else
2965         ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2966                                     TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2967                                     RHSReg, RHSIsKill);
2968     }
2969
2970     if (!ResultReg)
2971       return false;
2972
2973     // Assign to a GPR since the overflow return value is lowered to a SETcc.
2974     unsigned ResultReg2 = createResultReg(&X86::GR8RegClass);
2975     assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2976     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SETCCr),
2977             ResultReg2).addImm(CondCode);
2978
2979     updateValueMap(II, ResultReg, 2);
2980     return true;
2981   }
2982   case Intrinsic::x86_sse_cvttss2si:
2983   case Intrinsic::x86_sse_cvttss2si64:
2984   case Intrinsic::x86_sse2_cvttsd2si:
2985   case Intrinsic::x86_sse2_cvttsd2si64: {
2986     bool IsInputDouble;
2987     switch (II->getIntrinsicID()) {
2988     default: llvm_unreachable("Unexpected intrinsic.");
2989     case Intrinsic::x86_sse_cvttss2si:
2990     case Intrinsic::x86_sse_cvttss2si64:
2991       if (!Subtarget->hasSSE1())
2992         return false;
2993       IsInputDouble = false;
2994       break;
2995     case Intrinsic::x86_sse2_cvttsd2si:
2996     case Intrinsic::x86_sse2_cvttsd2si64:
2997       if (!Subtarget->hasSSE2())
2998         return false;
2999       IsInputDouble = true;
3000       break;
3001     }
3002
3003     Type *RetTy = II->getCalledFunction()->getReturnType();
3004     MVT VT;
3005     if (!isTypeLegal(RetTy, VT))
3006       return false;
3007
3008     static const uint16_t CvtOpc[3][2][2] = {
3009       { { X86::CVTTSS2SIrr,   X86::CVTTSS2SI64rr },
3010         { X86::CVTTSD2SIrr,   X86::CVTTSD2SI64rr } },
3011       { { X86::VCVTTSS2SIrr,  X86::VCVTTSS2SI64rr },
3012         { X86::VCVTTSD2SIrr,  X86::VCVTTSD2SI64rr } },
3013       { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
3014         { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
3015     };
3016     unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
3017                         Subtarget->hasAVX()    ? 1 :
3018                                                  0;
3019     unsigned Opc;
3020     switch (VT.SimpleTy) {
3021     default: llvm_unreachable("Unexpected result type.");
3022     case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3023     case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3024     }
3025
3026     // Check if we can fold insertelement instructions into the convert.
3027     const Value *Op = II->getArgOperand(0);
3028     while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3029       const Value *Index = IE->getOperand(2);
3030       if (!isa<ConstantInt>(Index))
3031         break;
3032       unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3033
3034       if (Idx == 0) {
3035         Op = IE->getOperand(1);
3036         break;
3037       }
3038       Op = IE->getOperand(0);
3039     }
3040
3041     unsigned Reg = getRegForValue(Op);
3042     if (Reg == 0)
3043       return false;
3044
3045     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3046     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
3047       .addReg(Reg);
3048
3049     updateValueMap(II, ResultReg);
3050     return true;
3051   }
3052   }
3053 }
3054
3055 bool X86FastISel::fastLowerArguments() {
3056   if (!FuncInfo.CanLowerReturn)
3057     return false;
3058
3059   const Function *F = FuncInfo.Fn;
3060   if (F->isVarArg())
3061     return false;
3062
3063   CallingConv::ID CC = F->getCallingConv();
3064   if (CC != CallingConv::C)
3065     return false;
3066
3067   if (Subtarget->isCallingConvWin64(CC))
3068     return false;
3069
3070   if (!Subtarget->is64Bit())
3071     return false;
3072
3073   if (Subtarget->useSoftFloat())
3074     return false;
3075
3076   // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3077   unsigned GPRCnt = 0;
3078   unsigned FPRCnt = 0;
3079   for (auto const &Arg : F->args()) {
3080     if (Arg.hasAttribute(Attribute::ByVal) ||
3081         Arg.hasAttribute(Attribute::InReg) ||
3082         Arg.hasAttribute(Attribute::StructRet) ||
3083         Arg.hasAttribute(Attribute::SwiftSelf) ||
3084         Arg.hasAttribute(Attribute::SwiftError) ||
3085         Arg.hasAttribute(Attribute::Nest))
3086       return false;
3087
3088     Type *ArgTy = Arg.getType();
3089     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3090       return false;
3091
3092     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3093     if (!ArgVT.isSimple()) return false;
3094     switch (ArgVT.getSimpleVT().SimpleTy) {
3095     default: return false;
