]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/X86/X86FrameLowering.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / X86 / X86FrameLowering.cpp
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include <cstdlib>
34
35 using namespace llvm;
36
37 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
38                                    unsigned StackAlignOverride)
39     : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
40                           STI.is64Bit() ? -8 : -4),
41       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
42   // Cache a bunch of frame-related predicates for this subtarget.
43   SlotSize = TRI->getSlotSize();
44   Is64Bit = STI.is64Bit();
45   IsLP64 = STI.isTarget64BitLP64();
46   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
47   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
48   StackPtr = TRI->getStackRegister();
49 }
50
51 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
52   return !MF.getFrameInfo().hasVarSizedObjects() &&
53          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
54 }
55
56 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
57 /// call frame pseudos can be simplified.  Having a FP, as in the default
58 /// implementation, is not sufficient here since we can't always use it.
59 /// Use a more nuanced condition.
60 bool
61 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
62   return hasReservedCallFrame(MF) ||
63          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
64          TRI->hasBasePointer(MF);
65 }
66
67 // needsFrameIndexResolution - Do we need to perform FI resolution for
68 // this function. Normally, this is required only when the function
69 // has any stack objects. However, FI resolution actually has another job,
70 // not apparent from the title - it resolves callframesetup/destroy
71 // that were not simplified earlier.
72 // So, this is required for x86 functions that have push sequences even
73 // when there are no stack objects.
74 bool
75 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
76   return MF.getFrameInfo().hasStackObjects() ||
77          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
78 }
79
80 /// hasFP - Return true if the specified function should have a dedicated frame
81 /// pointer register.  This is true if the function has variable sized allocas
82 /// or if frame pointer elimination is disabled.
83 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
84   const MachineFrameInfo &MFI = MF.getFrameInfo();
85   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
86           TRI->needsStackRealignment(MF) ||
87           MFI.hasVarSizedObjects() ||
88           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
89           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
90           MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
91           MFI.hasStackMap() || MFI.hasPatchPoint() ||
92           MFI.hasCopyImplyingStackAdjustment());
93 }
94
95 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
96   if (IsLP64) {
97     if (isInt<8>(Imm))
98       return X86::SUB64ri8;
99     return X86::SUB64ri32;
100   } else {
101     if (isInt<8>(Imm))
102       return X86::SUB32ri8;
103     return X86::SUB32ri;
104   }
105 }
106
107 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
108   if (IsLP64) {
109     if (isInt<8>(Imm))
110       return X86::ADD64ri8;
111     return X86::ADD64ri32;
112   } else {
113     if (isInt<8>(Imm))
114       return X86::ADD32ri8;
115     return X86::ADD32ri;
116   }
117 }
118
119 static unsigned getSUBrrOpcode(unsigned isLP64) {
120   return isLP64 ? X86::SUB64rr : X86::SUB32rr;
121 }
122
123 static unsigned getADDrrOpcode(unsigned isLP64) {
124   return isLP64 ? X86::ADD64rr : X86::ADD32rr;
125 }
126
127 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
128   if (IsLP64) {
129     if (isInt<8>(Imm))
130       return X86::AND64ri8;
131     return X86::AND64ri32;
132   }
133   if (isInt<8>(Imm))
134     return X86::AND32ri8;
135   return X86::AND32ri;
136 }
137
138 static unsigned getLEArOpcode(unsigned IsLP64) {
139   return IsLP64 ? X86::LEA64r : X86::LEA32r;
140 }
141
142 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
143 /// when it reaches the "return" instruction. We can then pop a stack object
144 /// to this register without worry about clobbering it.
145 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
146                                        MachineBasicBlock::iterator &MBBI,
147                                        const X86RegisterInfo *TRI,
148                                        bool Is64Bit) {
149   const MachineFunction *MF = MBB.getParent();
150   if (MF->callsEHReturn())
151     return 0;
152
153   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
154
155   if (MBBI == MBB.end())
156     return 0;
157
158   switch (MBBI->getOpcode()) {
159   default: return 0;
160   case TargetOpcode::PATCHABLE_RET:
161   case X86::RET:
162   case X86::RETL:
163   case X86::RETQ:
164   case X86::RETIL:
165   case X86::RETIQ:
166   case X86::TCRETURNdi:
167   case X86::TCRETURNri:
168   case X86::TCRETURNmi:
169   case X86::TCRETURNdi64:
170   case X86::TCRETURNri64:
171   case X86::TCRETURNmi64:
172   case X86::EH_RETURN:
173   case X86::EH_RETURN64: {
174     SmallSet<uint16_t, 8> Uses;
175     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
176       MachineOperand &MO = MBBI->getOperand(i);
177       if (!MO.isReg() || MO.isDef())
178         continue;
179       unsigned Reg = MO.getReg();
180       if (!Reg)
181         continue;
182       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
183         Uses.insert(*AI);
184     }
185
186     for (auto CS : AvailableRegs)
187       if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
188           CS != X86::ESP)
189         return CS;
190   }
191   }
192
193   return 0;
194 }
195
196 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
197   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
198     unsigned Reg = RegMask.PhysReg;
199
200     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
201         Reg == X86::AH || Reg == X86::AL)
202       return true;
203   }
204
205   return false;
206 }
207
208 /// Check if the flags need to be preserved before the terminators.
209 /// This would be the case, if the eflags is live-in of the region
210 /// composed by the terminators or live-out of that region, without
211 /// being defined by a terminator.
212 static bool
213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
214   for (const MachineInstr &MI : MBB.terminators()) {
215     bool BreakNext = false;
216     for (const MachineOperand &MO : MI.operands()) {
217       if (!MO.isReg())
218         continue;
219       unsigned Reg = MO.getReg();
220       if (Reg != X86::EFLAGS)
221         continue;
222
223       // This terminator needs an eflags that is not defined
224       // by a previous another terminator:
225       // EFLAGS is live-in of the region composed by the terminators.
226       if (!MO.isDef())
227         return true;
228       // This terminator defines the eflags, i.e., we don't need to preserve it.
229       // However, we still need to check this specific terminator does not
230       // read a live-in value.
231       BreakNext = true;
232     }
233     // We found a definition of the eflags, no need to preserve them.
234     if (BreakNext)
235       return false;
236   }
237
238   // None of the terminators use or define the eflags.
239   // Check if they are live-out, that would imply we need to preserve them.
240   for (const MachineBasicBlock *Succ : MBB.successors())
241     if (Succ->isLiveIn(X86::EFLAGS))
242       return true;
243
244   return false;
245 }
246
247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
248 /// stack pointer by a constant value.
249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
250                                     MachineBasicBlock::iterator &MBBI,
251                                     const DebugLoc &DL,
252                                     int64_t NumBytes, bool InEpilogue) const {
253   bool isSub = NumBytes < 0;
254   uint64_t Offset = isSub ? -NumBytes : NumBytes;
255   MachineInstr::MIFlag Flag =
256       isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
257
258   uint64_t Chunk = (1LL << 31) - 1;
259
260   if (Offset > Chunk) {
261     // Rather than emit a long series of instructions for large offsets,
262     // load the offset into a register and do one sub/add
263     unsigned Reg = 0;
264     unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
265
266     if (isSub && !isEAXLiveIn(MBB))
267       Reg = Rax;
268     else
269       Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
270
271     unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
272     unsigned AddSubRROpc =
273         isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
274     if (Reg) {
275       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
276           .addImm(Offset)
277           .setMIFlag(Flag);
278       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
279                              .addReg(StackPtr)
280                              .addReg(Reg);
281       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
282       return;
283     } else if (Offset > 8 * Chunk) {
284       // If we would need more than 8 add or sub instructions (a >16GB stack
285       // frame), it's worth spilling RAX to materialize this immediate.
286       //   pushq %rax
287       //   movabsq +-$Offset+-SlotSize, %rax
288       //   addq %rsp, %rax
289       //   xchg %rax, (%rsp)
290       //   movq (%rsp), %rsp
291       assert(Is64Bit && "can't have 32-bit 16GB stack frame");
292       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
293           .addReg(Rax, RegState::Kill)
294           .setMIFlag(Flag);
295       // Subtract is not commutative, so negate the offset and always use add.
296       // Subtract 8 less and add 8 more to account for the PUSH we just did.
297       if (isSub)
298         Offset = -(Offset - SlotSize);
299       else
300         Offset = Offset + SlotSize;
301       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
302           .addImm(Offset)
303           .setMIFlag(Flag);
304       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
305                              .addReg(Rax)
306                              .addReg(StackPtr);
307       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
308       // Exchange the new SP in RAX with the top of the stack.
309       addRegOffset(
310           BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
311           StackPtr, false, 0);
312       // Load new SP from the top of the stack into RSP.
313       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
314                    StackPtr, false, 0);
315       return;
316     }
317   }
318
319   while (Offset) {
320     uint64_t ThisVal = std::min(Offset, Chunk);
321     if (ThisVal == SlotSize) {
322       // Use push / pop for slot sized adjustments as a size optimization. We
323       // need to find a dead register when using pop.
324       unsigned Reg = isSub
325         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
326         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
327       if (Reg) {
328         unsigned Opc = isSub
329           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
330           : (Is64Bit ? X86::POP64r  : X86::POP32r);
331         BuildMI(MBB, MBBI, DL, TII.get(Opc))
332             .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
333             .setMIFlag(Flag);
334         Offset -= ThisVal;
335         continue;
336       }
337     }
338
339     BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
340         .setMIFlag(Flag);
341
342     Offset -= ThisVal;
343   }
344 }
345
346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
347     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
348     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
349   assert(Offset != 0 && "zero offset stack adjustment requested");
350
351   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
352   // is tricky.
353   bool UseLEA;
354   if (!InEpilogue) {
355     // Check if inserting the prologue at the beginning
356     // of MBB would require to use LEA operations.
357     // We need to use LEA operations if EFLAGS is live in, because
358     // it means an instruction will read it before it gets defined.
359     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
360   } else {
361     // If we can use LEA for SP but we shouldn't, check that none
362     // of the terminators uses the eflags. Otherwise we will insert
363     // a ADD that will redefine the eflags and break the condition.
364     // Alternatively, we could move the ADD, but this may not be possible
365     // and is an optimization anyway.
366     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
367     if (UseLEA && !STI.useLeaForSP())
368       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
369     // If that assert breaks, that means we do not do the right thing
370     // in canUseAsEpilogue.
371     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
372            "We shouldn't have allowed this insertion point");
373   }
374
375   MachineInstrBuilder MI;
376   if (UseLEA) {
377     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
378                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
379                               StackPtr),
380                       StackPtr, false, Offset);
381   } else {
382     bool IsSub = Offset < 0;
383     uint64_t AbsOffset = IsSub ? -Offset : Offset;
384     unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
385                          : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
386     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
387              .addReg(StackPtr)
388              .addImm(AbsOffset);
389     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
390   }
391   return MI;
392 }
393
394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
395                                      MachineBasicBlock::iterator &MBBI,
396                                      bool doMergeWithPrevious) const {
397   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
398       (!doMergeWithPrevious && MBBI == MBB.end()))
399     return 0;
400
401   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
402
403   PI = skipDebugInstructionsBackward(PI, MBB.begin());
404   // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
405   // instruction, and that there are no DBG_VALUE or other instructions between
406   // ADD/SUB/LEA and its corresponding CFI instruction.
407   /* TODO: Add support for the case where there are multiple CFI instructions
408     below the ADD/SUB/LEA, e.g.:
409     ...
410     add
411     cfi_def_cfa_offset
412     cfi_offset
413     ...
414   */
415   if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
416     PI = std::prev(PI);
417
418   unsigned Opc = PI->getOpcode();
419   int Offset = 0;
420
421   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
422        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
423       PI->getOperand(0).getReg() == StackPtr){
424     assert(PI->getOperand(1).getReg() == StackPtr);
425     Offset = PI->getOperand(2).getImm();
426   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
427              PI->getOperand(0).getReg() == StackPtr &&
428              PI->getOperand(1).getReg() == StackPtr &&
429              PI->getOperand(2).getImm() == 1 &&
430              PI->getOperand(3).getReg() == X86::NoRegister &&
431              PI->getOperand(5).getReg() == X86::NoRegister) {
432     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
433     Offset = PI->getOperand(4).getImm();
434   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
435               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
436              PI->getOperand(0).getReg() == StackPtr) {
437     assert(PI->getOperand(1).getReg() == StackPtr);
438     Offset = -PI->getOperand(2).getImm();
439   } else
440     return 0;
441
442   PI = MBB.erase(PI);
443   if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
444   if (!doMergeWithPrevious)
445     MBBI = skipDebugInstructionsForward(PI, MBB.end());
446
447   return Offset;
448 }
449
450 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
451                                 MachineBasicBlock::iterator MBBI,
452                                 const DebugLoc &DL,
453                                 const MCCFIInstruction &CFIInst) const {
454   MachineFunction &MF = *MBB.getParent();
455   unsigned CFIIndex = MF.addFrameInst(CFIInst);
456   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
457       .addCFIIndex(CFIIndex);
458 }
459
460 void X86FrameLowering::emitCalleeSavedFrameMoves(
461     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
462     const DebugLoc &DL) const {
463   MachineFunction &MF = *MBB.getParent();
464   MachineFrameInfo &MFI = MF.getFrameInfo();
465   MachineModuleInfo &MMI = MF.getMMI();
466   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
467
468   // Add callee saved registers to move list.
