]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm-project/llvm/lib/Target/X86/X86OptimizeLEAs.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm-project / llvm / lib / Target / X86 / X86OptimizeLEAs.cpp
1 //===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass that performs some optimizations with LEA
10 // instructions in order to improve performance and code size.
11 // Currently, it does two things:
12 // 1) If there are two LEA instructions calculating addresses which only differ
13 //    by displacement inside a basic block, one of them is removed.
14 // 2) Address calculations in load and store instructions are replaced by
15 //    existing LEA def registers where possible.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86.h"
21 #include "X86InstrInfo.h"
22 #include "X86Subtarget.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseMapInfo.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
49
50 using namespace llvm;
51
52 #define DEBUG_TYPE "x86-optimize-LEAs"
53
54 static cl::opt<bool>
55     DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
56                      cl::desc("X86: Disable LEA optimizations."),
57                      cl::init(false));
58
59 STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
60 STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
61
62 /// Returns true if two machine operands are identical and they are not
63 /// physical registers.
64 static inline bool isIdenticalOp(const MachineOperand &MO1,
65                                  const MachineOperand &MO2);
66
67 /// Returns true if two address displacement operands are of the same
68 /// type and use the same symbol/index/address regardless of the offset.
69 static bool isSimilarDispOp(const MachineOperand &MO1,
70                             const MachineOperand &MO2);
71
72 /// Returns true if the instruction is LEA.
73 static inline bool isLEA(const MachineInstr &MI);
74
75 namespace {
76
77 /// A key based on instruction's memory operands.
78 class MemOpKey {
79 public:
80   MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
81            const MachineOperand *Index, const MachineOperand *Segment,
82            const MachineOperand *Disp)
83       : Disp(Disp) {
84     Operands[0] = Base;
85     Operands[1] = Scale;
86     Operands[2] = Index;
87     Operands[3] = Segment;
88   }
89
90   bool operator==(const MemOpKey &Other) const {
91     // Addresses' bases, scales, indices and segments must be identical.
92     for (int i = 0; i < 4; ++i)
93       if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
94         return false;
95
96     // Addresses' displacements don't have to be exactly the same. It only
97     // matters that they use the same symbol/index/address. Immediates' or
98     // offsets' differences will be taken care of during instruction
99     // substitution.
100     return isSimilarDispOp(*Disp, *Other.Disp);
101   }
102
103   // Address' base, scale, index and segment operands.
104   const MachineOperand *Operands[4];
105
106   // Address' displacement operand.
107   const MachineOperand *Disp;
108 };
109
110 } // end anonymous namespace
111
112 /// Provide DenseMapInfo for MemOpKey.
113 namespace llvm {
114
115 template <> struct DenseMapInfo<MemOpKey> {
116   using PtrInfo = DenseMapInfo<const MachineOperand *>;
117
118   static inline MemOpKey getEmptyKey() {
119     return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
120                     PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
121                     PtrInfo::getEmptyKey());
122   }
123
124   static inline MemOpKey getTombstoneKey() {
125     return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
126                     PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
127                     PtrInfo::getTombstoneKey());
128   }
129
130   static unsigned getHashValue(const MemOpKey &Val) {
131     // Checking any field of MemOpKey is enough to determine if the key is
132     // empty or tombstone.
133     assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
134     assert(Val.Disp != PtrInfo::getTombstoneKey() &&
135            "Cannot hash the tombstone key");
136
137     hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
138                                   *Val.Operands[2], *Val.Operands[3]);
139
140     // If the address displacement is an immediate, it should not affect the
141     // hash so that memory operands which differ only be immediate displacement
142     // would have the same hash. If the address displacement is something else,
143     // we should reflect symbol/index/address in the hash.