3096     case MVT::i32:
3097     case MVT::i64:
3098       ++GPRCnt;
3099       break;
3100     case MVT::f32:
3101     case MVT::f64:
3102       if (!Subtarget->hasSSE1())
3103         return false;
3104       ++FPRCnt;
3105       break;
3106     }
3107
3108     if (GPRCnt > 6)
3109       return false;
3110
3111     if (FPRCnt > 8)
3112       return false;
3113   }
3114
3115   static const MCPhysReg GPR32ArgRegs[] = {
3116     X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3117   };
3118   static const MCPhysReg GPR64ArgRegs[] = {
3119     X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3120   };
3121   static const MCPhysReg XMMArgRegs[] = {
3122     X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3123     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3124   };
3125
3126   unsigned GPRIdx = 0;
3127   unsigned FPRIdx = 0;
3128   for (auto const &Arg : F->args()) {
3129     MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3130     const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3131     unsigned SrcReg;
3132     switch (VT.SimpleTy) {
3133     default: llvm_unreachable("Unexpected value type.");
3134     case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3135     case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3136     case MVT::f32: LLVM_FALLTHROUGH;
3137     case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3138     }
3139     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3140     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3141     // Without this, EmitLiveInCopies may eliminate the livein if its only
3142     // use is a bitcast (which isn't turned into an instruction).
3143     unsigned ResultReg = createResultReg(RC);
3144     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3145             TII.get(TargetOpcode::COPY), ResultReg)
3146       .addReg(DstReg, getKillRegState(true));
3147     updateValueMap(&Arg, ResultReg);
3148   }
3149   return true;
3150 }
3151
3152 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3153                                                   CallingConv::ID CC,
3154                                                   ImmutableCallSite *CS) {
3155   if (Subtarget->is64Bit())
3156     return 0;
3157   if (Subtarget->getTargetTriple().isOSMSVCRT())
3158     return 0;
3159   if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3160       CC == CallingConv::HiPE)
3161     return 0;
3162
3163   if (CS)
3164     if (CS->arg_empty() || !CS->paramHasAttr(0, Attribute::StructRet) ||
3165         CS->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3166       return 0;
3167
3168   return 4;
3169 }
3170
3171 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3172   auto &OutVals       = CLI.OutVals;
3173   auto &OutFlags      = CLI.OutFlags;
3174   auto &OutRegs       = CLI.OutRegs;
3175   auto &Ins           = CLI.Ins;
3176   auto &InRegs        = CLI.InRegs;
3177   CallingConv::ID CC  = CLI.CallConv;
3178   bool &IsTailCall    = CLI.IsTailCall;
3179   bool IsVarArg       = CLI.IsVarArg;
3180   const Value *Callee = CLI.Callee;
3181   MCSymbol *Symbol = CLI.Symbol;
3182
3183   bool Is64Bit        = Subtarget->is64Bit();
3184   bool IsWin64        = Subtarget->isCallingConvWin64(CC);
3185
3186   const CallInst *CI =
3187       CLI.CS ? dyn_cast<CallInst>(CLI.CS->getInstruction()) : nullptr;
3188   const Function *CalledFn = CI ? CI->getCalledFunction() : nullptr;
3189
3190   // Call / invoke instructions with NoCfCheck attribute require special
3191   // handling.
3192   const auto *II =
3193       CLI.CS ? dyn_cast<InvokeInst>(CLI.CS->getInstruction()) : nullptr;
3194   if ((CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck()))
3195     return false;
3196
3197   // Functions with no_caller_saved_registers that need special handling.
3198   if ((CI && CI->hasFnAttr("no_caller_saved_registers")) ||
3199       (CalledFn && CalledFn->hasFnAttribute("no_caller_saved_registers")))
3200     return false;
3201
3202   // Functions using retpoline for indirect calls need to use SDISel.
3203   if (Subtarget->useRetpolineIndirectCalls())
3204     return false;
3205
3206   // Handle only C, fastcc, and webkit_js calling conventions for now.
3207   switch (CC) {
3208   default: return false;
3209   case CallingConv::C:
3210   case CallingConv::Fast:
3211   case CallingConv::WebKit_JS:
3212   case CallingConv::Swift:
3213   case CallingConv::X86_FastCall:
3214   case CallingConv::X86_StdCall:
3215   case CallingConv::X86_ThisCall:
3216   case CallingConv::Win64:
3217   case CallingConv::X86_64_SysV:
3218     break;
3219   }
3220
3221   // Allow SelectionDAG isel to handle tail calls.