469   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
470   if (CSI.empty()) return;
471
472   // Calculate offsets.
473   for (std::vector<CalleeSavedInfo>::const_iterator
474          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
475     int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
476     unsigned Reg = I->getReg();
477
478     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
479     BuildCFI(MBB, MBBI, DL,
480              MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
481   }
482 }
483
484 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
485                                       MachineBasicBlock &MBB,
486                                       MachineBasicBlock::iterator MBBI,
487                                       const DebugLoc &DL, bool InProlog) const {
488   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
489   if (STI.isTargetWindowsCoreCLR()) {
490     if (InProlog) {
491       emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
492     } else {
493       emitStackProbeInline(MF, MBB, MBBI, DL, false);
494     }
495   } else {
496     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
497   }
498 }
499
500 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
501                                         MachineBasicBlock &PrologMBB) const {
502   const StringRef ChkStkStubSymbol = "__chkstk_stub";
503   MachineInstr *ChkStkStub = nullptr;
504
505   for (MachineInstr &MI : PrologMBB) {
506     if (MI.isCall() && MI.getOperand(0).isSymbol() &&
507         ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
508       ChkStkStub = &MI;
509       break;
510     }
511   }
512
513   if (ChkStkStub != nullptr) {
514     assert(!ChkStkStub->isBundled() &&
515            "Not expecting bundled instructions here");
516     MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
517     assert(std::prev(MBBI) == ChkStkStub &&
518            "MBBI expected after __chkstk_stub.");
519     DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
520     emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
521     ChkStkStub->eraseFromParent();
522   }
523 }
524
525 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
526                                             MachineBasicBlock &MBB,
527                                             MachineBasicBlock::iterator MBBI,
528                                             const DebugLoc &DL,
529                                             bool InProlog) const {
530   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
531   assert(STI.is64Bit() && "different expansion needed for 32 bit");
532   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
533   const TargetInstrInfo &TII = *STI.getInstrInfo();
534   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
535
536   // RAX contains the number of bytes of desired stack adjustment.
537   // The handling here assumes this value has already been updated so as to
538   // maintain stack alignment.
539   //
540   // We need to exit with RSP modified by this amount and execute suitable
541   // page touches to notify the OS that we're growing the stack responsibly.
542   // All stack probing must be done without modifying RSP.
543   //
544   // MBB:
545   //    SizeReg = RAX;
546   //    ZeroReg = 0
547   //    CopyReg = RSP
548   //    Flags, TestReg = CopyReg - SizeReg
549   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
550   //    LimitReg = gs magic thread env access
551   //    if FinalReg >= LimitReg goto ContinueMBB
552   // RoundBB:
553   //    RoundReg = page address of FinalReg
554   // LoopMBB:
555   //    LoopReg = PHI(LimitReg,ProbeReg)
556   //    ProbeReg = LoopReg - PageSize
557   //    [ProbeReg] = 0
558   //    if (ProbeReg > RoundReg) goto LoopMBB
559   // ContinueMBB:
560   //    RSP = RSP - RAX
561   //    [rest of original MBB]
562
563   // Set up the new basic blocks
564   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
565   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
566   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
567
568   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
569   MF.insert(MBBIter, RoundMBB);
570   MF.insert(MBBIter, LoopMBB);
571   MF.insert(MBBIter, ContinueMBB);
572
573   // Split MBB and move the tail portion down to ContinueMBB.
574   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
575   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
576   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
577
578   // Some useful constants
579   const int64_t ThreadEnvironmentStackLimit = 0x10;
580   const int64_t PageSize = 0x1000;
581   const int64_t PageMask = ~(PageSize - 1);
582
583   // Registers we need. For the normal case we use virtual
584   // registers. For the prolog expansion we use RAX, RCX and RDX.
585   MachineRegisterInfo &MRI = MF.getRegInfo();
586   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
587   const Register SizeReg = InProlog ? X86::RAX
588                                     : MRI.createVirtualRegister(RegClass),
589                  ZeroReg = InProlog ? X86::RCX
590                                     : MRI.createVirtualRegister(RegClass),
591                  CopyReg = InProlog ? X86::RDX
592                                     : MRI.createVirtualRegister(RegClass),
593                  TestReg = InProlog ? X86::RDX
594                                     : MRI.createVirtualRegister(RegClass),
595                  FinalReg = InProlog ? X86::RDX
596                                      : MRI.createVirtualRegister(RegClass),
597                  RoundedReg = InProlog ? X86::RDX
598                                        : MRI.createVirtualRegister(RegClass),
599                  LimitReg = InProlog ? X86::RCX
600                                      : MRI.createVirtualRegister(RegClass),
601                  JoinReg = InProlog ? X86::RCX
602                                     : MRI.createVirtualRegister(RegClass),
603                  ProbeReg = InProlog ? X86::RCX
604                                      : MRI.createVirtualRegister(RegClass);
605
606   // SP-relative offsets where we can save RCX and RDX.
607   int64_t RCXShadowSlot = 0;
608   int64_t RDXShadowSlot = 0;
609
610   // If inlining in the prolog, save RCX and RDX.
611   if (InProlog) {
612     // Compute the offsets. We need to account for things already
613     // pushed onto the stack at this point: return address, frame
614     // pointer (if used), and callee saves.
615     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
616     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
617     const bool HasFP = hasFP(MF);
618
619     // Check if we need to spill RCX and/or RDX.
620     // Here we assume that no earlier prologue instruction changes RCX and/or
621     // RDX, so checking the block live-ins is enough.
622     const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
623     const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
624     int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
625     // Assign the initial slot to both registers, then change RDX's slot if both
626     // need to be spilled.
627     if (IsRCXLiveIn)
628       RCXShadowSlot = InitSlot;
629     if (IsRDXLiveIn)
630       RDXShadowSlot = InitSlot;
631     if (IsRDXLiveIn && IsRCXLiveIn)
632       RDXShadowSlot += 8;
633     // Emit the saves if needed.
634     if (IsRCXLiveIn)
635       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
636                    RCXShadowSlot)
637           .addReg(X86::RCX);
638     if (IsRDXLiveIn)
639       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
640                    RDXShadowSlot)
641           .addReg(X86::RDX);
642   } else {
643     // Not in the prolog. Copy RAX to a virtual reg.
644     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
645   }
646
647   // Add code to MBB to check for overflow and set the new target stack pointer
648   // to zero if so.
649   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
650       .addReg(ZeroReg, RegState::Undef)
651       .addReg(ZeroReg, RegState::Undef);
652   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
653   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
654       .addReg(CopyReg)
655       .addReg(SizeReg);
656   BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
657       .addReg(TestReg)
658       .addReg(ZeroReg)
659       .addImm(X86::COND_B);
660
661   // FinalReg now holds final stack pointer value, or zero if
662   // allocation would overflow. Compare against the current stack
663   // limit from the thread environment block. Note this limit is the
664   // lowest touched page on the stack, not the point at which the OS
665   // will cause an overflow exception, so this is just an optimization
666   // to avoid unnecessarily touching pages that are below the current
667   // SP but already committed to the stack by the OS.
668   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
669       .addReg(0)
670       .addImm(1)
671       .addReg(0)
672       .addImm(ThreadEnvironmentStackLimit)
673       .addReg(X86::GS);
674   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
675   // Jump if the desired stack pointer is at or above the stack limit.
676   BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
677
678   // Add code to roundMBB to round the final stack pointer to a page boundary.
679   RoundMBB->addLiveIn(FinalReg);
680   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
681       .addReg(FinalReg)
682       .addImm(PageMask);
683   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
684
685   // LimitReg now holds the current stack limit, RoundedReg page-rounded
686   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
687   // and probe until we reach RoundedReg.
688   if (!InProlog) {
689     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
690         .addReg(LimitReg)
691         .addMBB(RoundMBB)
692         .addReg(ProbeReg)
693         .addMBB(LoopMBB);
694   }
695
696   LoopMBB->addLiveIn(JoinReg);
697   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
698                false, -PageSize);
699
700   // Probe by storing a byte onto the stack.
701   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
702       .addReg(ProbeReg)
703       .addImm(1)
704       .addReg(0)
705       .addImm(0)
706       .addReg(0)
707       .addImm(0);
708
709   LoopMBB->addLiveIn(RoundedReg);
710   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
711       .addReg(RoundedReg)
712       .addReg(ProbeReg);
713   BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
714
715   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
716
717   // If in prolog, restore RDX and RCX.
718   if (InProlog) {
719     if (RCXShadowSlot) // It means we spilled RCX in the prologue.
720       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
721                            TII.get(X86::MOV64rm), X86::RCX),
722                    X86::RSP, false, RCXShadowSlot);
723     if (RDXShadowSlot) // It means we spilled RDX in the prologue.
724       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
725                            TII.get(X86::MOV64rm), X86::RDX),
726                    X86::RSP, false, RDXShadowSlot);
727   }
728
729   // Now that the probing is done, add code to continueMBB to update
730   // the stack pointer for real.
731   ContinueMBB->addLiveIn(SizeReg);
732   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
733       .addReg(X86::RSP)
734       .addReg(SizeReg);
735
736   // Add the control flow edges we need.
737   MBB.addSuccessor(ContinueMBB);
738   MBB.addSuccessor(RoundMBB);
739   RoundMBB->addSuccessor(LoopMBB);
740   LoopMBB->addSuccessor(ContinueMBB);
741   LoopMBB->addSuccessor(LoopMBB);
742
743   // Mark all the instructions added to the prolog as frame setup.
744   if (InProlog) {
745     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
746       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
747     }
748     for (MachineInstr &MI : *RoundMBB) {
749       MI.setFlag(MachineInstr::FrameSetup);
750     }
751     for (MachineInstr &MI : *LoopMBB) {
752       MI.setFlag(MachineInstr::FrameSetup);
753     }
754     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
755          CMBBI != ContinueMBBI; ++CMBBI) {
756       CMBBI->setFlag(MachineInstr::FrameSetup);
757     }
758   }
759 }
760
761 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
762                                           MachineBasicBlock &MBB,
763                                           MachineBasicBlock::iterator MBBI,
764                                           const DebugLoc &DL,
765                                           bool InProlog) const {
766   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
767
768   // FIXME: Add retpoline support and remove this.
769   if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls())
770     report_fatal_error("Emitting stack probe calls on 64-bit with the large "
771                        "code model and retpoline not yet implemented.");
772
773   unsigned CallOp;
774   if (Is64Bit)
775     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
776   else
777     CallOp = X86::CALLpcrel32;
778
779   StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
780
781   MachineInstrBuilder CI;
782   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
783
784   // All current stack probes take AX and SP as input, clobber flags, and
785   // preserve all registers. x86_64 probes leave RSP unmodified.
786   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
787     // For the large code model, we have to call through a register. Use R11,
788     // as it is scratch in all supported calling conventions.
789     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
790         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
791     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
792   } else {
793     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
794         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
795   }
796
797   unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
798   unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
799   CI.addReg(AX, RegState::Implicit)
800       .addReg(SP, RegState::Implicit)
801       .addReg(AX, RegState::Define | RegState::Implicit)
802       .addReg(SP, RegState::Define | RegState::Implicit)
803       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
804
805   if (STI.isTargetWin64() || !STI.isOSWindows()) {
806     // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
807     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
808     // themselves. They also does not clobber %rax so we can reuse it when
809     // adjusting %rsp.
810     // All other platforms do not specify a particular ABI for the stack probe
811     // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
812     BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
813         .addReg(SP)
814         .addReg(AX);
815   }
816
817   if (InProlog) {
818     // Apply the frame setup flag to all inserted instrs.
819     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
820       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
821   }
822 }
823
824 void X86FrameLowering::emitStackProbeInlineStub(
825     MachineFunction &MF, MachineBasicBlock &MBB,
826     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
827
828   assert(InProlog && "ChkStkStub called outside prolog!");
829
830   BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
831       .addExternalSymbol("__chkstk_stub");
832 }
833
834 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
835   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
836   // and might require smaller successive adjustments.
837   const uint64_t Win64MaxSEHOffset = 128;
838   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
839   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
840   return SEHFrameOffset & -16;
841 }
842
843 // If we're forcing a stack realignment we can't rely on just the frame
844 // info, we need to know the ABI stack alignment as well in case we
845 // have a call out.  Otherwise just make sure we have some alignment - we'll
846 // go with the minimum SlotSize.
847 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
848   const MachineFrameInfo &MFI = MF.getFrameInfo();
849   uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
850   unsigned StackAlign = getStackAlignment();
851   if (MF.getFunction().hasFnAttribute("stackrealign")) {
852     if (MFI.hasCalls())
853       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
854     else if (MaxAlign < SlotSize)
855       MaxAlign = SlotSize;
856   }
857   return MaxAlign;
858 }
859
860 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
861                                           MachineBasicBlock::iterator MBBI,
862                                           const DebugLoc &DL, unsigned Reg,
863                                           uint64_t MaxAlign) const {
864   uint64_t Val = -MaxAlign;
865   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
866   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
867                          .addReg(Reg)
868                          .addImm(Val)
869                          .setMIFlag(MachineInstr::FrameSetup);
870
871   // The EFLAGS implicit def is dead.
872   MI->getOperand(3).setIsDead();
873 }
874
875 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
876   // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
877   // clobbered by any interrupt handler.