144     switch (Val.Disp->getType()) {
145     case MachineOperand::MO_Immediate:
146       break;
147     case MachineOperand::MO_ConstantPoolIndex:
148     case MachineOperand::MO_JumpTableIndex:
149       Hash = hash_combine(Hash, Val.Disp->getIndex());
150       break;
151     case MachineOperand::MO_ExternalSymbol:
152       Hash = hash_combine(Hash, Val.Disp->getSymbolName());
153       break;
154     case MachineOperand::MO_GlobalAddress:
155       Hash = hash_combine(Hash, Val.Disp->getGlobal());
156       break;
157     case MachineOperand::MO_BlockAddress:
158       Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
159       break;
160     case MachineOperand::MO_MCSymbol:
161       Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
162       break;
163     case MachineOperand::MO_MachineBasicBlock:
164       Hash = hash_combine(Hash, Val.Disp->getMBB());
165       break;
166     default:
167       llvm_unreachable("Invalid address displacement operand");
168     }
169
170     return (unsigned)Hash;
171   }
172
173   static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
174     // Checking any field of MemOpKey is enough to determine if the key is
175     // empty or tombstone.
176     if (RHS.Disp == PtrInfo::getEmptyKey())
177       return LHS.Disp == PtrInfo::getEmptyKey();
178     if (RHS.Disp == PtrInfo::getTombstoneKey())
179       return LHS.Disp == PtrInfo::getTombstoneKey();
180     return LHS == RHS;
181   }
182 };
183
184 } // end namespace llvm
185
186 /// Returns a hash table key based on memory operands of \p MI. The
187 /// number of the first memory operand of \p MI is specified through \p N.
188 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
189   assert((isLEA(MI) || MI.mayLoadOrStore()) &&
190          "The instruction must be a LEA, a load or a store");
191   return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
192                   &MI.getOperand(N + X86::AddrScaleAmt),
193                   &MI.getOperand(N + X86::AddrIndexReg),
194                   &MI.getOperand(N + X86::AddrSegmentReg),
195                   &MI.getOperand(N + X86::AddrDisp));
196 }
197
198 static inline bool isIdenticalOp(const MachineOperand &MO1,
199                                  const MachineOperand &MO2) {
200   return MO1.isIdenticalTo(MO2) &&
201          (!MO1.isReg() ||
202           !TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
203 }
204
205 #ifndef NDEBUG
206 static bool isValidDispOp(const MachineOperand &MO) {
207   return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
208          MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
209 }
210 #endif
211
212 static bool isSimilarDispOp(const MachineOperand &MO1,
213                             const MachineOperand &MO2) {
214   assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
215          "Address displacement operand is not valid");
216   return (MO1.isImm() && MO2.isImm()) ||
217          (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
218          (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
219          (MO1.isSymbol() && MO2.isSymbol() &&
220           MO1.getSymbolName() == MO2.getSymbolName()) ||
221          (MO1.isGlobal() && MO2.isGlobal() &&
222           MO1.getGlobal() == MO2.getGlobal()) ||
223          (MO1.isBlockAddress() && MO2.isBlockAddress() &&
224           MO1.getBlockAddress() == MO2.getBlockAddress()) ||
225          (MO1.isMCSymbol() && MO2.isMCSymbol() &&
226           MO1.getMCSymbol() == MO2.getMCSymbol()) ||
227          (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
228 }
229
230 static inline bool isLEA(const MachineInstr &MI) {
231   unsigned Opcode = MI.getOpcode();
232   return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
233          Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
234 }
235
236 namespace {
237
238 class OptimizeLEAPass : public MachineFunctionPass {
239 public:
240   OptimizeLEAPass() : MachineFunctionPass(ID) {}
241
242   StringRef getPassName() const override { return "X86 LEA Optimize"; }
243
244   /// Loop over all of the basic blocks, replacing address
245   /// calculations in load and store instructions, if it's already
246   /// been calculated by LEA. Also, remove redundant LEAs.
247   bool runOnMachineFunction(MachineFunction &MF) override;
248
249 private:
250   using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
251
252   /// Returns a distance between two instructions inside one basic block.
253   /// Negative result means, that instructions occur in reverse order.