3222   if (IsTailCall)
3223     return false;
3224
3225   // fastcc with -tailcallopt is intended to provide a guaranteed
3226   // tail call optimization. Fastisel doesn't know how to do that.
3227   if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
3228     return false;
3229
3230   // Don't know how to handle Win64 varargs yet.  Nothing special needed for
3231   // x86-32. Special handling for x86-64 is implemented.
3232   if (IsVarArg && IsWin64)
3233     return false;
3234
3235   // Don't know about inalloca yet.
3236   if (CLI.CS && CLI.CS->hasInAllocaArgument())
3237     return false;
3238
3239   for (auto Flag : CLI.OutFlags)
3240     if (Flag.isSwiftError())
3241       return false;
3242
3243   SmallVector<MVT, 16> OutVTs;
3244   SmallVector<unsigned, 16> ArgRegs;
3245
3246   // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3247   // instruction. This is safe because it is common to all FastISel supported
3248   // calling conventions on x86.
3249   for (int i = 0, e = OutVals.size(); i != e; ++i) {
3250     Value *&Val = OutVals[i];
3251     ISD::ArgFlagsTy Flags = OutFlags[i];
3252     if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3253       if (CI->getBitWidth() < 32) {
3254         if (Flags.isSExt())
3255           Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3256         else
3257           Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3258       }
3259     }
3260
3261     // Passing bools around ends up doing a trunc to i1 and passing it.
3262     // Codegen this as an argument + "and 1".
3263     MVT VT;
3264     auto *TI = dyn_cast<TruncInst>(Val);
3265     unsigned ResultReg;
3266     if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
3267               (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
3268               TI->hasOneUse()) {
3269       Value *PrevVal = TI->getOperand(0);
3270       ResultReg = getRegForValue(PrevVal);
3271
3272       if (!ResultReg)
3273         return false;
3274
3275       if (!isTypeLegal(PrevVal->getType(), VT))
3276         return false;
3277
3278       ResultReg =
3279         fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
3280     } else {
3281       if (!isTypeLegal(Val->getType(), VT))
3282         return false;
3283       ResultReg = getRegForValue(Val);
3284     }
3285
3286     if (!ResultReg)
3287       return false;
3288
3289     ArgRegs.push_back(ResultReg);
3290     OutVTs.push_back(VT);
3291   }
3292
3293   // Analyze operands of the call, assigning locations to each operand.
3294   SmallVector<CCValAssign, 16> ArgLocs;
3295   CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3296
3297   // Allocate shadow area for Win64
3298   if (IsWin64)
3299     CCInfo.AllocateStack(32, 8);
3300
3301   CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3302
3303   // Get a count of how many bytes are to be pushed on the stack.
3304   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3305
3306   // Issue CALLSEQ_START
3307   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3308   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
3309     .addImm(NumBytes).addImm(0).addImm(0);
3310
3311   // Walk the register/memloc assignments, inserting copies/loads.
3312   const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3313   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3314     CCValAssign const &VA = ArgLocs[i];
3315     const Value *ArgVal = OutVals[VA.getValNo()];
3316     MVT ArgVT = OutVTs[VA.getValNo()];
3317
3318     if (ArgVT == MVT::x86mmx)
3319       return false;
3320
3321     unsigned ArgReg = ArgRegs[VA.getValNo()];
3322
3323     // Promote the value if needed.
3324     switch (VA.getLocInfo()) {
3325     case CCValAssign::Full: break;
3326     case CCValAssign::SExt: {
3327       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3328              "Unexpected extend");
3329
3330       if (ArgVT == MVT::i1)
3331         return false;
3332
3333       bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3334                                        ArgVT, ArgReg);
3335       assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3336       ArgVT = VA.getLocVT();
3337       break;
3338     }
3339     case CCValAssign::ZExt: {
3340       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3341              "Unexpected extend");
3342
3343       // Handle zero-extension from i1 to i8, which is common.
3344       if (ArgVT == MVT::i1) {
3345         // Set the high bits to zero.