878   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
879          "MF used frame lowering for wrong subtarget");
880   const Function &Fn = MF.getFunction();
881   const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
882   return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
883 }
884
885
886 /// emitPrologue - Push callee-saved registers onto the stack, which
887 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
888 /// space for local variables. Also emit labels used by the exception handler to
889 /// generate the exception handling frames.
890
891 /*
892   Here's a gist of what gets emitted:
893
894   ; Establish frame pointer, if needed
895   [if needs FP]
896       push  %rbp
897       .cfi_def_cfa_offset 16
898       .cfi_offset %rbp, -16
899       .seh_pushreg %rpb
900       mov  %rsp, %rbp
901       .cfi_def_cfa_register %rbp
902
903   ; Spill general-purpose registers
904   [for all callee-saved GPRs]
905       pushq %<reg>
906       [if not needs FP]
907          .cfi_def_cfa_offset (offset from RETADDR)
908       .seh_pushreg %<reg>
909
910   ; If the required stack alignment > default stack alignment
911   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
912   ; of unknown size in the stack frame.
913   [if stack needs re-alignment]
914       and  $MASK, %rsp
915
916   ; Allocate space for locals
917   [if target is Windows and allocated space > 4096 bytes]
918       ; Windows needs special care for allocations larger
919       ; than one page.
920       mov $NNN, %rax
921       call ___chkstk_ms/___chkstk
922       sub  %rax, %rsp
923   [else]
924       sub  $NNN, %rsp
925
926   [if needs FP]
927       .seh_stackalloc (size of XMM spill slots)
928       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
929   [else]
930       .seh_stackalloc NNN
931
932   ; Spill XMMs
933   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
934   ; they may get spilled on any platform, if the current function
935   ; calls @llvm.eh.unwind.init
936   [if needs FP]
937       [for all callee-saved XMM registers]
938           movaps  %<xmm reg>, -MMM(%rbp)
939       [for all callee-saved XMM registers]
940           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
941               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
942   [else]
943       [for all callee-saved XMM registers]
944           movaps  %<xmm reg>, KKK(%rsp)
945       [for all callee-saved XMM registers]
946           .seh_savexmm %<xmm reg>, KKK
947
948   .seh_endprologue
949
950   [if needs base pointer]
951       mov  %rsp, %rbx
952       [if needs to restore base pointer]
953           mov %rsp, -MMM(%rbp)
954
955   ; Emit CFI info
956   [if needs FP]
957       [for all callee-saved registers]
958           .cfi_offset %<reg>, (offset from %rbp)
959   [else]
960        .cfi_def_cfa_offset (offset from RETADDR)
961       [for all callee-saved registers]
962           .cfi_offset %<reg>, (offset from %rsp)
963
964   Notes:
965   - .seh directives are emitted only for Windows 64 ABI
966   - .cv_fpo directives are emitted on win32 when emitting CodeView
967   - .cfi directives are emitted for all other ABIs
968   - for 32-bit code, substitute %e?? registers for %r??
969 */
970
971 void X86FrameLowering::emitPrologue(MachineFunction &MF,
972                                     MachineBasicBlock &MBB) const {
973   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
974          "MF used frame lowering for wrong subtarget");
975   MachineBasicBlock::iterator MBBI = MBB.begin();
976   MachineFrameInfo &MFI = MF.getFrameInfo();
977   const Function &Fn = MF.getFunction();
978   MachineModuleInfo &MMI = MF.getMMI();
979   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
980   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
981   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
982   bool IsFunclet = MBB.isEHFuncletEntry();
983   EHPersonality Personality = EHPersonality::Unknown;
984   if (Fn.hasPersonalityFn())
985     Personality = classifyEHPersonality(Fn.getPersonalityFn());
986   bool FnHasClrFunclet =
987       MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
988   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
989   bool HasFP = hasFP(MF);
990   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
991   bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
992   // FIXME: Emit FPO data for EH funclets.
993   bool NeedsWinFPO =
994       !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
995   bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
996   bool NeedsDwarfCFI =
997       !IsWin64Prologue && (MMI.hasDebugInfo() || Fn.needsUnwindTableEntry());
998   unsigned FramePtr = TRI->getFrameRegister(MF);
999   const unsigned MachineFramePtr =
1000       STI.isTarget64BitILP32()
1001           ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1002   unsigned BasePtr = TRI->getBaseRegister();
1003   bool HasWinCFI = false;
1004
1005   // Debug location must be unknown since the first debug location is used
1006   // to determine the end of the prologue.
1007   DebugLoc DL;
1008
1009   // Add RETADDR move area to callee saved frame size.
1010   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1011   if (TailCallReturnAddrDelta && IsWin64Prologue)
1012     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1013
1014   if (TailCallReturnAddrDelta < 0)
1015     X86FI->setCalleeSavedFrameSize(
1016       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1017
1018   bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty();
1019
1020   // The default stack probe size is 4096 if the function has no stackprobesize
1021   // attribute.
1022   unsigned StackProbeSize = 4096;
1023   if (Fn.hasFnAttribute("stack-probe-size"))
1024     Fn.getFnAttribute("stack-probe-size")
1025         .getValueAsString()
1026         .getAsInteger(0, StackProbeSize);
1027
1028   // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1029   // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1030   // stack alignment.
1031   if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1032       Fn.arg_size() == 2) {
1033     StackSize += 8;
1034     MFI.setStackSize(StackSize);
1035     emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1036   }
1037
1038   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1039   // function, and use up to 128 bytes of stack space, don't have a frame
1040   // pointer, calls, or dynamic alloca then we do not need to adjust the
1041   // stack pointer (we fit in the Red Zone). We also check that we don't
1042   // push and pop from the stack.
1043   if (has128ByteRedZone(MF) &&
1044       !TRI->needsStackRealignment(MF) &&
1045       !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
1046       !MFI.adjustsStack() &&                   // No calls.
1047       !UseStackProbe &&                        // No stack probes.
1048       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1049       !MF.shouldSplitStack()) {                // Regular stack
1050     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1051     if (HasFP) MinSize += SlotSize;
1052     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1053     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1054     MFI.setStackSize(StackSize);
1055   }
1056
1057   // Insert stack pointer adjustment for later moving of return addr.  Only
1058   // applies to tail call optimized functions where the callee argument stack
1059   // size is bigger than the callers.
1060   if (TailCallReturnAddrDelta < 0) {
1061     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1062                          /*InEpilogue=*/false)
1063         .setMIFlag(MachineInstr::FrameSetup);
1064   }
1065
1066   // Mapping for machine moves:
1067   //
1068   //   DST: VirtualFP AND
1069   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
1070   //        ELSE                        => DW_CFA_def_cfa
1071   //
1072   //   SRC: VirtualFP AND
1073   //        DST: Register               => DW_CFA_def_cfa_register
1074   //
1075   //   ELSE
1076   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
1077   //        REG < 64                    => DW_CFA_offset + Reg
1078   //        ELSE                        => DW_CFA_offset_extended
1079
1080   uint64_t NumBytes = 0;
1081   int stackGrowth = -SlotSize;
1082
1083   // Find the funclet establisher parameter
1084   unsigned Establisher = X86::NoRegister;
1085   if (IsClrFunclet)
1086     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1087   else if (IsFunclet)
1088     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1089
1090   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1091     // Immediately spill establisher into the home slot.
1092     // The runtime cares about this.
1093     // MOV64mr %rdx, 16(%rsp)
1094     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1095     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1096         .addReg(Establisher)
1097         .setMIFlag(MachineInstr::FrameSetup);
1098     MBB.addLiveIn(Establisher);
1099   }
1100
1101   if (HasFP) {
1102     assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1103
1104     // Calculate required stack adjustment.
1105     uint64_t FrameSize = StackSize - SlotSize;
1106     // If required, include space for extra hidden slot for stashing base pointer.
1107     if (X86FI->getRestoreBasePointer())
1108       FrameSize += SlotSize;
1109
1110     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1111
1112     // Callee-saved registers are pushed on stack before the stack is realigned.
1113     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1114       NumBytes = alignTo(NumBytes, MaxAlign);
1115
1116     // Save EBP/RBP into the appropriate stack slot.
1117     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1118       .addReg(MachineFramePtr, RegState::Kill)
1119       .setMIFlag(MachineInstr::FrameSetup);
1120
1121     if (NeedsDwarfCFI) {
1122       // Mark the place where EBP/RBP was saved.
1123       // Define the current CFA rule to use the provided offset.
1124       assert(StackSize);
1125       BuildCFI(MBB, MBBI, DL,
1126                MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1127
1128       // Change the rule for the FramePtr to be an "offset" rule.
1129       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1130       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1131                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
1132     }
1133
1134     if (NeedsWinCFI) {
1135       HasWinCFI = true;
1136       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1137           .addImm(FramePtr)
1138           .setMIFlag(MachineInstr::FrameSetup);
1139     }
1140
1141     if (!IsWin64Prologue && !IsFunclet) {
1142       // Update EBP with the new base value.
1143       BuildMI(MBB, MBBI, DL,
1144               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1145               FramePtr)
1146           .addReg(StackPtr)
1147           .setMIFlag(MachineInstr::FrameSetup);
1148
1149       if (NeedsDwarfCFI) {
1150         // Mark effective beginning of when frame pointer becomes valid.
1151         // Define the current CFA to use the EBP/RBP register.
1152         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1153         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1154                                     nullptr, DwarfFramePtr));
1155       }
1156
1157       if (NeedsWinFPO) {
1158         // .cv_fpo_setframe $FramePtr
1159         HasWinCFI = true;
1160         BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1161             .addImm(FramePtr)
1162             .addImm(0)
1163             .setMIFlag(MachineInstr::FrameSetup);
1164       }
1165     }
1166   } else {
1167     assert(!IsFunclet && "funclets without FPs not yet implemented");
1168     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1169   }
1170
1171   // Update the offset adjustment, which is mainly used by codeview to translate
1172   // from ESP to VFRAME relative local variable offsets.
1173   if (!IsFunclet) {
1174     if (HasFP && TRI->needsStackRealignment(MF))
1175       MFI.setOffsetAdjustment(-NumBytes);
1176     else
1177       MFI.setOffsetAdjustment(-StackSize);
1178   }
1179
1180   // For EH funclets, only allocate enough space for outgoing calls. Save the
1181   // NumBytes value that we would've used for the parent frame.
1182   unsigned ParentFrameNumBytes = NumBytes;
1183   if (IsFunclet)
1184     NumBytes = getWinEHFuncletFrameSize(MF);
1185
1186   // Skip the callee-saved push instructions.
1187   bool PushedRegs = false;
1188   int StackOffset = 2 * stackGrowth;
1189
1190   while (MBBI != MBB.end() &&
1191          MBBI->getFlag(MachineInstr::FrameSetup) &&
1192          (MBBI->getOpcode() == X86::PUSH32r ||
1193           MBBI->getOpcode() == X86::PUSH64r)) {
1194     PushedRegs = true;
1195     unsigned Reg = MBBI->getOperand(0).getReg();
1196     ++MBBI;
1197
1198     if (!HasFP && NeedsDwarfCFI) {
1199       // Mark callee-saved push instruction.
1200       // Define the current CFA rule to use the provided offset.
1201       assert(StackSize);
1202       BuildCFI(MBB, MBBI, DL,
1203                MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1204       StackOffset += stackGrowth;
1205     }
1206
1207     if (NeedsWinCFI) {
1208       HasWinCFI = true;
1209       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1210           .addImm(Reg)
1211           .setMIFlag(MachineInstr::FrameSetup);
1212     }
1213   }
1214
1215   // Realign stack after we pushed callee-saved registers (so that we'll be
1216   // able to calculate their offsets from the frame pointer).
1217   // Don't do this for Win64, it needs to realign the stack after the prologue.
1218   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1219     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1220     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1221
1222     if (NeedsWinCFI) {
1223       HasWinCFI = true;
1224       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1225           .addImm(MaxAlign)
1226           .setMIFlag(MachineInstr::FrameSetup);
1227     }
1228   }
1229
1230   // If there is an SUB32ri of ESP immediately before this instruction, merge
1231   // the two. This can be the case when tail call elimination is enabled and
1232   // the callee has more arguments then the caller.
1233   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1234
1235   // Adjust stack pointer: ESP -= numbytes.
1236
1237   // Windows and cygwin/mingw require a prologue helper routine when allocating
1238   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1239   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1240   // stack and adjust the stack pointer in one go.  The 64-bit version of
1241   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1242   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1243   // increments is necessary to ensure that the guard pages used by the OS
1244   // virtual memory manager are allocated in correct sequence.
1245   uint64_t AlignedNumBytes = NumBytes;
1246   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1247     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1248   if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1249     assert(!X86FI->getUsesRedZone() &&
1250            "The Red Zone is not accounted for in stack probes");
1251
1252     // Check whether EAX is livein for this block.
1253     bool isEAXAlive = isEAXLiveIn(MBB);
1254
1255     if (isEAXAlive) {
1256       if (Is64Bit) {
1257         // Save RAX
1258         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1259           .addReg(X86::RAX, RegState::Kill)
1260           .setMIFlag(MachineInstr::FrameSetup);
1261       } else {
1262         // Save EAX
1263         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1264           .addReg(X86::EAX, RegState::Kill)
1265           .setMIFlag(MachineInstr::FrameSetup);
1266       }
1267     }
1268
1269     if (Is64Bit) {
1270       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1271       // Function prologue is responsible for adjusting the stack pointer.