254   int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
255
256   /// Choose the best \p LEA instruction from the \p List to replace
257   /// address calculation in \p MI instruction. Return the address displacement
258   /// and the distance between \p MI and the chosen \p BestLEA in
259   /// \p AddrDispShift and \p Dist.
260   bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
261                      const MachineInstr &MI, MachineInstr *&BestLEA,
262                      int64_t &AddrDispShift, int &Dist);
263
264   /// Returns the difference between addresses' displacements of \p MI1
265   /// and \p MI2. The numbers of the first memory operands for the instructions
266   /// are specified through \p N1 and \p N2.
267   int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
268                            const MachineInstr &MI2, unsigned N2) const;
269
270   /// Returns true if the \p Last LEA instruction can be replaced by the
271   /// \p First. The difference between displacements of the addresses calculated
272   /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
273   /// replacement of the \p Last LEA's uses with the \p First's def register.
274   bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
275                      int64_t &AddrDispShift) const;
276
277   /// Find all LEA instructions in the basic block. Also, assign position
278   /// numbers to all instructions in the basic block to speed up calculation of
279   /// distance between them.
280   void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
281
282   /// Removes redundant address calculations.
283   bool removeRedundantAddrCalc(MemOpMap &LEAs);
284
285   /// Replace debug value MI with a new debug value instruction using register
286   /// VReg with an appropriate offset and DIExpression to incorporate the
287   /// address displacement AddrDispShift. Return new debug value instruction.
288   MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned VReg,
289                                   int64_t AddrDispShift);
290
291   /// Removes LEAs which calculate similar addresses.
292   bool removeRedundantLEAs(MemOpMap &LEAs);
293
294   DenseMap<const MachineInstr *, unsigned> InstrPos;
295
296   MachineRegisterInfo *MRI;
297   const X86InstrInfo *TII;
298   const X86RegisterInfo *TRI;
299
300   static char ID;
301 };
302
303 } // end anonymous namespace
304
305 char OptimizeLEAPass::ID = 0;
306
307 FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
308
309 int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
310                                    const MachineInstr &Last) {
311   // Both instructions must be in the same basic block and they must be
312   // presented in InstrPos.
313   assert(Last.getParent() == First.getParent() &&
314          "Instructions are in different basic blocks");
315   assert(InstrPos.find(&First) != InstrPos.end() &&
316          InstrPos.find(&Last) != InstrPos.end() &&
317          "Instructions' positions are undefined");
318
319   return InstrPos[&Last] - InstrPos[&First];
320 }
321
322 // Find the best LEA instruction in the List to replace address recalculation in
323 // MI. Such LEA must meet these requirements:
324 // 1) The address calculated by the LEA differs only by the displacement from
325 //    the address used in MI.
326 // 2) The register class of the definition of the LEA is compatible with the
327 //    register class of the address base register of MI.
328 // 3) Displacement of the new memory operand should fit in 1 byte if possible.
329 // 4) The LEA should be as close to MI as possible, and prior to it if
330 //    possible.
331 bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
332                                     const MachineInstr &MI,
333                                     MachineInstr *&BestLEA,
334                                     int64_t &AddrDispShift, int &Dist) {
335   const MachineFunction *MF = MI.getParent()->getParent();
336   const MCInstrDesc &Desc = MI.getDesc();
337   int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
338                 X86II::getOperandBias(Desc);
339
340   BestLEA = nullptr;
341
342   // Loop over all LEA instructions.
343   for (auto DefMI : List) {
344     // Get new address displacement.
345     int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
346
347     // Make sure address displacement fits 4 bytes.
348     if (!isInt<32>(AddrDispShiftTemp))
349       continue;
350
351     // Check that LEA def register can be used as MI address base. Some
352     // instructions can use a limited set of registers as address base, for
353     // example MOV8mr_NOREX. We could constrain the register class of the LEA
354     // def to suit MI, however since this case is very rare and hard to
355     // reproduce in a test it's just more reliable to skip the LEA.