3346         ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3347         ArgVT = MVT::i8;
3348
3349         if (ArgReg == 0)
3350           return false;
3351       }
3352
3353       bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3354                                        ArgVT, ArgReg);
3355       assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3356       ArgVT = VA.getLocVT();
3357       break;
3358     }
3359     case CCValAssign::AExt: {
3360       assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3361              "Unexpected extend");
3362       bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3363                                        ArgVT, ArgReg);
3364       if (!Emitted)
3365         Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3366                                     ArgVT, ArgReg);
3367       if (!Emitted)
3368         Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3369                                     ArgVT, ArgReg);
3370
3371       assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3372       ArgVT = VA.getLocVT();
3373       break;
3374     }
3375     case CCValAssign::BCvt: {
3376       ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3377                           /*TODO: Kill=*/false);
3378       assert(ArgReg && "Failed to emit a bitcast!");
3379       ArgVT = VA.getLocVT();
3380       break;
3381     }
3382     case CCValAssign::VExt:
3383       // VExt has not been implemented, so this should be impossible to reach
3384       // for now.  However, fallback to Selection DAG isel once implemented.
3385       return false;
3386     case CCValAssign::AExtUpper:
3387     case CCValAssign::SExtUpper:
3388     case CCValAssign::ZExtUpper:
3389     case CCValAssign::FPExt:
3390       llvm_unreachable("Unexpected loc info!");
3391     case CCValAssign::Indirect:
3392       // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3393       // support this.
3394       return false;
3395     }
3396
3397     if (VA.isRegLoc()) {
3398       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3399               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3400       OutRegs.push_back(VA.getLocReg());
3401     } else {
3402       assert(VA.isMemLoc());
3403
3404       // Don't emit stores for undef values.
3405       if (isa<UndefValue>(ArgVal))
3406         continue;
3407
3408       unsigned LocMemOffset = VA.getLocMemOffset();
3409       X86AddressMode AM;
3410       AM.Base.Reg = RegInfo->getStackRegister();
3411       AM.Disp = LocMemOffset;
3412       ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3413       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3414       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3415           MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3416           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3417       if (Flags.isByVal()) {
3418         X86AddressMode SrcAM;
3419         SrcAM.Base.Reg = ArgReg;
3420         if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3421           return false;
3422       } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3423         // If this is a really simple value, emit this with the Value* version
3424         // of X86FastEmitStore.  If it isn't simple, we don't want to do this,
3425         // as it can cause us to reevaluate the argument.
3426         if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3427           return false;
3428       } else {
3429         bool ValIsKill = hasTrivialKill(ArgVal);
3430         if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3431           return false;
3432       }
3433     }
3434   }
3435
3436   // ELF / PIC requires GOT in the EBX register before function calls via PLT
3437   // GOT pointer.
3438   if (Subtarget->isPICStyleGOT()) {
3439     unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3440     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3441             TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3442   }
3443
3444   if (Is64Bit && IsVarArg && !IsWin64) {
3445     // From AMD64 ABI document:
3446     // For calls that may call functions that use varargs or stdargs
3447     // (prototype-less calls or calls to functions containing ellipsis (...) in
3448     // the declaration) %al is used as hidden argument to specify the number
3449     // of SSE registers used. The contents of %al do not need to match exactly
3450     // the number of registers, but must be an ubound on the number of SSE
3451     // registers used and is in the range 0 - 8 inclusive.
3452
3453     // Count the number of XMM registers allocated.
3454     static const MCPhysReg XMMArgRegs[] = {
3455       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3456       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3457     };
3458     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3459     assert((Subtarget->hasSSE1() || !NumXMMRegs)
3460            && "SSE registers cannot be used when SSE is disabled");
3461     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3462             X86::AL).addImm(NumXMMRegs);
3463   }
3464
3465   // Materialize callee address in a register. FIXME: GV address can be
3466   // handled with a CALLpcrel32 instead.
3467   X86AddressMode CalleeAM;
3468   if (!X86SelectCallAddress(Callee, CalleeAM))
3469     return false;
3470
3471   unsigned CalleeOp = 0;
3472   const GlobalValue *GV = nullptr;
3473   if (CalleeAM.GV != nullptr) {
3474     GV = CalleeAM.GV;
3475   } else if (CalleeAM.Base.Reg != 0) {
3476     CalleeOp = CalleeAM.Base.Reg;
3477   } else
3478     return false;
3479
3480   // Issue the call.
3481   MachineInstrBuilder MIB;
3482   if (CalleeOp) {
3483     // Register-indirect call.
3484     unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3485     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3486       .addReg(CalleeOp);
3487   } else {
3488     // Direct call.