1272       int Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1273       if (isUInt<32>(Alloc)) {
1274         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1275             .addImm(Alloc)
1276             .setMIFlag(MachineInstr::FrameSetup);
1277       } else if (isInt<32>(Alloc)) {
1278         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1279             .addImm(Alloc)
1280             .setMIFlag(MachineInstr::FrameSetup);
1281       } else {
1282         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1283             .addImm(Alloc)
1284             .setMIFlag(MachineInstr::FrameSetup);
1285       }
1286     } else {
1287       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1288       // We'll also use 4 already allocated bytes for EAX.
1289       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1290           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1291           .setMIFlag(MachineInstr::FrameSetup);
1292     }
1293
1294     // Call __chkstk, __chkstk_ms, or __alloca.
1295     emitStackProbe(MF, MBB, MBBI, DL, true);
1296
1297     if (isEAXAlive) {
1298       // Restore RAX/EAX
1299       MachineInstr *MI;
1300       if (Is64Bit)
1301         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1302                           StackPtr, false, NumBytes - 8);
1303       else
1304         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1305                           StackPtr, false, NumBytes - 4);
1306       MI->setFlag(MachineInstr::FrameSetup);
1307       MBB.insert(MBBI, MI);
1308     }
1309   } else if (NumBytes) {
1310     emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1311   }
1312
1313   if (NeedsWinCFI && NumBytes) {
1314     HasWinCFI = true;
1315     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1316         .addImm(NumBytes)
1317         .setMIFlag(MachineInstr::FrameSetup);
1318   }
1319
1320   int SEHFrameOffset = 0;
1321   unsigned SPOrEstablisher;
1322   if (IsFunclet) {
1323     if (IsClrFunclet) {
1324       // The establisher parameter passed to a CLR funclet is actually a pointer
1325       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1326       // to find the root function establisher frame by loading the PSPSym from
1327       // the intermediate frame.
1328       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1329       MachinePointerInfo NoInfo;
1330       MBB.addLiveIn(Establisher);
1331       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1332                    Establisher, false, PSPSlotOffset)
1333           .addMemOperand(MF.getMachineMemOperand(
1334               NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1335       ;
1336       // Save the root establisher back into the current funclet's (mostly
1337       // empty) frame, in case a sub-funclet or the GC needs it.
1338       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1339                    false, PSPSlotOffset)
1340           .addReg(Establisher)
1341           .addMemOperand(
1342               MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1343                                                   MachineMemOperand::MOVolatile,
1344                                       SlotSize, SlotSize));
1345     }
1346     SPOrEstablisher = Establisher;
1347   } else {
1348     SPOrEstablisher = StackPtr;
1349   }
1350
1351   if (IsWin64Prologue && HasFP) {
1352     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1353     // this calculation on the incoming establisher, which holds the value of
1354     // RSP from the parent frame at the end of the prologue.
1355     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1356     if (SEHFrameOffset)
1357       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1358                    SPOrEstablisher, false, SEHFrameOffset);
1359     else
1360       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1361           .addReg(SPOrEstablisher);
1362
1363     // If this is not a funclet, emit the CFI describing our frame pointer.
1364     if (NeedsWinCFI && !IsFunclet) {
1365       assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1366       HasWinCFI = true;
1367       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1368           .addImm(FramePtr)
1369           .addImm(SEHFrameOffset)
1370           .setMIFlag(MachineInstr::FrameSetup);
1371       if (isAsynchronousEHPersonality(Personality))
1372         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1373     }
1374   } else if (IsFunclet && STI.is32Bit()) {
1375     // Reset EBP / ESI to something good for funclets.
1376     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1377     // If we're a catch funclet, we can be returned to via catchret. Save ESP
1378     // into the registration node so that the runtime will restore it for us.
1379     if (!MBB.isCleanupFuncletEntry()) {
1380       assert(Personality == EHPersonality::MSVC_CXX);
1381       unsigned FrameReg;
1382       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1383       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1384       // ESP is the first field, so no extra displacement is needed.
1385       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1386                    false, EHRegOffset)
1387           .addReg(X86::ESP);
1388     }
1389   }
1390
1391   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1392     const MachineInstr &FrameInstr = *MBBI;
1393     ++MBBI;
1394
1395     if (NeedsWinCFI) {
1396       int FI;
1397       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1398         if (X86::FR64RegClass.contains(Reg)) {
1399           int Offset;
1400           unsigned IgnoredFrameReg;
1401           if (IsWin64Prologue && IsFunclet)
1402             Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
1403           else
1404             Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) +
1405                      SEHFrameOffset;
1406
1407           HasWinCFI = true;
1408           assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1409           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1410               .addImm(Reg)
1411               .addImm(Offset)
1412               .setMIFlag(MachineInstr::FrameSetup);
1413         }
1414       }
1415     }
1416   }
1417
1418   if (NeedsWinCFI && HasWinCFI)
1419     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1420         .setMIFlag(MachineInstr::FrameSetup);
1421
1422   if (FnHasClrFunclet && !IsFunclet) {
1423     // Save the so-called Initial-SP (i.e. the value of the stack pointer
1424     // immediately after the prolog)  into the PSPSlot so that funclets
1425     // and the GC can recover it.
1426     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1427     auto PSPInfo = MachinePointerInfo::getFixedStack(
1428         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1429     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1430                  PSPSlotOffset)
1431         .addReg(StackPtr)
1432         .addMemOperand(MF.getMachineMemOperand(
1433             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1434             SlotSize, SlotSize));
1435   }
1436
1437   // Realign stack after we spilled callee-saved registers (so that we'll be
1438   // able to calculate their offsets from the frame pointer).
1439   // Win64 requires aligning the stack after the prologue.
1440   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1441     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1442     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1443   }
1444
1445   // We already dealt with stack realignment and funclets above.
1446   if (IsFunclet && STI.is32Bit())
1447     return;
1448
1449   // If we need a base pointer, set it up here. It's whatever the value
1450   // of the stack pointer is at this point. Any variable size objects
1451   // will be allocated after this, so we can still use the base pointer
1452   // to reference locals.
1453   if (TRI->hasBasePointer(MF)) {
1454     // Update the base pointer with the current stack pointer.
1455     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1456     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1457       .addReg(SPOrEstablisher)
1458       .setMIFlag(MachineInstr::FrameSetup);
1459     if (X86FI->getRestoreBasePointer()) {
1460       // Stash value of base pointer.  Saving RSP instead of EBP shortens
1461       // dependence chain. Used by SjLj EH.
1462       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1463       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1464                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
1465         .addReg(SPOrEstablisher)
1466         .setMIFlag(MachineInstr::FrameSetup);
1467     }
1468
1469     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1470       // Stash the value of the frame pointer relative to the base pointer for
1471       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1472       // it recovers the frame pointer from the base pointer rather than the
1473       // other way around.
1474       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1475       unsigned UsedReg;
1476       int Offset =
1477           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1478       assert(UsedReg == BasePtr);
1479       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1480           .addReg(FramePtr)
1481           .setMIFlag(MachineInstr::FrameSetup);
1482     }
1483   }
1484
1485   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1486     // Mark end of stack pointer adjustment.
1487     if (!HasFP && NumBytes) {
1488       // Define the current CFA rule to use the provided offset.
1489       assert(StackSize);
1490       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1491                                   nullptr, -StackSize + stackGrowth));
1492     }
1493
1494     // Emit DWARF info specifying the offsets of the callee-saved registers.
1495     emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1496   }
1497
1498   // X86 Interrupt handling function cannot assume anything about the direction
1499   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1500   // in each prologue of interrupt handler function.
1501   //
1502   // FIXME: Create "cld" instruction only in these cases:
1503   // 1. The interrupt handling function uses any of the "rep" instructions.
1504   // 2. Interrupt handling function calls another function.
1505   //
1506   if (Fn.getCallingConv() == CallingConv::X86_INTR)
1507     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1508         .setMIFlag(MachineInstr::FrameSetup);
1509
1510   // At this point we know if the function has WinCFI or not.
1511   MF.setHasWinCFI(HasWinCFI);
1512 }
1513
1514 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1515     const MachineFunction &MF) const {
1516   // We can't use LEA instructions for adjusting the stack pointer if we don't
1517   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
1518   // to deallocate the stack.
1519   // This means that we can use LEA for SP in two situations:
1520   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1521   // 2. We *have* a frame pointer which means we are permitted to use LEA.
1522   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1523 }
1524
1525 static bool isFuncletReturnInstr(MachineInstr &MI) {
1526   switch (MI.getOpcode()) {
1527   case X86::CATCHRET:
1528   case X86::CLEANUPRET:
1529     return true;
1530   default:
1531     return false;
1532   }
1533   llvm_unreachable("impossible");
1534 }
1535
1536 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1537 // stack. It holds a pointer to the bottom of the root function frame.  The
1538 // establisher frame pointer passed to a nested funclet may point to the
1539 // (mostly empty) frame of its parent funclet, but it will need to find
1540 // the frame of the root function to access locals.  To facilitate this,
1541 // every funclet copies the pointer to the bottom of the root function
1542 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1543 // same offset for the PSPSym in the root function frame that's used in the
1544 // funclets' frames allows each funclet to dynamically accept any ancestor
1545 // frame as its establisher argument (the runtime doesn't guarantee the
1546 // immediate parent for some reason lost to history), and also allows the GC,
1547 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1548 // frame with only a single offset reported for the entire method.
1549 unsigned
1550 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1551   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1552   unsigned SPReg;
1553   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1554                                               /*IgnoreSPUpdates*/ true);
1555   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1556   return static_cast<unsigned>(Offset);
1557 }
1558
1559 unsigned
1560 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1561   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1562   // This is the size of the pushed CSRs.
1563   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1564   // This is the size of callee saved XMMs.
1565   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1566   unsigned XMMSize = WinEHXMMSlotInfo.size() *
1567                      TRI->getSpillSize(X86::VR128RegClass);
1568   // This is the amount of stack a funclet needs to allocate.
1569   unsigned UsedSize;
1570   EHPersonality Personality =
1571       classifyEHPersonality(MF.getFunction().getPersonalityFn());
1572   if (Personality == EHPersonality::CoreCLR) {
1573     // CLR funclets need to hold enough space to include the PSPSym, at the
1574     // same offset from the stack pointer (immediately after the prolog) as it
1575     // resides at in the main function.
1576     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1577   } else {
1578     // Other funclets just need enough stack for outgoing call arguments.
1579     UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1580   }
1581   // RBP is not included in the callee saved register block. After pushing RBP,
1582   // everything is 16 byte aligned. Everything we allocate before an outgoing
1583   // call must also be 16 byte aligned.
1584   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
1585   // Subtract out the size of the callee saved registers. This is how much stack
1586   // each funclet will allocate.
1587   return FrameSizeMinusRBP + XMMSize - CSSize;
1588 }
1589
1590 static bool isTailCallOpcode(unsigned Opc) {
1591     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1592         Opc == X86::TCRETURNmi ||
1593         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1594         Opc == X86::TCRETURNmi64;
1595 }
1596
1597 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1598                                     MachineBasicBlock &MBB) const {
1599   const MachineFrameInfo &MFI = MF.getFrameInfo();
1600   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1601   MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1602   MachineBasicBlock::iterator MBBI = Terminator;
1603   DebugLoc DL;
1604   if (MBBI != MBB.end())
1605     DL = MBBI->getDebugLoc();
1606   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1607   const bool Is64BitILP32 = STI.isTarget64BitILP32();
1608   unsigned FramePtr = TRI->getFrameRegister(MF);
1609   unsigned MachineFramePtr =
1610       Is64BitILP32 ? getX86SubSuperRegister(FramePtr, 64) : FramePtr;
1611
1612   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1613   bool NeedsWin64CFI =
1614       IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1615   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1616
1617   // Get the number of bytes to allocate from the FrameInfo.
1618   uint64_t StackSize = MFI.getStackSize();
1619   uint64_t MaxAlign = calculateMaxStackAlign(MF);
1620   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1621   bool HasFP = hasFP(MF);
1622   uint64_t NumBytes = 0;
1623
1624   bool NeedsDwarfCFI =
1625       (!MF.getTarget().getTargetTriple().isOSDarwin() &&
1626        !MF.getTarget().getTargetTriple().isOSWindows()) &&
1627       (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry());
1628
1629   if (IsFunclet) {
1630     assert(HasFP && "EH funclets without FP not yet implemented");
1631     NumBytes = getWinEHFuncletFrameSize(MF);
1632   } else if (HasFP) {
1633     // Calculate required stack adjustment.
1634     uint64_t FrameSize = StackSize - SlotSize;
1635     NumBytes = FrameSize - CSSize;
1636
1637     // Callee-saved registers were pushed on stack before the stack was
1638     // realigned.
1639     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1640       NumBytes = alignTo(FrameSize, MaxAlign);
1641   } else {
1642     NumBytes = StackSize - CSSize;
1643   }
1644   uint64_t SEHStackAllocAmt = NumBytes;
1645
1646   if (HasFP) {
1647     // Pop EBP.