356     if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
357         MRI->getRegClass(DefMI->getOperand(0).getReg()))
358       continue;
359
360     // Choose the closest LEA instruction from the list, prior to MI if
361     // possible. Note that we took into account resulting address displacement
362     // as well. Also note that the list is sorted by the order in which the LEAs
363     // occur, so the break condition is pretty simple.
364     int DistTemp = calcInstrDist(*DefMI, MI);
365     assert(DistTemp != 0 &&
366            "The distance between two different instructions cannot be zero");
367     if (DistTemp > 0 || BestLEA == nullptr) {
368       // Do not update return LEA, if the current one provides a displacement
369       // which fits in 1 byte, while the new candidate does not.
370       if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
371           isInt<8>(AddrDispShift))
372         continue;
373
374       BestLEA = DefMI;
375       AddrDispShift = AddrDispShiftTemp;
376       Dist = DistTemp;
377     }
378
379     // FIXME: Maybe we should not always stop at the first LEA after MI.
380     if (DistTemp < 0)
381       break;
382   }
383
384   return BestLEA != nullptr;
385 }
386
387 // Get the difference between the addresses' displacements of the two
388 // instructions \p MI1 and \p MI2. The numbers of the first memory operands are
389 // passed through \p N1 and \p N2.
390 int64_t OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1, unsigned N1,
391                                           const MachineInstr &MI2,
392                                           unsigned N2) const {
393   const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
394   const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
395
396   assert(isSimilarDispOp(Op1, Op2) &&
397          "Address displacement operands are not compatible");
398
399   // After the assert above we can be sure that both operands are of the same
400   // valid type and use the same symbol/index/address, thus displacement shift
401   // calculation is rather simple.
402   if (Op1.isJTI())
403     return 0;
404   return Op1.isImm() ? Op1.getImm() - Op2.getImm()
405                      : Op1.getOffset() - Op2.getOffset();
406 }
407
408 // Check that the Last LEA can be replaced by the First LEA. To be so,
409 // these requirements must be met:
410 // 1) Addresses calculated by LEAs differ only by displacement.
411 // 2) Def registers of LEAs belong to the same class.
412 // 3) All uses of the Last LEA def register are replaceable, thus the
413 //    register is used only as address base.
414 bool OptimizeLEAPass::isReplaceable(const MachineInstr &First,
415                                     const MachineInstr &Last,
416                                     int64_t &AddrDispShift) const {
417   assert(isLEA(First) && isLEA(Last) &&
418          "The function works only with LEA instructions");
419
420   // Make sure that LEA def registers belong to the same class. There may be
421   // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
422   // be used as their operands, so we must be sure that replacing one LEA
423   // with another won't lead to putting a wrong register in the instruction.
424   if (MRI->getRegClass(First.getOperand(0).getReg()) !=
425       MRI->getRegClass(Last.getOperand(0).getReg()))
426     return false;
427
428   // Get new address displacement.
429   AddrDispShift = getAddrDispShift(Last, 1, First, 1);
430
431   // Loop over all uses of the Last LEA to check that its def register is
432   // used only as address base for memory accesses. If so, it can be
433   // replaced, otherwise - no.
434   for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
435     MachineInstr &MI = *MO.getParent();
436
437     // Get the number of the first memory operand.
438     const MCInstrDesc &Desc = MI.getDesc();
439     int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
440
441     // If the use instruction has no memory operand - the LEA is not
442     // replaceable.
443     if (MemOpNo < 0)
444       return false;
445
446     MemOpNo += X86II::getOperandBias(Desc);
447
448     // If the address base of the use instruction is not the LEA def register -
449     // the LEA is not replaceable.
450     if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
451       return false;
452
453     // If the LEA def register is used as any other operand of the use
454     // instruction - the LEA is not replaceable.