3489     assert(GV && "Not a direct call");
3490     // See if we need any target-specific flags on the GV operand.
3491     unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3492
3493     // This will be a direct call, or an indirect call through memory for
3494     // NonLazyBind calls or dllimport calls.
3495     bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3496                     OpFlags == X86II::MO_GOTPCREL ||
3497                     OpFlags == X86II::MO_COFFSTUB;
3498     unsigned CallOpc = NeedLoad
3499                            ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3500                            : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3501
3502     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3503     if (NeedLoad)
3504       MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3505     if (Symbol)
3506       MIB.addSym(Symbol, OpFlags);
3507     else
3508       MIB.addGlobalAddress(GV, 0, OpFlags);
3509     if (NeedLoad)
3510       MIB.addReg(0);
3511   }
3512
3513   // Add a register mask operand representing the call-preserved registers.
3514   // Proper defs for return values will be added by setPhysRegsDeadExcept().
3515   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3516
3517   // Add an implicit use GOT pointer in EBX.
3518   if (Subtarget->isPICStyleGOT())
3519     MIB.addReg(X86::EBX, RegState::Implicit);
3520
3521   if (Is64Bit && IsVarArg && !IsWin64)
3522     MIB.addReg(X86::AL, RegState::Implicit);
3523
3524   // Add implicit physical register uses to the call.
3525   for (auto Reg : OutRegs)
3526     MIB.addReg(Reg, RegState::Implicit);
3527
3528   // Issue CALLSEQ_END
3529   unsigned NumBytesForCalleeToPop =
3530       X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3531                        TM.Options.GuaranteedTailCallOpt)
3532           ? NumBytes // Callee pops everything.
3533           : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS);
3534   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3535   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3536     .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3537
3538   // Now handle call return values.
3539   SmallVector<CCValAssign, 16> RVLocs;
3540   CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3541                     CLI.RetTy->getContext());
3542   CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3543
3544   // Copy all of the result registers out of their specified physreg.
3545   unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3546   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3547     CCValAssign &VA = RVLocs[i];
3548     EVT CopyVT = VA.getValVT();
3549     unsigned CopyReg = ResultReg + i;
3550     unsigned SrcReg = VA.getLocReg();
3551
3552     // If this is x86-64, and we disabled SSE, we can't return FP values
3553     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3554         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3555       report_fatal_error("SSE register return with SSE disabled");
3556     }
3557
3558     // If we prefer to use the value in xmm registers, copy it out as f80 and
3559     // use a truncate to move it from fp stack reg to xmm reg.
3560     if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3561         isScalarFPTypeInSSEReg(VA.getValVT())) {
3562       CopyVT = MVT::f80;
3563       CopyReg = createResultReg(&X86::RFP80RegClass);
3564     }
3565
3566     // Copy out the result.
3567     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3568             TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3569     InRegs.push_back(VA.getLocReg());
3570
3571     // Round the f80 to the right size, which also moves it to the appropriate
3572     // xmm register. This is accomplished by storing the f80 value in memory
3573     // and then loading it back.
3574     if (CopyVT != VA.getValVT()) {
3575       EVT ResVT = VA.getValVT();
3576       unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3577       unsigned MemSize = ResVT.getSizeInBits()/8;
3578       int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3579       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3580                                 TII.get(Opc)), FI)
3581         .addReg(CopyReg);
3582       Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3583       addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3584                                 TII.get(Opc), ResultReg + i), FI);
3585     }
3586   }
3587
3588   CLI.ResultReg = ResultReg;
3589   CLI.NumResultRegs = RVLocs.size();
3590   CLI.Call = MIB;
3591
3592   return true;
3593 }
3594
3595 bool
3596 X86FastISel::fastSelectInstruction(const Instruction *I)  {
3597   switch (I->getOpcode()) {
3598   default: break;
3599   case Instruction::Load:
3600     return X86SelectLoad(I);
3601   case Instruction::Store:
3602     return X86SelectStore(I);
3603   case Instruction::Ret:
3604     return X86SelectRet(I);
3605   case Instruction::ICmp:
3606   case Instruction::FCmp:
3607     return X86SelectCmp(I);
3608   case Instruction::ZExt:
3609     return X86SelectZExt(I);
3610   case Instruction::SExt:
3611     return X86SelectSExt(I);
3612   case Instruction::Br:
3613     return X86SelectBranch(I);
3614   case Instruction::LShr:
3615   case Instruction::AShr:
3616   case Instruction::Shl:
3617     return X86SelectShift(I);
3618   case Instruction::SDiv:
3619   case Instruction::UDiv:
3620   case Instruction::SRem:
3621   case Instruction::URem:
3622     return X86SelectDivRem(I);
3623   case Instruction::Select:
3624     return X86SelectSelect(I);
3625   case Instruction::Trunc:
3626     return X86SelectTrunc(I);
3627   case Instruction::FPExt:
3628     return X86SelectFPExt(I);
3629   case Instruction::FPTrunc:
3630     return X86SelectFPTrunc(I);
3631   case Instruction::SIToFP:
3632     return X86SelectSIToFP(I);
3633   case Instruction::UIToFP:
3634     return X86SelectUIToFP(I);
3635   case Instruction::IntToPtr: // Deliberate fall-through.