1648     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1649             MachineFramePtr)
1650         .setMIFlag(MachineInstr::FrameDestroy);
1651     if (NeedsDwarfCFI) {
1652       unsigned DwarfStackPtr =
1653           TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
1654       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa(
1655                                   nullptr, DwarfStackPtr, -SlotSize));
1656       --MBBI;
1657     }
1658   }
1659
1660   MachineBasicBlock::iterator FirstCSPop = MBBI;
1661   // Skip the callee-saved pop instructions.
1662   while (MBBI != MBB.begin()) {
1663     MachineBasicBlock::iterator PI = std::prev(MBBI);
1664     unsigned Opc = PI->getOpcode();
1665
1666     if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
1667       if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1668           (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
1669         break;
1670       FirstCSPop = PI;
1671     }
1672
1673     --MBBI;
1674   }
1675   MBBI = FirstCSPop;
1676
1677   if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
1678     emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
1679
1680   if (MBBI != MBB.end())
1681     DL = MBBI->getDebugLoc();
1682
1683   // If there is an ADD32ri or SUB32ri of ESP immediately before this
1684   // instruction, merge the two instructions.
1685   if (NumBytes || MFI.hasVarSizedObjects())
1686     NumBytes += mergeSPUpdates(MBB, MBBI, true);
1687
1688   // If dynamic alloca is used, then reset esp to point to the last callee-saved
1689   // slot before popping them off! Same applies for the case, when stack was
1690   // realigned. Don't do this if this was a funclet epilogue, since the funclets
1691   // will not do realignment or dynamic stack allocation.
1692   if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
1693       !IsFunclet) {
1694     if (TRI->needsStackRealignment(MF))
1695       MBBI = FirstCSPop;
1696     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1697     uint64_t LEAAmount =
1698         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1699
1700     // There are only two legal forms of epilogue:
1701     // - add SEHAllocationSize, %rsp
1702     // - lea SEHAllocationSize(%FramePtr), %rsp
1703     //
1704     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1705     // However, we may use this sequence if we have a frame pointer because the
1706     // effects of the prologue can safely be undone.
1707     if (LEAAmount != 0) {
1708       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1709       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1710                    FramePtr, false, LEAAmount);
1711       --MBBI;
1712     } else {
1713       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1714       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1715         .addReg(FramePtr);
1716       --MBBI;
1717     }
1718   } else if (NumBytes) {
1719     // Adjust stack pointer back: ESP += numbytes.
1720     emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
1721     if (!hasFP(MF) && NeedsDwarfCFI) {
1722       // Define the current CFA rule to use the provided offset.
1723       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1724                                   nullptr, -CSSize - SlotSize));
1725     }
1726     --MBBI;
1727   }
1728
1729   // Windows unwinder will not invoke function's exception handler if IP is
1730   // either in prologue or in epilogue.  This behavior causes a problem when a
1731   // call immediately precedes an epilogue, because the return address points
1732   // into the epilogue.  To cope with that, we insert an epilogue marker here,
1733   // then replace it with a 'nop' if it ends up immediately after a CALL in the
1734   // final emitted code.
1735   if (NeedsWin64CFI && MF.hasWinCFI())
1736     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1737
1738   if (!hasFP(MF) && NeedsDwarfCFI) {
1739     MBBI = FirstCSPop;
1740     int64_t Offset = -CSSize - SlotSize;
1741     // Mark callee-saved pop instruction.
1742     // Define the current CFA rule to use the provided offset.
1743     while (MBBI != MBB.end()) {
1744       MachineBasicBlock::iterator PI = MBBI;
1745       unsigned Opc = PI->getOpcode();
1746       ++MBBI;
1747       if (Opc == X86::POP32r || Opc == X86::POP64r) {
1748         Offset += SlotSize;
1749         BuildCFI(MBB, MBBI, DL,
1750                  MCCFIInstruction::createDefCfaOffset(nullptr, Offset));
1751       }
1752     }
1753   }
1754
1755   if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
1756     // Add the return addr area delta back since we are not tail calling.
1757     int Offset = -1 * X86FI->getTCReturnAddrDelta();
1758     assert(Offset >= 0 && "TCDelta should never be positive");
1759     if (Offset) {
1760       // Check for possible merge with preceding ADD instruction.
1761       Offset += mergeSPUpdates(MBB, Terminator, true);
1762       emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
1763     }
1764   }
1765 }
1766
1767 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1768                                              unsigned &FrameReg) const {
1769   const MachineFrameInfo &MFI = MF.getFrameInfo();
1770
1771   bool IsFixed = MFI.isFixedObjectIndex(FI);
1772   // We can't calculate offset from frame pointer if the stack is realigned,
1773   // so enforce usage of stack/base pointer.  The base pointer is used when we
1774   // have dynamic allocas in addition to dynamic realignment.
1775   if (TRI->hasBasePointer(MF))
1776     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
1777   else if (TRI->needsStackRealignment(MF))
1778     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
1779   else
1780     FrameReg = TRI->getFrameRegister(MF);
1781
1782   // Offset will hold the offset from the stack pointer at function entry to the
1783   // object.
1784   // We need to factor in additional offsets applied during the prologue to the
1785   // frame, base, and stack pointer depending on which is used.
1786   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
1787   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1788   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1789   uint64_t StackSize = MFI.getStackSize();
1790   bool HasFP = hasFP(MF);
1791   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1792   int64_t FPDelta = 0;
1793
1794   // In an x86 interrupt, remove the offset we added to account for the return
1795   // address from any stack object allocated in the caller's frame. Interrupts
1796   // do not have a standard return address. Fixed objects in the current frame,
1797   // such as SSE register spills, should not get this treatment.
1798   if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
1799       Offset >= 0) {
1800     Offset += getOffsetOfLocalArea();
1801   }
1802
1803   if (IsWin64Prologue) {
1804     assert(!MFI.hasCalls() || (StackSize % 16) == 8);
1805
1806     // Calculate required stack adjustment.
1807     uint64_t FrameSize = StackSize - SlotSize;
1808     // If required, include space for extra hidden slot for stashing base pointer.
1809     if (X86FI->getRestoreBasePointer())
1810       FrameSize += SlotSize;
1811     uint64_t NumBytes = FrameSize - CSSize;
1812
1813     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1814     if (FI && FI == X86FI->getFAIndex())
1815       return -SEHFrameOffset;
1816
1817     // FPDelta is the offset from the "traditional" FP location of the old base
1818     // pointer followed by return address and the location required by the
1819     // restricted Win64 prologue.
1820     // Add FPDelta to all offsets below that go through the frame pointer.
1821     FPDelta = FrameSize - SEHFrameOffset;
1822     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
1823            "FPDelta isn't aligned per the Win64 ABI!");
1824   }
1825
1826
1827   if (TRI->hasBasePointer(MF)) {
1828     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1829     if (FI < 0) {
1830       // Skip the saved EBP.
1831       return Offset + SlotSize + FPDelta;
1832     } else {
1833       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1834       return Offset + StackSize;
1835     }
1836   } else if (TRI->needsStackRealignment(MF)) {
1837     if (FI < 0) {
1838       // Skip the saved EBP.
1839       return Offset + SlotSize + FPDelta;
1840     } else {
1841       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1842       return Offset + StackSize;
1843     }
1844     // FIXME: Support tail calls
1845   } else {
1846     if (!HasFP)
1847       return Offset + StackSize;
1848
1849     // Skip the saved EBP.
1850     Offset += SlotSize;
1851
1852     // Skip the RETADDR move area
1853     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1854     if (TailCallReturnAddrDelta < 0)
1855       Offset -= TailCallReturnAddrDelta;
1856   }
1857
1858   return Offset + FPDelta;
1859 }
1860
1861 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF,
1862                                               int FI, unsigned &FrameReg) const {
1863   const MachineFrameInfo &MFI = MF.getFrameInfo();
1864   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1865   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1866   const auto it = WinEHXMMSlotInfo.find(FI);
1867
1868   if (it == WinEHXMMSlotInfo.end())
1869     return getFrameIndexReference(MF, FI, FrameReg);
1870
1871   FrameReg = TRI->getStackRegister();
1872   return alignDown(MFI.getMaxCallFrameSize(), getStackAlignment()) + it->second;
1873 }
1874
1875 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
1876                                                int FI, unsigned &FrameReg,
1877                                                int Adjustment) const {
1878   const MachineFrameInfo &MFI = MF.getFrameInfo();
1879   FrameReg = TRI->getStackRegister();
1880   return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
1881 }
1882
1883 int
1884 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
1885                                                  int FI, unsigned &FrameReg,
1886                                                  bool IgnoreSPUpdates) const {
1887
1888   const MachineFrameInfo &MFI = MF.getFrameInfo();
1889   // Does not include any dynamic realign.
1890   const uint64_t StackSize = MFI.getStackSize();
1891   // LLVM arranges the stack as follows:
1892   //   ...
1893   //   ARG2
1894   //   ARG1
1895   //   RETADDR
1896   //   PUSH RBP   <-- RBP points here
1897   //   PUSH CSRs
1898   //   ~~~~~~~    <-- possible stack realignment (non-win64)
1899   //   ...
1900   //   STACK OBJECTS
1901   //   ...        <-- RSP after prologue points here
1902   //   ~~~~~~~    <-- possible stack realignment (win64)
1903   //
1904   // if (hasVarSizedObjects()):
1905   //   ...        <-- "base pointer" (ESI/RBX) points here
1906   //   DYNAMIC ALLOCAS
1907   //   ...        <-- RSP points here
1908   //
1909   // Case 1: In the simple case of no stack realignment and no dynamic
1910   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1911   // with fixed offsets from RSP.
1912   //
1913   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1914   // stack objects are addressed with RBP and regular stack objects with RSP.
1915   //
1916   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1917   // to address stack arguments for outgoing calls and nothing else. The "base
1918   // pointer" points to local variables, and RBP points to fixed objects.
1919   //
1920   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1921   // answer we give is relative to the SP after the prologue, and not the
1922   // SP in the middle of the function.
1923
1924   if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
1925       !STI.isTargetWin64())
1926     return getFrameIndexReference(MF, FI, FrameReg);
1927
1928   // If !hasReservedCallFrame the function might have SP adjustement in the
1929   // body.  So, even though the offset is statically known, it depends on where
1930   // we are in the function.
1931   if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
1932     return getFrameIndexReference(MF, FI, FrameReg);
1933
1934   // We don't handle tail calls, and shouldn't be seeing them either.
1935   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
1936          "we don't handle this case!");
1937
1938   // This is how the math works out:
1939   //
1940   //  %rsp grows (i.e. gets lower) left to right. Each box below is
1941   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
1942   //  get to.
1943   //
1944   //    ----------------------------------
1945   //    | BP | Obj0 | Obj1 | ... | ObjN |
1946   //    ----------------------------------
1947   //    ^    ^      ^                   ^
1948   //    A    B      C                   E
1949   //
1950   // A is the incoming stack pointer.
1951   // (B - A) is the local area offset (-8 for x86-64) [1]
1952   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
1953   //
1954   // |(E - B)| is the StackSize (absolute value, positive).  For a
1955   // stack that grown down, this works out to be (B - E). [3]
1956   //
1957   // E is also the value of %rsp after stack has been set up, and we
1958   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
1959   // (C - E) == (C - A) - (B - A) + (B - E)
1960   //            { Using [1], [2] and [3] above }
1961   //         == getObjectOffset - LocalAreaOffset + StackSize
1962
1963   return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
1964 }
1965
1966 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1967     MachineFunction &MF, const TargetRegisterInfo *TRI,
1968     std::vector<CalleeSavedInfo> &CSI) const {
1969   MachineFrameInfo &MFI = MF.getFrameInfo();
1970   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1971
1972   unsigned CalleeSavedFrameSize = 0;
1973   unsigned XMMCalleeSavedFrameSize = 0;
1974   auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1975   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1976
1977   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1978
1979   if (TailCallReturnAddrDelta < 0) {
1980     // create RETURNADDR area
1981     //   arg
1982     //   arg
1983     //   RETADDR
1984     //   { ...
1985     //     RETADDR area
1986     //     ...
1987     //   }
1988     //   [EBP]
1989     MFI.CreateFixedObject(-TailCallReturnAddrDelta,
1990                            TailCallReturnAddrDelta - SlotSize, true);
1991   }
1992
1993   // Spill the BasePtr if it's used.
1994   if (this->TRI->hasBasePointer(MF)) {
1995     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1996     if (MF.hasEHFunclets()) {
1997       int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
1998       X86FI->setHasSEHFramePtrSave(true);
1999       X86FI->setSEHFramePtrSaveIndex(FI);
2000     }
2001   }
2002
2003   if (hasFP(MF)) {
2004     // emitPrologue always spills frame register the first thing.
2005     SpillSlotOffset -= SlotSize;
2006     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2007
2008     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2009     // the frame register, we can delete it from CSI list and not have to worry
2010     // about avoiding it later.
2011     unsigned FPReg = TRI->getFrameRegister(MF);
2012     for (unsigned i = 0; i < CSI.size(); ++i) {
2013       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2014         CSI.erase(CSI.begin() + i);
2015         break;
2016       }
2017     }
2018   }
2019
2020   // Assign slots for GPRs. It increases frame size.
2021   for (unsigned i = CSI.size(); i != 0; --i) {
2022     unsigned Reg = CSI[i - 1].getReg();
2023
2024     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2025       continue;
2026
2027     SpillSlotOffset -= SlotSize;
2028     CalleeSavedFrameSize += SlotSize;
2029
2030     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2031     CSI[i - 1].setFrameIdx(SlotIndex);
2032   }
2033
2034   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2035   MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2036
2037   // Assign slots for XMMs.