455     for (unsigned i = 0; i < MI.getNumOperands(); i++)
456       if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
457           isIdenticalOp(MI.getOperand(i), MO))
458         return false;
459
460     // Check that the new address displacement will fit 4 bytes.
461     if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
462         !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
463                    AddrDispShift))
464       return false;
465   }
466
467   return true;
468 }
469
470 void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs) {
471   unsigned Pos = 0;
472   for (auto &MI : MBB) {
473     // Assign the position number to the instruction. Note that we are going to
474     // move some instructions during the optimization however there will never
475     // be a need to move two instructions before any selected instruction. So to
476     // avoid multiple positions' updates during moves we just increase position
477     // counter by two leaving a free space for instructions which will be moved.
478     InstrPos[&MI] = Pos += 2;
479
480     if (isLEA(MI))
481       LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
482   }
483 }
484
485 // Try to find load and store instructions which recalculate addresses already
486 // calculated by some LEA and replace their memory operands with its def
487 // register.
488 bool OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
489   bool Changed = false;
490
491   assert(!LEAs.empty());
492   MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
493
494   // Process all instructions in basic block.
495   for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
496     MachineInstr &MI = *I++;
497
498     // Instruction must be load or store.
499     if (!MI.mayLoadOrStore())
500       continue;
501
502     // Get the number of the first memory operand.
503     const MCInstrDesc &Desc = MI.getDesc();
504     int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
505
506     // If instruction has no memory operand - skip it.
507     if (MemOpNo < 0)
508       continue;
509
510     MemOpNo += X86II::getOperandBias(Desc);
511
512     // Do not call chooseBestLEA if there was no matching LEA
513     auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
514     if (Insns == LEAs.end())
515       continue;
516
517     // Get the best LEA instruction to replace address calculation.
518     MachineInstr *DefMI;
519     int64_t AddrDispShift;
520     int Dist;
521     if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
522       continue;
523
524     // If LEA occurs before current instruction, we can freely replace
525     // the instruction. If LEA occurs after, we can lift LEA above the
526     // instruction and this way to be able to replace it. Since LEA and the
527     // instruction have similar memory operands (thus, the same def
528     // instructions for these operands), we can always do that, without
529     // worries of using registers before their defs.
530     if (Dist < 0) {
531       DefMI->removeFromParent();
532       MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
533       InstrPos[DefMI] = InstrPos[&MI] - 1;
534
535       // Make sure the instructions' position numbers are sane.
536       assert(((InstrPos[DefMI] == 1 &&
537                MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
538               InstrPos[DefMI] >
539                   InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
540              "Instruction positioning is broken");
541     }
542
543     // Since we can possibly extend register lifetime, clear kill flags.
544     MRI->clearKillFlags(DefMI->getOperand(0).getReg());
545
546     ++NumSubstLEAs;
547     LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
548
549     // Change instruction operands.
550     MI.getOperand(MemOpNo + X86::AddrBaseReg)
551         .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
552     MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
553     MI.getOperand(MemOpNo + X86::AddrIndexReg)
554         .ChangeToRegister(X86::NoRegister, false);
555     MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
556     MI.getOperand(MemOpNo + X86::AddrSegmentReg)
557         .ChangeToRegister(X86::NoRegister, false);
558
559     LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
560
561     Changed = true;
562   }
563
564   return Changed;
565 }
566
567 MachineInstr *OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
568                                                  unsigned VReg,
569                                                  int64_t AddrDispShift) {
570   DIExpression *Expr = const_cast<DIExpression *>(MI.getDebugExpression());
571   if (AddrDispShift != 0)
572     Expr = DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift);
573
574   // Replace DBG_VALUE instruction with modified version.
575   MachineBasicBlock *MBB = MI.getParent();
576   DebugLoc DL = MI.getDebugLoc();
577   bool IsIndirect = MI.isIndirectDebugValue();
578   const MDNode *Var = MI.getDebugVariable();
579   if (IsIndirect)
580     assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
581   return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(TargetOpcode::DBG_VALUE),
582                  IsIndirect, VReg, Var, Expr);
583 }
584
585 // Try to find similar LEAs in the list and replace one with another.