3636   case Instruction::PtrToInt: {
3637     EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3638     EVT DstVT = TLI.getValueType(DL, I->getType());
3639     if (DstVT.bitsGT(SrcVT))
3640       return X86SelectZExt(I);
3641     if (DstVT.bitsLT(SrcVT))
3642       return X86SelectTrunc(I);
3643     unsigned Reg = getRegForValue(I->getOperand(0));
3644     if (Reg == 0) return false;
3645     updateValueMap(I, Reg);
3646     return true;
3647   }
3648   case Instruction::BitCast: {
3649     // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3650     if (!Subtarget->hasSSE2())
3651       return false;
3652
3653     MVT SrcVT, DstVT;
3654     if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3655         !isTypeLegal(I->getType(), DstVT))
3656       return false;
3657
3658     // Only allow vectors that use xmm/ymm/zmm.
3659     if (!SrcVT.isVector() || !DstVT.isVector() ||
3660         SrcVT.getVectorElementType() == MVT::i1 ||
3661         DstVT.getVectorElementType() == MVT::i1)
3662       return false;
3663
3664     unsigned Reg = getRegForValue(I->getOperand(0));
3665     if (Reg == 0)
3666       return false;
3667
3668     // No instruction is needed for conversion. Reuse the register used by
3669     // the fist operand.
3670     updateValueMap(I, Reg);
3671     return true;
3672   }
3673   }
3674
3675   return false;
3676 }
3677
3678 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3679   if (VT > MVT::i64)
3680     return 0;
3681
3682   uint64_t Imm = CI->getZExtValue();
3683   if (Imm == 0) {
3684     unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3685     switch (VT.SimpleTy) {
3686     default: llvm_unreachable("Unexpected value type");
3687     case MVT::i1:
3688     case MVT::i8:
3689       return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3690                                         X86::sub_8bit);
3691     case MVT::i16:
3692       return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3693                                         X86::sub_16bit);
3694     case MVT::i32:
3695       return SrcReg;
3696     case MVT::i64: {
3697       unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3698       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3699               TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3700         .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3701       return ResultReg;
3702     }
3703     }
3704   }
3705
3706   unsigned Opc = 0;
3707   switch (VT.SimpleTy) {
3708   default: llvm_unreachable("Unexpected value type");
3709   case MVT::i1:
3710     VT = MVT::i8;
3711     LLVM_FALLTHROUGH;
3712   case MVT::i8:  Opc = X86::MOV8ri;  break;
3713   case MVT::i16: Opc = X86::MOV16ri; break;
3714   case MVT::i32: Opc = X86::MOV32ri; break;
3715   case MVT::i64: {
3716     if (isUInt<32>(Imm))
3717       Opc = X86::MOV32ri64;
3718     else if (isInt<32>(Imm))
3719       Opc = X86::MOV64ri32;
3720     else
3721       Opc = X86::MOV64ri;
3722     break;
3723   }
3724   }
3725   return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3726 }
3727
3728 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3729   if (CFP->isNullValue())
3730     return fastMaterializeFloatZero(CFP);
3731
3732   // Can't handle alternate code models yet.
3733   CodeModel::Model CM = TM.getCodeModel();
3734   if (CM != CodeModel::Small && CM != CodeModel::Large)
3735     return 0;
3736
3737   // Get opcode and regclass of the output for the given load instruction.