2038   for (unsigned i = CSI.size(); i != 0; --i) {
2039     unsigned Reg = CSI[i - 1].getReg();
2040     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2041       continue;
2042
2043     // If this is k-register make sure we lookup via the largest legal type.
2044     MVT VT = MVT::Other;
2045     if (X86::VK16RegClass.contains(Reg))
2046       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2047
2048     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2049     unsigned Size = TRI->getSpillSize(*RC);
2050     unsigned Align = TRI->getSpillAlignment(*RC);
2051     // ensure alignment
2052     assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2053     SpillSlotOffset = -alignTo(-SpillSlotOffset, Align);
2054
2055     // spill into slot
2056     SpillSlotOffset -= Size;
2057     int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2058     CSI[i - 1].setFrameIdx(SlotIndex);
2059     MFI.ensureMaxAlignment(Align);
2060
2061     // Save the start offset and size of XMM in stack frame for funclets.
2062     if (X86::VR128RegClass.contains(Reg)) {
2063       WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2064       XMMCalleeSavedFrameSize += Size;
2065     }
2066   }
2067
2068   return true;
2069 }
2070
2071 bool X86FrameLowering::spillCalleeSavedRegisters(
2072     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2073     const std::vector<CalleeSavedInfo> &CSI,
2074     const TargetRegisterInfo *TRI) const {
2075   DebugLoc DL = MBB.findDebugLoc(MI);
2076
2077   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2078   // for us, and there are no XMM CSRs on Win32.
2079   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2080     return true;
2081
2082   // Push GPRs. It increases frame size.
2083   const MachineFunction &MF = *MBB.getParent();
2084   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2085   for (unsigned i = CSI.size(); i != 0; --i) {
2086     unsigned Reg = CSI[i - 1].getReg();
2087
2088     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2089       continue;
2090
2091     const MachineRegisterInfo &MRI = MF.getRegInfo();
2092     bool isLiveIn = MRI.isLiveIn(Reg);
2093     if (!isLiveIn)
2094       MBB.addLiveIn(Reg);
2095
2096     // Decide whether we can add a kill flag to the use.
2097     bool CanKill = !isLiveIn;
2098     // Check if any subregister is live-in
2099     if (CanKill) {
2100       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2101         if (MRI.isLiveIn(*AReg)) {
2102           CanKill = false;
2103           break;
2104         }
2105       }
2106     }
2107
2108     // Do not set a kill flag on values that are also marked as live-in. This
2109     // happens with the @llvm-returnaddress intrinsic and with arguments
2110     // passed in callee saved registers.
2111     // Omitting the kill flags is conservatively correct even if the live-in
2112     // is not used after all.
2113     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2114       .setMIFlag(MachineInstr::FrameSetup);
2115   }
2116
2117   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2118   // It can be done by spilling XMMs to stack frame.
2119   for (unsigned i = CSI.size(); i != 0; --i) {
2120     unsigned Reg = CSI[i-1].getReg();
2121     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2122       continue;
2123
2124     // If this is k-register make sure we lookup via the largest legal type.
2125     MVT VT = MVT::Other;
2126     if (X86::VK16RegClass.contains(Reg))
2127       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2128
2129     // Add the callee-saved register as live-in. It's killed at the spill.
2130     MBB.addLiveIn(Reg);
2131     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2132
2133     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2134                             TRI);
2135     --MI;
2136     MI->setFlag(MachineInstr::FrameSetup);
2137     ++MI;
2138   }
2139
2140   return true;
2141 }
2142
2143 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2144                                                MachineBasicBlock::iterator MBBI,
2145                                                MachineInstr *CatchRet) const {
2146   // SEH shouldn't use catchret.
2147   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2148              MBB.getParent()->getFunction().getPersonalityFn())) &&
2149          "SEH should not use CATCHRET");
2150   DebugLoc DL = CatchRet->getDebugLoc();
2151   MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2152
2153   // Fill EAX/RAX with the address of the target block.
2154   if (STI.is64Bit()) {
2155     // LEA64r CatchRetTarget(%rip), %rax
2156     BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2157         .addReg(X86::RIP)
2158         .addImm(0)
2159         .addReg(0)
2160         .addMBB(CatchRetTarget)
2161         .addReg(0);
2162   } else {
2163     // MOV32ri $CatchRetTarget, %eax
2164     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2165         .addMBB(CatchRetTarget);
2166   }
2167
2168   // Record that we've taken the address of CatchRetTarget and no longer just
2169   // reference it in a terminator.
2170   CatchRetTarget->setHasAddressTaken();
2171 }
2172
2173 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2174                                                MachineBasicBlock::iterator MI,
2175                                           std::vector<CalleeSavedInfo> &CSI,
2176                                           const TargetRegisterInfo *TRI) const {
2177   if (CSI.empty())
2178     return false;
2179
2180   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2181     // Don't restore CSRs in 32-bit EH funclets. Matches
2182     // spillCalleeSavedRegisters.
2183     if (STI.is32Bit())
2184       return true;
2185     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2186     // funclets. emitEpilogue transforms these to normal jumps.
2187     if (MI->getOpcode() == X86::CATCHRET) {
2188       const Function &F = MBB.getParent()->getFunction();
2189       bool IsSEH = isAsynchronousEHPersonality(
2190           classifyEHPersonality(F.getPersonalityFn()));
2191       if (IsSEH)
2192         return true;
2193     }
2194   }
2195
2196   DebugLoc DL = MBB.findDebugLoc(MI);
2197
2198   // Reload XMMs from stack frame.
2199   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2200     unsigned Reg = CSI[i].getReg();
2201     if (X86::GR64RegClass.contains(Reg) ||
2202         X86::GR32RegClass.contains(Reg))
2203       continue;
2204
2205     // If this is k-register make sure we lookup via the largest legal type.
2206     MVT VT = MVT::Other;
2207     if (X86::VK16RegClass.contains(Reg))
2208       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2209
2210     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2211     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2212   }
2213
2214   // POP GPRs.
2215   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2216   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2217     unsigned Reg = CSI[i].getReg();
2218     if (!X86::GR64RegClass.contains(Reg) &&
2219         !X86::GR32RegClass.contains(Reg))
2220       continue;
2221
2222     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2223         .setMIFlag(MachineInstr::FrameDestroy);
2224   }
2225   return true;
2226 }
2227
2228 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2229                                             BitVector &SavedRegs,
2230                                             RegScavenger *RS) const {
2231   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2232
2233   // Spill the BasePtr if it's used.
2234   if (TRI->hasBasePointer(MF)){
2235     unsigned BasePtr = TRI->getBaseRegister();
2236     if (STI.isTarget64BitILP32())
2237       BasePtr = getX86SubSuperRegister(BasePtr, 64);
2238     SavedRegs.set(BasePtr);
2239   }
2240 }
2241
2242 static bool
2243 HasNestArgument(const MachineFunction *MF) {
2244   const Function &F = MF->getFunction();
2245   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2246        I != E; I++) {
2247     if (I->hasNestAttr())
2248       return true;
2249   }
2250   return false;
2251 }
2252
2253 /// GetScratchRegister - Get a temp register for performing work in the
2254 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2255 /// and the properties of the function either one or two registers will be
2256 /// needed. Set primary to true for the first register, false for the second.
2257 static unsigned
2258 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2259   CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2260
2261   // Erlang stuff.
2262   if (CallingConvention == CallingConv::HiPE) {
2263     if (Is64Bit)
2264       return Primary ? X86::R14 : X86::R13;
2265     else
2266       return Primary ? X86::EBX : X86::EDI;
2267   }
2268
2269   if (Is64Bit) {
2270     if (IsLP64)
2271       return Primary ? X86::R11 : X86::R12;
2272     else
2273       return Primary ? X86::R11D : X86::R12D;
2274   }
2275
2276   bool IsNested = HasNestArgument(&MF);
2277
2278   if (CallingConvention == CallingConv::X86_FastCall ||
2279       CallingConvention == CallingConv::Fast) {
2280     if (IsNested)
2281       report_fatal_error("Segmented stacks does not support fastcall with "
2282                          "nested function.");
2283     return Primary ? X86::EAX : X86::ECX;
2284   }
2285   if (IsNested)
2286     return Primary ? X86::EDX : X86::EAX;
2287   return Primary ? X86::ECX : X86::EAX;
2288 }
2289
2290 // The stack limit in the TCB is set to this many bytes above the actual stack
2291 // limit.
2292 static const uint64_t kSplitStackAvailable = 256;
2293
2294 void X86FrameLowering::adjustForSegmentedStacks(
2295     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2296   MachineFrameInfo &MFI = MF.getFrameInfo();
2297   uint64_t StackSize;
2298   unsigned TlsReg, TlsOffset;
2299   DebugLoc DL;
2300
2301   // To support shrink-wrapping we would need to insert the new blocks
2302   // at the right place and update the branches to PrologueMBB.
2303   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2304
2305   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2306   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2307          "Scratch register is live-in");
2308
2309   if (MF.getFunction().isVarArg())
2310     report_fatal_error("Segmented stacks do not support vararg functions.");
2311   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2312       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2313       !STI.isTargetDragonFly())
2314     report_fatal_error("Segmented stacks not supported on this platform.");
2315
2316   // Eventually StackSize will be calculated by a link-time pass; which will
2317   // also decide whether checking code needs to be injected into this particular
2318   // prologue.
2319   StackSize = MFI.getStackSize();
2320
2321   // Do not generate a prologue for leaf functions with a stack of size zero.
2322   // For non-leaf functions we have to allow for the possibility that the
2323   // callis to a non-split function, as in PR37807. This function could also
2324   // take the address of a non-split function. When the linker tries to adjust
2325   // its non-existent prologue, it would fail with an error. Mark the object
2326   // file so that such failures are not errors. See this Go language bug-report
2327   // https://go-review.googlesource.com/c/go/+/148819/
2328   if (StackSize == 0 && !MFI.hasTailCall()) {
2329     MF.getMMI().setHasNosplitStack(true);
2330     return;
2331   }
2332
2333   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2334   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2335   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2336   bool IsNested = false;
2337
2338   // We need to know if the function has a nest argument only in 64 bit mode.
2339   if (Is64Bit)
2340     IsNested = HasNestArgument(&MF);
2341
2342   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2343   // allocMBB needs to be last (terminating) instruction.
2344
2345   for (const auto &LI : PrologueMBB.liveins()) {
2346     allocMBB->addLiveIn(LI);
2347     checkMBB->addLiveIn(LI);
2348   }
2349
2350   if (IsNested)
2351     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2352
2353   MF.push_front(allocMBB);
2354   MF.push_front(checkMBB);
2355
2356   // When the frame size is less than 256 we just compare the stack
2357   // boundary directly to the value of the stack pointer, per gcc.
2358   bool CompareStackPointer = StackSize < kSplitStackAvailable;
2359
2360   // Read the limit off the current stacklet off the stack_guard location.
2361   if (Is64Bit) {
2362     if (STI.isTargetLinux()) {
2363       TlsReg = X86::FS;
2364       TlsOffset = IsLP64 ? 0x70 : 0x40;
2365     } else if (STI.isTargetDarwin()) {
2366       TlsReg = X86::GS;
2367       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2368     } else if (STI.isTargetWin64()) {
2369       TlsReg = X86::GS;
2370       TlsOffset = 0x28; // pvArbitrary, reserved for application use
2371     } else if (STI.isTargetFreeBSD()) {
2372       TlsReg = X86::FS;
2373       TlsOffset = 0x18;
2374     } else if (STI.isTargetDragonFly()) {
2375       TlsReg = X86::FS;
2376       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2377     } else {
2378       report_fatal_error("Segmented stacks not supported on this platform.");
2379     }
2380
2381     if (CompareStackPointer)
2382       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2383     else
2384       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2385         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2386
2387     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2388       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2389   } else {
2390     if (STI.isTargetLinux()) {
2391       TlsReg = X86::GS;
2392       TlsOffset = 0x30;
2393     } else if (STI.isTargetDarwin()) {
2394       TlsReg = X86::GS;
2395       TlsOffset = 0x48 + 90*4;
2396     } else if (STI.isTargetWin32()) {
2397       TlsReg = X86::FS;
2398       TlsOffset = 0x14; // pvArbitrary, reserved for application use
2399     } else if (STI.isTargetDragonFly()) {
2400       TlsReg = X86::FS;
2401       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2402     } else if (STI.isTargetFreeBSD()) {
2403       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2404     } else {
2405       report_fatal_error("Segmented stacks not supported on this platform.");
2406     }
2407
2408     if (CompareStackPointer)
2409       ScratchReg = X86::ESP;
2410     else
2411       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2412         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2413
2414     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2415         STI.isTargetDragonFly()) {
2416       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2417         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2418     } else if (STI.isTargetDarwin()) {
2419
2420       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2421       unsigned ScratchReg2;
2422       bool SaveScratch2;
2423       if (CompareStackPointer) {
2424         // The primary scratch register is available for holding the TLS offset.
2425         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2426         SaveScratch2 = false;
2427       } else {
2428         // Need to use a second register to hold the TLS offset
2429         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2430
2431         // Unfortunately, with fastcc the second scratch register may hold an
2432         // argument.