586 bool OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
587   bool Changed = false;
588
589   // Loop over all entries in the table.
590   for (auto &E : LEAs) {
591     auto &List = E.second;
592
593     // Loop over all LEA pairs.
594     auto I1 = List.begin();
595     while (I1 != List.end()) {
596       MachineInstr &First = **I1;
597       auto I2 = std::next(I1);
598       while (I2 != List.end()) {
599         MachineInstr &Last = **I2;
600         int64_t AddrDispShift;
601
602         // LEAs should be in occurrence order in the list, so we can freely
603         // replace later LEAs with earlier ones.
604         assert(calcInstrDist(First, Last) > 0 &&
605                "LEAs must be in occurrence order in the list");
606
607         // Check that the Last LEA instruction can be replaced by the First.
608         if (!isReplaceable(First, Last, AddrDispShift)) {
609           ++I2;
610           continue;
611         }
612
613         // Loop over all uses of the Last LEA and update their operands. Note
614         // that the correctness of this has already been checked in the
615         // isReplaceable function.
616         unsigned FirstVReg = First.getOperand(0).getReg();
617         unsigned LastVReg = Last.getOperand(0).getReg();
618         for (auto UI = MRI->use_begin(LastVReg), UE = MRI->use_end();
619              UI != UE;) {
620           MachineOperand &MO = *UI++;
621           MachineInstr &MI = *MO.getParent();
622
623           if (MI.isDebugValue()) {
624             // Replace DBG_VALUE instruction with modified version using the
625             // register from the replacing LEA and the address displacement
626             // between the LEA instructions.
627             replaceDebugValue(MI, FirstVReg, AddrDispShift);
628             continue;
629           }
630
631           // Get the number of the first memory operand.
632           const MCInstrDesc &Desc = MI.getDesc();
633           int MemOpNo =
634               X86II::getMemoryOperandNo(Desc.TSFlags) +
635               X86II::getOperandBias(Desc);
636
637           // Update address base.
638           MO.setReg(FirstVReg);
639
640           // Update address disp.
641           MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
642           if (Op.isImm())
643             Op.setImm(Op.getImm() + AddrDispShift);
644           else if (!Op.isJTI())
645             Op.setOffset(Op.getOffset() + AddrDispShift);
646         }
647
648         // Since we can possibly extend register lifetime, clear kill flags.
649         MRI->clearKillFlags(FirstVReg);
650
651         ++NumRedundantLEAs;
652         LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
653                    Last.dump(););
654
655         // By this moment, all of the Last LEA's uses must be replaced. So we
656         // can freely remove it.
657         assert(MRI->use_empty(LastVReg) &&
658                "The LEA's def register must have no uses");
659         Last.eraseFromParent();
660
661         // Erase removed LEA from the list.
662         I2 = List.erase(I2);
663
664         Changed = true;
665       }
666       ++I1;
667     }
668   }
669
670   return Changed;
671 }
672
673 bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
674   bool Changed = false;
675
676   if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
677     return false;
678
679   MRI = &MF.getRegInfo();
680   TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
681   TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
682
683   // Process all basic blocks.
684   for (auto &MBB : MF) {
685     MemOpMap LEAs;
686     InstrPos.clear();
687
688     // Find all LEA instructions in basic block.
689     findLEAs(MBB, LEAs);
690
691     // If current basic block has no LEAs, move on to the next one.
692     if (LEAs.empty())
693       continue;
694
695     // Remove redundant LEA instructions.
696     Changed |= removeRedundantLEAs(LEAs);
697
698     // Remove redundant address calculations. Do it only for -Os/-Oz since only
699     // a code size gain is expected from this part of the pass.
700     if (MF.getFunction().hasOptSize())
701       Changed |= removeRedundantAddrCalc(LEAs);
702   }
703
704   return Changed;
705 }