3738   unsigned Opc = 0;
3739   bool HasAVX = Subtarget->hasAVX();
3740   bool HasAVX512 = Subtarget->hasAVX512();
3741   switch (VT.SimpleTy) {
3742   default: return 0;
3743   case MVT::f32:
3744     if (X86ScalarSSEf32)
3745       Opc = HasAVX512 ? X86::VMOVSSZrm_alt :
3746             HasAVX    ? X86::VMOVSSrm_alt :
3747                         X86::MOVSSrm_alt;
3748     else
3749       Opc = X86::LD_Fp32m;
3750     break;
3751   case MVT::f64:
3752     if (X86ScalarSSEf64)
3753       Opc = HasAVX512 ? X86::VMOVSDZrm_alt :
3754             HasAVX    ? X86::VMOVSDrm_alt :
3755                         X86::MOVSDrm_alt;
3756     else
3757       Opc = X86::LD_Fp64m;
3758     break;
3759   case MVT::f80:
3760     // No f80 support yet.
3761     return 0;
3762   }
3763
3764   // MachineConstantPool wants an explicit alignment.
3765   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3766   if (Align == 0) {
3767     // Alignment of vector types. FIXME!
3768     Align = DL.getTypeAllocSize(CFP->getType());
3769   }
3770
3771   // x86-32 PIC requires a PIC base register for constant pools.
3772   unsigned PICBase = 0;
3773   unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3774   if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3775     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3776   else if (OpFlag == X86II::MO_GOTOFF)
3777     PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3778   else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3779     PICBase = X86::RIP;
3780
3781   // Create the load from the constant pool.
3782   unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3783   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3784
3785   if (CM == CodeModel::Large) {
3786     unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3787     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3788             AddrReg)
3789       .addConstantPoolIndex(CPI, 0, OpFlag);
3790     MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3791                                       TII.get(Opc), ResultReg);
3792     addDirectMem(MIB, AddrReg);
3793     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3794         MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3795         MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
3796     MIB->addMemOperand(*FuncInfo.MF, MMO);
3797     return ResultReg;
3798   }
3799
3800   addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3801                                    TII.get(Opc), ResultReg),
3802                            CPI, PICBase, OpFlag);
3803   return ResultReg;
3804 }
3805
3806 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3807   // Can't handle alternate code models yet.
3808   if (TM.getCodeModel() != CodeModel::Small)
3809     return 0;
3810
3811   // Materialize addresses with LEA/MOV instructions.
3812   X86AddressMode AM;
3813   if (X86SelectAddress(GV, AM)) {
3814     // If the expression is just a basereg, then we're done, otherwise we need
3815     // to emit an LEA.
3816     if (AM.BaseType == X86AddressMode::RegBase &&
3817         AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3818       return AM.Base.Reg;
3819
3820     unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3821     if (TM.getRelocationModel() == Reloc::Static &&
3822         TLI.getPointerTy(DL) == MVT::i64) {
3823       // The displacement code could be more than 32 bits away so we need to use
3824       // an instruction with a 64 bit immediate
3825       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3826               ResultReg)
3827         .addGlobalAddress(GV);
3828     } else {
3829       unsigned Opc =
3830           TLI.getPointerTy(DL) == MVT::i32
3831               ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3832               : X86::LEA64r;
3833       addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3834                              TII.get(Opc), ResultReg), AM);
3835     }
3836     return ResultReg;
3837   }
3838   return 0;
3839 }
3840
3841 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3842   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3843
3844   // Only handle simple types.
3845   if (!CEVT.isSimple())
3846     return 0;
3847   MVT VT = CEVT.getSimpleVT();
3848
3849   if (const auto *CI = dyn_cast<ConstantInt>(C))
3850     return X86MaterializeInt(CI, VT);
3851   else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3852     return X86MaterializeFP(CFP, VT);
3853   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3854     return X86MaterializeGV(GV, VT);
3855
3856   return 0;
3857 }
3858
3859 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3860   // Fail on dynamic allocas. At this point, getRegForValue has already
3861   // checked its CSE maps, so if we're here trying to handle a dynamic
3862   // alloca, we're not going to succeed. X86SelectAddress has a
3863   // check for dynamic allocas, because it's called directly from
3864   // various places, but targetMaterializeAlloca also needs a check
3865   // in order to avoid recursion between getRegForValue,
3866   // X86SelectAddrss, and targetMaterializeAlloca.