2433         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2434       }
2435
2436       // If Scratch2 is live-in then it needs to be saved.
2437       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2438              "Scratch register is live-in and not saved");
2439
2440       if (SaveScratch2)
2441         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2442           .addReg(ScratchReg2, RegState::Kill);
2443
2444       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2445         .addImm(TlsOffset);
2446       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2447         .addReg(ScratchReg)
2448         .addReg(ScratchReg2).addImm(1).addReg(0)
2449         .addImm(0)
2450         .addReg(TlsReg);
2451
2452       if (SaveScratch2)
2453         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2454     }
2455   }
2456
2457   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2458   // It jumps to normal execution of the function body.
2459   BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
2460
2461   // On 32 bit we first push the arguments size and then the frame size. On 64
2462   // bit, we pass the stack frame size in r10 and the argument size in r11.
2463   if (Is64Bit) {
2464     // Functions with nested arguments use R10, so it needs to be saved across
2465     // the call to _morestack
2466
2467     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2468     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2469     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2470     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2471     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2472
2473     if (IsNested)
2474       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2475
2476     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2477       .addImm(StackSize);
2478     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2479       .addImm(X86FI->getArgumentStackSize());
2480   } else {
2481     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2482       .addImm(X86FI->getArgumentStackSize());
2483     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2484       .addImm(StackSize);
2485   }
2486
2487   // __morestack is in libgcc
2488   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2489     // Under the large code model, we cannot assume that __morestack lives
2490     // within 2^31 bytes of the call site, so we cannot use pc-relative
2491     // addressing. We cannot perform the call via a temporary register,
2492     // as the rax register may be used to store the static chain, and all
2493     // other suitable registers may be either callee-save or used for
2494     // parameter passing. We cannot use the stack at this point either
2495     // because __morestack manipulates the stack directly.
2496     //
2497     // To avoid these issues, perform an indirect call via a read-only memory
2498     // location containing the address.
2499     //
2500     // This solution is not perfect, as it assumes that the .rodata section
2501     // is laid out within 2^31 bytes of each function body, but this seems
2502     // to be sufficient for JIT.
2503     // FIXME: Add retpoline support and remove the error here..
2504     if (STI.useRetpolineIndirectCalls())
2505       report_fatal_error("Emitting morestack calls on 64-bit with the large "
2506                          "code model and retpoline not yet implemented.");
2507     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2508         .addReg(X86::RIP)
2509         .addImm(0)
2510         .addReg(0)
2511         .addExternalSymbol("__morestack_addr")
2512         .addReg(0);
2513     MF.getMMI().setUsesMorestackAddr(true);
2514   } else {
2515     if (Is64Bit)
2516       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2517         .addExternalSymbol("__morestack");
2518     else
2519       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2520         .addExternalSymbol("__morestack");
2521   }
2522
2523   if (IsNested)
2524     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2525   else
2526     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2527
2528   allocMBB->addSuccessor(&PrologueMBB);
2529
2530   checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2531   checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2532
2533 #ifdef EXPENSIVE_CHECKS
2534   MF.verify();
2535 #endif
2536 }
2537
2538 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2539 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2540 /// to fields it needs, through a named metadata node "hipe.literals" containing
2541 /// name-value pairs.
2542 static unsigned getHiPELiteral(
2543     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2544   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2545     MDNode *Node = HiPELiteralsMD->getOperand(i);
2546     if (Node->getNumOperands() != 2) continue;
2547     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2548     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2549     if (!NodeName || !NodeVal) continue;
2550     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2551     if (ValConst && NodeName->getString() == LiteralName) {
2552       return ValConst->getZExtValue();
2553     }
2554   }
2555
2556   report_fatal_error("HiPE literal " + LiteralName
2557                      + " required but not provided");
2558 }
2559
2560 /// Erlang programs may need a special prologue to handle the stack size they
2561 /// might need at runtime. That is because Erlang/OTP does not implement a C
2562 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2563 /// (for more information see Eric Stenman's Ph.D. thesis:
2564 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2565 ///
2566 /// CheckStack:
2567 ///       temp0 = sp - MaxStack
2568 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2569 /// OldStart:
2570 ///       ...
2571 /// IncStack:
2572 ///       call inc_stack   # doubles the stack space
2573 ///       temp0 = sp - MaxStack
2574 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2575 void X86FrameLowering::adjustForHiPEPrologue(
2576     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2577   MachineFrameInfo &MFI = MF.getFrameInfo();
2578   DebugLoc DL;
2579
2580   // To support shrink-wrapping we would need to insert the new blocks
2581   // at the right place and update the branches to PrologueMBB.
2582   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2583
2584   // HiPE-specific values
2585   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2586     ->getNamedMetadata("hipe.literals");
2587   if (!HiPELiteralsMD)
2588     report_fatal_error(
2589         "Can't generate HiPE prologue without runtime parameters");
2590   const unsigned HipeLeafWords
2591     = getHiPELiteral(HiPELiteralsMD,
2592                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2593   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2594   const unsigned Guaranteed = HipeLeafWords * SlotSize;
2595   unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
2596                             MF.getFunction().arg_size() - CCRegisteredArgs : 0;
2597   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2598
2599   assert(STI.isTargetLinux() &&
2600          "HiPE prologue is only supported on Linux operating systems.");
2601
2602   // Compute the largest caller's frame that is needed to fit the callees'
2603   // frames. This 'MaxStack' is computed from:
2604   //
2605   // a) the fixed frame size, which is the space needed for all spilled temps,
2606   // b) outgoing on-stack parameter areas, and
2607   // c) the minimum stack space this function needs to make available for the
2608   //    functions it calls (a tunable ABI property).
2609   if (MFI.hasCalls()) {
2610     unsigned MoreStackForCalls = 0;
2611
2612     for (auto &MBB : MF) {
2613       for (auto &MI : MBB) {
2614         if (!MI.isCall())
2615           continue;
2616
2617         // Get callee operand.
2618         const MachineOperand &MO = MI.getOperand(0);
2619
2620         // Only take account of global function calls (no closures etc.).
2621         if (!MO.isGlobal())
2622           continue;
2623
2624         const Function *F = dyn_cast<Function>(MO.getGlobal());
2625         if (!F)
2626           continue;
2627
2628         // Do not update 'MaxStack' for primitive and built-in functions
2629         // (encoded with names either starting with "erlang."/"bif_" or not
2630         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2631         // "_", such as the BIF "suspend_0") as they are executed on another
2632         // stack.
2633         if (F->getName().find("erlang.") != StringRef::npos ||
2634             F->getName().find("bif_") != StringRef::npos ||
2635             F->getName().find_first_of("._") == StringRef::npos)
2636           continue;
2637
2638         unsigned CalleeStkArity =
2639           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2640         if (HipeLeafWords - 1 > CalleeStkArity)
2641           MoreStackForCalls = std::max(MoreStackForCalls,
2642                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2643       }
2644     }
2645     MaxStack += MoreStackForCalls;
2646   }
2647
2648   // If the stack frame needed is larger than the guaranteed then runtime checks
2649   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2650   if (MaxStack > Guaranteed) {
2651     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2652     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2653
2654     for (const auto &LI : PrologueMBB.liveins()) {
2655       stackCheckMBB->addLiveIn(LI);
2656       incStackMBB->addLiveIn(LI);
2657     }
2658
2659     MF.push_front(incStackMBB);
2660     MF.push_front(stackCheckMBB);
2661
2662     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2663     unsigned LEAop, CMPop, CALLop;
2664     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2665     if (Is64Bit) {
2666       SPReg = X86::RSP;
2667       PReg  = X86::RBP;
2668       LEAop = X86::LEA64r;
2669       CMPop = X86::CMP64rm;
2670       CALLop = X86::CALL64pcrel32;
2671     } else {
2672       SPReg = X86::ESP;
2673       PReg  = X86::EBP;
2674       LEAop = X86::LEA32r;
2675       CMPop = X86::CMP32rm;
2676       CALLop = X86::CALLpcrel32;
2677     }
2678
2679     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2680     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2681            "HiPE prologue scratch register is live-in");
2682
2683     // Create new MBB for StackCheck:
2684     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2685                  SPReg, false, -MaxStack);
2686     // SPLimitOffset is in a fixed heap location (pointed by BP).
2687     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2688                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2689     BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
2690
2691     // Create new MBB for IncStack:
2692     BuildMI(incStackMBB, DL, TII.get(CALLop)).
2693       addExternalSymbol("inc_stack_0");
2694     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2695                  SPReg, false, -MaxStack);
2696     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2697                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2698     BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
2699
2700     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2701     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2702     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2703     incStackMBB->addSuccessor(incStackMBB, {1, 100});
2704   }
2705 #ifdef EXPENSIVE_CHECKS
2706   MF.verify();
2707 #endif
2708 }
2709
2710 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2711                                            MachineBasicBlock::iterator MBBI,
2712                                            const DebugLoc &DL,
2713                                            int Offset) const {
2714
2715   if (Offset <= 0)
2716     return false;
2717
2718   if (Offset % SlotSize)
2719     return false;
2720
2721   int NumPops = Offset / SlotSize;
2722   // This is only worth it if we have at most 2 pops.
2723   if (NumPops != 1 && NumPops != 2)
2724     return false;
2725
2726   // Handle only the trivial case where the adjustment directly follows
2727   // a call. This is the most common one, anyway.
2728   if (MBBI == MBB.begin())
2729     return false;
2730   MachineBasicBlock::iterator Prev = std::prev(MBBI);
2731   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2732     return false;
2733
2734   unsigned Regs[2];
2735   unsigned FoundRegs = 0;
2736
2737   auto &MRI = MBB.getParent()->getRegInfo();
2738   auto RegMask = Prev->getOperand(1);
2739
2740   auto &RegClass =
2741       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2742   // Try to find up to NumPops free registers.
2743   for (auto Candidate : RegClass) {
2744
2745     // Poor man's liveness:
2746     // Since we're immediately after a call, any register that is clobbered
2747     // by the call and not defined by it can be considered dead.
2748     if (!RegMask.clobbersPhysReg(Candidate))
2749       continue;
2750
2751     // Don't clobber reserved registers
2752     if (MRI.isReserved(Candidate))
2753       continue;
2754
2755     bool IsDef = false;
2756     for (const MachineOperand &MO : Prev->implicit_operands()) {
2757       if (MO.isReg() && MO.isDef() &&
2758           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2759         IsDef = true;
2760         break;
2761       }
2762     }
2763
2764     if (IsDef)
2765       continue;
2766
2767     Regs[FoundRegs++] = Candidate;
2768     if (FoundRegs == (unsigned)NumPops)
2769       break;
2770   }
2771
2772   if (FoundRegs == 0)
2773     return false;
2774
2775   // If we found only one free register, but need two, reuse the same one twice.
2776   while (FoundRegs < (unsigned)NumPops)
2777     Regs[FoundRegs++] = Regs[0];
2778
2779   for (int i = 0; i < NumPops; ++i)
2780     BuildMI(MBB, MBBI, DL,
2781             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2782
2783   return true;
2784 }
2785
2786 MachineBasicBlock::iterator X86FrameLowering::
2787 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2788                               MachineBasicBlock::iterator I) const {
2789   bool reserveCallFrame = hasReservedCallFrame(MF);
2790   unsigned Opcode = I->getOpcode();
2791   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2792   DebugLoc DL = I->getDebugLoc();
2793   uint64_t Amount = !reserveCallFrame ? TII.getFrameSize(*I) : 0;
2794   uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
2795   I = MBB.erase(I);
2796   auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
2797
2798   if (!reserveCallFrame) {
2799     // If the stack pointer can be changed after prologue, turn the
2800     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2801     // adjcallstackdown instruction into 'add ESP, <amt>'
2802
2803     // We need to keep the stack aligned properly.  To do this, we round the
2804     // amount of space needed for the outgoing arguments up to the next
2805     // alignment boundary.
2806     unsigned StackAlign = getStackAlignment();
2807     Amount = alignTo(Amount, StackAlign);
2808
2809     MachineModuleInfo &MMI = MF.getMMI();
2810     const Function &F = MF.getFunction();
2811     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2812     bool DwarfCFI = !WindowsCFI &&
2813                     (MMI.hasDebugInfo() || F.needsUnwindTableEntry());
2814
2815     // If we have any exception handlers in this function, and we adjust
2816     // the SP before calls, we may need to indicate this to the unwinder
2817     // using GNU_ARGS_SIZE. Note that this may be necessary even when
2818     // Amount == 0, because the preceding function may have set a non-0
2819     // GNU_ARGS_SIZE.
2820     // TODO: We don't need to reset this between subsequent functions,
2821     // if it didn't change.
2822     bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
2823
2824     if (HasDwarfEHHandlers && !isDestroy &&
2825         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2826       BuildCFI(MBB, InsertPos, DL,
2827                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2828
2829     if (Amount == 0)
2830       return I;
2831
2832     // Factor out the amount that gets handled inside the sequence
2833     // (Pushes of argument for frame setup, callee pops for frame destroy)
2834     Amount -= InternalAmt;
2835
2836     // TODO: This is needed only if we require precise CFA.
2837     // If this is a callee-pop calling convention, emit a CFA adjust for
2838     // the amount the callee popped.
2839     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2840       BuildCFI(MBB, InsertPos, DL,
2841                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2842
2843     // Add Amount to SP to destroy a frame, or subtract to setup.
2844     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
2845
2846     if (StackAdjustment) {
2847       // Merge with any previous or following adjustment instruction. Note: the
2848       // instructions merged with here do not have CFI, so their stack
2849       // adjustments do not feed into CfaAdjustment.
2850       StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
2851       StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
2852
2853       if (StackAdjustment) {
2854         if (!(F.hasMinSize() &&
2855               adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
2856           BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
2857                                /*InEpilogue=*/false);
2858       }
2859     }
2860
2861     if (DwarfCFI && !hasFP(MF)) {
2862       // If we don't have FP, but need to generate unwind information,
2863       // we need to set the correct CFA offset after the stack adjustment.
2864       // How much we adjust the CFA offset depends on whether we're emitting
2865       // CFI only for EH purposes or for debugging. EH only requires the CFA
2866       // offset to be correct at each call site, while for debugging we want
2867       // it to be more precise.
2868
2869       int64_t CfaAdjustment = -StackAdjustment;
2870       // TODO: When not using precise CFA, we also need to adjust for the
2871       // InternalAmt here.
2872       if (CfaAdjustment) {
2873         BuildCFI(MBB, InsertPos, DL,
2874                  MCCFIInstruction::createAdjustCfaOffset(nullptr,
2875                                                          CfaAdjustment));
2876       }
2877     }
2878
2879     return I;
2880   }
2881
2882   if (isDestroy && InternalAmt) {
2883     // If we are performing frame pointer elimination and if the callee pops
2884     // something off the stack pointer, add it back.  We do this until we have
2885     // more advanced stack pointer tracking ability.
2886     // We are not tracking the stack pointer adjustment by the callee, so make
2887     // sure we restore the stack pointer immediately after the call, there may
2888     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2889     MachineBasicBlock::iterator CI = I;
2890     MachineBasicBlock::iterator B = MBB.begin();
2891     while (CI != B && !std::prev(CI)->isCall())
2892       --CI;
2893     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
2894   }
2895
2896   return I;
2897 }
2898
2899 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
2900   assert(MBB.getParent() && "Block is not attached to a function!");
2901   const MachineFunction &MF = *MBB.getParent();
2902   return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
2903 }
2904
2905 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2906   assert(MBB.getParent() && "Block is not attached to a function!");
2907
2908   // Win64 has strict requirements in terms of epilogue and we are
2909   // not taking a chance at messing with them.
2910   // I.e., unless this block is already an exit block, we can't use
2911   // it as an epilogue.
2912   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2913     return false;
2914
2915   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2916     return true;
2917
2918   // If we cannot use LEA to adjust SP, we may need to use ADD, which
2919   // clobbers the EFLAGS. Check that we do not need to preserve it,
2920   // otherwise, conservatively assume this is not
2921   // safe to insert the epilogue here.
2922   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2923 }
2924
2925 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2926   // If we may need to emit frameless compact unwind information, give
2927   // up as this is currently broken: PR25614.
2928   return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2929          // The lowering of segmented stack and HiPE only support entry blocks
2930          // as prologue blocks: PR26107.
2931          // This limitation may be lifted if we fix:
2932          // - adjustForSegmentedStacks
2933          // - adjustForHiPEPrologue
2934          MF.getFunction().getCallingConv() != CallingConv::HiPE &&
2935          !MF.shouldSplitStack();
2936 }
2937
2938 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2939     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2940     const DebugLoc &DL, bool RestoreSP) const {
2941   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2942   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2943   assert(STI.is32Bit() && !Uses64BitFramePtr &&
2944          "restoring EBP/ESI on non-32-bit target");
2945
2946   MachineFunction &MF = *MBB.getParent();
2947   unsigned FramePtr = TRI->getFrameRegister(MF);
2948   unsigned BasePtr = TRI->getBaseRegister();
2949   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2950   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2951   MachineFrameInfo &MFI = MF.getFrameInfo();
2952
2953   // FIXME: Don't set FrameSetup flag in catchret case.
2954
2955   int FI = FuncInfo.EHRegNodeFrameIndex;
2956   int EHRegSize = MFI.getObjectSize(FI);
2957
2958   if (RestoreSP) {
2959     // MOV32rm -EHRegSize(%ebp), %esp
2960     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2961                  X86::EBP, true, -EHRegSize)
2962         .setMIFlag(MachineInstr::FrameSetup);
2963   }
2964
2965   unsigned UsedReg;
2966   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2967   int EndOffset = -EHRegOffset - EHRegSize;
2968   FuncInfo.EHRegNodeEndOffset = EndOffset;
2969
2970   if (UsedReg == FramePtr) {
2971     // ADD $offset, %ebp
2972     unsigned ADDri = getADDriOpcode(false, EndOffset);
2973     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2974         .addReg(FramePtr)
2975         .addImm(EndOffset)
2976         .setMIFlag(MachineInstr::FrameSetup)
2977         ->getOperand(3)
2978         .setIsDead();
2979     assert(EndOffset >= 0 &&
2980            "end of registration object above normal EBP position!");
2981   } else if (UsedReg == BasePtr) {
2982     // LEA offset(%ebp), %esi
2983     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2984                  FramePtr, false, EndOffset)
2985         .setMIFlag(MachineInstr::FrameSetup);
2986     // MOV32rm SavedEBPOffset(%esi), %ebp
2987     assert(X86FI->getHasSEHFramePtrSave());
2988     int Offset =
2989         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2990     assert(UsedReg == BasePtr);
2991     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2992                  UsedReg, true, Offset)
2993         .setMIFlag(MachineInstr::FrameSetup);
2994   } else {
2995     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2996   }
2997   return MBBI;
2998 }
2999
3000 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3001   return TRI->getSlotSize();
3002 }
3003
3004 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF)
3005     const {
3006   return TRI->getDwarfRegNum(StackPtr, true);
3007 }
3008
3009 namespace {
3010 // Struct used by orderFrameObjects to help sort the stack objects.
3011 struct X86FrameSortingObject {
3012   bool IsValid = false;         // true if we care about this Object.
3013   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
3014   unsigned ObjectSize = 0;      // Size of Object in bytes.
3015   unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
3016   unsigned ObjectNumUses = 0;   // Object static number of uses.
3017 };
3018
3019 // The comparison function we use for std::sort to order our local
3020 // stack symbols. The current algorithm is to use an estimated
3021 // "density". This takes into consideration the size and number of
3022 // uses each object has in order to roughly minimize code size.
3023 // So, for example, an object of size 16B that is referenced 5 times
3024 // will get higher priority than 4 4B objects referenced 1 time each.
3025 // It's not perfect and we may be able to squeeze a few more bytes out of
3026 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3027 // fringe end can have special consideration, given their size is less
3028 // important, etc.), but the algorithmic complexity grows too much to be
3029 // worth the extra gains we get. This gets us pretty close.
3030 // The final order leaves us with objects with highest priority going
3031 // at the end of our list.
3032 struct X86FrameSortingComparator {
3033   inline bool operator()(const X86FrameSortingObject &A,
3034                          const X86FrameSortingObject &B) {
3035     uint64_t DensityAScaled, DensityBScaled;
3036
3037     // For consistency in our comparison, all invalid objects are placed
3038     // at the end. This also allows us to stop walking when we hit the
3039     // first invalid item after it's all sorted.
3040     if (!A.IsValid)
3041       return false;
3042     if (!B.IsValid)
3043       return true;
3044
3045     // The density is calculated by doing :
3046     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
3047     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
3048     // Since this approach may cause inconsistencies in
3049     // the floating point <, >, == comparisons, depending on the floating
3050     // point model with which the compiler was built, we're going
3051     // to scale both sides by multiplying with
3052     // A.ObjectSize * B.ObjectSize. This ends up factoring away
3053     // the division and, with it, the need for any floating point
3054     // arithmetic.
3055     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3056       static_cast<uint64_t>(B.ObjectSize);
3057     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3058       static_cast<uint64_t>(A.ObjectSize);
3059
3060     // If the two densities are equal, prioritize highest alignment
3061     // objects. This allows for similar alignment objects
3062     // to be packed together (given the same density).
3063     // There's room for improvement here, also, since we can pack
3064     // similar alignment (different density) objects next to each
3065     // other to save padding. This will also require further
3066     // complexity/iterations, and the overall gain isn't worth it,
3067     // in general. Something to keep in mind, though.
3068     if (DensityAScaled == DensityBScaled)
3069       return A.ObjectAlignment < B.ObjectAlignment;
3070
3071     return DensityAScaled < DensityBScaled;
3072   }
3073 };
3074 } // namespace
3075
3076 // Order the symbols in the local stack.
3077 // We want to place the local stack objects in some sort of sensible order.
3078 // The heuristic we use is to try and pack them according to static number
3079 // of uses and size of object in order to minimize code size.
3080 void X86FrameLowering::orderFrameObjects(
3081     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3082   const MachineFrameInfo &MFI = MF.getFrameInfo();
3083
3084   // Don't waste time if there's nothing to do.
3085   if (ObjectsToAllocate.empty())
3086     return;
3087
3088   // Create an array of all MFI objects. We won't need all of these
3089   // objects, but we're going to create a full array of them to make
3090   // it easier to index into when we're counting "uses" down below.
3091   // We want to be able to easily/cheaply access an object by simply
3092   // indexing into it, instead of having to search for it every time.
3093   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3094
3095   // Walk the objects we care about and mark them as such in our working
3096   // struct.
3097   for (auto &Obj : ObjectsToAllocate) {
3098     SortingObjects[Obj].IsValid = true;
3099     SortingObjects[Obj].ObjectIndex = Obj;
3100     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
3101     // Set the size.
3102     int ObjectSize = MFI.getObjectSize(Obj);
3103     if (ObjectSize == 0)
3104       // Variable size. Just use 4.
3105       SortingObjects[Obj].ObjectSize = 4;
3106     else
3107       SortingObjects[Obj].ObjectSize = ObjectSize;
3108   }
3109
3110   // Count the number of uses for each object.
3111   for (auto &MBB : MF) {
3112     for (auto &MI : MBB) {
3113       if (MI.isDebugInstr())
3114         continue;
3115       for (const MachineOperand &MO : MI.operands()) {
3116         // Check to see if it's a local stack symbol.
3117         if (!MO.isFI())
3118           continue;
3119         int Index = MO.getIndex();
3120         // Check to see if it falls within our range, and is tagged
3121         // to require ordering.
3122         if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3123             SortingObjects[Index].IsValid)
3124           SortingObjects[Index].ObjectNumUses++;
3125       }
3126     }
3127   }
3128
3129   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3130   // info).
3131   llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3132
3133   // Now modify the original list to represent the final order that
3134   // we want. The order will depend on whether we're going to access them
3135   // from the stack pointer or the frame pointer. For SP, the list should
3136   // end up with the END containing objects that we want with smaller offsets.
3137   // For FP, it should be flipped.
3138   int i = 0;
3139   for (auto &Obj : SortingObjects) {
3140     // All invalid items are sorted at the end, so it's safe to stop.
3141     if (!Obj.IsValid)
3142       break;
3143     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3144   }
3145
3146   // Flip it if we're accessing off of the FP.
3147   if (!TRI->needsStackRealignment(MF) && hasFP(MF))
3148     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3149 }
3150
3151
3152 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3153   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3154   unsigned Offset = 16;
3155   // RBP is immediately pushed.
3156   Offset += SlotSize;
3157   // All callee-saved registers are then pushed.
3158   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3159   // Every funclet allocates enough stack space for the largest outgoing call.
3160   Offset += getWinEHFuncletFrameSize(MF);
3161   return Offset;
3162 }
3163
3164 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3165     MachineFunction &MF, RegScavenger *RS) const {
3166   // Mark the function as not having WinCFI. We will set it back to true in
3167   // emitPrologue if it gets called and emits CFI.
3168   MF.setHasWinCFI(false);
3169
3170   // If this function isn't doing Win64-style C++ EH, we don't need to do
3171   // anything.
3172   const Function &F = MF.getFunction();
3173   if (!STI.is64Bit() || !MF.hasEHFunclets() ||
3174       classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
3175     return;
3176
3177   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3178   // relative to RSP after the prologue.  Find the offset of the last fixed
3179   // object, so that we can allocate a slot immediately following it. If there
3180   // were no fixed objects, use offset -SlotSize, which is immediately after the
3181   // return address. Fixed objects have negative frame indices.
3182   MachineFrameInfo &MFI = MF.getFrameInfo();
3183   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3184   int64_t MinFixedObjOffset = -SlotSize;
3185   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3186     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3187
3188   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3189     for (WinEHHandlerType &H : TBME.HandlerArray) {
3190       int FrameIndex = H.CatchObj.FrameIndex;
3191       if (FrameIndex != INT_MAX) {
3192         // Ensure alignment.
3193         unsigned Align = MFI.getObjectAlignment(FrameIndex);
3194         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3195         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3196         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3197       }
3198     }
3199   }
3200
3201   // Ensure alignment.
3202   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3203   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3204   int UnwindHelpFI =
3205       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3206   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3207
3208   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3209   // other frame setup instructions.
3210   MachineBasicBlock &MBB = MF.front();
3211   auto MBBI = MBB.begin();
3212   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3213     ++MBBI;
3214
3215   DebugLoc DL = MBB.findDebugLoc(MBBI);
3216   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3217                     UnwindHelpFI)
3218       .addImm(-2);
3219 }