3867   if (!FuncInfo.StaticAllocaMap.count(C))
3868     return 0;
3869   assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3870
3871   X86AddressMode AM;
3872   if (!X86SelectAddress(C, AM))
3873     return 0;
3874   unsigned Opc =
3875       TLI.getPointerTy(DL) == MVT::i32
3876           ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3877           : X86::LEA64r;
3878   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3879   unsigned ResultReg = createResultReg(RC);
3880   addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3881                          TII.get(Opc), ResultReg), AM);
3882   return ResultReg;
3883 }
3884
3885 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3886   MVT VT;
3887   if (!isTypeLegal(CF->getType(), VT))
3888     return 0;
3889
3890   // Get opcode and regclass for the given zero.
3891   bool HasAVX512 = Subtarget->hasAVX512();
3892   unsigned Opc = 0;
3893   switch (VT.SimpleTy) {
3894   default: return 0;
3895   case MVT::f32:
3896     if (X86ScalarSSEf32)
3897       Opc = HasAVX512 ? X86::AVX512_FsFLD0SS : X86::FsFLD0SS;
3898     else
3899       Opc = X86::LD_Fp032;
3900     break;
3901   case MVT::f64:
3902     if (X86ScalarSSEf64)
3903       Opc = HasAVX512 ? X86::AVX512_FsFLD0SD : X86::FsFLD0SD;
3904     else
3905       Opc = X86::LD_Fp064;
3906     break;
3907   case MVT::f80:
3908     // No f80 support yet.
3909     return 0;
3910   }
3911
3912   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3913   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3914   return ResultReg;
3915 }
3916
3917
3918 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3919                                       const LoadInst *LI) {
3920   const Value *Ptr = LI->getPointerOperand();
3921   X86AddressMode AM;
3922   if (!X86SelectAddress(Ptr, AM))
3923     return false;
3924
3925   const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3926
3927   unsigned Size = DL.getTypeAllocSize(LI->getType());
3928   unsigned Alignment = LI->getAlignment();
3929
3930   if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3931     Alignment = DL.getABITypeAlignment(LI->getType());
3932
3933   SmallVector<MachineOperand, 8> AddrOps;
3934   AM.getFullAddress(AddrOps);
3935
3936   MachineInstr *Result = XII.foldMemoryOperandImpl(
3937       *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3938       /*AllowCommute=*/true);
3939   if (!Result)
3940     return false;
3941
3942   // The index register could be in the wrong register class.  Unfortunately,
3943   // foldMemoryOperandImpl could have commuted the instruction so its not enough
3944   // to just look at OpNo + the offset to the index reg.  We actually need to
3945   // scan the instruction to find the index reg and see if its the correct reg
3946   // class.
3947   unsigned OperandNo = 0;
3948   for (MachineInstr::mop_iterator I = Result->operands_begin(),
3949        E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3950     MachineOperand &MO = *I;
3951     if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
3952       continue;
3953     // Found the index reg, now try to rewrite it.
3954     unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
3955                                                  MO.getReg(), OperandNo);
3956     if (IndexReg == MO.getReg())
3957       continue;
3958     MO.setReg(IndexReg);
3959   }
3960
3961   Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3962   Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
3963   MachineBasicBlock::iterator I(MI);
3964   removeDeadCode(I, std::next(I));
3965   return true;
3966 }
3967
3968 unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
3969                                         const TargetRegisterClass *RC,
3970                                         unsigned Op0, bool Op0IsKill,
3971                                         unsigned Op1, bool Op1IsKill,
3972                                         unsigned Op2, bool Op2IsKill,
3973                                         unsigned Op3, bool Op3IsKill) {
3974   const MCInstrDesc &II = TII.get(MachineInstOpcode);
3975
3976   unsigned ResultReg = createResultReg(RC);
3977   Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
3978   Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
3979   Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
3980   Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
3981
3982   if (II.getNumDefs() >= 1)
3983     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
3984         .addReg(Op0, getKillRegState(Op0IsKill))
3985         .addReg(Op1, getKillRegState(Op1IsKill))
3986         .addReg(Op2, getKillRegState(Op2IsKill))
3987         .addReg(Op3, getKillRegState(Op3IsKill));
3988   else {
3989     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
3990         .addReg(Op0, getKillRegState(Op0IsKill))
3991         .addReg(Op1, getKillRegState(Op1IsKill))
3992         .addReg(Op2, getKillRegState(Op2IsKill))
3993         .addReg(Op3, getKillRegState(Op3IsKill));
3994     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3995             TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
3996   }
3997   return ResultReg;
3998 }
3999
4000
4001 namespace llvm {
4002   FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
4003                                 const TargetLibraryInfo *libInfo) {
4004     return new X86FastISel(funcInfo, libInfo);
4005   }
4006 }